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Fragile beliefs and the price of uncertainty
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A representative consumer uses Bayes’ law to learn about parameters of several
models and to construct probabilities with which to perform ongoing model av-
eraging. The arrival of signals induces the consumer to alter his posterior distri-
bution over models and parameters. The consumer’s specification doubts induce
him to slant probabilities pessimistically. The pessimistic probabilities tilt toward
a model that puts long-run risks into consumption growth. That contributes a
countercyclical history-dependent component to prices of risk.
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Le doute n’est pas une condition agréable, mais la certitude est absurde.1

Voltaire (1767).

1. I

A pessimist thinks that good news is temporary and that bad news endures. This paper
describes how a representative consumer’s model selection problem and fear of mis-
specification foster pessimism that puts countercyclical uncertainty premia into risk
prices.

1.1 Doubts promote fragile beliefs

A representative consumer values consumption streams according to the multiplier
preferences that Hansen and Sargent (2001) used to represent model uncertainty.2 Fol-
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lowing Hansen and Sargent (2007), the iterated application of risk-sensitivity operators
focuses a representative consumer’s distrust on model selection and on particular para-
meters within those models.3 Ex post, the consumer acts “as if” he believes a probability
measure that a malevolent alter ego has twisted pessimistically relative to a baseline ap-
proximating model. The apparent pessimism is actually the consumer’s instrument for
constructing valuations that are robust to misspecifications. By “fragile beliefs” we re-
fer to the sensitivity of pessimistic probabilities to the arrival of news, as determined
by the state-dependent value functions that define what the consumer is pessimistic
about.4 Our representative consumer’s reluctance to trust his model adds “model un-
certainty premia” to prices of risk. The parameter estimation and model selection prob-
lems make these uncertainty prices be time-dependent and state-dependent, in con-
trast to the constant uncertainty premia found by Hansen, Sargent, and Tallarini (1999)
and Anderson, Hansen, and Sargent (2003).

1.2 Key components

In addition to a risk-sensitivity operator of Hansen, Sargent, and Tallarini (1999) and
Tallarini (2000) that adjusts for uncertain dynamics of observed states, another one of
Hansen and Sargent (2007) adjusts the probability distribution of hidden Markov states
for model uncertainty.5 We interpret both risk-sensitivity operators as capturing a rep-
resentative consumer’s concerns about robustness.6

Our representative consumer assigns positive probabilities to two models whose fits
make them indistinguishable for our data on per capita U.S. consumption expenditures
on nondurables and services from 1948II–2009IV. In one model, consumption growth
rates are only weakly serially correlated, while in the other there is a highly persistent
component of consumption growth rate, as in the long-run risk model of Bansal and
Yaron (2004). The representative consumer doubts the Bayesian model-mixing proba-
bilities as well as the specification of each model. The consumer copes with model un-
certainty by slanting probabilities toward the model associated with the lowest contin-
uation utility. We show how variations over time in the probabilities attached to models
and other state variables put volatility into uncertainty premia.

and Williams (2006), Maccheroni, Marinacci, and Rustichini (2006a, 2006b), Cerreia, Maccheroni, Mari-
nacci, and Montrucchio (2008), and Strzalecki (2008).

3Sometimes the literature calls this structured uncertainty.
4Harrsion and Kreps (1978) and Scheinkman and Xiong (2003) explored other settings in which difficult

to detect departures from rational expectations lead to interesting asset price dynamics that cannot occur
under rational expectations.

5This second risk-sensitivity operator expresses what Klibanoff, Marinacci, and Mukerji (2005, 2009)
called smooth ambiguity and what other researchers call structured model uncertainty. Using a different
approach to learning in the presence of model ambiguity, Epstein and Schneider (2008) applied their re-
cursive multiple priors model to study the response of asset prices to signals when investors are uncertain
about a noise variance that influences Bayesian updating.

6Barillas, Hansen, and Sargent (2009) emphasized that both risk-sensitivity operators can be view as
indirect utility functions for the minimization part for max–min expected utility problems. Tallarini (2000)
adopted an interpretation in terms of enhanced risk aversion.
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In contrast, Bansal and Yaron assumed that the representative consumer assigns
probability 1 to the long-run risk model even though sample evidence is indecisive in
selecting between them.7 Our framework explains why a consumer might act as if he
puts probability (close to) 1 on the long-run risk model even though he knows that it is
difficult to discriminate between these models statistically.

1.3 Organization

We proceed as follows. After Section 2 sets out a framework for pricing risks expressed
in a vector Brownian motion Wt , Section 3 describes a hidden Markov model and three
successively smaller information sets (full information, unknown states, and unknown
states and unknown model) together with the three innovations (or news) processes
given by the increments to Brownian motions Wt(ι), W̄t(ι), and W̄t that are implied by
these three information structures. Section 4 then uses these three information speci-
fications and the associated dWt(ι), dW̄t(ι), and dW̄t , respectively, as risks to be priced
without model uncertainty. We construct these Section 4 risk prices under the informa-
tion assumptions ordinarily used in finance and macroeconomics. Section 5 proposes a
new perspective on asset pricing models with Bayesian learning by pricing each of the
risks dWt(ι), dW̄t(ι), and dW̄t under the full information set. Section 6 describes contri-
butions to risk prices coming from uncertainty about distributions under each of our
three information structures. Uncertainty about shock distributions with known states
contributes a constant uncertainty premium, while uncertainty about unknown states
contributes time-dependent premia and uncertainty about models contributes state-
dependent premia. Section 7 presents an empirical example designed to highlight the
mechanism through which the state-dependent uncertainty premia give rise to counter-
cyclical prices of risk. The Appendix describes how we use detection error probabilities
to calibrate the representative consumer’s concerns about model misspecification.

2. S   

Let {St} be a stochastic discount factor process that, in conjunction with an expectation
operator, assigns date 0 risk-adjusted prices to payoffs at date t. Trading at intermediate
dates implies that St+τ/St is the τ-period stochastic discount factor for computing asset
prices at date t. Let {Wt} be a vector Brownian motion innovation process where the
increment dWt represents new information flowing to consumers at date t. Synthesize a
cumulative time t payoff as

logQt(α)= α · (Wt −W0)− t

2
|α|2$

7Bansal and Yaron (2004) incorporated other features in their specification of consumption dynamics,
including stochastic volatility, and they adopted a recursive utility specification with an intertemporal elas-
ticity of substitution greater than 1.
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By subtracting t
2 |α|2, we have constructed the payoff to be a martingale with unit expec-

tation. By altering the vector α, we change the exposure of the payoff to components of
Wt . At date t, we price the payoff Qt+τ(α)/Qt(α) as

Pt%τ(α) =E

[
St+τQt+τ(α)

StQt(α)

∣∣∣Yt

]
$ (1)

The vector of (growth-rate) risk prices for horizon τ is given by the price elasticity

πt%τ = − ∂

∂α

1
τ

logPt%τ(α)

∣∣∣∣
α=αo

% (2)

where we have scaled by the payoff horizon τ for comparability.8 Since we scaled the
payoffs to have a unit expected payoff, − 1

τ logPt%τ is the logarithm of an expected return
adjusted for the payoff horizon. In log-normal models, this derivative is independent of
αo. This is true more generally when the investment horizon shrinks to zero.9

The vector of local risk prices is given by the limit

πt = − lim
τ↓0

∂

∂α

1
τ

logPt%τ$ (3)

It gives the local compensation for exposure to shocks expressed as an increase in the
conditional mean return. In conjunction with an instantaneous risk-free rate, local risk
prices are elementary building blocks for pricing assets (e.g., Duffie (2001, pp. 111–114)).
Local prices can be compounded to construct the asset prices for arbitrary payoff inter-
vals τ using the dynamics of the underlying state variables.

We can exploit local normality to obtain a simple characterization of the slope of
the mean-standard deviation frontier and thereby reproduce a classical result from fi-
nance. The slope of the efficient segment of the mean-standard deviation frontier is the
optimized value of the objective function

max
α%α·α=1

α · πt%

where the constraint imposes a unit local variance. The solution is α∗
t = πt/|πt | with the

optimized local mean being

α∗
t · πt = πt · πt

|πt |
= |πt |$ (4)

In this local normal environment, the Hansen and Jagannathan (1991) analysis simpli-
fies to comparing the slope of the observed mean-standard deviation frontier to the
magnitude |πt | of the risk price vector implied by alternative models.

