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Global identification of linearized DSGE models

Andrzej Kocięcki
Narodowy Bank Polski

Marcin Kolasa
Narodowy Bank Polski and SGH Warsaw School of Economics

This paper introduces a computational framework to analyze global identifica-
tion of linearized DSGE models. A formal identification condition is established
that relies on the restrictions linking the observationally equivalent state space
representations and on the inherent constraints imposed by the model solution
on the deep parameters. This condition is next used to develop an algorithm that
checks global identification by searching for observationally equivalent model
parametrizations. The algorithm is efficient as the identification conditions it em-
ploys shrink considerably the space of candidate deep parameter points and the
model does not need to be solved at each of these points. The working of the al-
gorithm is demonstrated with two examples.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have developed into useful
tools for macroeconomic analysis. A growing number of policy making institutions, and
central banks in particular, use them not only for designing counterfactual experiments,
but also for assessing the current stance of the economy and forecasting. The latter ap-
plication has been supported by growing evidence that estimated medium-sized DSGE
models can be competitive with time series models and expert judgment (Del Negro and
Schorfheide (2013)).

It has been well understood that DSGE models can suffer from serious identifica-
tion deficiencies, making estimation and economic inference problematic. Early exam-
ples of simple unidentified DSGE models include Kim (2003), Beyer and Farmer (2007),
or Cochrane (2011). Canova and Sala (2009) brought this issue to attention of a wider

Andrzej Kocięcki: andrzej.kociecki@nbp.pl
Marcin Kolasa: marcin.kolasa@nbp.pl
Part of this paper was written while Marcin Kolasa was visiting the Columbia University. The authors would
like to thank three anonymous referees for very detailed and constructive comments. This paper also ben-
efited from discussions with Ivana Komunjer, Denis Tkachenko, Daniel Waggoner, and Tao Zha. Finally, the
authors acknowledge comments received from the participants to the NBP Summer Workshop in Warsaw,
CEF conference in Oslo, IAAE conference in London, EEA-ESEM Congress in Toulouse and NBP Workshop
“Identification in Macroeconomics” in Warsaw. The views expressed herein are those of the authors and
not necessarily those of Narodowy Bank Polski.

© 2018 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE530

http://qeconomics.org/
mailto:andrzej.kociecki@nbp.pl
mailto:marcin.kolasa@nbp.pl
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE530
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group of applied modelers by developing simple diagnostic tools for detecting problems
with identification in more empirically-oriented DSGE models estimated by impulse re-
sponse matching. Their findings allowed them to state in this context that “observa-
tional equivalence, partial and weak identification problems are widespread.” A more
formal analysis, applicable also to likelihood-based methods, is offered by Iskrev (2010).
He established conditions for local identification based on the rank of the Jacobian ma-
trix that maps the deep parameters of a DSGE model to its implied first and second
moments of observable variables. Komunjer and Ng (2011) drew on control theory and
spectral analysis. They derived their local identification conditions based on the rank of
the appropriately defined Jacobian matrix that uses the restrictions between the obser-
vationally equivalent state space systems. Another important theoretical contribution is
by Qu and Tkachenko (2012), who establish the rank conditions for local identification
using the spectral density matrix that maps from deep model parameters to functions
defined in a Banach space.

Local identification is a necessary condition for existence of well-behaved estima-
tors, and hence is “to be or not to be” for econometricians. However, one might argue
that what really matters for economists is whether there exists another point in the pa-
rameter space, possibly distinctly far from the original one, that results in the same prob-
ability distribution. This question relates to the problem of global identification, which
still remains a hardly explored area in the context of DSGE models. To our knowledge,
there are only three formal attempts to handle global identification in the literature to
date. Fukac, Waggoner, and Zha (2007) considered models with no latent variables that
can be solved analytically. Morris (2014) extended this analysis to somewhat richer mod-
els, but still relies on rather stringent assumptions that allowed him to write the model
as a vector autoregression with one lag. Finally, Qu and Tkachenko (2017) worked in
the frequency domain and offered a more general framework to check global identifica-
tion by assessing the Kullback–Leibler distance between two parametrizations of a DSGE
model.

In this paper, we offer an alternative theoretical analysis of global identification of
DSGE models. There are two ingredients of our approach. The first one relies on the
results from Komunjer and Ng (2011), who show that observationally equivalent state
space representations, where the observational equivalence is defined in terms of the
spectral density, are related by a special similarity transformation. Second, we derive the
inherent constraints that are imposed by the model solution on the structural parame-
ters to establish the formal and operational condition for their global identification. We
merge these two insights to develop an algorithm that checks global identification by
searching for observationally equivalent model parametrizations. The algorithm is effi-
cient as the identification conditions it employs shrink considerably the space of candi-
date deep parameter points. To apply the algorithm, we need to solve the DSGE model
only for the parameter value for which we are checking identification, but not for any
other alternative parametrizations. This makes our procedure not only fast, but proba-
bly also relatively accurate, given that potential numerical inaccuracy is introduced each
time a DSGE model is solved. In this respect, our identification procedure can be con-
trasted with Qu and Tkachenko (2017)—the only currently available alternative attempt
to check global identification that is applicable to a broad class of DSGE models.
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Our approach has several further important features that make it particularly at-
tractive. As already mentioned, it has a global rather than local flavor. Moreover, unlike
the previous literature on local identification (Iskrev (2010), Komunjer and Ng (2011),
Qu and Tkachenko (2012)), our method does not rely on evaluating the rank of the ma-
trices that are obtained numerically. Problems that may arise with this approach are ac-
knowledged by Iskrev (2010) and Komunjer and Ng (2011); see also Canova, Ferroni, and
Matthes (2014). In contrast, our approach is based on solving the system of nonlinear
equations, and hence is less prone to the aforementioned problems. On the downside,
and unlike Qu and Tkachenko (2017), the current version of our framework does not
allow for indeterminacy.

The rest of this paper is structured as follows. Section two lays out the structure of
a typical DSGE model and its solution. Section 3 discusses the equivalent state space
representations and the related concept of global identification. In Section 4, we work
out the formal condition for global identification. Section 5 presents our algorithm for
checking global identification. In Section 6, we demonstrate the usefulness of our algo-
rithm with a simple a-theoretical state-space model, which can also be analyzed ana-
lytically. In Section 7, the algorithm is applied to a variant of the widely analyzed DSGE
model of An and Schorfheide (2007). Section 8 concludes.

