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SM.1 Departure Time Model Identification

In this section, I formally prove how identification of schedule costs and schedule heterogeneity
in a departure time model depends on observing commuter reactions to congestion pricing. For
analytical tractability, I proceed in a simplified model that maintains the key features of the full
model: schedule preferences and a peak-hour (inverse U shaped) travel time profile. These results
continue to hold when the travel time profile is endogenously determined in equilibrium. I use
simulations to check a conjecture that the deadweight loss of peak-hour congetion in this model is
decreasing in the schedule costs.

For intuition for the identification results, consider a commuter that we observe to leave at very
different times on different days (as I document in Table SM.I). There are two ways this could arise.
In the first scenario, the commuter has a unique ideal arrival time and high schedule flexibility. In
this case, small idiosyncratic shocks have a large effect on departure times. In the second scenario,
each day, the commuter draws an ideal arrival time from a dispersed distribution, but does not have
much flexibility around that time.

These two cases are observationally equivalent for departure times, but they have different im-
plications for how substitutable two departure times are to each other, on any given day. The key
intuition for how congestion pricing leads to identification is that we can measure cross-price elastic-
ities: how the probability of choosing departure time h depends on infinitesimal pricing of departure
time h′.
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SM.1.1 Simplified Departure Time Model

I assume that commuters have preferences directly over (continuous) departure times h ∈ R. Unlike
the main model where commuters have ideal arrival times, this assumption eliminates expectations
over travel time uncertainty and greatly simplify the algebra.

Travel time is a (possibly degenerate) quadratic function of departure time. This captures the
key shape of how travel time varies across the peak hour.28 In most of the results below, schedule
costs are quadratic and the ideal departure time is normally distributed. These assumptions rule
out asymmetric (early/late) schedule costs yet deliver analytical tractability.

Given the focus on identification, I drop individual i and time t subscripts and assume that
infinite data for a single individual is available. The utility for departure time h is

−αT (h) − v(h− hD)︸ ︷︷ ︸
u(h|hD)

+ϵD(h).

Here v(·) is the schedule penalty as a function of the deviation between departure time and the
ideal departure time hD. ϵD(h) are idiosyncratic shocks with scale β−1 that give rise to continuous
logit choice probabilities. The ideal departure time hD is distributed according to a cumulative
distribution function F .

I assume that the value of travel time α is known and normalize it to α = 100 INR/hour. Note,
if travel time is not constant, this rules out a trivial source of non-identification due to scale.

The conditional probability density of choosing departure time h is given by the continuous logit
density, and the unconditional density is given by integrating over F ,

π(h|hD) = exp(βu(h|hD))∫
h′ exp(βu(h′|hD))dh′ , and π(h) =

∫
π(h|hD)dF (hD).

SM.1.2 Two Non-Identification Results with Observational Data

Before outlining the main results, I prove a general non-identification result in a simple setting where
travel time is a constant (later, I will assume quadratic) and the ideal departure time distribution
is unrestricted.

In this case, we can write the observed departure time as the sum of two independent random
variables, corresponding to the ideal departure time, and the optimal departure time conditional on
the ideal departure time. This exact decomposition helps clarify the source of non-identification.

Proposition 1. Assume that travel time T is a constant (does not depend on departure time h).
Normalize β = 1. Consider any family V of schedule delay functions v ∈ V , with at least two
elements v1, v2 ∈ V that differ on a non-zero measure set. Then, the schedule delay cost function
v(·) is not identified given data on π(h).

Proof. If T does not depend on h, then u(h|hD) is only a function of the difference h−hD. Hence, the

28The quadratic shape implies unrealistic negative travel time for very early or very late departure time. I later
assume that schedule costs rise faster so that, on net, these departure times are unattractive.
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optimal departure time random variable h∗ can be written as the sum of two independent random
variables, h∗ = hD + h∗ − hD︸ ︷︷ ︸

hE

, where the pdf of hE is

G(hE) = exp(−v(hE))∫
h

exp(−v(h))dh
.

(Note: if v is quadratic then hE is normally distributed.)
Consider two different schedule delay functions v1(·) and v2(·) and let hE

1 and hE
2 denote two

independent random variables that have the corresponding pdfs G1 and G2.
Setting the ideal departure time distributions hD

1 ∼ G2 and hD
2 ∼ G1 (note that indices are

switched) implies that the observed optimal departure time random variables hD
1 +hE

1 and hD
2 +hE

2

have the same distribution. Hence, the schedule cost function v(·) is not identified.

The identification failure does not depend on constant travel time. I next prove the main non-
identification result, in a model that is more strongly parametrized and where travel time is hump-
shaped, which captures the peak-hour travel time profile. I make three functional form assumptions.

Assumption 1. T (h) is quadratic, T (h) = τ0 − τ1h
2 with τ1 > 0. Without loss of generality

and for convenience I will set τ0 = 0.
Assumption 2. Schedule costs are quadratic, v(h− hD) = s(h− hD)2 with s > τ1.
(s > τ1 means that schedule costs dominate, and it implies that the commuter chooses departure

times with negative travel time–very early or very late departure time–with very low probability.)
Assumption 3. The ideal departure time is normally distributed, hD ∼ N(0, σ).

Proposition 2. Fix the shape of the travel time profile τ1 and maintain the VOTT normalization
α = 100 INR/hour. Under assumptions 1–3, the demand model parameters (β, s, σ) are not identified
with data on observed departure times.

This is not a trivial non-identification result due to scale, because VOTT α is normalized, and
travel time is not constant.

The proof will show that it is possible to explain the same observed distribution of departure
times by increasing schedule costs and increasing the spread of the ideal departure time distribution.

Proof of Propostion 2. I show that π(h) is a normal distribution centered at zero. Its mean and
variance depend on three variables (β, s, σ). Hence, the model is under-identified with two degrees
of freedom.

The utility functions is (recall that the value of time spent driving α is normalized)

u(h|hD) = ατ1h
2 − s(h− hD)2 + ϵD(h).
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Choice probabilities are given by

π(h) =
∫
π(h|hD)dF (hD)

=
∫

e−β(−ατ1h2+s(h−hD)2)∫∞
−∞ e−β(−ατ1(h′)2+s(h′−hD)2) dh′ · 1√

2πσ
e

− 1
2

(
hD

σ

)2

dhD

= 1
√

2π
√

s2σ2

(s−ατ1)2 + 1
2β(s−ατ1)

exp
(

−1
2

h2

s2σ2

(s−ατ1)2 + 1
2β(s−ατ1)

)
.