In the power utility model,

St+τ

St
= exp(−δτ)exp[−γ(logCt+τ − logCt)]%

8The negative sign reflects that the consumer dislikes risk.
9Here we are following Hansen and Scheinkman (2009) and Hansen (2008) in constructing a term struc-

ture of prices of growth-rate risk.
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where the growth rate of log consumption is logCt+τ − logCt . Here the vector πt of lo-
cal risk prices is the vector of exposures of −d logSt = δdt + γ d logCt to the Brownian
increment vector dWt .

We use models of Bayesian learning to create alternative specifications of dWt and
information sets with respect to which the mathematical expectation in (1) is evaluated.

2.1 Learning and asset prices

We assume a hidden Markov model in which Xt(ι) is a hidden state vector for an un-
known model indexed by ι, Yt+τ

t is the stochastic process of signals between date t and
t + τ, and Yt is a conditioning information set generated by the history of signals up un-
til time t. Lowercase letters denote values that potentially can be realized. In particular,
y is a possible realized path for the signal process Yt+τ

t and x is a possible realization
of the date t state vector Xt(ι) for any model ι. The hidden Markov structure induces
probability densities f (y|ι%x), g(x|ι% Yt ), h(ι|Yt ), and f̄ (y|Yt ).10 Evidently,

f̄ (y|Yt )=
∫ [∫

f (y|ι%x)g(x|ι% Yt ) dx

]
h(ι|Yt ) dι$ (5)

For convenience, let

Zt+τ(α) = St+τQt+τ(α)

StQt(α)
$

In our construction under limited information, Zt+τ(α) can be expressed as a function
of Yt+τ

t and hence we can express the asset price

Pt%τ(α) =E[Zt+τ(α)|Yt]

as an integral against the density f̄ .
To express the price in another way that will be useful to us, we first use density f to

construct E[Zt+τ(α)|Xt(ι) = x% ι] and then write

Pt%τ(α) =
∫ ∫

E[Zt+τ(α)|Xt(ι) = x% ι]g(x|ι% Yt )dx︸ ︷︷ ︸
↑

unknown state

h(ι|Yt )dι︸ ︷︷ ︸
↑

unknown model

$

This decomposition helps us understand how our paper relates to earlier asset pric-
ing papers including, for example, Detemple (1986), Dothan and Feldman (1986), David
(1997), Veronesi (2000), Brennan and Xia (2001), Ai (2006), David (2008), Croce, Lettau,
and Ludvigson (2008), and David and Veronesi (2009)11 that used learning about a hid-
den state to generate an exogenous process for distributions of future signals condi-
tional on past signals as an input into a consumption based asset pricing model. After

10Densities are always expressed relative to a reference measure. In the case of Yt+τ
t , the reference mea-

sure is a measure over the space of continuous functions defined on the interval [t% t + τ].
11The learning problems in those papers share the feature that learning is passive, there being no role

for experimentation, so that prediction can be separated from control. Cogley, Colacito, Hansen, and Sar-
gent (2008) applied the framework of Hansen and Sargent (2007) in a setting where decisions affect future
probabilities of hidden states and therefore experimentation is active. The papers just cited price risks un-
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constructing f̄ (y|Yt), decision-making and asset pricing proceeds as in standard asset
pricing models without learning. Therefore, the asset pricing implications of such learn-
ing models depend only on f̄ and not on the underlying structure with hidden states
that the model builder used to construct that conditional distribution. The only thing
that learning contributes is a justification for a particular specification of f̄ . We would
get equivalent asset pricing implications by just assuming f̄ from the start.

2.2 Robust learning and asset pricing

Our application of distinct risk-sensitivity operators to twist the component distribu-
tions f , g, and h means that equivalence is not true in our model because it makes
asset prices depend on the evolution of the hidden states themselves and not simply
on the distribution of future signals conditioned on signal histories. Following Hansen
and Sargent (2007), this occurs because the representative consumer explores poten-
tial misspecifications of the distributions of hidden Markov states and of future signals
conditioned on those hidden Markov states.12

Our representative consumer copes with model misspecification by replacing the f ,
g, and h conditional densities, respectively, with worst-case densities f̂ , ĝ, and ĥ. With
a robust representative consumer, we can use the implied (·̂) version of density f̄ to
represent the asset price as

P̂t%τ(α) = Ê[Zt+τ(α)|Yt]$ (6)

Using the density f̂ to account for unknown dynamics, we now construct Ê[Zt+τ(α)|
Xt(ι) = x% ι]. With a robust representative consumer, our information decomposition of
the asset price becomes

P̂t%τ(α) =
∫ ∫

Ê[Zt+τ(α)|Xt(ι) = x% ι] ĝ(x|ι% Yt ) dx︸ ︷︷ ︸
↑

unknown state

ĥ(ι|Yt ) dι︸ ︷︷ ︸
↑

unknown model

$

We can also represent the price in terms of the original undistorted distribution as

P̂t%τ(α) =E

[
Zt+τ(α)

(
f̂ [Yt+τ

t |ι%Xt(ι)]
f [Yt+τ

t |ι%Xt(ι)]

)(
ĝ[Xt(ι)|ι% Yt]
g[Xt(ι)|ι% Yt]

)(
ĥ[ι|Yt]
h[ι|Yt]

)∣∣∣Yt

]
% (7)

where we have substituted in the random unobserved state vector and the random fu-
ture signals. Equivalently, the price with a robust representative consumer can be repre-
sented as

P̂t%τ(α) =E(Mt+τ
t Zt+τ(α)|Yt )%

der the same information structure that is used to generate the risks being priced. In Section 5, we offer
an interpretation of some other papers (e.g., Bossaerts (2002, 2004), David (2008), and Cogley and Sargent
(2008)) that study the effects of agents’ Bayesian learning on pricing risks generated by limited information
sets from the point of view of an outside econometrician who has a larger information set.

12As emphasized by Hansen (2007), by exploring these misspecifications, our representative consumer
in effect refuses to reduce compound lotteries.
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where the likelihood ratio Mt+τ
t satisfies E(Mt+τ

t |Yt )= 1 and can be decomposed as

Mt+τ
t = f̂ [Yt+τ

t |ι%Xt(ι)]
f [Yt+τ

t |ι%Xt(ι)]︸ ︷︷ ︸
↑

distorted dynamics

ĝ[Xt(ι)|ι% Yt]
g[Xt(ι)|ι% Yt]︸ ︷︷ ︸

↑
distorted state

estimation

ĥ[ι|Yt]
h[ι|Yt]︸ ︷︷ ︸

↑
distorted model

probabilities

$ (8)

In Section 6, we show how to represent the three relative densities f̂
f , ĝ

g , and ĥ
h ,

respectively, that emerge from applying risk-sensitivity operators to conditional value
functions. These operators adjust separately for misspecification of f , g, and h. Contin-
uation utilities will be key determinants of how our representative consumer uses signal
histories to learn about hidden Markov states, an ingredient absent from those earlier
applications of Bayesian learning that reduced the representative consumer’s informa-
tion prior to asset pricing. In the continuous-time setting set forth in Section 3, changes
in probability measures can conveniently be depicted as martingales. As we will see,
there is a martingale associated with each of the channels highlighted by (8). For the
“distorted” dynamics, in Section 6.2 we construct a martingale {Mf

t } that alters the hid-
den state dynamics, including the link between future signals and the current state re-

flected in the density ratio f̂
f . The martingale is constructed relative to a sequence of

information sets that includes the hidden state histories and knowledge of the model.
In Section 6.3, we construct a second martingale {Mi

t } by including an additional dis-
tortion to state estimation conditioned on a model as reflected in the density ratio ĝ

g .
This martingale is relative to a sequence of information sets that condition both on the
signal history and the model, but not on the history of hidden states. Finally, in Section
6.4 we produce a martingale {Mu

t } that alters the probabilities over models and is con-
structed relative to a sequence of conditioning information sets that includes only the

signal history and is reflected in the density ratio ĥ
h .

3. T  

We use a hidden Markov model and two filtering problems to construct three informa-
tion sets that define risks to be priced with and without concerns about robustness to
model misspecification.