2. DSGE model

A DSGE model is a system of nonlinear equations involving conditional expectations.
While solving this type of models using global methods is in principle possible, it can
be prohibitively time consuming unless the number of state variables is very small. In
consequence, most studies use local approximations of the original models. In partic-
ular, likelihood-based estimation that requires calculating the model solution at each
optimization step is usually done with linearized models.1

Once linearized, most DSGE models can be cast in the following form:

�0(θ)

[
st
pt

]
= �1(θ)Et

[
st+1

pt+1

]
+ �2(θ)st−1 + �3(θ)εt� (1)

where st is an n × 1 vector of states, pt is a q × 1 vector of policy variables, matrices
�0(θ), �1(θ), �2(θ), and �3(θ) are explicit functions of deep model parameters collected
in an m × 1 vector θ ∈ Θ ⊆ R

m, and εt ∼ i�i�d� N(0�Σ(θ)) is a k × 1 vector of shocks,
where Σ(θ) is a k×k symmetric positive definite matrix for every θ ∈Θ. In our notation,
εt = [(εst )′ (εmt )′ ]′ collects innovations to ks structural shocks εst and km measurement
errors εmt so that the last km columns in �3(θ) are zero. We do not impose any additional
rank restrictions on �0(θ), �1(θ), �2(θ), and �3(θ), except that the underlying matrix
pencil is regular (see, e.g., King and Watson (1998); Klein (2000)) so that the model is
well formulated.2

1See Fernández-Villaverde, Rubio-Ramírez, and Santos (2006) for a discussion on how second-order ap-
proximation errors affect the likelihood function.

2The form of equation (1) is the same as in Iskrev (2010) and compatible with the Dynare package
(Adjemian et al. (2011)), except that we single out variables showing up in lags (but possibly also at the
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Let yt denote an r × 1 vector of observable variables. Then the measurement equa-
tions, linking observables to the model variables, can be written as

yt =H(θ)
[
st
pt

]
+ J(θ)εt� (2)

where H(θ) is an r × (n + q) matrix and J(θ) is an r × k matrix, both of which may
(explicitly) depend on θ. In a typical formulation, matrix J(θ) loads measurement errors,
and hence its first ks columns are zero.

In what follows, we deal with the model parametrizations that imply unique stable
solutions, that is, the parameter space Θ excludes those values of θ that result in inde-
terminacy or for which no stable solution exists. Such a solution of (1), obtainable for
example, from Dynare, can be written as

st =A(θ)st−1 +B(θ)εt� (3)

pt = F(θ)st−1 +G(θ)εt� (4)

whereA(θ) is an n× nmatrix, B(θ) is an n×kmatrix, F(θ) is a q× nmatrix, andG(θ) is
a q× k matrix, all of which implicitly depend on deep model parameters θ.3 For future
reference, we will call (4) the policy function and F(θ),G(θ) as policy matrices.

If we decompose H(θ) into blocks corresponding to the state and policy variables
H(θ) = [Hs(θ) Hp(θ) ], then using the model solution (3) and (4) allows us to rewrite
measurement equation (2) as

yt = C(θ)st−1 +D(θ)εt� (5)

where matrices C(θ) andD(θ) of dimension r × n and r × k, respectively, are defined as

C(θ) =Hs(θ)A(θ)+Hp(θ)F(θ)� (6)

D(θ) =Hs(θ)B(θ)+Hp(θ)G(θ)+ J(θ)� (7)

Consequently, the law of motion for observable variables yt has a representation in
the state space form given by transition equation (3) and measurement equation (5). For
future reference, such a representation will be called the ABCD-representation. The term
is not accidental and indicates that we are in the world of the A, B, C, and D’s explored
by Fernández-Villaverde et al. (2007).

Note that some of the matrices defined above depend on the deep model parameters
explicitly, while others usually only implicitly. We will refer to the former group, repre-
sented by �0(θ), �1(θ), �2(θ), �3(θ), Σ(θ),H(θ), and J(θ), as semistructural parameters.

current or future periods). We call these variables as states and refer to the remaining ones as policy vari-
ables. In the Appendix, we give more details on this classification and show how the widely cited model of
Smets and Wouters (2007) can be easily cast into the form required by our analysis. Note that the chosen
representation of a DSGE model is general in the sense that it is easily transformable from those used by
popular solution algorithms, for example, Blanchard and Kahn (1980), Anderson and Moore (1985), Uhlig
(1999), Klein (2000), King and Watson (2002), or Sims (2002). See also Anderson (2008).

3If we allowed for indeterminacy, equations (3) and (4) would additionally need to include sunspot
shocks; see Lubik and Schorfheide (2003).



Quantitative Economics 9 (2018) Global identification of linearized DSGE models 1247

3. Observationally equivalent ABCD-representations

An important part of our identification analysis is based on the approach and results
from Komunjer and Ng (2011). Since we closely follow their framework, we will be as
brief as possible and refer the readers to this paper for necessary details. First of all, we
confine ourselves to the ABCD-representations with the number of observables greater
or equal to the number of shocks, that is, k ≤ r.4 This covers the most interesting spe-
cial case of the square model (when k= r). Let us formalize the assumption concerning
stability.

Assumption 1. For every θ ∈Θ and for any z ∈ C (a set of complex numbers), det(zIn −
A(θ))= 0 implies |z|< 1.

Let us next define the transfer function asH(z;θ)=D(θ)+C(θ)(zIn−A(θ))−1B(θ).
This allows us to write the following.

Assumption 2. For every θ ∈ Θ, |z| > 1 implies rank(H(z;θ)) = k, that is, the transfer
function has full column rank.

To state the final assumption, we need to define the observability matrix O =
[C(θ)′���A(θ)′C(θ)′���A(θ)′2C(θ)′��� � � � ���A(θ)′n−1C(θ)′]′ and the controllability matrix K =
[B(θ)���A(θ)B(θ)���A(θ)2B(θ)��� � � � ���A(θ)n−1B(θ)]. Then we have our last assumption.