This is a normal distribution with mean zero and variance s2σ2

(s−ατ1)2 + 1
2β(s−ατ1) .

SM.1.3 Identification with Congestion Pricing Variation

I now study identification when we also observe choice probability distributions π(·|p(·)) in response
to any possible pricing function p(h).

Observing responses to pricing helps identify the cross-price elasticities for different departure
times. This helps resolve the ambiguity discussed in the previous section, because different combina-
tions of departure time distributions and conditional choice probabilities have different implications
for cross-price elasticities.

The key object of interest is the impact of an “impulse” price function on choice probabilities.
Slightly abusing notation (skipping a formal limit argument), we study “Kronecker delta” impulse
pricing functions at h given by p(x;h, λ) = λ1(x = h) and study the effect of increasing λ around
λ = 0 for given h ̸= h′:

dπ(h′|p(·;h, λ))
dλ

∣∣∣∣
λ=0

= d

dλ

∫ exp(βu(h′|hD))∫
h′′ exp(βu(h′′|hD) − βp(h′′;h, λ))

dF (hD).

For h ̸= h′ and evaluating at λ = 0 this simplifies to

β

∫
π(h′|hD)π(h|hD)dF (hD),

where π(·|hD) denotes the conditional probability in the absence of pricing (λ = 0).
This expression shows that, for fixed h−h′, when conditional probabilities are concentrated (e.g.

when β is high and/or the schedule cost function is steep around the ideal departure time), the
cross-elasticities are close to zero. Intuitively, this suggests that knowing cross-elasticities for all h
and h′ solves the identification problem.

I now formally prove identification in the particular case considered in Result 2.

Proposition 3. Fix the shape of the travel time profile τ1. Under assumptions 1–3, the model
parameters (β, s, σ) are identified with data on observed departure times and cross-elasticities for
h ̸= h′.

Proof. Substituting the utility function and normal distribution for hD in the expression for cross-
elasticity, and computing integrals using Mathematica, yields
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β

∫
π(h′|hD)π(h|hD)dF (hD) = β2(s− ατ1) 1

2
(
s− ατ1 + 4βs2σ2)− 1

2

exp
(

(s− ατ1)2β2s2σ2

(s− ατ1 + 4βs2σ2) (h′ + h)2 − (s− ατ1)β
(
(h′)2 + h2)) .

Taking log and grouping terms in a polynomial of h and h′ gives

ln
(∫

π(h′|hD)π(h|hD)dF (hD)
)

= − β(s− ατ1)((h′)2 + h2)+

2β2s2σ2(s− ατ1)
s− ατ1 + 4βs2σ2 (h′ + h)2+

1
2 ln

(
β2(s− ατ1)

s− ατ1 + 4βs2σ2

)
.

By varying h and h′, we have three identified coefficients and three unknowns (β, s, and σ). It
is straightforward to check that this system of equations has a unique solution.

SM.1.4 Equilibrium with Endogenous Congestion

I now show that the quadratic travel time profile assumed so far is consistent with equilibrium.
Assume that the travel time T (h) is given by

T (h) = λ0 + λ1 log(V (h)), (7)

where V (h) a measure of volume of travel around h. To construct V , assume that any trip at h
affects the travel times of all other departure times (trips leaving both before and after h), with a
weight given by a normal distribution pdf with standard deviation σV . That is, V is given by

V (h) =
∫ ∞

−∞
π(h′)ϕ(h′;h, σV )dh′,

where ϕ(x;µ, σ) is the normal pdf with mean µ and standard deviation σ, evaluated at x.
Given that π is a normal pdf, so will V , and hence travel time given by (7) will be quadratic in

h.

Proposition 4. This model has a unique equilibrium, where travel time is quadratic and choice
probabilities follow a normal pdf. The following equilibrium equation holds:

s2σ2

(s− ατ1)2 + 1
2β(s− ατ1) + σ2

E = λ

2ατ1
.

SM.1.5 The Deadweight Loss of Congestion is Decreasing in Schedule Costs

Consider an equilibrium as described above. Based on Proposition 2, the observed choice probabili-
ties and travel time profile are consistent with various combinations of schedule cost s and dispersion
of ideal departure times σ.
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Conjecture 1. Holding fixed the equilibrium choice probabilities π(h) and the profile of travel time
T (h), the deadweight loss of congestion (in absolute terms) is decreasing in schedule costs s.

The deadweight loss does not appear to have a closed form solution. I use numerical simulations
for 1,000 randomly chosen parameter vectors. I maintain the normalization α = 100 INR/hour,
and draw the following parameters uniformly and independently: s ∈ [25, 125] INR/hour2, σ ∈
[0.05, 0.55] hours, β ∈ [0.25, 0.75], σV ∈ [0.5, 1, 5] hours, and λ1 ∈ [1.5, 2.5]. In each simulation, I
choose 10 alternate possible values of s′ and solve for the implied σ′ that leads to the same equilibrium
as with the initial s, σ, and compute deadweight loss. In all 1,000 simulations, deadweight loss is
decreasing in s′.

Figure SM1. Example deadweight loss versus schedule cost (holding observed equilibrium fixed)

SM.2 Route Choice Model Identification

To provide intuition for how VOTT and the route switching cost are separately identified using data
from the route choice experiment, I analyze a version of the dynamic route choice model without
departure time from section 4.2. I further assume no time discounting (δ = 0).

Consider three time periods. At t = 0 the model is in steady state. At t = 1 the short route
(r = 0) is unexpectedly charged p. At t = 2 the route is no longer charged. Denote πt(rt−1 → r)
the probability to use route r at time t if the t − 1 route was rt−1 when there is no pricing, and
πt(rt−1 → r|p) with pricing p. Because there is no discounting, we have the following expressions
for relative transition probabilities:

π0(0 → 0)
1 − π0(0 → 0) = exp(0)

exp( −γ−α∆T
µ )

π0(1 → 0)
1 − π0(1 → 0) =

exp( −γ
µ )

exp( −α∆T
µ )

π1(0 → 0|p)
1 − π1(0 → 0|p) =

exp( −p
µ )

exp( −γ−α∆T
µ )

π1(1 → 0|p)
1 − π1(1 → 0|p) =

exp( −p−γ
µ )

exp( −α∆T
µ )

.

