
Econometrica Supplementary Material

SUPPLEMENT TO “A THEORY OF SIMPLICITY IN GAMES AND MECHANISM
DESIGN”

(Econometrica, Vol. 91, No. 4, July 2023, 1495–1526)

MAREK PYCIA
Department of Economics, University of Zurich

PETER TROYAN
Department of Economics, University of Virginia

APPENDIX B: OMITTED PROOFS

THIS SUPPLEMENT contains the proofs of the lemmas used in the proofs of the main theo-
rems in Appendix A, as well as the full proofs of Theorem 6 and Lemma 1 from the main
text.

B.1. Proofs of Lemmas for Theorem 2

PROOF OF LEMMA A.1: In order to show that there is no OSS mechanism that is equiv-
alent to �, suppose, by way of contradiction, that there is such mechanism with game �̃

and a profile of OSS strategic plans. Let S̃ be the profile of strategies in �̃ induced by the
strategic plans; by Theorem 1, this profile is obviously dominant.

The proof proceeds in a series of steps, which we label 1.1–1.6. (The labeling k�1 − k�6
is used because, after proving the result for k = 1, we use analogues of these steps to
prove Lemma A.2 for arbitrary k.)

Step 1.1. In �̃, the first mover must be i, and x must be guaranteeable for i. Furthermore,
at the empty history, w and z are not guaranteeable for i, but there is a unique action after
which w and z are possible. This action is taken by all types of player i that rank either w or
z first; we call this action i’s focal action.

Proof of Step 1.1. First notice that i must be the first mover. Indeed, in mechanism �,
agent j receives αj if and only if agent i prefers x to w and z. Assume that, under �̃,
agent j moves first. Something must be guaranteeable for agent j at this history, say λ.41

If λ = αj , then we have non-equivalence when j prefers αj the most and agent i does not
prefer x to w and z. If λ �= αj , then, we have non-equivalence when j prefers λ the most
and i prefers x to w and z. Therefore, the first mover cannot be j. As the same argument
works for agent �, the first mover must be i.

Second, note that equivalence implies that i obtains x for any preference profile such
that i prefers x the most, and therefore, x is guaranteeable at the first move in �̃. Anal-
ogously, w and z must be possible but not guaranteeable for i at the first move. To see
that w cannot be guaranteeable, note that if it were, i would receive w for all preference
profiles where she ranked it first, which is not the case in �, and so equivalence is violated;
the same holds for z. By equivalence, both w and z are possible for i, that is, w�z ∈ Pi(h).
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Further, there must be a unique action a∗ such that w�z ∈ Pi((h�a∗)). If there were two
actions a1� a2 such that w were possible after both, then any type that prefers w the most
would have no obviously dominant action, since w is not guaranteeable; the same holds
for z. Therefore, each of w and z are possible after exactly one action, label them aw and
az . If aw �= az , then any type that ranks w first and z second would have no obviously dom-
inant action.42 Therefore, aw = az; we call this action i’s focal action. Since w and z are
possible following only the focal action, all types that rank either w or z first must select
it. This completes the proof of Step 1.1.

Step 1.2. In �̃, at the history following the first focal action by i, agent j moves. At this
history, both x̃ and x are guaranteeable for j, while a is not guaranteeable. Further, there is a
unique action after which a is possible, and this action is taken by all types of j who rank a
first; we call this action j’s focal action.

Proof of Step 1.2. Since, per Step 1.1, both w and z are possible for i following the focal
action, the focal action cannot lead to a terminal history, and so there must be an agent
who moves. We start by showing that the mover must be j. Note that in �, agent � receives
β� if and only if agent i prefers either w or z to x, and agent j prefers x̃ the most out of
{x� x̃� a}. Suppose that i prefers either w or z to x, so that i follows the focal action at
the initial history. By the same logic as in Step 1.1, if agent � is the next mover, she must
be able to guarantee some payoff, say γ. If γ = β�, this would lead to a non-equivalence
when � ranks γ first and j ranks x first. If γ �= β�, then we have a non-equivalence when
� ranks γ first and j ranks x̃ first. Therefore, � cannot be the next mover, and neither can
be i (as i just moved) and so it must be j.

The equivalence of � and �̃ implies that for any profile such that i prefers w or z over
x and j prefers x the most, j receives x. Because, per Step 1.1, all types of i take the focal
action in �̃, we conclude that following i’s focal action, j must be able to guarantee himself
x. The same argument applies for x̃. Similarly, equivalence implies that there must be an
action for j such that a is possible. Outcome a cannot be guaranteeable for j, because if
it were, then j would receive a for all preference profiles where i ranks w or z first and j
ranks a first, which is not the case in �. By an argument similar to Step 1.1, there cannot
be any other actions after which a is possible, and all types of j that rank a first must select
this action. We label this action j’s focal action.

Step 1.3. In �̃, following i’s focal action and j’s focal action, there might be any finite
number of consecutive histories at which i and j move. At these histories where i moves, i can
clinch x, but neither w nor z is guaranteeable, and there is a unique action (the focal action)
after which w and z are possible and that is taken by all types of i that rank w or z first. At
these histories where j moves, both x̃ and x are guaranteeable, but a is not guaranteeable, and
there is a unique action (the focal action) after which a is possible and is taken by all types of
j that rank a first. Following this sequence of focal actions, agent � moves.

Proof of Step 1.3. Since, per Step 1.2, a is possible, but not guaranteeable following
j’s focal action, the focal action cannot lead to a terminal history, and so must lead to a
history at which an agent moves. As j just moved, the next mover must be either i or �.
If the next mover is i, as the history is on-path for all types of i who prefer w or z over
x, the OSS property of �̃ implies that either x or else both w and z are clinchable for i.
Equivalence implies that neither w nor z can be clinchable for i: if w were clinchable,

42Since w is not guaranteeable and z is not possible after aw , the worst case from any strategy that selects
aw is strictly worse than z, which is possible from az . Similarly, since w is not possible following az , the worst
case is strictly worse than w, which is possible from aw . Note that an analogous argument would apply to any
type that ranks z first and w second.
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then i receives w for all profiles such that i prefers w the most and j prefers a the most,
which is not the case in �; an analogous argument applies for z. Therefore, x must be
clinchable. Furthermore, w and z are possible but not guaranteeable for i, and so, as in
Step 1.1, OSP implies that there is a unique action after which both w and z are possible,
and all types that rank either w or z first take this action (note that these types must have
taken the focal action at i’s initial move, and so are on-path); we call this action the focal
action.

Following the focal action by i, the next mover must be j or �. If it is j, then an analogous
argument as for i shows that this agent must have both x� x̃ clinchable, and that there
must be a unique action after which a is possible but not guaranteeable; we call it the
focal action.