Assumption 3. For every θ ∈ Θ, matrices O and K have full column and row rank, re-
spectively, that is, rank(O)= rank(K)= n.

A full discussion and interpretation of the above assumptions can be found in
Komunjer and Ng (2011). Now we are in a position to define the observational equiv-
alence. Let us define the spectral density of the ABCD-representation as 	(z;θ) =
H(z;θ)Σ(θ)H ′(z−1;θ), where z−1 corresponds to the backward shift in the transfer func-
tion. Then we have the following definition.

Definition 1. θ and θ̄ are observationally equivalent (written as θ ∼ θ̄) if 	(z;θ) =
	(z; θ̄) for all z ∈C.

The key result in Komunjer and Ng (2011) is that, in some circumstances, θ ∼ θ̄ if
and only if the resultant A(θ̄), B(θ̄), C(θ̄), D(θ̄), Σ(θ̄) are related to A(θ), B(θ), C(θ),
D(θ), Σ(θ) by the so-called similarity transformation, which is defined by the following
theorem.

4Accommodating the case when the number of shocks is greater than the number of observables would
require using innovations representation of the state space model; see Komunjer and Ng (2011). In this case,
the simple link between matricesA, B, C,D, and semistructural parameters, which we develop in the next
section and on which our approach hinges, breaks down.
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Theorem 1 (Komunjer and Ng (2011)). Let k ≤ r, εt ∼ i�i�d� N(0�Σ(θ)) with Σ(θ) pos-
itive definite for every θ ∈ Θ, and Assumptions 1 to 3 hold. Then θ ∼ θ̄ if and only
if (1) A(θ̄) = TA(θ)T−1, (2) B(θ̄) = TB(θ)U , (3) C(θ̄) = C(θ)T−1, (4) D(θ̄) = D(θ)U ,
(5) Σ(θ̄) = U−1Σ(θ)U ′−1, for some nonsingular n × n matrix T and nonsingular k × k

matrix U .

Note that, of the four matrices characterizing the DSGE model solution (3) and (4),
only A(θ) and B(θ) appear in Theorem 1. In particular, lack of restrictions linking F(θ̄)
to F(θ) andG(θ̄) toG(θ)will have some consequences on the way we develop our iden-
tification framework for the deep model parameters in the next section.

If we assume that shocks εt are independent, that is, Σ(θ) = Ik,5 then we have the
useful corollary.

Corollary 1. Letk≤ r and Assumptions 1 to 3 hold. Moreover, assumeεt ∼ i�i�d�N(0� Ik).
Then θ∼ θ̄ if and only if (1) A(θ̄)= TA(θ)T−1, (2) B(θ̄)= TB(θ)V , (3) C(θ̄)= C(θ)T−1,
(4)D(θ̄)=D(θ)V , for some nonsingular n× nmatrix T and orthogonal k× kmatrix V .

The concept of observational equivalence is inherently related to global identifica-
tion.

Definition 2. The ABCD-representation is globally identified (from the spectral den-
sity) at θ ∈Θ if and only if θ∼ θ̄⇒ θ= θ̄.

Since εt ∼ i�i�d� N(0�Σ(θ)) and under Assumption 1, we stay in the stationary Gaus-
sian environment. Hence, the underlying distribution of observables is fully character-
ized by their unconditional mean and autocovariances. If the former is zero, then Defi-
nition 2 is equivalent to the standard notion of global identification expressed in terms
of probability distribution; see, for example, Rothenberg (1971). However, in some eco-
nomic applications the measurement equation of the ABCD-representation may con-
tain a linear deterministic component that depends on (a subvector of) θ. This directly
contributes to the unconditional mean of the observables. In such a case, which we do
not consider in this paper, the first moments convey additional information concerning
identifiability and Definition 2 should be modified accordingly. See Definition 3 in Qu
and Tkachenko (2017) for some clarification on how to do this.

4. Identification of deep parameters

From now on, we use the generic simplifying notation X :=X(θ), where X is a matrix
that depends on θ. Analogously, when referring to other points in the deep parameter
space, we write X̄ :=X(θ̄). Bearing in mind Theorem 1 and Definition 2, checking global
identification at θ boils down to checking if there exist θ̄ �= θ that results in an ABCD-
representation with Ā, B̄, C̄, D̄� and Σ̄ such that Ā = TAT−1; B̄ = TBU ; C̄ = CT−1;

5If shocks are independent, then it is always possible to normalize matrix Σ(θ) to identity by writing the
model given by (1) such that the standard deviations of shocks show up in matrix �3(θ). This is what we do
in our example studied in Section 7.
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D̄ =DU ; Σ̄ = U−1ΣU ′−1 for some nonsingular matrices T and U . It would be straight-
forward to do it if Ā, B̄, C̄, D̄� and Σ̄ were all explicit functions of θ̄, that is, if the model
solution was analytical. Then we would just need to solve the above system of equa-
tions for T , U , and θ̄. If the model cannot be solved analytically, as it is mostly the case,
using Theorem 1 to check identification becomes impractical since we would need to
compute numerically the model solution for every candidate θ̄.

To circumvent this problem, we use the links between the model’s semistructural
parameters �0, �1, �2, �3,H, J, the model solution given by matricesA, B, F ,G, and the
remaining two objects of the ABCD-representation, that is, matrices C and D. Two of
such links are already available as equations (6) and (7). To find other inherent relations,
we exploit the method of undetermined coefficients used, for example, by Uhlig (1999).
To this end, let us partition �0 and �1 in (1) into blocks corresponding to the state and
policy variables

[
�s0 �

p
0

][
st
pt

]
=

[
�s1 �

p
1

]
Et

[
st+1

pt+1

]
+ �2st−1 + �3εt� (8)

Plugging the model solution (3)–(4) into (8) twice and using Etεt+1 = 0 yields

(
�s0A+ �p0 F − �s1A2 − �p1 FA− �2

)
st−1 = (

�s1AB+ �p1 FB+ �3 − �s0B− �p0G
)
εt� (9)

Equation (9) has to hold for all st−1 and εt , hence the coefficient matrices on these two
terms must be equal to zero.6 This gives us two matrix equation restrictions:

�s0A+ �p0 F − �s1A2 − �p1 FA = �2� (10)

�s1AB+ �p1 FB− �s0B+ �3 = �
p
0G� (11)