It is easy to solve for the parameters α, γ, µ if these transition probabilities are known. Next, I show
that these parameters are also unique determined by the detour route usage rates St in periods
t = 0, 1, 2. These numbers satisfy the following equations (note that t = 0 and t = 2 have the same
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transition probabilities)

S0π0(0 → 1) = (1 − S0)π0(1 → 0)

S1 = S0π1(0 → 0|p) + (1 − S0)π1(1 → 0|p)

S2 = S1π0(0 → 0) + (1 − S1)π0(1 → 0).

It is tedious but straightforward to show that these three equations uniquely determine α, γ, µ.

SM.3 Route Charge Treatment Regression Analysis

For the regression analysis of the route experiment, I focus on the early treatment group and the
period before the experiment and the first two weeks during the experiment. I use the following
specification:

yit = γA · TEarly
i W 1

t + γA,P · TEarly
i W 2

t + µt + αi + εit. (8)

The coefficients of interest are γA and γA,P , which measure the impact of route congestion
charges in the early charges group, and the persistence effect one week later, relative to similar
commuters who anticipate that they will be treated in the fourth week of the experiment.

Panel A of Table SM.VII shows the impact of route charges on detour usage at the trip level.
The sample is all trips between home and work. The results show a large increase of 27 percentage
points during the first week in the experiment among the early treatment group, who faced charges
that week. By comparison, only 11% of participants in the late group chose the detour that week.
The second column shows that more than a third of this effect size persists one week later. Charges
do not have a significant effect on the number of trips per day (columns 3 and 4). This means that
there is no evidence that commuters reduce the number of trips to avoid route congestion charges,
and the previous effects are driven by route switching.

I next analyze how baseline experience with detour routes affects the impact of charges. In Panel
B, I restrict to commuters who use a detour route between home and work (or between work and
home) at least once before the experiment. In general, the results from Panel A are amplified in
this sample. Baseline usage is higher, as are the impact of charges (41 percentage points) and the
persistence effect.

SM.4 Travel Demand Estimation

SM.4.1 Choice Probabilities

In the benchmark model with dynamic route choice and departure time choice, the departure time
choice probabilities conditional on the chosen route (with pit(h, r) = 0) is given by

πi(h|r, hA
it) = exp((σDT )−1Ev(h, Ti(h, r), hA

it))∑
h′ exp((σDT )−1Ev(h′, Ti(h′, r), hA

it))
.

These expressions show that the full model collapses to the single-route departure time choice model
given by (2) when we condition on route and ideal arrival time. Similar expressions apply when we
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include pricing pit(h, r).
In the full model, the expected utility of choosing route r is

Euit(r|hA
it, rit−1) = σDT log

(∑
h

exp
(
(σDT )−1Ev(h, Ti(h, r), hA

it)
))

− γ1(r ̸= rit−1) + δVit+1(r).

This includes the “logsum” or ‘inclusive value” term over departure times. In the upper nest, this
leads to route choice probabilities (conditional on hA

it)

πit(r|hA
it, rit−1) = exp((σR)−1Euit(r|hA

it, rit−1))
exp((σR)−1Euit(0|hA

it, rit−1)) + exp((σR)−1Euit(1|hA
it, rit−1))

.

Unconditional probabilities follow by integrating over the ideal arrival time distribution fA
i .

SM.4.2 GMM Moments That Exploit Experimental Variation

The two-step optimal GMM estimation finds the parameter vector θ = (α, βE , βL, γ, σ
DT , σR, ηearly)

that solves minθ ĝ(θ)′Ŵ ĝ(θ) where the moment function g(θ) is described below, and Ŵ is the
estimated optimal weighting matrix from the second step. (For the first step I use Ŵ = I.)

Departure Time Moments. The first 49 moments match the difference in difference in de-
parture time market shares, between the departure time treatment and control groups, during the
experiment relative to before. Let k index the 5-minute-step departure time grid between −120 and
+120 minutes relative to the rate profile peak. Denote PDT

ik (θ, pit) the probability that the kth de-
parture time is optimal when departure time and route pricing is pit. In the data, define P̃DT

ik (pre)
and P̃DT

ik (post) the fractions of trips starting in a 5-minute bin around the kth departure time for
i in pre- and post- periods, respectively. The k-th moment is:

gk
i (θ, pit) = (−1)1−T DT

i

[(
P̃DT

ik (post) − P̃DT
ik (pre)

)
−
(
PDT

ik (θ, pit) − PDT
ik (θ, 0)

)]
,

where TDT
i is an indicator for departure time charges.

Route Moments. Ten moments match route choice market shares during five periods (before
the experiment, and four weeks during the experiment) indexed by t = 1, . . . , 5 and in two treatment
groups (early and late charges).

Denote PA
it (θ, pit) the probability to take the detour route (not intersect the congestion area)

in time period t when pricing is pit. In the data, define P̃A
it the fraction of days when commuter

home-work trips do not intersect the congestion area for individual i, which depends on i’s treatment
group. For t = 1, . . . , 5, the route moments are:

g49+t
i (θ, pit) = TEarly

i ·
[
P̃A

it − PA
it (θ, pit)

]
g54+t

i (θ, pit) = (1 − TEarly
i ) ·

[
P̃A

it − PA
it (θ, pit)

]
.

49



SM.5 Parameter Sensitivity Measure

Table SM4 reports the estimated sensitivity measure Λ from Andrews et al. (2017), scaled by the
standard deviation of each moment. Each entry Λpj measures the change in estimated parameter θp

due to a one standard deviation change in moment mj . The measure is Λ̂ =
(
Ŝ

′
Ŵ Ŝ

)−1
Ŝ

′
Ŵdiag (σ̂)

where Ŝ is the Jacobian evaluated at the estimated parameters, Ŵ is the optimal weighting matrix,
and σ̂ is the vector of bootstrap standard deviation of moment j.

SM.6 Road Technology Invariance Result

Conditional on the relationship (6) estimated on a representative sample, the impact of an additional
trip on total driving time in Bangalore is invariant to the aggregate volume of traffic in Banglore,
and it is invariant to the sample size used to estimate the road technology relationship.

The key intuition is that equation (6) depends on normalized density, so it is invariant to the true
aggregate volume of traffic. Then, imagine that the aggregate volume is twice as large as initially
believed. Then the impact of a single trip on travel delay will be twice as small. However, it will
affect twice as many other commuters, so the impact on total time is not affected.

Using the notation from section 4.3, let Q = (q(h,K))h,k denote the pattern of departures, where
q(h,K) is the mass of trips of length K starting at h, based on a sample of N trips. Let x = (x(h))h

denote the instantaneous travel delay profile, and d = (d(h))h the density profile. Similar to equation
(6), assume that instantaneous delay satisfies x(h) = λ0 +λ1d(h)/N where N is the number of trips
in the sample.