Following j’s focal action, the next move is by i or �. If it is by i, then the above argument
applies again. We might then have a sequence of moves by i and j to which the above two
arguments apply. As the game is finite and at the end of every focal action in the sequence
more than one outcome is possible, the focal path of the game must lead to a history at
which � is called to play. This proves Step 1.3.

Step 1.4. In �̃, at �’s move following the sequence of focal actions described in Step 1.3,
both ã and a are guaranteeable for �, while neither c nor x is guaranteeable. There is also a
unique action (the focal action) after which c and x are possible for �. This action is taken by
all types of � that rank c first.

Proof of Step 1.4. Using arguments similar to Step 1.2, equivalence implies that at �’s
move, both ã and a are guaranteeable for �, while neither c nor x is guaranteeable, but
both c and x are possible following a unique action that is taken by all types of agent �
that rank c first. Since c is not guaranteeable, this action cannot lead to a terminal history.
Since c is possible following only the focal action, all types of � that rank c first must select
this action. This proves Step 1.4.

Step 1.5. In �̃, following the above sequence of focal actions that ends with the first focal
action by �, there might be any finite number of consecutive histories at which j and � move.
Each of these histories has a unique action (the focal action) after which a is possible for j’s
moves, and c and x are possible for �’s moves. All types of j that rank a first and all types of
� that rank c first take their respective focal actions. Following this sequence of focal actions,
the next mover is i.

Proof of Step 1.5. Since there are multiple possible outcomes for k following her focal
action, the focal action cannot lead to a terminal history. As k just moved, the next mover
must be either i or j. First consider the case in which j moves next. The OSS property
implies that either both x and x̃ are clinchable for j, or a is clinchable for j. Consider
the latter case. If this were true, then under a preference profile where i prefers w most
and z second, j prefers a most, and � prefers c most, j would receive a, which is not the
case in �. Therefore, j must be able to clinch x and x̃. By equivalence, a must be possible
for j, but not guaranteeable, and so once again there must be a unique focal action after
which a is possible and that is taken by all types of j that prefer a the most (note that
all of these types have passed at j’s prior moves, and so are on-path). Following the focal
action, the next mover is i or �. If it is �, then an analogous argument implies that � must
be able to clinch a and ã, with c possible but not guaranteeable following a unique focal
action. There may again be a sequence of moves by j and � for which this argument can
be repeated. As the game is finite and at the end of every focal action more than one
outcome is possible, the focal path must lead to a history at which i is called to play. This
proves step 1.5.
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Step 1.6. In �̃, at i’s move following the sequence of focal actions described in Step 1.5, x is
not clinchable for i.43 At this move, there is a unique action (the focal action) after which w
is possible for i; the focal action is also the unique action after which x is possible for i. This
focal action is taken by all types of i that rank w first.

Proof of Step 1.6. By way of contradiction, suppose x is clinchable for i. Then OSP
implies that in the continuation game following i’s clinching of x, there must be a terminal
history at which j receives a: if there were not, then the type of j that prefers a the most
and x second would have no obviously dominant action at j’s prior moves. At this terminal
history, agent � must be assigned something other than x (which was assigned to i) or a
(which was assigned to j). But then, the type of � that prefers x the most and a second
has no obviously dominant action at �’s prior moves, which is a contradiction.44

An analogous argument to that which showed that there is a unique action after which
w is possible for i in Step 1.1, tells us that there is a unique action (the focal action) after
which w is possible for i. By OSP, types of i ranking w first take this action. An analogous
argument shows that the focal action is the unique action after which x is possible.

Finishing the proof for k= 1.
As the previous step shows that x is not clinchable at the move of i considered there,

OSS implies that both w and z must be clinchable for i. This implies that for preference
profiles such that i ranks w first and x second, j ranks a first, and k ranks c first, agent i
is assigned w. However, under such profiles in �, i receives x, which is a contradiction to
equivalence. Q.E.D.

PROOF OF LEMMA A.2: Take any k≥ 2. By way of contradiction, suppose that �̃(k) with
a profile of strategic plans is a k-step simple mechanism equivalent to �(k) with greedy
strategic plans. The proof begins by repeating steps 1.1–1.6 from the proof of Lemma A.1
above, with the only change being that �(k) plays the role of � and �̃(k) plays the role of
�̃. Then, we continue with the addition of steps k′�3–k′�6 for k′ = 2�3� � � � �k. Each step
k′�3–k′�6 is analogous to the corresponding step 1.3–1.6 from above, except that a(k) plays
the role of a, ã(k) plays the role of ã, and z(k) plays the role of z. Finally, the proof for
arbitrary k concludes with a final step that is the direct analogue of the finishing step for
k = 1, except that we apply k-step simplicity instead of OSS. Q.E.D.

B.2. Proofs of Lemmas for Theorem 5

PROOF OF LEMMA A.3: Let � be a millipede game. For a set X of payoffs of agent
i and a type �i, let Top(�i�X) be the best payoff in X according to preferences �i.
Consider some profile of greedy strategies (Si(·))i∈N . If Top(�i�Ci(h)) = Top(�i� Pi(h)),
then clinching a top payoff is obviously dominant at h. What remains to be shown is if
Top(�i�Ci(h)) �= Top(�i� Pi(h)), then passing is obviously dominant at h.

Assume that there exists a history h that is on the path of play for type �i when following
Si(�i) such that Top(�i�Ci(h)) �= Top(�i� Pi(h)), yet passing is not obviously dominant
at h; further, let h be any earliest such history for which this is true. To shorten notation,
let xP (h) = Top(�i� Pi(h)), xC (h) = Top(�i�Ci(h)), and let xW (h) be the worst possible
payoff from passing and continuing to follow Si(�i) at all future nodes.

43The argument shows that x not only is not clinchable for i but also not guaranteeable.
44Note that by equivalence, x must be possible for � at these prior moves, since in �, k receives x for type

profiles such that i ranks w first, j ranks a first, and � ranks x first.
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First, note that xW (h) �i xW (h′) for all h′ � h such that ih′ = i. Since passing is obviously
dominant at all h′ � h, we have xW (h′) �i xC (h′), and together, these imply that xW (h) �i

xC (h′) for all such h′. At h, since passing is not obviously dominant and all other actions
are clinching actions, we have xC (h) �i xW (h); further, since Top(�i�Ci(h)) �= Top(�i

� Pi(h)), there must be some x′ ∈ Pi(h) \Ci(h) such that x′ �i xC (h) �i xW (h). The above
implies that x′ �i xC (h) �i xC (h′) for all h′ � h such that ih′ = i.

Let X0 ={x′ : x′ ∈ Pi(h) and x′ �i xC (h)}; in words, X0 is a set of payoffs that are possi-
ble at all h′ ⊆ h, and are strictly better than anything that was clinchable at any h′ ⊆ h (and
therefore have never been clinchable themselves). Order the elements in X0 according to
�i, and without loss of generality, let x1 �i x2 �i · · · �i xM .