Suppose we check global identification at some θ ∈ Θ. Given our restrictions on Θ
(determinacy region), we have a unique setA, B, F , andG that must be consistent with
(10) and (11). From equations (6) and (7), we also get unique C andD. Similarly, to each
observationally equivalent θ̄ there correspond unique Ā, B̄, F̄ , Ḡ, C̄� and D̄ that must
conform to equations (10), (11), (6), and (7). We also know from Theorem 1 that the ob-
servationally equivalent ABCD-representations must be related to each other with the
similarity transformation, and this is the other key ingredient of our procedure. If we
write restrictions (10), (11), (6), and (7) for θ̄, that is, add overbars to all matrices show-
ing up in these four sets of equations, and next merge them with the restrictions from
Theorem 1 in a way that eliminates Ā, B̄, C̄, and D̄, we arrive at the following system of
equations:

�̄s0TAT
−1 + �̄p0 F̄ − �̄s1TA2T−1 − �̄p1 F̄TAT−1 = �̄2� (12)

�̄s1TABU + �̄p1 F̄TBU − �̄s0TBU + �̄3 = �̄
p
0 Ḡ� (13)

CT−1 = H̄sTAT−1 + H̄pF̄� (14)

6An implicit assumption justifying this claim is that the dimension (in linear algebra sense) of εt is k and
that of st is n. The former is satisfied since Σ is positive definite and the latter holds by Assumption 3.
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DU = H̄sTBU + H̄pḠ+ J̄� (15)

Σ̄ = U−1ΣU ′−1� (16)

These equations jointly define all parameter vectors θ̄ that are observationally equiva-
lent to a given θ.

Note that, for given θ, matrices A, B, C, D, and Σ are all known, while matrices �̄0,
�̄1, �̄2, �̄3, H̄, J̄� and Σ̄ are analytically linked to θ̄. Hence, using some θ of interest, check-
ing identification at this point amounts to searching for θ̄ ∈Θ, nonsingular T and U , as
well as F̄ and Ḡ, that solve the system of equations (12) to (16). If we can find a solu-
tion such that θ̄ �= θ, the DSGE model is not globally identified at θ. The efficiency of
such a procedure when applied even to large DSGE models follows from the fact that,
unlike Qu and Tkachenko (2017), we do not have to solve the model for each candidate
deep parameter point to check whether a model is globally identified. Instead, we au-
tomatically connect the deep parameters with the model solution through the system
of nonlinear equations (12) to (16). As a result, our procedure is faster to implement,
and probably also numerically more accurate, because each time the model is solved, a
potential numerical inaccuracy is introduced.

Before proceeding, it is worth discussing the role of matrices F̄ and Ḡ in our iden-
tification conditions. They show up in equations (12)–(16) because the original prob-
lem (1)–(2) features policy variables pt , while the ABCD-representation does not. Con-
sequently, we cannot eliminate these matrices using Theorem 1, as we did in the case
of Ā, B̄, C̄� and D̄. But we know that any unique stable solution for pt must be of form
(4), and by plugging it into (1)–(2) we obtained implicit restrictions on F̄ and Ḡ so that
they are consistent with the original problem for given θ̄. These restrictions are suffi-
cient to make sure that, when a solution to the system of equations (12)–(16) is found,
the obtained F̄ and Ḡ (as well as Ā, B̄� and Σ̄, via their links to A, B, and Σ transmitted
by T and U according to Theorem 1) describe the unique stable solution for θ̄. This is
because, by Assumption 1, matrix Ā = TAT−1 is stable so that unstable solutions are
ruled out, while uniqueness results from the restrictions on the parameter space Θ to
which θ̄ must belong. As we will show later, it is very often possible to solve for F and
G as explicit functions of matrices A, B, C, D, and semistructural parameters. This will
speed up the algorithm that we describe in the next section.

5. Algorithm checking identification

In this section, we develop an algorithm that checks global identification using the con-
ceptual framework described above.

5.1 General setup

For a typical DSGE model, the system given by equations (12)–(16) is nonlinear in θ̄� and
hence numerical methods have to be applied to solve it. Using the fact that, by construc-
tion, the system is satisfied for θ̄= θ, F̄ = F , Ḡ=G, T = In, andU = Ik, one can generate
the starting values for a numerical solver by randomizing around this point. Naturally,
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the more diffuse distribution is used in the randomization, the longer it might take to
obtain a solution, but the more likely it is to eventually find alternative parameter values
that are far from θ at which we check identification.

A simple implementation of our procedure to check global identification can be de-
scribed in form of the following algorithm.

Algorithm 1. To search for observationally equivalent vectors of deep parameters of a
DSGE model defined by equations (1) and (2):

1. Choose a point θ ∈Θ at which global identification is to be checked.

2. Evaluate Σ. Solve the model to obtain matricesA, B, F , andG. Calculate matrices
C andD from equations (6) and (7).

3. Generate a vector of starting values [(θ̄0)′
��� vec(F̄0)′

��� vec(Ḡ0)′
��� vec(T 0)′

��� vec(U0)′]′ =
[θ′��� vec(F)′

��� vec(G)′
��� vec(In)′

��� vec(Ik)′]′ + ε, where ε∼N(0�diag(Ξ)) is a randomizing dis-

tribution andΞ = [υ2
i ]m+qn+qk+n2+k2

i=1 .

4. Using the starting values from step 3, solve numerically the system of equations
(12)–(16) for θ̄, T , U , F̄� and Ḡ. If no solution such that θ̄ ∈ Θ can be found, go back to
step 3.7

5. If θ̄ �= θ, stop and conclude that the model is not globally identified at θ. If θ̄ = θ,
go back to step 3 or stop if the total number of solutions found has reachedM .

The algorithm is parameterized by two objects: Ξ and M . The first one character-
izes the randomizing distribution used to generate the starting values for the numerical
routine that is applied to solve equations (12)–(16). The second controls the number of
performed model solutions that we consider sufficient to judge if the model is globally
identified. When global identification fails due to lack of local identification, M = 1 is
sufficient for any nonnegligible scale of randomization Ξ. However, if the model is lo-
cally identified, larger values of M might be needed to detect potential problems with
global identification, especially if the elements in Ξ are small, and hence the starting
values lie close to the solution θ̄= θ. Too large values in Ξ might in turn produce start-
ing values so far away from any solution to the system of equations (12)–(16) that the
numerical solver fails to find any, and step 4 has to be repeated many times.