3.1 State evolution

Two models ι = 0%1 take the state-space forms

dXt(ι) =A(ι)Xt(ι)dt +B(ι)dWt(ι)%
(9)

dYt =D(ι)Xt(ι)dt +G(ι)dWt(ι)%

where Xt(ι) is the state, Yt is the (cumulated) signal, and {Wt(ι) : t ≥ 0} is a multivariate
standard Brownian motion, so Wt+τ(ι)−Wt(ι) ∼ N (0% τI). For notational simplicity, we
suppose that the same Brownian motion drives both models. Under full information, ι is
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observed and the vector dWt(ι) gives the new information available to the consumer at
date t.

3.2 Filtering problems

To generate two alternative information structures, we solve two types of filtering prob-
lems. Let Yt be generated by the history of the signal dYτ up to t and any prior informa-
tion available as of date zero. In what follows, we first condition on Yt and ι for each t.
We then omit ι and condition only on Yt .

3.2.1. Innovations representation with model known

First, suppose that ι is known. Application of the Kalman filter yields the innovations
representation

dX̄t(ι) =A(ι)X̄t(ι)dt +Kt(ι)[dYt −D(ι)X̄t(ι)dt]% (10)

where X̄t(ι) = E[Xt(ι)|Yt% ι] and

Kt(ι) = [B(ι)G(ι)′ + *t (ι)D(ι)′][G(ι)G(ι)′]−1%

d*t (ι)

dt
= A(ι)*t (ι)+ *t (ι)A(ι)′ +B(ι)B(ι)′

(11)
−Kt(ι)[G(ι)B(ι)′ +D(ι)*t (ι)]$

We allow more shocks than signals, so G(ι) can have more columns than rows. This pos-
sibility leads us to construct a nonsingular matrix Ḡ(ι), where G(ι)G(ι)′ = Ḡ(ι)Ḡ(ι)′.
The innovation process is

dW̄t(ι) = [Ḡ(ι)]−1[dYt −D(ι)X̄t(ι)dt]%

where the innovation dW̄t(ι) comprises the new information revealed by the signal his-
tory.

3.2.2. Innovations representation with model unknown

When there are different G(ι)G(ι)′’s for different models ι, it is statistically trivial to
distinguish among models ι with continuous data records. Technically, the reason is that
with different G(ι)G(ι)′’s, the distinct ι models fail to be mutually absolutely continuous
over finite intervals, so one model puts positive probability on events that are certain to
be observed over a finite interval and on which the other model puts zero probability.
Because we want the models to be difficult to distinguish statistically, we assume that
G(ι)G(ι)′ is independent of ι. Let ῑt = E(ι|Yt) and

dW̄t = Ḡ−1(dYt − νt dt)= ῑt dW̄t(1)+ (1 − ῑt ) dW̄t(0)%

where

νt
$= [ῑtD(1)X̄t(1)+ (1 − ῑt )D(0)X̄t(0)]$ (12)
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Then

dῑt = ῑt (1 − ῑt )[X̄t(1)′D(1)′ − X̄t(0)′D(0)′](Ḡ′)−1 dW̄t $ (13)

The new information pertinent to consumers is now dW̄t .

4. R 

Section 3 described three information structures: (i) full information, (ii) hidden states
with a known model, and (iii) hidden states with an unknown model. We use the as-
sociated Brownian motions W (ι), W̄t(ι), and W̄t as risks to be priced under the same
information structure that generated them.13 The forms of the risk prices are identical
for all three information structures and are familiar from Breeden (1979). The local nor-
mality of the diffusion model makes the risk prices be equal to the exposures of the log
marginal utility to the underlying risks. Let the increment of the logarithm of consump-
tion be given by d logCt = H ′ dYt , implying that consumption growth rates are revealed
by the increment in the signal vector. Each of our different information sets implies a
risk price vector, as reported in Table 1.

Because different risks are being priced, the risk prices differ across information
structures. However, the magnitudes of the risk price vectors are identical across infor-
mation structures. As we saw in (4), the magnitude of the risk price vector is the slope
of the instantaneous mean-standard deviation frontier. In Section 6, we show how con-
cern about model misspecification alters risk prices by adding compensations for bear-
ing model uncertainty, but first we want to look at Bayesian learning and risk prices from
a different perspective.

5. A -   ’ 

In this section, we describe how to link our paper to other papers on learning and as-
set prices (e.g., Bossaerts (2002, 2004), David (2008), and Cogley and Sargent (2008)). We
think of these papers as studying what happens when an econometrician mistakenly as-
sumes that consumers have a larger information set than they actually do. From Hansen

T 1. The parameter γ is the coefficient of relative risk aversion in a power util-
ity model. The entries in the “Slope” column are the implied slopes of the mean-
standard deviation frontier. The consumption growth rate is d logCt = H ′ dYt .
When the model is unknown, G(ι)G(ι)′ is assumed to be independent of ι.

Information Local Risk Risk Price Slope

Full dWt(ι) γG(ι)′H γ
√
H ′G(ι)G(ι)′H

Unknown state dW̄t(ι) γḠ(ι)′H γ
√
H ′G(ι)G(ι)′H

Unknown model dW̄t γḠ′H γ
√
H ′G(ι)G(ι)′H

13To look at Bayesian learning from another angle, in Section 5 we price the three risk vectors under full
information.
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and Richard (1987), we know that an econometrician who conditions on less informa-
tion than consumers still draws correct inferences about the magnitude of risk prices.
Our message here is that an econometrician who mistakenly conditions on more infor-
mation than consumers makes false inferences about the magnitude of risk prices. We
regard the consequences of an econometrician’s mistaken conditioning on more infor-
mation than consumers as contributing to the analysis of risk pricing under consumers’
Bayesian learning.

To elaborate on the preceding points, Hansen and Richard (1987) systematically
studied the consequences for risk prices of an econometrician’s conditioning on less
information than consumers. Given a correctly specified stochastic discount factor
process, if economic agents use more information than an econometrician, the conse-
quences for the econometrician’s inferences about risk prices can be innocuous. In con-
structing conditional moment restrictions for asset prices, all that is required is that the
econometrician include at least prices in his information set. By application of the law
of iterated expectations, the product of a cumulative return and a stochastic discount
factor remains a martingale when some of the information available to consumers is
omitted from the econometrician’s information set.14 It is true that the econometrician
who omits information fails to infer correctly the risk components actually confronted
by consumers. But that mistake does not prevent him from correctly inferring the slope
of the mean-standard deviation frontier, as indicated in the third column of Table 1 in
Section 3.

We want to consider the reverse situation when economic agents use less informa-
tion than an econometrician. We use the full-information structure but price risks gen-
erated by less informative information structures, in particular, dW̄t(ι) and dW̄t . In pric-
ing dW̄t(ι) and dW̄t under full information, we use pricing formulas that take the mis-
taken Olympian perspective (often used in macroeconomics) that consumers know the
full-information probability distribution of signals. This mistake by the econometrician
induces a pricing error relative to the prices that actually confront the consumer because
the econometrician has misspecified the information available to the consumer. The
price discrepancies capture effects of a representative agent’s learning that Bossaerts
(2002, 2004) and Cogley and Sargent (2008) featured.

5.1 Hidden states but known model

Consider first the case in which the model is known. Represent the innovation process
as

dW̄t(ι) = [Ḡ(ι)]−1(D(ι)[Xt(ι)− X̄t(ι)]dt +G(ι)dWt(ι)
)
$

14This observation extends an insight of Shiller (1972), who, in the context of a rational expectations
model of the term structure of interest rates, pointed out that when an econometrician omits conditioning
information used by agents, there emerges an error term that is uncorrelated with information used by the
econometrician. Hansen and Sargent (1980) studied the econometric implications of such “Shiller errors”
in a class of linear rational expectations models.
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This expression reveals that dW̄t(ι) bundles two risks: Xt(ι)−X̄t(ι) and dWt(ι). An inno-
vation under the reduced information structure ceases to be an innovation in the orig-
inal full-information structure. The “risk” Xt(ι) − X̄t(ι) under the limited information
structure ceases to be a risk under the full-information structure.