Consider a path of play starting from h that is consistent with Si(�i) and ends in a
terminal history h̄ at which i receives xW (h). For every xm ∈X0, let hm denote the earliest
history on this path such that xm /∈ Pi(hm) and either (i) ih = i or (ii) hm is terminal. Note
that because i is ultimately receiving payoff xW (h), such a history hm exists for all xm ∈ X0.
Let ĥ−m be the earliest history at which i moves and at which all payoffs strictly preferred
to xm are no longer possible.

CLAIM: For all xm ∈X0 and all h′ ⊆ h̄, we have xm /∈Ci(h′).

Proof of claim. First, note that xm /∈Ci(h′) for any h′ ⊆ h by construction. We show that
xm /∈ Ci(h′) at any h̄ ⊇ h′ ⊃ h as well. Start by considering m = 1, and assume x1 ∈ Ci(h′)
for some h̄⊇ h′ ⊃ h. By definition, x1 = Top(�i� Pi(h)); since h′ ⊃ h implies that Pi(h′) ⊆
Pi(h), we have that x1 = Top(�i� Pi(h′)) as well. Since x1 ∈ Ci(h′) by supposition, greedy
strategies direct i to clinch x1, which contradicts that she receives xW (h).45

Now, consider an arbitrary m, and assume that for all m′ = 1� � � � �m − 1, payoff xm′ is
not clinchable at any h′ ⊆ h̄, but xm is clinchable at some h′ ⊆ h̄. Let xm′ �i xm be a payoff
that becomes impossible at ĥ−m ⊆ h̄; if such payoff does not exist, then the argument of
the paragraph above applies. There are two cases:

Case (i): h′ � ĥ−m. This is the case in which xm is clinchable while there is some strictly
preferred payoff xm′ �i xm that is still possible. By assumption, all {x1� � � � � xm−1} are pre-
viously unclinchable at ĥ−m, and so xm′ is previously unclinchable at ĥ−m. By definition of
a millipede game (part 3), we have xm ∈ Ci(ĥ−m). Thus, xm is the best remaining payoff
at ĥ−m, and is clinchable, and so greedy strategies direct i to clinch xm at ĥ−m, which con-
tradicts that she receives xW (h) (as in footnote 45, the argument still applies if ĥ−m is a
terminal history).

Case (ii): h′ ⊇ ĥ−m. In this case, xm becomes clinchable after all strictly preferred pay-
offs are no longer possible. Thus, again, greedy strategies instruct i to clinch xm, which
contradicts that she is receiving xW (h). Q.E.D.

To finish the proof of Lemma A.3, let ĥ= max{h1�h2� � � � �hM} (ordered by ⊂); in words,
ĥ is the earliest history on the path to h̄ at which no payoffs in X0 are possible any longer.
Let x̂ be a payoff in X0 that becomes impossible at ĥ. The claim shows that no x ∈ X0 is
clinchable at any h′ ⊆ ĥ, and so we can further conclude that x̂ is previously unclinchable

45 If h′ is terminal, then, even though i takes no action at h′, according to our notational convention we
define Ci(h′) ={x1}, which also contradicts that she receives payoff xW (h).
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at ĥ. Therefore, by part 3 in the definition of a millipede game, xC (h) ∈ Ci(ĥ). Since
xC (h) is the best possible remaining payoff at ĥ, greedy strategies direct i to clinch xC (h),
which contradicts that she receives xW (h) (as in footnote 45, the argument still applies if
ĥ is a terminal history).

PROOF OF LEMMA A.4: Ashlagi and Gonczarowski (2018) briefly mentioned this result
in a footnote; here, we provide the straightforward proof for completeness. That every
OSP game is equivalent to an OSP game with perfect information is implied by our more
general Theorem 4. To show that we can furthermore assume that Nature moves at most
once, as the first mover, consider a perfect-information game �. Let Hnature be the set of
histories h at which Nature moves in �. Consider a modified game �′ in which, at the
empty history, Nature chooses actions from ×h∈HnatureA(h). After each of Nature’s initial
moves, we replicate the original game, except at each history h at which Nature is called to
play, we delete Nature’s move and continue with the subgame corresponding to the action
Nature chose from A(h) at ∅. Again, note that for any agent i and history h at which i
is called to act, the support of possible outcomes at h in �′ is a subset of the support of
possible outcomes at the corresponding history in � (where the corresponding histories
are defined by mapping the A(h) component of the action taken at ∅ by Nature in �′ as an
action made by Nature at h in game �). When the support of possible outcomes shrinks,
the worst-case outcome from any fixed strategy can only improve, while the best-case can
only diminish, and so if a strategy was obviously dominant in �, the corresponding strategy
will continue to be obviously dominant in �′, and the two games will be equivalent. Q.E.D.

PROOF OF LEMMA A.5: For any history h, let PnGi(h) = Pi(h) \Gi(h) (where “PnG”
is shorthand for “possible but not guaranteeable”). Now, consider any h at which i
moves, and assume that at h, there are (at least) two such actions a∗

1� a
∗
2 ∈ A(h) as in

the statement. We first claim that PnGi(h) ∩ Pi(h∗
1) ∩ Pi(h∗

2) = ∅, where h∗
1 = (h�a∗

1) and
h∗

2 = (h�a∗
2). Indeed, if not, then let x be a payoff in this intersection. By pruning, some

type �i is following some strategy such that Si(�i)(h) = a∗
1 that results in a payoff of x

at some terminal history h̄ ⊇ (h�a∗
1). Note that Top(�i� Pi(h)) �= x, because otherwise a∗

1
would not be obviously dominant for this type (since x /∈ Gi(h) and x ∈ Pi(h∗

2)). Thus,
let Top(�i� Pi(h)) = y . Note that y /∈ Gi(h) (or else it would not be obviously dominant
for type �i to play a strategy such that x is a possible payoff). Further, we must have
y ∈ Pi(h∗

1) and y /∈ Pi(h∗
2). To see the former, note that if y /∈ Pi(h∗

1), then a∗
1 is not ob-

viously dominant for type �i, which contradicts that Si(�i)(h) = a∗
1; given the former, if

y ∈ Pi(h∗
2), then once again a∗

1 would not be obviously dominant for type �i. Now, again
by pruning, there must be some type �′

i such that Si(�′
i)(h) = a∗

2 that results in payoff x at
some terminal history h̄⊇ (h�a∗

2). By similar reasoning as previously, Top(�′
i� Pi(h)) �= x,

and so Top(�′
i� Pi(h)) = z for some z ∈ Pi(h∗

2). Since y /∈ Pi(h∗
2), we have z �= y , and we

can as above conclude that z /∈ Gi(h). It is without loss of generality to consider a type
�′

i such that Top(�′
i� Pi(h) \ {z}) = y . Note that, for this type, no action a �= a∗

2 can obvi-
ously dominate a∗

2 (since z /∈ Gi(h)). Further, a∗
2 itself is not obviously dominant for this

type, since the worst case from a∗
2 is strictly worse than y (since y /∈ Pi(h∗

2) and z /∈ Gi(h)),
while y ∈ Pi(h∗

1). Therefore, this type has no obviously dominant action at h, which is a
contradiction.