More generally, the optimal values of Ξ and M are model-specific and some fine-
tuning for particular applications might be needed. However, we found the following
procedure for calibratingΞ to work very well in our experiments. As a first pass, use rela-
tively large scale of randomization υi for all deep model parameters (i.e., for i= 1� � � � �m)

7Recall that our analysis deals only with those model parametrizations that imply a unique stable solu-
tion, which imposes restrictions on the parameter spaceΘ. In practice, and in particular for model in which
the determinacy region is cumbersome to define, it may be more convenient to leave Θ unrestricted while
solving equations (12)–(16), that is, assume Θ= R

m, and then go back to step 3 if the obtained solution for
θ̄ does not satisfy the Blanchard–Kahn conditions.
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so that θ̄0 may be far away from θ,8 but do not randomize the starting values for the re-
maining unknowns (i.e., set υi = 0 for i >m). If no observationally equivalent parameter
is found, experiment with other parameterizations of the randomizing distribution by
gradually increasing υi’s for i >m. As regardsM , offering any concrete recommendation
is much more tricky since the probability of finding θ̄ �= θ (if it exists) clearly depends on
the choice of Ξ; see Section 6 for illustration. It is also reasonable to expect that larger
values of M might be needed for larger dimensions of the parameter space involved.
In all examples considered in this paper, we set M = 1000, and, for the calibration of Ξ
described above, this made the probability of failing to detect identification problems,
if such exist, very small. Naturally, there is no guarantee that this number will be suffi-
ciently high in other applications, especially in bigger models.

Several steps in Algorithm 1 require application of numerical methods, which nec-
essarily result in numerical approximation errors. We perform all calculations in Matlab
R2015a, which uses double precision numbers. To solve the system of equations (12)–
(16), we use the Matlab routine fsolve, setting the tolerance levels for the size of step
TolX and change in the value of function TolFun at a very low value of 10−20 as such
high precision did not significantly affect the speed of computations compared to more
conventional and less stringent values.9 To judge if θ̄ equals θ, we compare them up
to the fifth decimal place, which is far more accurate than required by any meaningful
economic application.

It needs to be stressed once again that the recommendations formulated above
about the tuning constants and tolerance levels are based on our personal experience
gained by experimenting with the models presented as examples below, and they may
not necessarily work equally well with other applications.

5.2 Useful special cases

A couple of further remarks that might be helpful to specialize or simplify Algorithm 1
are in order. First of all, if shocks are independent so that the model conforms to Corol-
lary 1, we suggest to parameterize an orthogonal V by V = 2(Ik +X)−1 − Ik, where X
is a k× k skew symmetric matrix, that is, it satisfies X +X ′ = 0. Second, as we have ex-
plained before, while checking global identification using Algorithm 1, we have to solve
the system of equations (12)–(16) not only for θ̄, T , and U , but also for F̄ and Ḡ. We now

8For example, in the models presented in the rest of this paper, setting υi = 1 for i= 1� � � � �m implies the
range of variation in θ̄0 that well covers all reasonable values of the deep model parameters.

9Note that matrices A, B, C, and D that enter Algorithm 1 as parameters can usually be obtained only
numerically. Therefore, if the tolerance levels TolX and TolFun are too small, fsolve may fail to find a
solution θ̄ �= θ even if the model is not identified. However, in such cases it is likely that the routine will have
problems to find the solution θ̄= θ as well. Therefore, while setting the tolerance levels it is recommended
to make sure that this solution is easily found for a small degree of randomization, that is, for θ̄0 that is close
to θ. Notwithstanding these concerns, our experiments with the models presented in the rest of this paper
suggest that problems related to inappropriate calibration of the tolerance levels are unlikely to emerge
unless one sets them at extremely low levels.
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show how it is possible to eliminate these two matrices from the list of unknowns by
exploiting the model structure summarized in equation (1).10

We first consider only those of the model equilibrium conditions that do not involve
taking expectations of policy variables. This can be often sufficient to recover policy ma-
trices F and G from the model semistructural parameters and matrices A and B, and
hence to get rid of F̄ and Ḡ from our algorithm. Let us write such a subset of l equations
in (1) as

[
	s0 	

p
0

][
st
pt

]
=	s1Etst+1 +	2st−1 +	3εt� (17)

Plugging the model solution (3) into (17) and using Etst+1 =Ast yields

	
p
0pt =

(
	2 −	s0A+	s1A2)st−1 + (

	3 +	s1AB−	s0B
)
εt� (18)

If	p0 has full column rank q, then we can select q equations in (18) such that the cor-
responding block of 	p0 is nonsingular. If we use tilde to denote the appropriate blocks
of matrices defined by this selection, then juxtaposing (18) and (4) we obtain

F = (
	̃
p
0

)−1(
	̃2 − 	̃s0A+ 	̃s1A2)� (19)

G = (
	̃
p
0

)−1(
	̃3 + 	̃s1AB− 	̃s0B

)
� (20)

Of course, it still may be the case that, even if l > q, the rank of 	p0 is less than q.
In practice, this can happen if at least one of the policy variables does not enter the
subsystem (17). Then, without loss of generality, we can write 	p0 = [	̂p0 0], where 	̂p0
has full column rank q̂ < q, and accordingly partition pt = [(p̂t)′ (p̌t)′ ]′. We can retrieve
the first q̂ rows of F andG, that is, the policy functions for p̂t , using the same arguments
that led to (19) and (20).

Importantly, the missing rows of F and G (i.e., those corresponding to p̌t ) can still
often be recovered using additional model equations in (1), and distinct from (17), with
the following structure:

[
Ψs

0 Ψ̂
p
0 Ψ̌

p
0

]⎡
⎢⎣ stp̂t
p̌t

⎤
⎥⎦ =Ψs

1Etst+1 + Ψ̂p
1 Etp̂t+1 +Ψ2st−1 +Ψ3εt (21)

that is, those equilibrium conditions where the subset of policy variables p̂t enter in
expectations, but the complementary subset p̌t does not. Provided that Ψ̌p

0 has full col-
umn rank q − q̂, we can essentially repeat the above reasoning. That is, using (21), we
obtain the rows of F andG corresponding to p̌t by plugging into it p̂t = F̂st−1 + Ĝεt and
Etp̂t+1 = F̂Ast−1 + F̂Bεt , where F̂ and Ĝ denote the policy functions for p̂t recovered at
the previous stage, and proceeding as before.