Consider the small time interval limit of

Q̄t+τ(ᾱ)

Qt(ᾱ)
= exp

(
ᾱ′[W̄t+τ(ι)− W̄t(ι)] − |ᾱ|2τ

2

)
$

This has unit expectation under the partial information structure. The local price com-
puted under the full-information structure is

−δ − γHXt(ι)+ ᾱ′[Ḡ(ι)]−1D(ι)[Xt(ι)− X̄t(ι)]

+ 1
2
∣∣−γH ′G(ι)+ ᾱ′[Ḡ(ι)]−1G(ι)

∣∣2 − |ᾱ|2
2

%

where δ is the subjective rate of discount. Multiplying by −1 and differentiating with
respect to ᾱ gives the local price

γḠ(ι)′H + [Ḡ(ι)]−1D(ι)[X̄t(ι)−Xt(ι)]$

The first term is the risk price under partial information (see Table 1), while the second
term is the part of the forecast error in the signal under the reduced information set that
can be forecast perfectly under the full-information set. The second term is the “mis-
take” in pricing contributed by the econometrician’s error in attributing to consumers a
larger information set than they actually have.15

5.2 States and model both unknown

Consider next what happens when the model is unknown. Suppose that ι = 1 and rep-
resent dW̄t as

dW̄t = Ḡ−1[G(1)dWt(1)+D(1)Xt(1)dt]
− Ḡ−1[ῑtD(1)X̄t(1)dt + (1 − ῑt )D(0)X̄t(0)dt]$

15Although our illustrative application in Section 7 uses only consumption growth as a signal, our formu-
lation allows multiple signals. Our application does not use asset prices as signals, but it would be interest-
ing to do so. In standard rational expectations models in the tradition of Lucas (1978) (where agents do not
glean information from equilibrium prices as in the rational expectations models described by Grossman
(1981)), cross-equation restrictions link asset prices to the dynamics governing macroeconomic fundamen-
tals. These cross-equation restrictions typically presume that investors know parameters governing the
macrodynamics. To avoid stochastic singularity, econometric specifications introduce hidden states (in-
cluding hidden information states) or “measurement errors.” In such rational expectations models, prices
reveal to an econometrician the information used by economic agents. Rational expectations models that
incorporate agents learning about states hidden to them, possibly including parameters of the macrody-
namics, were constructed and estimated, for example, by David and Veronesi (2009), who also confronted
stochastic singularity in the ways just mentioned. With or without learning, the cross-equation restrictions
in such models would be altered if agents were forced to struggle with misspecification as they do in the
model of Section 7. In that illustrative application, we have not taken the extra steps that would be involved
in confronting stochastic singularity.
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There is an analogous calculation for ι = 0. When we compute local prices under full
information, we obtain

γḠ′H + Ḡ−1[νt −D(ι)Xt(ι)]% (14)

where νt is defined in (12).
The term γḠ′H is the risk price under reduced information when the model is un-

known (see Table 1). The term Ḡ−1[νt − D(ι)Xt(ι)] is a contribution to the risk price
measured by the econometrician coming from the effects of the consumer’s learning on
the basis of his more limited information set. With respect to the probability distribution
used by the consumer, this term averages out to zero. Since ι is unknown, the average in-
cludes a contribution from the prior. For some sample paths, this term can have negative
entries for substantial lengths of time, indicating that the prices under the reduced in-
formation exceed those computed under full information. Other trajectories could dis-
play the opposite phenomenon. It is thus possible that the term Ḡ−1[νt − D(ι)Xt(ι)]
contributes apparent pessimism or optimism, depending on the prior over ι and the
particular sample path. Thus, Cogley and Sargent (2008) imputed a pessimistic prior to
the representative consumer so as to generate a slowly evaporating U.S. equity premium
after WWII.

In subsequent sections, we use concerns about robustness to motivate priors that
are necessarily pessimistic. Our notion of pessimism is endogenous in the sense that it
depends on the consumer’s continuation values. That endogeneity makes pessimism
time-dependent and state-dependent in ways that we explore below.

6. P     

When prices reflect a representative consumer’s fears of model misspecification, (1)
must be replaced by (6) or, equivalently, (7). To compute distorted densities under our
alternative information structures, we must find value functions for a planner who fears
model misspecification.16 In Section 4, we constructed what we called risk prices that
assign prices to exposures to shocks. We now construct somewhat analogous prices, but
because they will include contributions from fears of model misspecification, we refer
to them as shock prices. We construct components of these prices for our three informa-
tion structures and display them in the last column of Table 2. Specifically, this column
gives the contribution to the shock prices from each type of model uncertainty.

6.1 Value function without robustness

We study a consumer with unitary elasticity of intertemporal substitution and so start
with the value function for discounted expected utility using a logarithm period utility

16Hansen and Sargent (2008, Chaps. 11–13) discussed the role of the planner’s problem in computing
and representing prices with which to confront a representative consumer.
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T 2. When the model is unknown, G(ι)G(ι)′ is assumed to be independent
of ι. The consumption growth rate is d logCt = H ′ dYt . Please cumulate contribu-
tions to uncertainty prices as you move down the last column.

Information Local Risk Risk Price Uncertainty Price

Full dWt(ι) G(ι)′H 1
θ1

[B(ι)′λ(ι)+G(ι)′H]
Unknown state dW̄t(ι) Ḡ(ι)′H 1

θ2
Ḡ(ι)−1D(ι)*t (ι)λ(ι)

Unknown model dW̄t Ḡ′H (ι̃ − ῑ)Ḡ−1[D(1)x̄(1)−D(0)X̄(0)]

function

V (x% c% ι) = δE

[∫ ∞

0
exp(−δτ) logCt+τ dτ

∣∣∣Xt(ι) = x% logCt = c% ι

]

= δE

[∫ ∞

0
exp(−δτ)(logCt+τ − logCt)dτ

∣∣∣Xt(ι) = x% logCt = c% ι

]
+ c

= λ(ι) · x+ c%

where the vector λ(ι) satisfies

0 = −δλ(ι)+D(ι)′H +A(ι)′λ(ι)% (15)

so that

λ(ι)= [δI −A(ι)′]−1D(ι)′H$ (16)

The form of the value function is the same as that of Tallarini (2000) and Barillas, Hansen,
and Sargent (2009). The value function under limited information simply replaces x with
the best forecast x̄ of the state vector given past information on signals.

6.2 Full information

Consider first the full-information environment in which states are observed and the
model is known. The model, however, now becomes a benchmark in the sense that the
decision-maker distrusts it in a way that we formalize mathematically. Specifically, a

concern for robustness under full information gives us a way to construct f̂
f in (8) via a

martingale {Mf
t (ι)} with respect to the benchmark probability model. The relative den-

sity f̂
f distorts future signals conditioned on the current state and model by distorting

both the state and signal dynamics. In a diffusion setting, a concern about robustness
induces the consumer to consider distortions that append a drift µt dt to the Brownian
increment and to impose a quadratic penalty to this distortion. This leads to a mini-
mization problem whose indirect value function yields the T1 operator of Hansen and
Sargent (2007)17:

17Suppose that the decision-maker has instantaneous utility function u(x), positive discount rate δ, and
that the state follows the diffusion dxt = ν(xt)dt + σ(xt)dWt . The value function V (x) associated with
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P 6.1. A value function λ(ι) · x+ κ(ι)+ c satisfies the Bellman equation

0 = min
µ

−δ[λ(ι) · x+ κ(ι)] + x′D(ι)′H +µ′G(ι)′H + x′A(ι)′λ(ι)
(17)

+µ′B(ι)′λ(ι)+ θ1

2
µ′µ$

Here the vector µdt is a drift distortion to the mean of dWt(ι) and θ1 is a positive
penalty parameter that characterizes the decision-maker’s fear that model ι is misspec-
ified. We impose the same θ1 for both models. See Hansen et al. (2006) and Anderson,
Hansen, and Sargent (2003) for more general treatments and see the Appendix for how
we propose to calibrate θ1 via detection error probabilities. The minimizing drift distor-
tion

µ̃(ι) = − 1
θ1

[G(ι)′H +B(ι)′λ(ι)] (18)

is independent of the state vector X(ι). As a result,

κ(ι) = − 1
2θ1δ

|G(ι)′H +B(ι)′λ(ι)|2$ (19)

Equating coefficients on x in (17) implies that equation (15) continues to hold. Thus,
λ(ι) remains the same as in the model without robustness and is given by (16).

P 6.2. The value function shares the same λ(ι) with the expected utility
model [formula (15)] and κ(ι) is given by (19). The associated worst-case distribution for
the Brownian increment is normal with covariance matrix Idt and drift µ̃(ι)dt given by
(18).