Proposition 5. The marginal effect of an additional trip on total travel time does not depend on
the sample size used to construct Q.

Proof. Let d(h′, Q) denote density at time h′ as a function of the pattern of departures, and d(Q) =
(d(h′, Q))h′ .

Travel times are uniquely determined by the instantaneous travel delay profile, which depends
on normalized density. Hence, we can write average travel times as a function T

(
d(Q)

N

)
. Note that

total travel time in the city is NT .
For every h′, d(h′, Q) is homogeneous of degree 1 in Q. Consequently, the partial derivative

dh,K(h′, Q) with respect to the mass of trips with length K starting at h is degree 0 in Q, i.e. it
does not depend on the sample size used to compute Q.

Consider adding a trip of length K that starts at h and denote the pattern of departures by
Q+ 1(h,K). The change in total travel time is

N

(
T

(
d(Q+ 1(h,K))

N

)
− T

(
d(Q)
N

))
≈ N

∂T

∂1(h,K) = N
∑
h′

∂T

∂h′
dh,K(h′, Q)

N

The last term does not depend on N because neither ∂T
∂h′ nor dh,K(h′, Q) depend on N .
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SM.7 Policy Simulations

For policy simulations I use a 5-minute departure time grid from 5am to 2pm. Each simulation
has 3040 agents, with each real study participant replicated with 10 independent random draws
of ideal arrival times from the distribution recovered with non-negative least squares (section 7.3).
The vector of ideal arrival times is re-sampled during bootstrapping. Thus, the confidence intervals
include uncertainty due to numerical simulation. Benchmark results are robust to using 10× more
agents.

For the two-route equilibrium model, I assume double the volume of trips, so that on average
the volume of trips per route remains the same.

I use a nested logit model for the equilibrium model with an extensive margin decision. The outer
nest has two options, taking the trip (z = 1) and not taking the trip (z = 0). Trips are valuable:
a commuter not making a trip incurs a cost proportional to trip length ωi = ω · Ki/K. Expected
utility is given by:

Eui(x, h, hA
i ) =

Ev(h, Ti(h), hA
it) − pit(h) + εit(1, h) z = 1

−ωi + εi(0, h) z = 0

where εi(z, h) follow a type-1 extreme value distribution with correlation within each value of z,
with logit scale parameter η for the trip (upper) nest. The congestion pricing experiment was not
designed to estimate the extensive margin trip elasticity.

SM.8 Supplementary Material: Figures

Figure SM2. Impact of Departure Time Charges on Departure Times (Commuting Trips)
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Notes: Version of Figure 2 restricting to regular commuters and trips between home and work (both ways).
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Figure SM3. Travel Demand Model Fit

Panel (A) Departure Time Difference in Differences Panel (B) Departure Time Control Post

Panel (C) Detour Route Usage Panel (D) Detour Route Usage Heterogeneity

Notes: This figure shows in- an out-of-sample fit for the estimated travel demand model. Panel A plots
the departure time moments that correspond to the difference-in-differences (treated vs. control, during vs.
before), the analogue of Figure SM2. Panel B shows the probability density of departure time in the control
group during the experiment (Post). These moments are not directly targeted in the estimation (however,
the ideal departure time distribution inversion routine depends on the distribution of departure time before
the experiment). Panel C shows the dynamic route choice moments, the analogue of Figure 3. Panel D
shows detour route choice heterogeneity by the amount of detour (in minutes), for the “early” treatment
group, which receives charges in week 1. This is the analogue of Kreindler (2023), Figure A.4., and these
moments are not targeted in estimation. For all graphs, the model is indicated by thicker, red lines.
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Figure SM4. Travel Demand Model: Understanding Identification

Panel (A) Jacobian: d moment/d parameter Panel (B) Sensitivity: d parameter/d moment
Notes: Moments are defined as gj(θ) = sj(θ) − sj,data. Panel A plots the partial derivatives dg(h, θ)/dβE

and dg(h, θ)/dβL for each departure time moment g(h, θ). Panel B plots the scaled sensitivity measure from
Andrews et al. (2017) quantifying the change in the estimated early and late schedule cost parameters β̂E

and β̂L given by one standard deviation change in each of the 49 departure time moments, as well as the
LOESS fit. See Supplementary Material SM.5 for definitions.
Figure SM5. Travel Demand Model Numerical Identification Check and Finite Sample Properties

Notes: This figure compares true random parameters and the estimated parameters from simulated data,
under two scenarios. In the “asymptotic” scenario (red circles) the simulated data has exact (route and
departure time) choice probabilities. In the “finite sample” scenario (blue triangles) the simulated data has
random choices and I use exactly the same data set size as in the real data (the number of observations
per commuter). Simulations are based on 100 random parameters independently drawn between 25% and
175% of the benchmark estimated values. For each set of parameters, I first invert the fA

i distributions
from pre-experiment (real) data, then use it to simulate data. I then estimate the model on the simulated
data using one random starting condition that is independent of the parameters used to simulate the model.
Each graph shows the estimated parameter on the Y axis, and the true parameter on the X axis. Outlier
values are censored. The diagonal line is identity. See also Table SM.XII.
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Figure SM6. Road Technology Estimation Robustness Checks
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Notes: Panel A uses travel delay from GPS trips to replicate Fig-
ure 4, including percentiles. The sample is all weekday trips more
than 2 kilometers long, without stops along the way, and with a
trip diameter to total length ratio above 0.6 (the 25th percentile).
For each hour-day I compute the average delay over trips start-
ing in that interval. Panel B replicates Figure 4 with “volume,”
the normalized number of trips starting each hour on the X axis.
Panel C plots the distribution of participant recruitment times
(histogram in solid gray) and the distribution of trip departure
times (kernel density plot in solid blue line). Both Y axes start at
zero. Panel D compares log-log road technology estimates from
this paper (gray dots, dashed blue line) with those from Akbar
and Duranton (2017) in Bogotá (red solid line). (Their estimate
is computed from Figure 4 panel C.) Panel E describes peak-hour
substitution towards routes with less steep travel time profiles.
For each commuter in the experimental sample, I query from
Google Maps the entire travel time profile for every route that
is optimal at some departure time. For each route I compute its
slope, the change in travel delay between 6:30 and 9:30 am. The
right axis (black dashed line) plots the fraction of commuters for
whom their highest slope route is fastest at departure time h.
The left axis (blue solid line) plots the average slope of the opti-
mal route at h.
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Figure SM7. Road Technology at the Daily Level
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Notes. These graphs replicate Figure 4 panel A by date. The first 7 panels show the relationship between hourly GPS traffic volume and Google Maps
travel delay for 7 randomly chosen calendar dates (one for each day of the week). The last panel overlays the predicted fit for all calendar dates in the
sample. The sample is calendar dates with above-median number of GPS trips (at least 571 trips per day). Travel delay and traffic density at the day d
and hour h level correspond to column 3 in Table III. Each fit is a power fit as in column 2 in Table III.
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Figure SM8. Road Technology on Major Arteries