10Naturally, matrices F̄ and Ḡ could be eliminated just by computing them directly using one of the
routines solving dynamic linear models with rational expectations. However, that would defeat the purpose
of Algorithm 1, which is to avoid solving the model for each candidate parameter vector.
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The procedure derived above can be used in Algorithm 1 so that it does not need to
search for all elements in F̄ and Ḡ, and sometimes the set of unknowns can be reduced
just to θ̄, T , and U . To give more intuition, in the Supplementary Material (Kocięcki and
Kolasa (2018)), we show how entire policy matrices F and G can be recovered in the
Smets and Wouters (2007) model, using the reasoning developed above or, alternatively,
by working directly with the model equilibrium conditions on an equation-by-equation
basis.

An alternative or complementary way of eliminating matrices F andG to the one ex-
ploiting the model equilibrium conditions is to use restrictions (6)–(7) associated with
the measurement equations, for which we need matrix Hp to have full column rank. If
H is just a selection matrix, this condition states that all policy variables must be treated
as observable. This is the case, for example, in the canonical New Keynesian model of
Clarida, Gertler, and Galí (1999) or its closely related variant by An and Schorfheide
(2007) that we consider in Section 7, where the observable variables are output, inflation,
and the interest rate. It is also worth noting that full column rank of Hp can sometimes
be achieved simply by using some equations in (1) to eliminate unobservable policy
variables.

6. Example: Simple a-theoretical state-space system

Before we demonstrate how our method can be applied to a fully-fledged DSGE model,
it is instructive to consider a simple a-theoretical case, in which the mapping from struc-
tural parameters to the ABCD-representation can be derived analytically. This will allow
us to see how global identification problems may arise and how the framework we pro-
pose can be useful in detecting them. As an example, we use a model that results in a
similar state-space system as discussed in Section 3.1 of Schorfheide (2011).

More specifically, consider the following artificial 3-equation DSGE model:

s1�t = α2
1s1�t−1 + εt� (22)

s2�t = (
1 − α2

1
)
(s1�t−1 + s2�t−1)− α2pt� (23)

pt = α2Etpt+1 − (
α2

1α2 − 1
)
s1�t � (24)

where the vector of states is st = [ s1t s2t ]′ and the only policy variable is pt . There is only
one stochastic shock εt ∼N(0�1) so that Σ= 1. The vector of deep model parameters is
θ = [α1 α2 ]′, with each of the two elements assumed to lie in the unit interval, that is,
0<αi < 1 for i= 1�2.

The system of equations (22)–(24) is already written in the form that is conformable
with (1), where

�0 =
⎡
⎢⎣ 1 0 0

0 1 α2

α2
1α2 − 1 0 1

⎤
⎥⎦ � �1 =

⎡
⎢⎣0 0 0

0 0 0
0 0 α2

⎤
⎥⎦ �

�2 =
⎡
⎢⎣ α2

1 0
1 − α2

1 1 − α2
1

0 0

⎤
⎥⎦ � �3 =

⎡
⎢⎣1

0
0

⎤
⎥⎦ �
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We assume that the observable variable is a simple sum of the two states, that is, yt =
s1t + s2t , and there is no measurement error so that

H = [
1 1 0

]
� J = 0�

Given the restrictions on θ, there exists a unique stable solution. Bearing in mind
Section 2, the relevant matrices are

A =
[

α2
1 0

1 − α2
1 − α2

1α2 1 − α2
1

]
� B=

[
1

−α2

]
� C =

[
1 − α2

1α2 1 − α2
1

]
�

D = 1 − α2� F =
[
α2

1 0
]
� G= 1�

Since in this example we know the mapping from θ to the ABCD-representation,
we can check global identification simply by solving analytically the five restrictions in-
cluded in Theorem 1.11 According to this solution, which we present in the Supplemen-
tary Material (Kocięcki and Kolasa (2018)), there exists one observationally equivalent
parametrization to θ, that is, θ̄ = [(1 − α2

1)
1
2 α2 ]′. Hence, of the two model parameters,

α2 is globally identified while α1 is not, unless α1 = 2− 1
2 . Summing up, the model is not

globally identified at almost every θ.12

Suppose now that the analytical solution, that is, the mapping from structural pa-
rameters α1 and α2 to the coefficients in the A, B, C, and D matrices, is not available.
How can Algorithm 1 be useful to an applied researcher? We illustrate it by showing how
the algorithm’s output depends on the choice of the starting values. More specifically,
let us check identification at θ = [0�3 0�2 ] so that we know that θ̄ = [0�91

1
2 0�2 ] implies

exactly the same likelihood for any possible observable variable yt . We consider a grid
for the starting values of the deep model parameters θ̄0 defined as a Cartesian square of
a set {0�001 { i10 }9

i=1 0�999 }. For each point on the grid, we solve the system of equations
(12)–(16) 10.000 times using independent draws from the standard multivariate normal
distribution to randomize the starting values for the remaining unknowns, that is, the
elements of F̄ , Ḡ, T , and U .

The outcomes are presented in the first panel of Figure 1 in the form of a heat map,
where the temperature is defined as the frequency of finding the alternative solution
θ̄ = [0�91

1
2 0�2 ]. Not surprisingly, the closer are the starting values θ̄0 to θ̄, the higher is

the chance that we will find this point. While the probability of detecting global identi-
fication failure if the system of equations (12)–(16) is solved just once stands well below
0�5, even if the starting values are close to θ̄, the chances of missing it after many (say,

11Taking into account the restrictions onΘ, one can easily check that Assumptions 1 to 3 hold.
12Proceeding similar to Schorfheide (2011), lack of global identification in the example considered in this

section can also be easily established by noting that yt is a restricted AR(2) process(
1 − α2

1L
)(

1 − (
1 − α2

1
)
L

)
yt = (1 − α2)εt �

where L is a lag operator such that Lsxt = xt−s for any variable x and s = 0�1� � � � . By switching the values of
the two AR roots, we can obtain an observationally equivalent AR(2) process.
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Figure 1. Identification of simple a-theoretical state-space system. Notes: The figures illustrate
the frequency of finding the alternative solution θ̄ �= θ with Algorithm 1 applied to the simple
a-theoretical state-space system, depending on the starting values θ̄0. The outcomes are pre-
sented for two values of the benchmark parameter vector θ (in rows), and two variants of the
dispersion in the randomizing distribution Ξ (in columns) used to generate the starting values
for the remaining unknowns in system (12)–(16), that is, F̄0, Ḡ0, T 0, and U0. For each variant
and each point on the grid for θ̄0, the frequencies are estimated using 10.000 independent draws
from the randomizing distribution.