Thus, PnGi(h) ∩Pi(h∗
1) ∩Pi(h∗

2) = ∅, which means there must be distinct x� y such that
(i) x� y ∈ PnGi(h), (ii) x ∈ Pi(h∗

1) but x /∈ Pi(h∗
2), and (iii) y ∈ Pi(h∗

2) but y /∈ Pi(h∗
1). Next,

for all types of agent i that reach h, it must be that Top(�i� Pi(h)) �= x� y . To see why,
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assume there were a type that reaches h such that Top(�i� Pi(h)) = x. Then, by richness,
there is a type that reaches h such that Top(�i� Pi(h) \ {x}) = y . But, note that this type
has no obviously dominant action at h. An analogous argument applies switching x with
y .

Now, by pruning, there is some type that reaches h that plays a strategy such that Si(�i

)(h) = a∗
1 and x is a possible payoff. Let Top(�i� Pi(h)) = z for this type, where, as just

noted, z �= x� y . The fact that Si(�i)(h) = a∗
1 implies that z ∈ Pi(h∗

1) and z /∈ Gi(h); if
either of these were false, it would not be obviously dominant for this type to play a
strategy such that Si(�i)(h) = a∗

1 and x is a possible payoff. In other words, z ∈ PnG(h)
and z ∈ Pi(h∗

1). Since we just showed that PnGi(h) ∩ Pi(h∗
1) ∩ Pi(h∗

2) = ∅, we have z /∈
Pi(h∗

2). Finally, consider a type �i such that Top(�i� Pi(h)) = z and Top(�i� Pi(h) \{z}) =
y . Note that this type has no obviously dominant action at h, which is a contradiction.

Q.E.D.

PROOF OF LEMMA A.6: Given an OSP mechanism (��SN ), begin by using Lemma A.4
to construct an equivalent OSP game of perfect information in which Nature moves
only at the initial history (if at all). Further, prune this game according to the obvi-
ously dominant strategy profile SN . With slight abuse of notation, we denote this pruned,
perfect information mechanism by (��SN ). Consider some history h of � at which the
mover is ih = i. By Lemma A.5, all but at most one action (denoted a∗) in A(h) satisfy
Pi((h�a)) ⊆Gi(h); this means that any obviously dominant strategy for type �i that does
not choose a∗ guarantees the best possible outcome in Pi(h) for type �i. Define the set

Si(h) = {
Si : Si(h) �= a∗ and at all terminal h̄ consistent with Si�

i receives the same payoff
}
�

In words, each Si ∈ Si(h) guarantees a unique payoff for i if she plays strategy Si starting
from history h, no matter what the other agents do.

We create a new game �′ that is the same as �, except we replace the subgame starting
from history h with a new subgame defined as follows. If there is an action a∗ such that
Pi((h�a∗)) �Gi(h) in the original game (of which there can be at most one), then there is
an analogous action a∗ in the new game, and the subgame following a∗ is exactly the same
as in the original game �. Additionally, there are M =|Si(h)| other actions at h, denoted
a1� � � � � aM . Each am corresponds to one strategy Sm

i ∈ Si(h), and following each am, we
replicate the original game, except that at any future history h′ ⊇ h at which i is called
on to act, all actions (and their subgames) are deleted and replaced with the subgame
starting from the history (h′� a′), where a′ = Sm

i (h′) is the action that i would have played
at h′ in the original game had she followed strategy Sm

i (·). In other words, if i’s strategy
was to choose some action a �= a∗ at h in the original game, then, in the new game �′, we
ask agent i to “choose” not only her current action, but all future actions that she would
have chosen according to Sm

i (·) as well. By doing so, we have created a new game in which
every action (except for a∗, if it exists) at h clinches some payoff x, and further, agent i is
never called upon to move again.46

46More precisely, all of i’s future moves are trivial moves in which she has only one possible action; hence,
these histories may further be removed to create an equivalent game in which i is never called on to move
again. Note that this only applies to the actions a �= a∗; it is still possible for i to follow a∗ at h and be called
upon to make a non-trivial move again later in the game.
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We construct strategies in �′ that are the counterparts of strategies from �, so that for
all agents j �= i, they continue to follow the same action at every history as they did in
the original game, and for i, at history h in the new game, she takes the action am that
is associated with the strategy Sm

i in the original game. By definition, if all agents follow
strategies in the new game analogous to their strategies from the original game, the same
outcome is reached, and so � and �′ are equivalent under their respective strategy profiles.

We must also show that if a strategy profile is obviously dominant for �, this modified
strategy profile is obviously dominant for �′. To see why the modified strategy profile is
obviously dominant for i, note that if her obviously dominant action in the original game
was part of a strategy that guarantees some payoff x, she now is able to clinch x immedi-
ately, which is clearly obviously dominant; if her obviously dominant strategy was to follow
a strategy that did not guarantee some payoff x at h, this strategy must have directed i to
follow a∗ at h. However, in �′, the subgame following a∗ is unchanged relative to �, and
so i is able to perfectly replicate this strategy, which obviously dominates following any
of the clinching actions at h in �′. In addition, the game is also obviously strategy-proof
for all j �= i because, prior to h, the set of possible payoffs for j is unchanged, while for
any history succeeding h where j is to move, having i make all of her choices earlier in
the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and
so, if a strategy was obviously dominant in the original game, it will continue to be so in
the new game. Repeating this process for every history h, we are left with a new game
where, at each history, there are only clinching actions plus (possibly) one passing action,
and further, every payoff that is guaranteeable at h is also clinchable at h, and i never
moves again following a clinching action. This shows parts (i) and (ii). Part (iii) follows
immediately from part (ii), due to greedy strategies and the pruning principle. Q.E.D.

PROOF OF LEMMA A.7: Let h be any earliest history where some agent i moves such
that there is a previously unclinchable payoff z that becomes impossible at h (the case for
terminal histories is dealt with separately below). This means that i moves at some strict
subhistory h′ � h and the following are true: (a) z /∈ Pi(h); (b) z ∈ Pi(h′) for all h′ � h
such that ih = i; and (c) z /∈ C⊂

i (h). Points (b) and (c) imply that z is possible at every
h′ � h at which i is called to move, but it is not clinchable at any of them; thus, for any
type of agent i that ranks z first, any obviously dominant strategy has the agent choosing
the unique passing action at all h′ � h.