Notes. These graphs replicate Figure 4 for major arteries depicted in Kreindler (2023), Figure A.1., separately by direction. The Y axis is average Google
Maps travel delay for that road segment. To compute traffic density at the artery level, I define a buffer area around each artery. I then count the
number of GPS trips that travel along the artery in each direction for each time of day, excluding short trips that intersect the artery for less than 200
meters (which I assume correspond to cross-traffic). I obtain 268,292 trip segments on the 46 arteries. 95% confidence intervals based on Newey-West
standard errors with a 3-hour lag also reported.
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Figure SM9. Policy Counterfactual Additional Results

Panel (A) Optimal Congestion Charges Panel (B) Departure Volume
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Panel (C) Non-linear Road Technologies Panel (D) Varying the Total Volume of Trips

Notes. Panel A plots percentiles of the optimal charges (equal to marginal social cost) around the social
optimum. For comparison, I plot the average trip delay (red, solid line) as in Figure 5, and the instantaneous
travel delay (blue, dashed line). Panel B plots the rates of trip departure rates in the Nash equilibrium and
in the social optimum. Panel C overlays the alternate road technologies used in panel D of Table IV, over the
benchmark road technology (Figure 4). I use the estimated λ0 and λ1 from the benchmark linear equation 6
and only vary ν. Panel D shows equilibrium peak average travel delay (X axis) and welfare gain from optimal
pricing (Y axis) when varying the total volume of trips used in the simulation. The number near each point
is the assumed fraction of all daily trips that happen during peak time. In the benchmark specification, I
assume this is 0.2.
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Figure SM10. Decomposing Gains and Losses in the Social Optimum

Panel (A) Real Changes: Travel Time and Schedule Costs Panel (B) Net of Charges and Rebates

Notes. For each commuter and ideal arrival time hA
i , the X axis is the average departure time hi = Eh(hA

i )
in Nash. Panel A plots the Nash–social optimum difference in −EαT (hi) vs hi (black, solid line) and in
−EβE |hi + T (hi) − hA

i |− + βL|hi + T (hi) − hA
i |+ vs hi (green, dashed line). Panel B plots average expected

utility change vs hi when commuters receive a rebate that is proportional to trip length (black, solid line)
or constant (green, dashed line).

Figure SM11. Policy Counterfactual in Two Route Equilibrium Model
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Notes: This Figure describes the two-route equilibrium
(panel E of Table IV). Panel A overlays the alternate high-
externality route road technologies over the benchmark road
technology (Figure 4). Panel B plots the probability of tak-
ing the high-externality route by departure time, in the
Nash equilibrium and in the social optimum, in the two-
route model where one route has 15% higher slope. Panel
C replicates Figure 5 by route for the two-route model where
one route has 15% higher slope.
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SM.9 Supplementary Material: Tables

Table SM.I. Descriptive Statistics about Travel Behavior

Panel A. Trip Characteristics
Median Mean Std. Dev. 10 Perc. 90 Perc. Obs.

Total Number of Trips 1.00 1.00 [0.00] 1.00 1.00 51,424
Number of Trips per Day 2.86 3.15 [1.16] 1.90 4.86 497
Median trip duration (minutes) 24.50 27.47 [12.82] 15.20 42.60 497
Median trip length (Km.) 5.93 7.19 [4.67] 2.92 13.36 497
Panel B. Commute Destination Variability

Median Mean Std. Dev. 10 Perc. 90 Perc. Obs.

Regular Commuter 1.00 0.76 [0.43] 0.00 1.00 497
Frac. trips Home-Work, Work-Home 0.38 0.39 [0.21] 0.13 0.67 378
Frac. of trips Work-Work 0.03 0.06 [0.08] 0.00 0.15 378
Frac. of days present at Work 0.92 0.86 [0.16] 0.60 1.00 378
Panel C. Departure Time Variability
(Standard Deviation of the Departure Time in hours)

Median Mean Std. Dev. 10 Perc. 90 Perc. Obs.

First Trip (AM) 1.27 1.24 [0.50] 0.54 1.82 496
Last Trip (PM) 1.72 1.71 [0.50] 1.04 2.36 497
First Home to Work Trip (AM) 0.48 0.62 [0.52] 0.15 1.28 332
Last Work to Home Trip (PM) 0.80 0.95 [0.63] 0.28 1.78 322

Notes: This table reports summary travel behavior statistics for the experimental sample of 497 commuters.
See section 5.1 for the definition of home and work locations and of regular commuter. In panel C, I compute
the within-commuter variation in departure times for different classes of trips.
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Table SM.II. Experimental Design

Panel A. Treatment Strata

Strata Departure Time
Sub-treatment

Route
Eligibility

Car or
Moto Daily KM High

Rate
Low
Rate Info Control

Eligible Car Low 3/8 1/8 2/8 2/8
Eligible Car High 1/8 3/8 2/8 2/8
Eligible Moto Low 3/8 1/8 2/8 2/8
Eligible Moto High 1/8 3/8 2/8 2/8
Ineligible Car Low 1/12 3/12 4/12 4/12
Ineligible Car High 3/12 1/12 4/12 4/12
Ineligible Moto Low 1/12 3/12 4/12 4/12
Ineligible Moto High 3/12 1/12 4/12 4/12

Panel B. Treatment Timing

Treatment by
Week in Experiment

Route
Eligibility

Dep. Time
Timing

Dep. Time
Sub-Treatment 1 2 3 4

Eligible Late

High rate R H H H
Low rate R L L L
Information R I I I
Control R C C C

Eligible Early

High rate H H H R
Low rate L L L R
Information I I I R
Control C C C R

Ineligible Late

High rate I H H H
Low rate I L L L
Information I I I I
Control C C C C

Ineligible Early

High rate H H H I
Low rate L L L I
Information I I I I
Control C C C C

Notes. There were eight strata in the experiment, all combinations of participants eligible or ineligible for
the route charge, car or non-car (motorcycle or scooter) users, and participants with high or low daily travel
distance in the baseline period. Departure time sub-treatment probabilities are given in panel A. There are
eight route sub-treatments: all combinations of high/low charges, short/long detour, and early/late. All
have equal probabilities. Sub-treatment are cross-randomized (see Kreindler, 2023, section A.6.). Treatment
timing is presented in panel B. The letter R corresponds to the route treatment. The letters H, L, I and C
respectively correspond to high-rate, low-rate, information and control in the departure time treatment.
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Table SM.III. Experimental Participant Sample Representativeness