M = 1000) tries are negligibly small. The second panel in the first row repeats this exer-
cise with the dispersion of the randomizing distribution increased by 50%. The frequen-
cies are significantly larger for all starting values θ̄0. The downside of higher dispersion
is that it may take longer for the numerical solver to find any solution, so it is not neces-
sarily the case that larger υi’s allow to check global identification in a shorter time. In the
second row of Figure 1, we replicate our results for an alternative value of θ = [0�3 0�8 ],
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which differs from the one previously used in the value of α2. The frequencies of finding
θ̄ = [0�91

1
2 0�8 ] are now smaller, so it will usually take more time for Algorithm 1 to run

until we conclude that the model is not identified.13 Clearly, the time after which our
procedure detects global identification failure depends on the point at which we check
it.

Overall, this simple example shows us that running Algorithm 1 on a DSGE model
before estimating it can give the researcher valuable information about possible prob-
lems and caveats that he or she will face. In particular, if Bayesian methods are applied,
one can expect high sensitivity of the results to the prior assumptions and multimodal-
ity in the posterior distribution, the latter calling for a careful choice of the sampling
algorithm.

7. Example: An–Schorfheide model

Our next example is a fully-fledged, but still small DSGE model by An and Schorfheide
(2007), AS henceforth, modified to allow for correlation between government spending
and productivity as in Herbst and Schorfheide (2016). Identification of the original AS
model was also examined locally by Komunjer and Ng (2011) so it provides a natural
object to highlight the main features of our approach.

7.1 Model summary

When written in log-linearized form, the model is given by the following equations:

zt = ρzzt−1 + ρzggt−1 + σzεz�t� (25)

gt = ρggt−1 + ρgzzt−1 + σgεg�t� (26)

xt = Etxt+1 + gt −Etgt+1 − 1
τ
(Rt −Etπt+1 −Etzt+1)� (27)

πt = βEtπt+1 + κ(xt − gt)� (28)

Rt = ρmRt−1 + (1 − ρm)
[
ψ1πt +ψ2(xt − gt)

] + σmεm�t � (29)

There are three endogenous variables in the model: detrended output xt , inflation πt ,
and the interest rate Rt . They are driven by two exogenous AR(1) processes for produc-
tivity growth zt and government spending gt , with innovations εz�t and εg�t , respectively,
and by an i.i.d. monetary policy shock εm�t . All of these i.i.d. innovations are assumed to
be mutually uncorrelated so that we can normalize Σ = I3. The 13-dimensional vector
of parameters is θ= [τ β κ ψ1 ψ2 ρz ρzg ρg ρgz ρm σz σg σm ]′.

13To see why this is the case, it is instructive to use the analytical form of T derived in the Supplementary

Material. Evaluating it at θ = [ 0�3 0�2 ] gives T = [ 1�23 1�13
−0�23 −0�12

], while for θ = [ 0�3 0�8 ] we have T = [ 4�60 4�51
−3�60 −3�51

].
Clearly, the latter is further away from the identity matrix around which we center randomization, so it
takes a larger number of draws to find the solution θ̄ �= θ.
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The model can be cast in the form given by (1), with states st = [zt gt Rt ]′, policy
variables pt = [xt πt ]′, shocks εt = [εz�t εg�t εm�t ]′, and matrices �0, �1, �2, and �3 given
by

�0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0

0 −1
1
τ

1 0

0 κ 0 −κ 1
0 (1 − ρm)ψ2 1 (ρm − 1)ψ2 (ρm − 1)ψ1

⎤
⎥⎥⎥⎥⎥⎥⎦
�

�1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1
τ

−1 0 1
1
τ

0 0 0 0 β

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
�

�2 =

⎡
⎢⎢⎢⎢⎢⎣

ρz ρzg 0
ρgz ρg 0
0 0 0
0 0 0
0 0 ρm

⎤
⎥⎥⎥⎥⎥⎦ � �3 =

⎡
⎢⎢⎢⎢⎢⎣

σz 0 0
0 σg 0
0 0 0
0 0 0
0 0 σm

⎤
⎥⎥⎥⎥⎥⎦ �

The vector of observable variables is yt = [Rt xt πt ]′ and there are no measurement er-
rors, which means thatH = [03×2 I3 ] and J = [03×3 ] for all θ.

Our benchmark parametrization θ of the AS model is the same as used by Komunjer
and Ng (2011) and presented in Table 1.

7.2 Local identification issues

In the original AS model, government spending and productivity are assumed to be in-
dependent, that is, ρzg = ρgz = 0. We know from the earlier literature that this setup is
locally unidentified; see Komunjer and Ng (2011) or Qu and Tkachenko (2012). Applying
Algorithm 1 confirms these findings. For instance, if we reparameterize the Taylor rule

Table 1. Benchmark parametrization of the AS model.

Parameter Value Parameter Value

τ 2 ρzg 0
β 0�9975 ρgz 0
κ 0�33 ρm 0�75
ψ1 1�5 σz 0�003
ψ2 0�125 σg 0�006
ρz 0�9 σm 0�002
ρg 0�95
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such that ψ1 = 2, ψ2 = −0�67, ρm = 0�688, and σm = 0�0018, we get exactly the same like-
lihood (and moments) for observables as for the benchmark calibration from Table 1.
To make the model identified, we need to fix (i.e., treat as known) at least one parameter
from the set [ψ1 ψ2 ρm σm ].