We want to show that C⊂
i (h) ⊆ Ci(h). Towards a contradiction, assume that C⊂

i (h) �
Ci(h), and let x ∈ C⊂

i (h) but x /∈Ci(h). Consider a type �i that ranks z first and x second.
By the previous paragraph, this type must be playing some strategy that passes at any
h′ � h, and so h is on the path of play for type �i. Since z /∈ Pi(h) and x /∈ Ci(h), by
Lemma A.6, part (ii), the worst-case outcome from this strategy is some y that it is strictly
worse than both z and x according to �i. However, we also have x ∈ Ci(h′) for some
h′ � h, and so the best-case outcome from clinching x at h′ is x. This implies that passing
is not obviously dominant, and thus � is not OSP, a contradiction.

Last, consider a terminal history h̄. As above, let z be a payoff such that (a), (b), and (c)
hold (replacing h with h̄). Recall that for terminal histories, we define Ci(h̄) ={y}, where
y is the payoff that obtains at h for i. Towards a contradiction, assume that there is some
x ∈Ci(h′) for some h′ � h̄ but x /∈ Ci(h̄). Note that (i) z �= y , by (a); (ii) z �= x, by (c); and
(iii) x �= y , since x /∈ Ci(h̄). In other words, x� y , and z are all distinct payoffs for i. Thus,
consider the type �i that ranks z first, x second, and y third, followed by all other payoffs.
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By (b) and (c), z is possible at every h′′ � h̄ at which i moves, but is not clinchable at any
such h′′. Thus, any obviously dominant strategy for type �i must have agent i passing at
all such histories. This implies that y is possible for this type. However, at h′, i could have
clinched x, and so the strategy is not obviously dominant, a contradiction. Q.E.D.

B.3. Proof of Theorem 6

Before proving the theorem, we first formally define a personal clock auction. Given
some perfect-information game �, define outcome functions g as follows: gy (h̄) ⊆ N is
the set of agents who are in the allocation ȳ that obtains at terminal history h̄ (i.e., i ∈
gy (h̄) if and only if ȳi = 1), and gw�i(h̄) ∈ R is the transfer to agent i at h̄. The following
definition of a personal clock auction is adapted from Li (2017). Note that the game is
deterministic, that is, there are no moves by Nature.47

� is a personal clock auction if, for every i ∈ N , at every earliest history h∗
i at which i

moves, either In-Transfer Falls: there exists a fixed transfer w̄i ∈ R, a going transfer w̃i :
{hi : h∗

i ⊆ hi}→ R, and a set of “quitting actions” Aq such that
• For all terminal h̄ ⊃ h∗

i , either (i) i /∈ gy (h̄) and gw�i(h̄) = w̄i or (ii) i ∈ gy (h̄) and
gw�i(h̄) = inf{w̃i(hi) : h∗

i ⊆ hi � h̄}.
• If h̄� (h�a) for some h ∈Hi and a ∈Aq, then i /∈ gy (h̄).
• Aq ∩A(h∗

i ) �= ∅.
• For all h′

i� h
′′
i ∈{hi ∈Hi : h∗

i ⊆ hi}:
– If h′

i � h′′
i , then w̃i(h′

i) ≥ w̃i(h′′
i ).

– If h′
i � h′′

i , w̃i(h′
i) > w̃i(h′′

i ), and there is no h′′′
i such that h′

i � h′′′
i � h′′

i , then Aq ∩
A(h′′

i ) �= ∅.
– If h′

i � h′′
i and w̃i(h′

i) > w̃i(h′′
i ), then |A(h′

i) \Aq|= 1.
– If |A(h′

i) \ Aq|> 1, then there exists a ∈ A(h′
i) such that, for all h̄ ⊇ (h′

i� a), i ∈
gy (h̄);48

or, Out-Transfer Falls: as above, replacing every instance of “i ∈ gy (h̄)” with “i /∈ gy (h̄)”
and vice versa.

We now prove Theorem 6. As discussed in the main text, the first part of this theo-
rem follows from our Corollary 1, Li (2017), and the construction of the one-step simple
strategic collections for each agent that we now present. This construction also proves the
second part of the theorem.

Let � be a personal clock auction. We present the construction and argument for in-
transfer falls; the case of out-transfer falls is analogous. Consider any hi ∈Hi and simple-
node set Hi�hi ={h′ ∈Hi : hi � h′′ � h′ =⇒ h′′ /∈Hi}, and define the strategic plan Si�hi (h

′)
at h′ ∈Hi�hi as follows:

• If θi + w̃i(hi) > w̄i and A(hi) \Aq �= ∅:

47We slightly simplify Definition 15 of Li (2017) by restricting it to perfect-information games: by Theorem 4,
for any personal clock auction that satisfies Definition 15 of Li (2017), there is an equivalent mechanism that
satisfies the definition we work with. This also applies to the minor correction provided by Li in a corrigendum
available on his website; cf. footnote 48 for further details.

48The corrigendum issued by Li replaces this statement with one that says if there is more than one non-
quitting action at h′

i , there is a continuation strategy (rather than an action) that guarantees that i ∈ gy (h̄).
The corrigendum also notes, though, that this change does not expand the set of implementable choice rules,
because for any newly admissible mechanism, there is always an equivalent mechanism satisfying the original
definition in which the agent reports her type at h′

i and does not move again. Thus, our notion of equivalence
allows us to work directly with this simpler definition of personal clock auctions.
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– [Action at hi] Choose Si�hi (hi) = a ∈ A(hi) \ Aq; if it further holds that |A(hi) \
Aq|> 1, then choose Si�hi (hi) = a ∈ A(hi) \ Aq such that i ∈ gy (h̄) for all h̄ ⊇
(hi�a).

– [Actions at next-histories] For h′ ∈ Hi�hi \ {hi}, if there exists a ∈ A(h′) ∩ Aq, then
Si�hi (h

′) = a for some a ∈ A(h′) ∩Aq. Else, Si�hi (h
′) = a′ for some a′ ∈ A(h′) such

that for all h̄⊇ (h�a′), i ∈ gy (h̄).
• Else, choose actions such that Si�hi (h

′) ∈Aq for all h′ ∈Hi�hi .
To show that this is a one-step simple strategic collection, first consider hi such that
A(hi) \ Aq = ∅. Then the only actions available at hi are quitting actions. Thus, the best
and worst cases from any action are all w̄i, and one-step dominance holds. Second, con-
sider θi + w̃i(hi) ≤ w̄i. Then, the worst case from quitting at hi is a payoff of w̄i. Since
the going transfer can only fall, the best case from playing a non-quitting action at hi is
at most θi + w̃i(hi) ≤ w̄i, and so again one-step dominance holds. Third, consider the re-
maining case in which θi + w̃i(hi) > w̄i and there exists some a ∈ A(hi) \ Aq. There are
two subcases:

First, if |A(hi) \ Aq|= 1, then all other actions at hi are quitting actions, and i’s best-
case and worst-case payoff from following any such action is w̄i. We must show that the
worst case from the perspective of node hi from following the specified strategic plan gives
a weakly greater payoff than w̄i. For any next-history h′

i ∈Hi�hi at which there is a quitting
action (i.e., A(h′

i) ∩ Aq �= ∅), the worst case from the perspective of hi of following the
strategic plan is w̄i. If there is no quitting action at h′

i (i.e., A(h′
i) ∩ Aq = ∅), then, by

construction of a personal clock auction, we have that (i) w̃i(hi) = w̃i(h′
i), and (ii) there

exists an a′ ∈ A(h′
i) such that, for all h̄⊇ (h′

i� a
′), we have i ∈ gy (h̄). Further, for any h′′

i �
h′
i, w̃i(h′′

i ) = w̃i(h′
i) = w̃i(hi), and so, for any h̄⊇ (h′

i� a
′), gw�i(h̄) = w̃i(hi). Therefore, the

worst case from following the strategic plan from the perspective of hi conditional on
reaching any such h′

i is θi + w̃i(hi). In either case, the worst case from the strategic plan
from the perspective of hi is weakly better than taking any other action at hi.