(1) (2) (3) (4) (5) (6)
In Experiment Not in Experiment Difference
Mean [SD] Mean [SD] in SD units N

Panel A. All Respondents Approached
Male respondent 0.98 [0.13] 0.97 [0.17] 0.09** 8,231
Age 33.3 [8.2] 35.2 [8.7] -0.21*** 8,231
Car driver 0.30 [0.46] 0.41 [0.49] -0.24*** 8,227
Log vehicle price (residual) 10.5 [0.4] 10.5 [0.4] -0.00 7,188

Panel B. Survey Respondents
Log income 9.96 [0.71] 9.91 [0.73] 0.07 2,656
Stated Daily Travel (Km/day) 47.1 [24.0] 45.1 [25.1] 0.08* 4,427
Stated Value of Time (Rs/hr) 206.0 [138.9] 189.0 [151.3] 0.11* 1,001
Stated Schedule Flexibility (min) 20.0 [10.9] 18.7 [12.0] 0.11* 952

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Business owner
or manager

Accountant,
Teacher,
Doctor

Software
and IT

Engineers,
Technical

Office
staff

Manual
jobs

Mobile
professions Student Others,

Retired Total

Panel C. Survey Respondents
In Experiment 16.7 7.5 10.3 14.3 15.4 8.4 15.6 9.0 2.9 455
Not in Experiment 15.6 6.2 10.1 11.2 18.1 9.5 12.0 13.4 3.9 2,458

Notes. These results describe respondent selection into experiment by comparing the experimental sample
(497 respondents) to the entire sample of eligible commuters approached in gas stations by the survey
team (panel A) and to the full survey sample (panels B and C). The sample in Panel A is all respondents
approached in gas stations, excluding ineligible respondents. Weights are used to (a) account for missing data
for each variable, and (b) to adjust for the estimated ∼ 52% ineligible respondents among survey refusals
(for refusals, 7, 218 respondents did not complete the eligibility filter, and I assume the same proportion were
ineligible). Gender, age and car driver variables are visually assessed by the surveyor for all respondents.
Vehicle value (residual) is imputed based on vehicle type (car/motorcycle), make and model, using pricing
data scrapped from a used-vehicles website in Bangalore, residualized on a “car” dummy. Monthly income
is self-reported during the recruitment survey (the respondent is handed the tablet to enter the amount
confidentially – the surveyor never sees the amount), truncated at 100, 000 INR (∼ 1, 300 USD). Occupation
is self-reported during the recruitment survey. Value of time and schedule flexibility are based on choices
in hypothetical scenarios in a follow-up phone survey; for details, see Kreindler (2023), section A.4.2. The
difference in SD units includes significance levels from a (weighted) regression of the row outcome variable
on an indicator for being in the experiment. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM.IV. Experimental Balance Checks

Departure Time Treatments Route Treatment

Information Low Rate High Rate Obs. Control
Mean Route Early Obs. Control

Mean

(S.E.) (S.E.) (S.E.) (S.E.)

(1) Car user 0.01 (0.02) 0.01 (0.01) 0.01 (0.02) 497 0.28 -0.01 (0.01) 254 0.28
(2) Regular destination -0.05 (0.05) 0.00 (0.05) -0.09∗ (0.05) 497 0.77 -0.05 (0.03) 254 0.95
(3) Age -0.93 (0.93) 1.26 (1.01) -0.09 (1.07) 497 33.20 -1.35 (0.94) 254 34.30
(4) Log vehicle price 0.11∗∗ (0.05) 0.09 (0.05) 0.03 (0.06) 453 11.06 0.00 (0.05) 231 11.17
(5) Log income 0.01 (0.10) -0.02 (0.14) -0.07 (0.14) 411 10.11 -0.09 (0.12) 211 10.24
(6) Frac days with good GPS data -0.00 (0.03) -0.02 (0.03) -0.00 (0.03) 497 0.41 0.00 (0.03) 254 0.42
(7) Frac days present at work 0.02 (0.03) 0.00 (0.03) -0.03 (0.04) 497 0.69 -0.03 (0.03) 254 0.79
(8) Number of trips per day -0.11 (0.11) -0.03 (0.13) 0.01 (0.14) 497 1.24 -0.00 (0.12) 254 1.15
(9) Total distance per day (Km.) -0.43 (0.69) -0.19 (0.83) 0.34 (0.88) 497 8.26 0.19 (0.83) 254 8.79
(10) Total duration per day (min) -2.73 (3.03) -1.25 (3.55) 1.43 (3.84) 497 35.27 0.49 (3.50) 254 35.49
(11) Total D.T. hypothetical rate per day -0.40 (3.82) -0.40 (3.89) 0.03 (4.20) 497 38.38 -0.51 (3.78) 254 37.90
(12) Total Route hypothetical rate per day -2.27 (3.18) -2.83 (4.23) -0.40 (4.88) 497 23.83 0.70 (5.61) 254 50.73

(13) Joint Significance Test F-stat 0.25 0.02
(14) Joint Significance Test P-value 0.86 0.90

Notes. This table shows experimental balance checks for the departure time and route treatments. Variables 1,3,4, and 5 are from the recruitment
survey, while the remaining eight variables are calculated from the GPS trips data before the experiment. Each row and group of columns combination
reports coefficients from a regressions with the row header as outcome. In the “Route Treatment” columns, the sample is restricted to 254 participants
who receive the route treatment, and the dependent variable is whether the respondent was assigned to the “early” route sub-treatment (to receive the
route charges in week 1 as opposed to week 4). All regressions include randomization strata dummies. Rows 13 and 14 report the F-statistic and p-value
from column-wise joint significance tests. Robust standard errors are shown in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM.V. GPS Data Quality at Daily Level (Attrition Check)

(1) (2)
Treatment Departure Time Route
Commuter FE X X

High Rate × Post 0.02
(0.05)

Low Rate × Post 0.00
(0.05)

Information × Post 0.00
(0.04)

Route Charges 0.02
(0.04)