Under full information, the likelihood of the worst-case model relative to that of the
benchmark model is a martingale {Mf

t (ι)} with local evolution

d logMf
t (ι) = µ̃(ι)′ dWt(ι)− 1

2
|µ̃(ι)|2 dt%

so the mean of Mf
t (ι) is evidently unity. The stochastic discount factor (relative to the

benchmark model) includes contributions both from the consumption dynamics and
from the martingale, and evolves according to

d logSft = d logMf
t (ι)− δdt − d logCt $

a multiplier problem satisfies the Bellman equation δV (x) = minh(u(x) + θ
2h

′h + [ν(x) + σ(x)h]Vx(x) +
1
2 trace[σ(x)′Vxxσ(x)]). The indirect value function for this problem satisfies the Bellman equation δS(x) =
u(x)+ν(x)Sx(x)+ 1

2 trace[σ(x)′Sxx(x)σ(x)]− 1
2θSx(x)

′σ(x)σ(x)′Sx(x), which is an example of the stochastic
differential utility model of Duffie and Epstein (1992). See Hansen et al. (2006).
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The vector of local shock price is again the negative of the exposure of the stochastic
discount factor to the respective shocks. With robustness, the shock price vector G(ι)′H
under full information is augmented by an uncertainty price:

G(ι)′H︸ ︷︷ ︸
↑

risk

+ 1
θ1

[G(ι)′H +B(ι)′λ(ι)]
︸ ︷︷ ︸

↑
uncertain dynamics

$

Notice the presence of the forward-looking term λ(ι) from (16) in the term that we have
labeled “uncertain dynamics.” Neither the risk contribution nor the uncertainty contri-
bution to the shock prices is state-dependent or time-dependent. We have completed
the first row of Table 2.

6.3 Unknown states

Now suppose that the model (the value of ι) is known but that the state Xt(ι) is not.
We want ĝ

g in formula (8) and proceed by seeking a martingale {Mi
t } to use under this

information structure.
Without concerns about misspecification, the estimates x̄ of the state and the co-

variance matrix * used to construct ψ at a given point in time will typically depend on
the model ι. The laws of motion for x̄(ι) and *(ι) are (10) and (11), respectively.

Following Hansen and Sargent (2007), we introduce a positive penalty parameter
θ2 and construct a robust estimate of the hidden state Xt(ι) by solving the following
problem cast in terms of objects constructed in Section 3.2.1:18

P 6.3. The robust relative density for the hidden state solves

min
φ

∫
[λ(ι) · x+ κ(ι)+ θ2 logφ(x)]φ(x)ψ(x|x̄%*)dx

= min
x

λ(ι) · x+ κ(ι)+ θ2

2
(x− x̄)′(*)−1(x− x̄)%

where ψ(x|x̄%*) is the normal density with mean x̄ and covariance matrix *, and the
minimization on the first line is subject to

∫
φ(x)ψ(x|x̄%*)dx = 1.

In the first line of Problem 6.3, φ is a density (relative to a normal) that distorts the
density ψ for the hidden state and θ2 is a positive penalty parameter that penalizes φ’s
with large relative entropy (the expected value of φ logφ). The second line of Problem 6.3
exploits the outcome that with a linear value function, the worst-case density is neces-
sarily normal with a distortion x̃ to the mean of the state. This structure makes it straight-
forward to compute the integral and therefore simplifies the minimization problem. In
particular, the worst-case estimate x̃ solves

0 = λ(ι)+ θ2(*)
−1(x̃− x̄)$

18In the Appendix, we describe how to use statistical detection error probabilities to calibrate the penalty
parameter θ1 as well as another penalty parameter θ2 to be introduced below.
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P 6.4. The robust value function is

U[ι% x̄%*] = λ(ι) · x̄+ κ(ι)− 1
2θ2

λ(ι)′*λ(ι) (20)

with the same λ(ι) as in the expected utility model [formula (15)] and the same κ(ι) as
in the robust planner’s problem with full information [formula (19)]. The worst-case state
estimate is

x̃= x̄− 1
θ2

*(ι)λ(ι)$

The indirect value function on the right side of (20) defines an instance of the T2

operator of Hansen and Sargent (2007). Under the distorted evolution, dYt has drift

ξ̃t (ι)dt =D(ι)X̃t(ι)dt +G(ι)µ̃(ι)dt%

while under the benchmark evolution it has drift

ξ̄t (ι)dt =D(ι)X̄t dt$

The corresponding likelihood ratio for our limited information setup is a martingale
Mi

t (ι) that evolves as

d logMi
t (ι) = [ξ̃t (ι)− ξ̄t (ι)]′[Ḡ(ι)′]−1 dW̄t(ι)− 1

2
|Ḡ(ι)−1[ξ̃t(ι)− ξ̄t (ι)]|2 dt%

and therefore the stochastic discount factor evolves as

d logSit = d logMi
t (ι)− δdt − d logCt $

There are now two contributions to the uncertainty price—the one in the last col-
umn of the first row of Table 2 that comes from the potential misspecification of the
state dynamics as reflected in the drift distortion in the Brownian motion, and the other
in the second row of Table 2 that comes from the filtering problem as reflected in a dis-
tortion to the estimated mean of the hidden state vector:

Ḡ(ι)′H︸ ︷︷ ︸
↑

risk

+ 1
θ1

[Ḡ(ι)]−1G(ι)[G(ι)′H +B(ι)′λ(ι)]
︸ ︷︷ ︸

↑
uncertain dynamics

+ 1
θ2

[Ḡ(ι)]−1D(ι)*t (ι)λ(ι)
︸ ︷︷ ︸

↑
estimation uncertainty

$

The state estimation adds time dependence to the uncertainty prices through the evo-
lution of the covariance matrix *t (ι) governed by (11), but adds nothing through the
observed history of signals. We have completed the second row of Table 2.

6.4 Model unknown

Finally, we obtain a martingale {Mu
t } that adjusts for not trusting the benchmark distri-

bution over unknown models, thus constructing ĥ
h in formula (8). We do this by twisting

the model probability E(ι|Yt) = ῑt .
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P 6.5. We twist the model probability by sowing

min
0≤ι≤1

ιU[1% x̄(1)%*(1)] + (1 − ι)U[0% x̄(0)%*(0)]

+ θ2ι[log ι − log ῑ] + θ2(1 − ι)[log(1 − ι)− log(1 − ῑ)]$

P 6.6. The indirect value function for Problem 6.5 is the robust value func-
tion19

−θ2 log
[
ῑexp

(
− 1

θ2
U[1% x̄(1)%*(1)]

)
+ (1 − ῑ)exp

(
− 1

θ2
U[0% x̄(0)%*(0)]

)]
$

The worst-case model probabilities satisfy

(1 − ι̃) ∝ (1 − ῑ)exp
(

−U[0% x̄(0)%*(0)]
θ2

)
% (21)

ι̃ ∝ ῑexp
(

−U[1% x̄(1)%*(1)]
θ2

)
% (22)

where the constant of proportionality is the same for both expressions.