Second, if |A(hi) \ Aq|> 1, then the strategic plan instructs i to follow the action a ∈
A(hi) such that i ∈ gy (h̄) for all h̄ ⊇ (hi�a); further, by construction of a personal clock
auction, at any h̄⊇ (hi�a), we have gw�i(h̄) = w̃i(hi). Since θi + w̃i(hi) > w̄i, this is strictly
preferred to the payoff from taking any quitting action at hi, and since the going transfer
cannot rise, it is also weakly preferable to taking any other non-quitting action at hi.

B.4. Proof of Lemma for Theorem 7

PROOF OF LEMMA A.8: By way of contradiction, let (��SN �H) be a millipede mecha-
nism that satisfies (i)–(iii) at each history but is not monotonic. The failure of monotonic-
ity implies that there exist an agent i, history h∗ ∈ Hi, history h that follows i’s passing
move at h∗ that is either terminal or in Hi and such that i does not move between h∗ and
h, and payoffs x and y such that x ∈ (Pi(h∗) \ Ci(h∗)) \ Ci(h) and y ∈ Ci(h∗) \ Ci(h); in
particular, x �= y . Without loss of generality, assume that h∗ is an earliest history at which
monotonicity is violated in this way. This implies that x /∈ Ci(h′) for any h′ ⊆ h∗ such that
ih′ = i.49 In particular, any type �i of agent i that ranks payoff x first passes at any h′ ⊆ h∗

at which this agent moves.

49If x ∈ Ci(h′) for some h′, then, by monotonicity, at any next history h′′ � h′ following a pass where i
moves, either x ∈ Ci(h′′) or Pi(h′) \ Ci(h′) ⊆ Ci(h′′). If the latter holds, then at h′′, i has been offered to
clinch everything that is possible for her, and so, by greediness, h is not on-path for any type of agent i,
and we can construct an equivalent game in which monotonicity is not violated at h∗. Therefore, x ∈ Ci(h′′).
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As x� y /∈ Ci(h) by the choice of these payoffs, there is some third payoff z �= x� y such
that z ∈ Ci(h). Let �i be such that �i: x� y� z � � � and �′

i be such that �′
i: x�z� � � �; these

types exist by richness, given that we are in a no-transfer environment. Ranking x first,
these types are passing at all nodes h′ ⊆ h∗ at which they move: Si�h′ (�i)(h′) = Si�h′ (�′

i

)(h′) = a∗(h′) where a∗(h′) denotes the passing action at h′.
We conclude the indirect argument by showing that neither of the following two cases

is possible:
Case y /∈ Pi(h). If also x /∈ Pi(h), then Pi(h) contains some w �= x� y . If x ∈ Pi(h), then

x /∈ Ci(h) implies that x ∈ Pi((h�a∗(h))) and by definition of a passing action, there is
some w �= x such that w ∈ Pi((h�a∗)); furthermore, w �= y because y /∈ Pi(h). In either
case, passing at h∗ might lead to w, which is worse for �i than y , and i can clinch y at h∗;
thus, Si�h∗ (�i), which passes at h∗, is not one-step dominant, a contradiction.

Case y ∈ Pi(h). If z ∈ Pi((h�a∗)), then x� y /∈ Ci(h) implies that the worst case for type
�i from passing at h∗ is at best z, which is worse than clinching y at h∗. Therefore, the
passing action Si�h∗ (�i) is not one-step dominant at h∗ for �i, a contradiction. We may thus
assume that z /∈ Pi((h�a∗)). Because x /∈ Ci(h), the assumptions of Lemma A.6 imply that
x is not guaranteeable at h, and in particular it is not guaranteeable at (h�a∗(h)). Thus,
the worst case for type �′

i from passing at h is strictly worse than z; since z ∈ Ci(h), this
implies that Si�h(�′

i) clinches at h. Thus, x /∈Ci(h) allows us to conclude that x /∈ Pi(h), as
otherwise Si�h(�′

i) could not be clinching at h. Since y /∈Ci(h) and y ∈ Pi(h), we infer that
y ∈ Pi((h�a∗(h))). As at least two payoffs are possible following passing and x /∈ Pi(h),
there is some w �= x� y that is possible at (h�a∗(h)) and hence also at h. As x is not
possible and y is not clinchable at h, the worst case for type �i from the perspective of
node h∗ from following Si�h∗ (�i) is at best w, which is strictly worse than clinching y at h∗.
Thus, Si�h∗ (�i) is not one-step dominant. Q.E.D.

B.5. Proof of Lemma 1

Recall that any strongly obviously dominant strategy is greedy. We first note the follow-
ing lemmas. To state the lemmas, define P̂i(h) = {x ∈ Pi(h) : �y ∈ Pi(h) s.t. y �i x} to be
the set of possible payoffs for i at h that are undominated in Pi(h).

LEMMA 1: Let � be a pruned SOSP game. If a history h at which agent i moves is payoff-
relevant, then |P̂i(h)|≥ 2.

PROOF OF LEMMA 1: Assume not, and let P̂i(h) = {x}, where x is the unique undom-
inated payoff at h.50 In particular, x �i x

′ for all x′ ∈ Pi(h), and Top(�i� Pi(h)) = x for
all types of agent i. Because x is possible at h, there is an action a ∈ A(h) such that
x ∈ Pi((h�a)). Action a does not clinch x; indeed, if Pi((h�a)) = {x}, then greediness
would imply that only actions clinching x are taken, and in a pruned game, h would not
be payoff relevant. Thus, there is another x′ ∈ Pi((h�a)) such that x �i x

′ for all types
of agent i. Let a′ �= a be an action at A(h). If x ∈ Pi((h�a′)), then, analogously as for a,
there is some other x′′ ∈ Pi((h�a′)). It is then easy to check that neither a nor a′ strongly
obviously dominates the other. If x /∈ Pi((h�a′)), then it would not be strongly obviously
dominant (SOD, for shortness) for any type to take action a′, which would contradict the
game being pruned. Q.E.D.