Post 0.08** 0.14***
(0.03) (0.04)

Observations 24,779 9,809
Control Mean 0.76 0.76

Notes. This table shows experimental impacts on the quality of the GPS data received from study par-
ticipants. The outcome is a dummy for good quality GPS data on a given day. The sample covers all
non-holiday weekdays for all experiment participants, excluding days outside Bangalore. In the post period,
the sample in column 1 is restricted to the departure time treatment period, either the first or the last three
weeks. The sample in column 2 is restricted to the first week in the experiment. All specifications include
respondent and study cycle fixed effects. Standard errors are clustered at the respondent level. ∗p ≤ 0.10,
∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01

Table SM.VI. Impact of Departure Time Charges on Daily Total Hypothetical Rate: Commuting
Trips

(1) (2) (3) (4) (5) (6) (7)
Time of Day AM & PM AM PM

all pre
peak

post
peak all pre

peak
post
peak

Commuter FE X X X X X X X
Sample: Regular Commuters, Home-Work and Work-Home Trips

Charges × Post -7.95*** -3.77** -3.00* -0.76 -4.18** -0.88 -3.30***
(2.89) (1.90) (1.56) (1.20) (1.67) (1.23) (1.08)

Post -1.74 -0.74 -1.29 0.55 -1.00 -0.69 -0.31
(2.65) (1.74) (1.30) (1.36) (1.61) (1.18) (1.06)

Observations 12,116 12,116 12,116 12,116 12,116 12,116 12,116
Control Mean 40.81 23.37 14.27 9.10 17.44 9.15 8.29

Notes: This table reports the impact of departure time charges on daily total hypothetical rates for regular
commuters and commuting trips, separately by time interval. The sample of users and days, and the
specifications, are the same as in Table I, panel B, further restricted to regular commuters and direct trips
between their home and work locations (in either direction). Columns (3) and (6) restrict to trips before the
peak, i.e. the mid-point of the rate profile. Columns (4) and (7) restrict to trips after the peak. Kreindler
(2023), Table A.3., reports these results for variable commuters. Standard errors in parentheses are clustered
at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM.VII. Impact of Route Charges on Detour Route Usage

(1) (2) (3) (4)
Outcome Use Detour Route Number of Trips Today
Commuter FE X X X X

Panel A. All Commuters

Treatment: Early × week 1 0.27*** 0.26*** 0.02 0.02
(0.05) (0.05) (0.07) (0.07)

Persistence: Early × week 2 0.09** -0.09
(0.04) (0.08)

Observations 5,235 6,038 9,809 11,016
Control Mean (week 1) 0.11 0.11 0.73 0.73

Panel B. Commuters Who Used Detour at Baseline

Treatment: Early × week 1 0.41*** 0.41*** 0.03 0.02
(0.08) (0.08) (0.13) (0.13)

Persistence: Early × week 2 0.13* -0.01
(0.07) (0.13)

Observations 2,369 2,718 3,508 3,940
Control Mean (week 1) 0.18 0.18 0.87 0.87

Notes: This table reports difference-in-differences impacts of the route treatment on trip and daily outcomes.
In the first two columns, an observation is a commuting trip between home and work, and the outcome is
whether the commuting trip used a detour route (defined as any route that avoids the congestion area). The
last two columns, an observation is a commuter, day combination, and the outcome is the total number of
trips that day. The sample is all non-holiday weekdays with good quality GPS data, excluding days outside
Bangalore. In the post period, all days except trial days are included. The sample is restricted to 243
participants in the route treatment. In the first two columns, only frequent commuters are included. In
panel B, the sample is restricted to commuters who used a detour route between home and work at least once
before the experiment. All specifications include respondent and study cycle fixed effects. The mean of the
outcome variable in the control (late) group in week 1 of the experiment is reported for each specification.
Standard errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM.VIII. Impact of Route Charge Sub-Treatments on Daily Outcomes

Hypothetical Route Charges
(1) (2)

Treated × High Rate -41.1***
(13.1)

Treated × Low Rate -21.5
(13.3)

Treated × Short Detour -43.0***
(15.4)

Treated × Long Detour -26.2
(17.8)

Observations 6,129 3,693
Commuters 243 148
Control Mean 117.1 122.7
P-val Equal Sub-treatment Effects 0.30 0.48
Standard errors in parentheses
* p<.10, ** p<.05, *** p<.01

Notes: This table reports difference-in-differences impacts of route sub-treatments on daily total hypothetical
route charges. The sample in column 1 is the same as in Table SM.VII, covering the period before and during
the first week in the experiment. In column 2 the sample is restricted to 148 route treatment participants
for whom candidate areas included at least one with short detour (3-7 minutes) and at least one with long
detour (7-14 minutes). The outcome is total daily hypothetical route charges; higher values indicate lower
detour usage. Standard errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01
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Table SM.IX. Travel Demand Estimates: Additional Results

(1) (2) (3) (4) (5) (6)

Static
Route Choice

Asymmetric
switching cost Time FE Half

attention

Parameters
prop. to

wage

Single ideal
arrival time

βE : Schedule cost early (INR/hour) 647 525 488 244 445 856
[369, 2514] [235, 3000] [244, 2939] [126, 541] [121, 3000] [267, 3000]

βL: Schedule cost late (INR/hour) 499 343 358 1340 630 239
[232, 3000] [195, 1324] [197, 1501] [601, 1966] [188, 2555] [112, 2491]

α: Value of travel time (INR/hour) 2200 552 494 28.6 388 645
[1798, 2772] [198, 998] [173, 1851] [0, 161] [121, 956] [224, 1247]

γ: Route switching cost (INR) 55 107 39.3 80.7 81.6
[34.6, 69.9] [43.7, 146] [19.6, 61.8] [43.1, 117.9] [46.2, 105]

σDT : Logit departure time 15.6 18.9 18.2 12 35.2 17.1
[1, 142] [1, 146.2] [1, 134.4] [1, 65.6] [1, 333.5] [1, 159.9]

σR: Logit route nest 95.9 63.5 62.9 17.1 58.3 62.5
[72.0, 130.3] [49.4, 84.4] [44.3, 96.1] [1.11, 42.0] [40.2, 85.8] [47.0, 86.1]

Obs. 304 304 304 304 304 304
Model Components:
Route choice model Static Dynamic Dynamic Dynamic Dynamic Dynamic
Fixed discount factor (δ) - 0.90 0.90 0.90 0.90 0.90
Asymmetric switch cost (γ01 = 2γ10) - Yes - - - -
Route Choice Time FE - - Yes - - -
50% share attentive to RCT - - - Yes - -