Under the distorted probabilities, the signal increment dYt has a drift

κ̃tdt = [ι̃t ξ̃t (1)+ (1 − ι̃t )ξ̃t (0)]dt%

which we compare to the drift that we derived earlier under the benchmark probabili-
ties:

κ̄tdt = [ῑt ξ̄t (1)+ (1 − ῑt )ξ̄t (0)]dt$

The associated martingale constructed from the relative likelihoods has evolution

d logMu
t = (κ̃t − κ̄t )

′(Ḡ′)−1 dW̄t − 1
2
|Ḡ−1(κ̃t − κ̄t )|2 dt

and the stochastic discount factor is governed by

d logSt = d logMu
t − δdt − d logCt $

The resulting shock price vector equals the exposure of d logSt to dW̄t and is the ordinary
risk price Ḡ′H plus the following contribution that comes from concerns about model
misspecification:

ι̃Ḡ−1
[

1
θ 1

G(1)G(1)′H + 1
θ1

G(1)B(1)′λ(1)
]

+ (1 − ι̃)Ḡ−1
[

1
θ 1

G(0)G(0)′H + 1
θ1

G(0)B(0)′λ(0)
]

(23)

19This is evidently another application of the T2 operator of Hansen and Sargent (2007).
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+ ι̃Ḡ−1
[

1
θ2

D(1)*(1)λ(1)
]

+ (1 − ι̃)Ḡ−1
[

1
θ2

D(0)*(0)λ(0)
]

+ (ῑ − ι̃)Ḡ−1[D(1)x̄(1)−D(0)x̄(0)]$

As summarized in Table 2, the term on the first line reflects uncertainty in state dy-
namics associated with each of the two models. Hansen, Sargent, and Tallarini (1999)
featured a similar term. It is forward looking by virtue of the appearance of λ(ι) deter-
mined in (16). The term on the second line reflects uncertainty about hidden states in
each of the two models. Notice that both of these terms depend on ι̃, so the probabil-
ity distortion across models impacts their construction. In the limiting case that ι̃ = 1,
the term on the first line is constant over time and the term on the second line depends
on time through *(1) but not on the signal history. In our application, this limiting case
obtains approximately when the penalty parameter θ2 is sufficiently small. The term on
the third line reflects uncertainty about the models and depends on the signal history
even when ι̃ = 1. The component Ḡ−1[D(1)x̄(1) − D(0)x̄(0)] also drives the evolution
of model probabilities given in (13) and dictates how new information contained in the
signals induces changes in the model probabilities under the benchmark specification.
In effect, Ḡ−1[D(1)x̄(1) − D(0)x̄(0)], appropriately scaled, is the response vector from
new information in the signals to the updated probability assigned to model ι = 1. The
signal realizations over the next instant alter the decision-maker’s posterior probability ῑ
on model 1 as well as his worst-case probability ι̃, and this is reflected in the equilibrium
uncertainty prices. This response vector will recurrently change signs so that new infor-
mation will not always move ῑ in the same direction. In the term on the third line of (23),
this response vector is scaled by the difference between the current model probabilities
under the benchmark and worst-case models. Formulas (21) and (22) indicate how the
consumer slants probabilities toward the model with the lower utility. This probability
slanting induces additional history dependence because ῑt depends on the signal his-
tory.

7. I  

To highlight forces that govern the contributions of our three components of model un-
certainty to shock prices in formula (23), we create two models ι = 0%1, with model
ι = 1 being a long-run risk model with a predictable growth rate along the lines of
Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008). Our models share the form
d logCt = dYt and

dX1t = a(ι)X1t (ι)dt + b1(ι)dW1t (ι)%

dX2t = 0% (24)

dYt =X1t dt +X2t dt + g2(ι)dW2t (ι)%

where X1t (ι) and X2t (ι) are scalars, W1t(ι) and W2t (ι) are scalar components of the vec-
tor Brownian motion Wt(ι), X20(ι) = µy(ι) is the unconditional mean of consumption
growth for model ι, and a(ι) ≡ ρ(ι) − 1. We set τ = 1 in the following discrete-time ap-



Quantitative Economics 1 (2010) Fragile beliefs and the price of uncertainty 147

proximation to the state-space system (9):

Xt+τ(ι)−Xt(ι) = τA(ι)Xt(ι)+B(ι)[Wt+τ(ι)−Wt(ι)]%
Yt+τ −Yt = τD(ι)Xt(ι)+G(ι)[Wt+τ(ι)−Wt(ι)]$

Additionally we set

A(ι) =
[
ρ(ι)− 1 0

0 1

]
% B(ι) =

[
b1(ι) 0

0 0

]
%

D(ι) = [ 1 1 ] % G(ι) = [ 0 g2(ι) ] $

A small negative a(ι) (i.e., an autoregressive coefficient ρ(ι) close to unity) coupled
with a small b1(ι) captures long-run risks in consumption growth. Bansal and Yaron
(2004) justified such a specification with the argument that it fits consumption growth
approximately as well as, and is therefore difficult to distinguish from, an independent
and identically distributed (iid) consumption growth model, which we know fits the ag-
gregate per capita U.S. consumption data well. In the spirit of their argument, we form
two models with the same values of the signal noise b2(ι) but that, with different val-
ues of b1(ι), ρ(ι) ≡ a(ι) + 1, and µy(ι) = X20(ι), give identical values for the likelihood
function. In particular, with our setting of the initial model probability ῑ0 at $5, the ter-
minal value of ῑt also equals $5, so the two models are indistinguishable statistically over
our complete sample. This is our way of making precise the Bansal and Yaron (2004) ob-
servation that the long-run risk with a model with high serial correlation in consump-
tion growth and a model with low serial correlation in consumption growth is difficult
to distinguish empirically. We impose ρ(1) = $99 as our long-run risk model, while the
equally good fitting ι = 0 model with low serial correlation in consumption growth has
ρ(0) = $4993.20

7.1 Calibrating θ1 and θ2

In the Appendix we describe how we first calibrated θ1 to drive the average detection
error probability over the two ι models with observed states to be $4 and then, with
θ1 thereby fixed, set θ2 to get a detection error probability of $2 for the signal distrib-
ution of the mixture model. This is one of a frontier of configurations of θ’s that imply
the same detection error probability of $02. We use this particular combination for il-
lustration and explore another combination below. We regard the overall value of the

20The sample for real consumption of services and nondurables runs over the period 1948II–2009IV. To
fit model ι = 1, we fixed ρ = $99 and estimated b1 = $00075, g2 = $00468, and µy = $0054. Fixing g2 = $00468,
we then found a values of ρ = $4993, and associated values b1 = $00231 and µy = $00468 that give virtu-
ally the same value of the likelihood. In this way, we construct two good fitting models that are difficult
to distinguish, with model ι = 1 being the long-run risk model and model ι = 0 much more closely ap-
proximating an iid growth model. Freezing the value of g2 at the above value, the maximum likelihood
estimates are ρ = $8311, b1 = $00149, and µy = $00465. The data for consumption comes from the St. Louis
Federal Reserve data set (FRED). They are taken from their latest vintage (02/26/2010) with the identifiers
PCNDGC96_20100223 (real consumption on nondurable goods) and PCESVC96_20100223 (real consump-
tion on services). The population series is from the Bureau of Labor Statistics, Series ID LNU00000000. This
is civilian noninstitutional population 16 years and over in thousands. The raw data are monthly. We aver-
aged to compute quarterly series.
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F 1. Bayesian model probability ῑt (solid line) and worst-case model probability ι̃t
(dashed line).

detection error probability as being associated with plausible amounts of model uncer-
tainty.21 For these values of θ1 and θ2,22 Figure 1 plots values of the Bayesian model
mixing probability ῑ along with the worst-case probability ι̃. Figure 1 indicates how the
worst-case ι̃ twists toward the long-run risk ι = 1 model. This probability twisting con-
tributes countercyclical movements to the complete set of uncertainty contributions to
the shock price (23) that we plot in Figure 2.23

Figure 3 decomposes the uncertainty contribution to the shock prices into compo-
nents that come from the three lines of expression (23), namely, those associated with
state dynamics under a known model, unknown states within a known model, and an
unknown model, respectively. As anticipated, the first two contributions are positive,
the first being constant while the second varies over time. The third contribution, due to
uncertainty about the model, alternates in sign.

21We initiate the Bayesian probability ῑ0 = $5 and set the covariance matrices *0(ι) over hidden states at
values that approximate what would prevail for a Bayesian who had previously observed a sample of the
length 247 that we have in our actual sample period. In particular, we calibrated the initial state covariance
matrices for both models as follows. First, we set preliminary “uninformative” values that we took to be the
variance of the unconditional stationary distribution of X1t (ι) and a value for the variance of X2(ι) of $012,
which is orders of magnitude larger than the maximum likelihood estimates of µy for our entire sample.
We set a preliminary state covariance between X1t (ι) and X2(ι) equal to zero. We put these preliminary
values into the Kalman filter, ran it for a sample length of 247, and took the terminal covariance matrix as
our starting value for the covariance matrix of the hidden state for model ι.

22The calibrated values are θ−1
1 = 7 and θ−1

2 = $64.
23The figure plots all components of (23) except the ordinary risk price ḠH ′.
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F 2. Contributions to uncertainty prices from all sources of model uncertainty.

F 3. Contributions to uncertainty prices coming from separate components on the three
lines of (23): from state dynamics (top panel), learning hidden state when the model is known
(middle panel), and unknown model (bottom panel).
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F 4. D(ι)*(ι)λ(ι) for ι = 1 (top panel) and ι = 0 (bottom panel).