Even though these results are not new, let us highlight an important strength of Al-
gorithm 1, also in this local context. Komunjer and Ng (2011) show that if they reduce
the degree of inertia in productivity and government spending shocks (i.e., ρz and ρg)
to about 0�1, their method fails to confirm identification of the model, even if one of the
Taylor rule parameters is restricted. More generally, their method is sensitive to the tol-
erance level they set while performing the matrix rank tests. As we signaled in footnote
9, our algorithm seems to be more robust to numerical difficulties. In particular, if we
consider low (but nonzero) shock inertia, our identification analysis leads to the same
conclusions as for the benchmark parameter set.

7.3 Global identification issues

The results presented above can be obtained with a minimum degree of randomization
of the initial values in step 3 of Algorithm 1, with different starting values implying dif-
ferent θ̄. This indicates that the detected identification problems are local, consistently
with the previous literature. Now we move to the problem of global identification in the
AS model.

So far we have considered the case in which no correlation between productivity
and government expenditures was allowed, and now we relax this assumption. Let us
consider the benchmark parameter vector from Table 1, except that ρzg = 0�1, where a
positive value of this coefficient can be thought of as a reduced-form way of captur-
ing the effects of publicly financed research or infrastructure on productivity. When we
apply Algorithm 1 to this benchmark parameterization, no observationally equivalent
parameter vector can be found, even if none of the deep model parameters are treated
as known. While this outcome does not formally prove that the model is globally identi-
fied at the considered point, it tells us that allowing for spillovers from public spending
to productivity can be an alternative way of ensuring (at least local) identification of
the AS model. This result may look counterintuitive as one would expect that increasing
the number of unknown parameters should worsen rather than alleviate identification
problems. However, it is easy to see that if there are no feedback effects from government
to productivity shocks (ρzg = 0), the former do not affect inflation or the interest rate
in the AS model. Hence, allowing for nonzero ρzg breaks the disconnect between mo-
ments related to these two observable variables and movements in government spend-
ing, which helps identify other parameters.

We next allow for a two-way correlation between productivity and government
spending, that is, both ρzg and ρgz are no longer restricted to equal zero, and use Algo-
rithm 1 to check global identification of this extension to the original AS model. Table 2
documents the outcomes for two illustrative points θ, differing only in the value of ρgz .
We consider two negative values for this parameter, which can be interpreted as a sim-
ple way of capturing countercyclical fiscal policy. The remaining elements of θ are set
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Table 2. Global identification failure in AS model with correlated government spending and
productivity.

Set 1 Set 2

Observationally equivalent pairs θ θ̄ θ θ̄

τ 2 2 2 2
β 0�9975 0�8492 0�9975 0�9372
κ 0�33 0�3817 0�33 0�3510
ψ1 1�5 1�4338 1�5 1�4756
ψ2 0�125 0�1698 0�125 0�1415
ρz 0�9 0�9047 0�9 0�9020
ρg 0�95 0�9453 0�95 0�9480
ρzg 0�1 0�1506 0�1 0�1184
ρgz −0�08 −0�0517 −0�075 −0�0625
ρm 0�75 0�75 0�75 0�75
σz 0�003 0�0032 0�003 0�0031
σg 0�006 0�0043 0�006 0�0052
σm 0�002 0�002 0�002 0�002

to their baseline values from Table 1, except that, as before, ρzg = 0�1. For each of these
two benchmark values of θ, Algorithm 1 finds one observationally equivalent θ̄ from the
determinacy region.

Several observations are in order. First, the identification failure concerns a large
subset of parameters: only τ, ρm, and σm are globally identified. Relative to the bench-
mark θ’s, their observationally equivalent twins θ̄’s are characterized by larger spillovers
from government spending to productivity and smaller (in the absolute value) spillovers
in the opposite direction, a steeper Phillips curve, and bigger relative weight of output in
the monetary policy rule. Second, the distance between θ and its observationally equiv-
alent θ̄ strongly depends on the value of ρgz . In particular, for the benchmark values
of other elements in θ considered in this example, θ becomes identical to θ̄ (i.e., the
model is globally identified) when ρgz is around −0�0713. Third, while the observation-
ally equivalent model parameterizations are indistinguishable on the basis of the prob-
ability distribution, they may have distinct economic implications. For instance, θ and
θ̄ imply different responses to government spending and productivity shocks, and also
give different answers about the importance of these shocks for fluctuations in the ob-
servable variables, even though in our particular example these differences are small.
Perhaps more importantly, since the values of the discount factors β and β̄ in the ob-
servationally equivalent pairs θ and θ̄ may be very far from each other, it may matter
which of them is chosen to evaluate welfare implications of alternative economic poli-
cies, hence affecting the model-based policy recommendations.

8. Concluding remarks

In this paper, we have developed a framework for analyzing global identification of
DSGE models. It is derived by combining the results on the observational equivalence
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of the ABCD-representations established earlier in the literature by Komunjer and Ng
(2011) with inherent constraints imposed on these representations by the original model
structure. We used this framework to design an algorithm that efficiently searches for ob-
servationally equivalent deep parameter sets. The main appeal of the algorithm is that
the DSGE model needs to be solved only for the parameter value for which the global
identification is checked, but not for all candidate alternative parameterizations. This
makes our procedure fast to implement and probably also numerically more accurate.
We also demonstrated how the algorithm can be used to detect global identification fail-
ure in a variant of the model considered by An and Schorfheide (2007) a small-scale
DSGE model widely used in the literature on identification.

Our framework can be easily applied to more sophisticated models. We did (though
do not report) it for the medium-sized small open economy model described in
Justiniano and Preston (2010). The reason why this setup might be of interest is related
to some identification problems encountered by these authors while they estimated the
model. However, applying our algorithm to this example did not result in finding param-
eter values that would be observationally equivalent to the baseline parameterization
used by Justiniano and Preston (2010). This is consistent with Iskrev (2010) or Komunjer
and Ng (2011), who show that identification problems in richer models, like the canoni-
cal Smets and Wouters (2007) setup, are less widespread than one might expect given the
evidence for small models. It follows that the identification problems plaguing estima-
tion of medium-sized DSGE models might be more of a weak rather than strong nature,
that is, they might result from low curvature of the likelihood function for a typical set of
macroeconomic time series rather than from intrinsic features of the model structure.
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