Repeating this argument for every history between h′ and h∗ at which i moves delivers that x ∈ Ci(h∗), which
is a contradiction.

50There must be at least one undominated payoff, since �i is transitive and the number of payoffs is finite.
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LEMMA 2: Let (��S) be a pruned SOSP mechanism. Let hi
0 be any earliest history at which

agent i is called to play. Then, |P̂i((hi
0� a))|≤ 2 for all a ∈ A(hi

0), with equality for at most
one a ∈ A(hi

0).

PROOF OF LEMMA 2: Since hi
0 is the first time i is called to move, it is on-path for all

types of agent i. We first show that|P̂i((hi
0� a))|≤ 2 for all a ∈ A(hi

0). By way of contradic-
tion, assume that there exists some hi

0 such that |P̂i((hi
0� a))|≥ 3. Let x� y� z ∈ P̂i((hi

0� a))
be three distinct undominated payoffs that are possible following a. As (��S) is pruned,
there must be some type, �i, for which action a is SOD at hi

0. Possibly by renaming the
outcomes, richness allows us to assume that Top(�i� Pi(hi

0)) = x and x �i y �i z. For a
to be strongly obviously dominant, for all other actions a′ �= a at h0, the best-case out-
come for type �i following a′ must be no better than z; in particular, this implies that
for all a′ �= a and all w ∈ P̂i((hi

0� a
′)), w �i y . Let a′′ �= a be an action at h0. If there is

w ∈ P̂i((hi
0� a

′′)) such that x �i w, then there is a type �′
i such that Top(�′

i� Pi(hi
0)) = y

and y �′
i w �′

i x. For this type, the worst case from a is at best x, while w is possible
following a′′, so a is not strongly obviously dominant; for any a′ �= a, the worst case is
strictly worse than y as argued above, while the best case from a is y , and so no a′ �= a
is SOD either. Therefore, type �′

i has no SOD action, a contradiction showing that no
w ∈ P̂i((hi

0� a
′′)) satisfies x�i w. An analogous argument—with z playing the role of x—

shows that no w ∈ P̂i((hi
0� a

′′)) satisfies z �i w. Thus, for all a′′ and all w ∈ P̂i((hi
0� a

′′)),
x � w and z � w. As x and z are distinct, for any type �′

i, either x �′
i w or z �′

i w, and in
either case, a′′ is not a dominant action for a type contrary to (��S) being pruned. This
contradiction shows that |P̂i((hi

0� a))|≤ 2 for all a ∈A(hi
0).

Finally, we show that |P̂i((hi
0� a))| = 2 for at most one a ∈ A(hi

0). Towards a con-
tradiction, let a and a′ be two actions such that there are two possible undominated
payoffs for i following each, and, for notational purposes, let P̂i((hi

0� a)) = {x� y} and
P̂i((hi

0� a
′)) = {w�z}, where, a priori, it is possible that w�z ∈ {x� y}. As the mechanism

is pruned, there is some type �i that selects action a as an SOD action; without loss of
generality, let Top(�i� Pi(hi

0)) = x. Since y is possible following a, in order for a to be
SOD, the best case from any a′ �= a must be no better than y , which implies that w�z �i x,
and thus x �= w�z. Pruning also implies that some type �′

i is selecting action a′′ as an SOD
action; without loss of generality, let Top(�′

i� Pi(hi
0)) = z. Since w is possible following a′′,

in order for a′′ to be SOD, the best case from a must be no better than w for type �′
i, thus

x� y �i z, and so z �= x� y . Thus, we have shown that x� y� z are all distinct, that no out-
come in Pi(hi

0)—including z and y—structurally dominates x, and that y �i z. Richness
then implies that there is a type �i such that Top(�i� Pi(hi

0)) = x and x �i z �i y . This
type has no SOD action: only a can be SOD because only a makes x possible, but a is not
SOD because the worst case from a is at best y , while the best case from a′ is z. Q.E.D.

Continuing with the proof of Lemma 1, assume that there was a path of the game with
two payoff-relevant histories h1 � h2 for some agent i. It is without loss of generality
to assume that h1 and h2 are the first and second times i is called to play on the path.
First, we claim that there are at least two structurally undominated payoffs at h1, that is,
|P̂i(h1)|≥ 2. To show it by way of contradiction, suppose that P̂i(h1) = {x}, which implies
that x �i x

′ for all other x′ ∈ Pi(h1). Then Pi((h1� a)) = {x} for all a ∈ A(h1). Indeed,
suppose that x′ �= x is possible after some action a at h1. Then x�x′ ∈ Pi((h1� a)) because
otherwise no type of i finds a to be SOD, which is impossible as the game is pruned. If
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x ∈ Pi((h1� a
′)) for some action a′ �= a at h1, then a is not SOD for any type of i, which

again is impossible as the game is pruned. Thus, x /∈ Pi((h1� a
′)) and no type of i finds a′

to be SOD, which yet again is impossible in a pruned game. Thus, no x′ �= x is possible
after any a ∈A(h1), which contradicts that h1 is payoff-relevant. This contradiction shows
that P̂i(h1), being non-empty, has at least two elements.

Let a∗
1 be the action such that h2 ⊇ (h1� a

∗
1). By Lemma 2, one of the below two cases

would need to obtain, and to conclude the indirect argument we now show that neither of
them obtains.

Case |P̂i((h1� a
∗
1))| = 1. Let z be the unique undominated payoff that is possible af-

ter a∗
1; z ∈ P̂i(h1) as otherwise no type of i would find a∗

1 to be SOD, which is im-
possible in a pruned mechanism. Because h2 is payoff-relevant, Lemma 1 tells us that
|P̂i(h2)| ≥ 2, and thus z /∈ P̂i(h2) as z weakly structurally dominates all outcomes in
Pi(h2) ⊆ Pi((h1� a

∗
1)). Let x �= z be an outcome in P̂i(h1) and let z′� z′′ ∈ P̂i(h2) be dis-

tinct undominated payoffs that are possible at h2, and consider a type �i that ranks the
outcomes z �i x �i z

′. For this type, a∗
1 is not SOD at h1 because z′ is possible following

a∗
1 while x /∈ {z} = P̂i((h1� a

∗
1)) is possible following some other action at h1. No action

a �= a∗
1 is SOD for �i if z /∈ Pi((h1� a)). Hence, z ∈ Pi((h1� a)), but then a∗

1 would not be
SOD for any type; impossible as the mechanism is pruned. This contradiction shows that
the present case is impossible.