The contribution on the first line of (23) is constant and relatively small in magni-
tude. We have specified our models so that G(ι)B(ι)′ = 0 and thus

[
1
θ 1

G(ι)G(ι)′H + 1
θ1

G(ι)B(ι)′λ(ι)
]

= 1
θ 1

ḠḠ′H%

which is the same for both models. While the forward-looking component to shock
prices reflected in 1

θ1
B(ι)′λ(ι) is present in the model with full information, it is absent

in our specification with limited information.24 However, a forward-looking component
still contributes to the other two components of the uncertainty prices because con-
tinuation values influence the worst-case distortions to model probabilities and filtered
estimates of the hidden states.

The contribution on the second line of (23) features state estimation. Figure 4 shows
the D(ι)*(ι)λ(ι) components that are important elements of state uncertainty. This fig-
ure reveals how hidden states are more difficult to learn in model ι = 1 than in model
ι = 0, because a very persistent hidden state slows convergence of *t (1). In particular,
the variance of the estimated unconditional mean of consumption growth, *t (ι)22, con-
verges more slowly to zero for the long-run risk model ι = 1 than for model ι = 0. The
second contribution varies over time through variation in the twisted model probabil-
ity ι̃.

24In Section 7.4, we consider an example that activates this forward-looking component by specifying
that G(ι)B(ι)′ is not zero.
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F 5. Difference in means and means themselves from models ι = 1 and ι = 0.

The contribution on the third line of (23) generally fluctuates over time in ways that
depend on the evolution of the discrepancy between the estimated means D(ι)x̄(ι) un-
der the two models, depicted in Figure 5. While pessimism arising from a concern for ro-
bustness necessarily increases the uncertainty prices via the terms on the first two lines
of (23), it may either lower or raise it through the term on the third line. The slope of the
mean-standard deviation frontier—the maximum Sharpe ratio—is the absolute value
of the shock price. Therefore, sizable shock prices of either sign imply large maximum
Sharpe ratios. Negative shock prices for some signal histories indicate that the repre-
sentative consumer sometimes fears positive consumption innovations because of how
they affect probabilities that he attaches to alternative models ι. How concerns about
model uncertainty affect uncertainty premia that are embedded in prices of particular
risky assets ultimately depends on how their returns are correlated with consumption
shocks.

7.2 Explanation for countercyclical uncertainty prices

The intertemporal behavior of robustness-induced probability slanting accounts for
how learning in the presence of uncertainty about models induces time variation in un-
certainty prices. Our representative consumer attaches positive probabilities to a model
with statistically subtle high persistence in consumption growth, namely, the ι = 1 long-
run risk model, and also to model ι = 0 that asserts much less persistent consumption
growth rates. The asymmetrical response of model uncertainty prices to consumption
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growth shocks comes from (i) how the representative consumer’s concern about mis-
specification of the probabilities that he attaches to the two models causes him to cal-
culate worst-case probabilities that depend on value functions and (ii) how the value
functions for the two models become closer together after positive consumption growth
shocks and farther apart after negative shocks. The long-run risk model confronts the
consumer with a long-lived shock to consumption growth. That affects the set of possi-
ble misspecifications that he worries about and gets reflected in a more negative value
of κ(ι)− (1/2θ2)λ(ι)

′*(ι)λ(ι) in formula (20) for the continuation value.25 The resulting
difference in constant terms (terms that depend on calendar time but not on the pre-
dicted states) in the value functions for the models with (ι = 1) and without (ι = 0) long-
run consumption risk sets the stage for an asymmetric response of uncertainty premia
to consumption growth shocks. Consecutive periods of higher than average consump-
tion growth raise the probability that the consumer attaches to the more persistent con-
sumption growth ι = 1 model relative to the probability that he attaches to the ι = 0
model. Although the long-run risk model has a more negative constant term, when a
string of higher than average consumption growths occurs, persistence of consumption
growth under this model means that consumption growth can be expected to remain
higher than average for many future periods. This pushes the continuation values as-
sociated with the two models closer together than they are when consumption growth
rates have recently been lower than average. Via the exponential twisting formulas (21)
and (22), continuation values determine the worst-case probability ι̃ that the represen-
tative consumer attaches to the long-run risk ι = 1 model. Thus our cautious consumer
slants probability more toward the long-run risk model when recent observations of
consumption growth have been lower than average than when these observed growth
rates have been higher than average.

7.3 Roles of different types of uncertainty

The decomposition of uncertainty contributions to shock prices depicted in Figure 3
helps us to think about how these contributions would change if, by changing θ1 and θ2,
we refocus the representative consumer’s concern about misspecification on a different
mixture of state dynamics, hidden states, and unknown model. Figures 6 and 7 show the
consequences of turning off fear of unknown dynamics by setting θ1 = +∞ while low-
ering θ2 to set the detection error probability again to $2 (here θ−1

2 = −1$72). Notice that
now the uncertainty contribution to shock prices remains positive over time. Evidently,
in this economy, the representative consumer’s fear of good consumption news is much
less prevalent.

7.4 State-dependent contributions from unknown dynamics

The fact that our specification (24) implies that G(ι)B(ι)′ = 0 for ι = 0%1 disables a po-
tentially interesting component of uncertainty contributions in formula (23). To activate
this component, we briefly study a specification in which G(ι)B(ι)′ -= 0 and in which its

25Over our sample, the [κ(1)− (1/2θ2)λ(1)′*(1)λ(1)]− [κ(0)− (1/2θ2)λ(0)′*(0)λ(0)] rises monotonically
from −7$46 to −7$25.
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F 6. Difference in means (top panel) and Bayesian model probability ῑt (solid line) and
worst-case model probability ι̃t (dashed line) (bottom panel). Here θ1 is set to +∞ and θ2 is set
to give a detection error probability of $2.

difference across the two models contributes in interesting ways. In particular, we mod-
ify (24) to the single-shock specification

dX1t (ι) = a(ι)X1t (ι)dt + b̂1(ι)dWt(ι)%

dX2t (ι) = 0% (25)

dYt =X1t (ι)dt +X2t (ι)dt + ĝ1(ι)dWt(ι)%

where X1t (ι) and X2t (ι) are again scalars, and Wt(ι) is now a scalar Brownian motion.
We construct this one-noise system by simply taking the time-invariant innovations rep-
resentation for the two-noise, one-signal system (24). We also assume that the repre-
sentative consumer observes both states for both models ι = 0%1. Thus, the model is
structured so that with ι known, the consumer faces no filtering problem. Therefore, the
second source of uncertainty contribution vanishes and (23) simplifies to

ι̃Ḡ−1
[

1
θ 1

G(1)G(1)′H + 1
θ1

G(1)B(1)′λ(1)
]

+ (1 − ι̃)Ḡ−1
[

1
θ 1

G(0)G(0)′H + 1
θ1

G(0)B(0)′λ(0)
]

(26)

+ (ῑ − ι̃)Ḡ−1[D(1)x̄(1)−D(0)x̄(0)]$
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F 7. Contributions to uncertainty prices from learning hidden state (top panel), models
known, unknown model (middle panel), and all sources (bottom panel). Here θ1 is set to +∞
and θ2 is set to give a detection error probability of $2. Because θ1 = +∞, the contribution from
unknown dynamics is identically zero.

Although the representative consumer observes the states, he (or she) does not know
which model is correct and constructs the model probability ι̃ in a robust way.

Figures 8 and 9 illustrate outcomes when we set θ−1
1 = 1$97, which we calibrated as

described in the Appendix to deliver a detection error probability of .3, and θ−1
2 = 1$06,

which delivers an overall detection error probability of .2 for our one-shock model (25).
The term µ̃(ι) = −θ−1

1 [G(ι)′H +B(ι)′λ(ι)] is now −$0460 for ι = 0 and −$4454 for model
ι = 1. The contribution of unknown state dynamics reported in the top panel of Fig-
ure 9 now varies over time. This variation reflects the difference in (1/θ1)G(ι)B(ι)′λ(ι)
across the two models as well as the fluctuating value of ι̃. Notice that while the over-
all uncertainty component to the shock price varies, this variation is much less than in
our previous calculations. So while our one-shock model gives rise to time variation in
the contribution from a concern about misspecified dynamics, by ignoring robust state
estimation, this model excludes some of the interesting variation in the uncertainty ex-
posure prices in our original two-shock model. The prices of exposure to consumption
uncertainty are predominately positive, implying that the consumer typically does not
fear positive consumption shocks.