Moments:
Departure Time (49) Yes Yes Yes Yes Yes Yes
Dynamic route choice (10) - Yes Yes Yes Yes Yes
Static route choice (2) Yes - - - - -

Notes: Column 1 fits a model with static route choice (δ = γ = 0) using only two route choice moments:
the fraction using route 1 when not charged during the experiment, and when charged. Column 2 modifies
the benchmark model to include asymmetric switching costs parametrized by γ01 = γ10 = 2γ. Column
3 estimates time fixed effects η1, η2, η3, η4 that enter route 1 utility on the corresponding weeks during
the experiment. Column 4 imposes that each commuter ignores experimental congestion charges with
independent probability p = 0.5. In column 5, all preference parameters are proportional to wi, commuter
i’s self-reported hourly wage. (Note that logit parameters are proportional to wi and to normalized trip
length, i.e. σDT

i = σ wi
w

Ki

K
). In column 6, I assume that all commuters have the same ideal arrival time that

does not vary over time, hA
it = hA. The optimization routine restricts α, βE , βL ≤ 3000 INR/hour (145 USD/

hour PPP). 95% confidence intervals from 500 Bayesian bootstrap iterations are reported in parentheses.
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Table SM.X. Travel Demand Estimation: Discount Factor Robustness

(1) (2) (3) (4) (5)
Varying Discount Factor δ Estimate δ

βE : Schedule cost early (INR/hour) 339 385 534 542 540
[203, 813] [214, 1179] [255, 3000] [255, 3000] [258, 3000]

βL: Schedule cost late (INR/hour) 3000 3000 346 345 346
[1227, 3000] [889, 3000] [197, 1426] [195, 1594] [196, 1463]

α: Value of travel time (INR/hour) 79.6 81.6 595 618 612
[0, 724] [0, 598] [249, 996] [286, 1004] [308, 953]

γ: Route switching cost (INR) 44.5 50 81.8 77.6 80.5
[24.1, 99.0] [31.5, 100] [53.1, 105] [48.7, 101] [54.6, 105]

σDT : Logit departure time 16.1 16.3 18.5 17.2 17.7
[1, 188] [1, 157] [1, 182] [1, 138] [1, 147]

σR: Logit route (upper nest) 23.9 34.1 63.4 64.4 64.3
[4.88, 78.78] [9.71, 76.7] [49.1, 85.2] [51.1, 84.7] [52.1, 82.8]

δ: discount factor 0.895
[0.457, 0.990]

Obs. 304 304 304 304 304
Model:
Dynamic route choice model Dynamic Dynamic Dynamic Dynamic Dynamic
Fixed discount factor (δ) 0.0 0.50 0.90 0.99 -

Moments:
Departure time (49) Yes Yes Yes Yes Yes
Dynamic route choice (10) Yes Yes Yes Yes Yes
Route choice transition (1) - - - - Yes

Notes: Columns 1-4 replicate column 1 in Table II with different assumptions on δ. In column 5 I estimate δ,
using an additional moment. This moment measures the transition probability between route 0 and route 1,
on average, between weeks 1-2, 2-3, and 3-4 during the experiment. In the data, I define that the commuter
uses route 0 if the average weekly route choice of route 0 is strictly below 0.5. The optimization routine
restricts α, βE , βL ≤ 3000 INR/hour (145 USD/ hour PPP). 95% confidence intervals from 500 Bayesian
bootstrap iterations are reported in parentheses.
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Table SM.XI. Dynamic Route Choice Model Identification

(1) (2) (3)
Full Model No departure time Simple Model (δ = 0)

α γ σR α γ σR α γ σR

Estimated values 594.5 81.8 63.4 561.7 86.4 57.6 808.8 98.9 62.8

Jacobian: Change in Route 1 take-up Due to Change in Parameter
Before Experiment -0.09 -0.09 0.19 -0.09 -0.09 0.18 -0.19 -0.06 0.24
Week 1 (Charges) -0.22 -0.39 0.2 -0.23 -0.4 0.21 -0.4 -0.35 0.25
Week 2 (After Charges) -0.17 -0.13 0.18 -0.18 -0.14 0.18 -0.38 -0.06 0.19

Notes: This table reports the Jacobian matrix for three moments with respect to three route choice parame-
ters (VOTT α, switch cost γ and logit scale σR). The three moments are the route treatment “early” group
average detour route usage (1) before the experiment, (2) during week 1 in the experiment (when charges
were in effect), and (3) in week 2 (after charges had ended). The first group of columns uses the benchmark
model, and the next group uses the dynamic route choice model without departure time (column 4 in Table
II). In the last group of columns, I estimate a simple model where a single agent faces the average detour
(6.4 minutes) and the average route charge (144 INR), and I assume δ = 0 (see Supplementary Material
SM.2). Jacobian entries are divided by the value of the parameter, so they represent the semi-elasticity of
the moment with respect to a proportional change in the parameter.

Table SM.XII. Travel Demand Model Finite Sample Properties Check

(1) (2) (3) (4) (5) (6)
Estimated Parameter

α̂ β̂E β̂L γ̂ σ̂DT σ̂R

(True) Value of time α 1.02*** 0.05 0.01 -0.01 0.00 0.00
(0.11) (0.09) (0.18) (0.01) (0.01) (0.00)

(True) Penalty early βE 0.03 0.78*** -0.05 0.00 -0.01 0.00
(0.10) (0.12) (0.14) (0.01) (0.01) (0.00)

(True) Penalty late βL -0.07 0.02 1.65*** -0.01 0.01 0.01*
(0.15) (0.18) (0.34) (0.01) (0.01) (0.01)

(True) Switch Cost γ -0.17 0.26 0.79 0.95*** -0.10* 0.03
(0.69) (0.66) (1.07) (0.03) (0.06) (0.03)

(True) Logit departure time σDT 0.48 -0.82 -2.41 -0.02 0.76*** 0.21**
(2.73) (2.56) (4.96) (0.15) (0.26) (0.10)

(True) Logit route σR -0.73 -0.41 0.48 -0.01 0.07 1.05***
(0.84) (0.77) (1.83) (0.05) (0.05) (0.03)

Observations 100 100 100 100 100 100

Notes: This table uses simulated data of exactly the same size as the data used in estimation to describe
the finite sample properties of the estimation procedure. See notes for Figure SM5. Each column reports
results from a quantile (median) regression of the estimated parameter on the vector of true parameters.
∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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