Case|P̂i((h1� a
∗
1))|= 2. Then a∗

1 is the unique action with two undominated payoffs from
Lemma 2; let us label these payoffs x and y . As the game is pruned, there is some type
�i for which a∗

1 is strongly obviously dominant; in particular, the payoff Top(�i� Pi(h1)) is
possible following a∗

1, and by renaming payoffs we can set x = Top(�i� Pi(h1)). For each
action a �= a∗

1 at h1, Lemma 2 implies that P̂i((h1� a)) = {wa}, for some payoff wa; action
a∗

1 being SOD for type �i implies that wa �i x (and in particular, wa �= x); and a being
SOD for some other type implies that y �i wa. If wa �= y , then y �i wa, and, given that x
and y are mutually undominated, richness would give us a type �a

i such that x�a
i wa �a

i y ,
but for this type, neither a∗

1 nor a nor any other action a′ at h1 is SOD because, as shown
above, wa′ �= x. We conclude that wa = y for all actions a �= a∗

1 at h1.
To continue the indirect argument, we now show that P̂i(h2) ={x� y}. The set P̂i(h2) has

two elements, by Lemma 1, because h2 is payoff-relevant. Thus, if P̂i(h2) �= {x� y}, then
there would be some z �= x� y such that z ∈ P̂i(h2) ⊆ Pi(h1). As x and y are undominated
at (h1� a

∗
1) � h2, richness would give us type �2

i such that x �2
i y �2

i z, and for this type
a∗

1 would not be SOD at h1 because z would be possible following a∗
1 while, as shown

above, y would be possible following another action; further, no a �= a1 would be SOD at
h1 because y would be possible following a while x would be possible following a∗

1. The
lack of an SOD action is a contradiction showing that P̂i(h2) ={x� y}. Thus, any z ∈ Pi(h2)
is structurally dominated by either x or y and, for each type, x or y is the top payoff in
Pi(h2). Since P̂i((h1� a)) = y for all a �= a∗

1, strong obvious dominance implies that all and
only types �1

i with x= Top(�1
i � Pi(h1)) select action a∗

1 at h1 and hence these are the types
for which h2 is on path. As y is possible at h2, there is at least one action a∗

2 ∈A(h2) after
which y is possible. As at each history agents have at least two actions, there is another
action a2 ∈ A(h2), and, as the mechanism is pruned, there are two types �a∗

2
i and �a2

i for
which h2 is on path such that �a∗

2
i selects a∗

2 and �a2
i selects a2 at h2. Because we established

that x is possible at h2 and that it is the top possible payoff for both these types, SOSP
implies that x ∈ Pi((h2� a

∗
2)) and x ∈ Pi((h2� a2)). By construction, y ∈ Pi((h2� a

∗
2)), and

hence a∗
2 is not SOD for type �a∗

2
i ; a contradiction that concludes the proof of the lemma.
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B.6. Proof of Lemma for Theorem 8

PROOF OF LEMMA A.9: By way of contradiction, suppose that game �′, together with
greedy strategies, is not a sequential choice mechanism. Let h be an earliest history where
the definition of a sequential choice mechanism is violated. As such h is payoff-relevant
and �′ is pruned, Lemma 1 implies that h is a first history at which i moves. Since �′ is not
a sequential choice mechanism, there must be some payoff x ∈ Pi(h) that i cannot clinch
at h. We may assume that x is not dominated, that is, x ∈ P̂i(h); indeed, if all x′ ∈ P̂i(h)
were clinchable at h, then greediness would imply that all dominated actions were pruned
in �′. Since x is not clinchable, for any action a ∈ A(h) such that x ∈ Pi((h�a)), there is
some payoff in Pi((h�a)) that is different from x. We fix one such action a.

Case |Pi(h)| = 2. Let y be the other payoff in Pi(h). If y were clinchable, then the
mechanism would satisfy the definition of sequential choice at h. Since we assumed that
the definition is not satisfied at h, neither x nor y is clinchable. Thus, for all a ∈ A(h),
Pi((h�a)) = {x� y}. As x and y are different payoffs, at least one of x �i y or y �i x holds
for some type at h. Because there are at least two actions in A(h), this type does not have
a strongly obviously dominant (SOD) action at h, which is a contradiction.

Case |Pi(h)| ≥ 3 and x �i y for all y �= x in Pi((h�a)). There is an action a′ �= a at h
and, because x is not clinchable at h, there is some w �= x that belongs to Pi((h�a′)). We
have y �i w; indeed, if not, then x being undominated implies that there would exist type
�i such that x �i w �i y , and, taking into account that x is not clinchable at h, this type
would have no SOD action at h. Thus, x �i y �i w; but this implies that a′ is not SOD for
any type, which contradicts the mechanism being pruned.

Case |Pi(h)|≥ 3 and there exists y ∈ Pi((h�a)) such that x and y do not dominate each
other. By Lemma 2, for any a′ �= a, the set P̂i((h�a′)) is a singleton. We first claim that for
any a′ �= a, P̂i((h�a′)) = {y}. Assume not, that is, there exist some a′ �= a and w′ �= y such
that P̂i((h�a′)) = {w′}. Then also w′ �= x; indeed, if w′ = x, then, as x is both structurally
undominated and unclinchable at h, there would be w ∈ Pi((h�a′)) such that x�i w, and—
with w possible after a′ and x possible after a—no type would find a′ to be SOD, contrary
to pruning. If w′ �i x, then no type would find a to be SOD, which contradicts pruning; we
conclude that w′ �i x. In particular, x /∈ Pi((h�a′)). If y �i w

′, then y /∈ Pi((h�a′)) because
w′ ∈ P̂i((h�a′)) is undominated at (h�a′). Thus, a′ would not be SOD for any type, a
contradiction to pruning. We conclude that y �i w

′. If w′ �i y , then this, and the previously
established w′ �i x, gives us the existence of type �i such that x �i w

′ �i y . This type has
no SOD action at h, a contradiction to pruning. We conclude that w′ �i y . If x �i w

′, then
type x �i w

′ �i y exists and has no SOD action at h; we conclude that x�i w
′. The above

four conclusions imply that x� y�w′ are mutually undominated at h. Thus, there is a type
such that x�i w

′ �i y and this type has no SOD action at h. This final contradiction shows
that P̂i((h�a′)) ={y} for all a′ �= a.

We further claim that Pi((h�a′)) = {y} for all a′ �= a; indeed, if this were not the case,
then there is some a′ and some w′ ∈ Pi((h�a′)) such that y �i w

′. As the mechanism is
pruned, some type �′

i takes action a′; but, the worst case from a′, for all types, is at best
w′, while y is possible following a; thus, a′ is not SOD for type �′

i. This contradiction
shows that Pi((h�a′)) ={y} for all a′ �= a.

Finally, let z �= x� y be some third payoff that is possible at h. In light of the previous
paragraph, z ∈ Pi((h�a)), and z /∈ Pi((h�a′)) for all other a′ �= a. As P̂i(h) = {x� y}, z
dominates neither x nor y , and richness gives us a type such that x �i y �i z. This type
has no SOD action at h; this contradicts the mechanism being SOSP and establishes the
theorem. Q.E.D.
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