7.5 Reinterpretation of Bansal and Yaron

If we were to lower θ2 enough to imply ι̃ = 1, then the representative consumer would
ex post act as if he puts probability 1 on the long-run risk model, as assumed by Bansal
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F 8. The one-noise system. Difference in means (top panel) and Bayesian model proba-
bility ῑt (solid line) and worst-case model probability ι̃t (dashed line) (bottom panel).

and Yaron (2004). Then (26) simplifies to

Ḡ−1
[

1
θ 1

G(1)G(1)′H + 1
θ1

G(1)B(1)′λ(1)
]

(27)
+ (ῑ − 1)Ḡ−1[D(1)x̄(1)−D(0)′x̄(0)]$

The first term that captures unknown dynamics becomes constant, while the effects of
not knowing the model contribute time variation to the second term. Figure 10 reports
the two lines of (27) for the one-noise model calibrated with θ1 as before and ι̃t set iden-
tically to 1 by brute force. The first term of (27) is present in the Bansal and Yaron (2004)
approach that has the consumer assign probability 1 without doubt to the long-run risk
model, but not the second term accounting for the consumer’s doubt about the correct
model in our expression (27). So our ex post “as if” interpretation goes only part way
toward rationalizing the Bansal and Yaron approach, but it also adds a new ingredient.

8. C 

The perspective of Bansal and Yaron (2004) is that while (a) there are subtle but
recursive-utility-relevant stochastic features of consumption and dividend processes
that are difficult to detect from statistical analysis of those series alone, nevertheless
(b) data on asset prices together with cross-equation restrictions in the rational expecta-
tions style of Hansen and Sargent (1980) substantially tighten parameter estimates of the
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F 9. The one-noise system. Contributions to uncertainty prices from unknown dynamics
(top panel), unknown model (middle panel), and both sources (bottom panel). Because the state
is observed, there is no contribution from robust learning about the hidden states Xjt(ι).

joint consumption, dividend processes that agents believe with confidence when they
price assets. Thus, although agents’ beliefs about the “fundamental” joint consumption,
dividend process are difficult to infer from observations on that process alone, adding
asset prices and the full confidence in a stochastic specification that is implicit in the
rational expectations hypothesis lets us discover those beliefs.

Our response to point (a) differs from Bansal and Yaron’s. Instead of being com-
pletely confident in a single stochastic specification, our representative agent is suspi-
cious of that specification and struggles to learn while acknowledging his specification
doubts. This leads us to modify Bayes’ law in ways that introduce new sources of uncer-
tainty prices. We find contributions of model uncertainty to shock prices that combine
(i) the same constant forward-looking contribution µ̃(ι) = −θ−1

1 [G(ι)′H+B(ι)′λ(ι)] that
was featured in earlier work without learning by Hansen, Sargent, and Tallarini (1999)
and Anderson, Hansen, and Sargent (2003), (ii) additional components −θ−1

2 *(ι)λ(ι)

that smoothly decrease in time and that come from learning about parameter values
within models, and (iii) the potentially volatile time-varying contribution highlighted in
Section 7.2 that reflects the consumer’s robust learning about the probability distribu-
tion over models.

Our shock prices are counterparts to what are interpreted as risk prices in much of
the asset pricing literature, but for us they include both risk and model uncertainty com-
ponents. Our mechanism for producing time-varying shock prices differs from popular
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F 10. The one-noise system with worst-case model probability ι̃ ≡ 1. Unknown dynamics
(top panel) and unknown model (bottom panel).

approaches in the existing literature. For instance, Campbell and Cochrane (1999) in-
duced secular movements in risk premia that are backward looking because a social
externality depends on current and past average consumption. To generate variations
in risk premia, Bansal and Yaron (2004) assumed stochastic volatility in consumption.26

Our analysis features the effects of robust learning on local prices of exposure to un-
certainty. Studying the consequences of robust learning and model selection for mul-
tiperiod uncertainty prices is a natural next step. Multiperiod valuation requires com-
pounding local prices. When the prices are time-varying, this compounding can have
nontrivial consequences.

To obtain convenient formulas for prices, we imposed a unitary elasticity of sub-
stitution, which implies a constant ratio of consumption to wealth. Measuring the
consumption–wealth ratio properly is a difficult task, but we agree that it is probably
worthwhile eventually to pay the costs in terms of the computational tractability that
would be required to extend our model to allow a variable consumption–wealth ratio.27

26Our interest in learning and time-series variation in the uncertainty premium differentiates us from
Weitzman (2005) and Jobert, Platania, and Rogers (2006), who focused on long-run averages.

27We have doubts about the frequently used empirical procedure of using dividend to price ratios to
approximate consumption to wealth ratios. Dividends on aggregate measures of equity differ from aggre-
gate consumption in important ways and the aggregate values measured in equity markets omit important
components of wealth. Thus, aggregate dividend–price ratios can behave very differently from the ratio of
wealth to consumption.
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While our example economy is highly stylized, we can imagine a variety of other
environments in which learning about low-frequency phenomena is especially chal-
lenging when consumers are not fully confident about their probability assessments.
Hansen, Heaton, and Li (2008) showed that while long-run risk components have im-
portant quantitative impacts on low-frequency implications of stochastic discount fac-
tors and cash flows, it is statistically challenging to measure those components. Belief
fragility emanating from model uncertainty promises to be a potent source of fluctua-
tions in the prices of long-lived assets.

A. D  

By adapting procedures developed by Hansen, Sargent, and Wang (2002) and Anderson,
Hansen, and Sargent (2003) in ways described by Hansen, Mayer, and Sargent (forth-
coming), we can use simulations to approximate a detection error probability. Repeat-
edly simulate {Yt+1 − Yt}Tt=1 under the approximating model. Evaluate the likelihood
functions La

T and Lw
T of the benchmark model and worst-case model for a given (θ1% θ2).

Compute the fraction of simulations for which Lw
t /L

a
T > 1 and call it ra. This approxi-

mates the probability that the likelihood ratio says that the worst-case model generated
the data when the approximating model actually generated the data. Do a symmetri-
cal calculation to compute the fraction of simulations for which La

T /L
w
T > 1 (call it rw),

where the simulations are generated under the worst-case model. As in Hansen, Sargent,
and Wang (2002) and Anderson, Hansen, and Sargent (2003), define the overall detection
error probability to be

p(θ1% θ2) = 1
2
(ra + rw)$ (28)

Because in this paper we use what Hansen, Mayer, and Sargent (forthcoming) call
Game I, we use the following sequential procedure to calibrate θ1 first, then θ2. First, we
pretend that xt(ι) is observable for ι = 0%1 and calibrate θ1 by calculating detection error
probabilities for a system with an observed state vector using the approach of Hansen,
Sargent, and Wang (2002) and Hansen and Sargent (2008, Chap. 9). Then having pinned
down θ1, we use formula (28) to calibrate θ2. This procedure takes the point of view
that θ1 measures how difficult it would be to distinguish one model of the partially hid-
den state from another if we were able to observe the hidden state, while θ2 measures
how difficult it is to distinguish alternative models of the hidden state. The probability
p(θ1% θ2) measures both sources of model uncertainty.

We proceeded as follows. (i) Conditional on model ι and the model ι state xt(ι) be-
ing observed, we computed the detection error probability as a function of θ1 for models
ι = 0%1. (ii) Using a prior probability of π = $5, we averaged the two curves described in
point (i) and plotted the average against θ1. We calibrated θ1 to yield an average detec-
tion error probability of $4 and used this value of θ1 in the next step. (iii) With θ1 locked
at the value just set, we then calculated and plotted the detection error for the mixture
model against θ2. To generate data under the approximating mixture model, we sampled
sequentially from the conditional density of signals under the mixture model, building
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up the Bayesian probabilities ῑt sequentially along a sample path. Similarly, to generate
data under the worst-case mixture model, we sampled sequentially from the conditional
density for the worst-case signal distribution, building up the worst-case model proba-
bilities ι̃t sequentially. We set θ2 to fix the overall detection error equal to .2.
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