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This Appendix contains the proof of the joint surplus representation in the fully dynamic model, the 

main result of Section 3 in the main text. Section A lays out the notation for the fully dynamic model. 

Section B develops the proof.

A Notation for dynamic model

We first specify the value function of an individual worker i in a firm with arbitrary state x: V(x, i). We 

then specify the value function of the firm: J(x). Combining all workers’ value functions with that of the 

firm we define the joint value: Ω(x). We then apply the assumptions from Section 2.2 which allow us to 

reduce (x) to only the number of workers and productivity of the firm, (z, n). Finally we take the 

continuous work force limit to derive a Hamilton-Jacobi-Bellman (HJB) equation for Ω(z, n) Applying 

the definition of total surplus used above, we obtain a HJB equation in S(z, n) which we use to construct 

the equilibrium.

A.1 Worker value function: V

As in the static example, let U be the value of unemployment. It is convenient to define separately 

worker i’s value when employed at firm x before the quit, layoff and exit decisions, V (x, i), and their 

value after these decisions, V (x, i).1

Value of unemployment. Let hU (x) denote how the state of firm x is updated when it hires an un-

employed worker.2 Let A denote the set of firms making job offers that an unemployed worker would 

accept. The value of unemployment U therefore satisfies

ρU = b + λU(θ)

ˆ
x∈A

[V (hU (x) , i)−U] dHv (x)

1In terms of Figure 1, the value V is computed after the first stage of the flow chart, and the value V after the second stage,
in the case that the firm stays in operation.

2For example, size would be update from n to n + 1 and possibly some of the incumbent wages would be bargained down.
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where Hv is the vacancy-weighted distribution of firms. If x /∈ A, then the worker remains unemployed.

Stage I. To relate the value of the worker pre separation, V(x, i), to that post separation, V(x, i), we

require the following notation regarding firm and co-worker actions. Since workers do not form ‘unions’

within the firm, all of these actions are taken as given by worker i.

- Let ε(x) ∈ {0, 1} denote the exit decision of firm, and E = {x : ε(x) = 1} the set of x’s for which

the firm exits.

- Let `(x) ∈ {0, 1}n(x) be a vector of zeros and ones of length n(x), with generic entry `i(x), that char-

acterizes the firm’s decision to lay off incumbent worker i ∈ {1, . . . , n(x)}, andL = {(x, i) : `i(x) = 1}
the set of (x, i) such that worker (x, i) is laid off.

- Let qU (x) ∈ {0, 1}n(x) be a vector of length n(x), with generic entry qU
i (x) that characterizes an

incumbent workers’ decisions to quit, and QU =
{
(x, i) : qU

i (x) = 1
}

the set of (x, i) such that

worker (x, i) quits into unemployment.

- Let κ (x) = (1− ` (x)) ◦ (1− qU (x)) be an element-wise product vector that identifies workers that

are kept in the firm, and S = L ∪QU = {(x, i) : κi (x) = 0}, the set of (x, i) such that worker (x, i)

separates into unemployment.

- Let s(x, κ(x)) denote how the state of firm x is updated when workers identified by κ(x) are kept.

This includes any renegotiation.

Given these sets and functions, the pre separation value V (x, i) satisfies:

V (x, i) = ε(x)U︸ ︷︷ ︸
Exit

+(1− ε(x))
[

I{(x,i)/∈S}V(s(x, κ(x)), i)︸ ︷︷ ︸
Continuing employment

+ I{(x,i)∈S}U︸ ︷︷ ︸
Separations and Quits

]

Stage II. It is helpful to characterize the value of employment post separation decisions, V(x, i), in

terms of the three distinct types of events described in Figure 2. First, the value changes due to ‘Direct’

labor markets shocks to worker i, VD(x, i). These include her match being destroyed exogenously or

meeting a new potential employer. Second, the value changes due to labor market shocks hitting other

workers in the firm, VI(x, i), including their matches being exogenously destroyed or them meeting new

potential employers. These events have an ‘Indirect’ impact on worker i. Third, the value changes due to

events on the ‘Firm’ side, VF(x, i), including the firm contacting new workers and receiving productivity
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shocks. Combining events and exploiting the fact that in continuous time they are mutually exclusive,

we obtain the following, where w (x, i) is the wage paid to worker i:

ρV (x, i) = w (x, i) + ρVD (x, i) + ρVI (x, i) + ρVF (x, i) .

We note that the wage function w(x, i) includes the transfers between worker i and the firm that

may occur at the stage of vacancy posting (after separations and before the labor market opens), as

discussed in Section A.3 in the context of the static example. These transfers can depend on the entire

wage distribution inside the firm which is subsumed in the state vector x.

Direct events. We first characterize changes in value due to labor market shocks directly to worker i

in firm x, VD(x, i). Exogenous separation shocks arrive at rate δ and draws of outside offers arrive at

rate λE(θ) from the vacancy-weighted distribution of firms Hv. If worker i receives a sufficiently good

outside offer from x′, she quits to the new firm. We denote by QE(x, i) the set of such quit-firms x′ for

i. Otherwise, the worker remains with the current firm but with an updated contract. Therefore VD(x, i)

satisfies

ρVD (x, i) = δ [U −V (x, i)]︸ ︷︷ ︸
Exogenous separation

+ λE(θ)

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
EE Quit

+ λE(θ)

ˆ
x′/∈QE(x,i)

[
V
(
r
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
Retention

,

where hE (x, i, x′) describes how the state of a poaching firm x′ gets updated when it hires worker i from

firm x. Similarly, r (x, i, x′) updates x when—after meeting firm x′—worker i in firm x is retained and

renegotiates its value. In all functions with three arguments (x, i, x′), the first argument denotes the

origin firm, the second identifies the worker, and the third the potential destination firm.

Indirect events. We next characterize changes in value due to the same labor market shocks hitting

other workers in firm x, VI(x, i). The value VI(x, i) satisfies
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ρVI (x, i) =
n(x)

∑
j 6=i

{
δ [ V (d(x, j), i)−V (x, i)]︸ ︷︷ ︸

Exogenous separation

+ λE(θ)

ˆ
x′∈QE(x,j)

[
V
(
qE
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
EE Quit

+ λE(θ)

ˆ
x′/∈QE(x,j)

[
V
(
r
(

x, j, x′
)

, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
Retention

}
,

where d(x, j) updates x when worker j exogenously separates, and qE (x, j, x′) when worker j quits to

firm x′.

Firm events. Finally, we characterize changes in value due to events that directly impact the firm and

hence indirectly its workers, VF(x, i). Taking as given the firm’s vacancy posting policy v(x) and other

actions, VF(x, i) satisfies

ρVF (x, i) =

UE Hire φq(θ)v (x) [V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threat +φq(θ)v (x) [V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hire + (1− φ) q(θ)v (x)
ˆ

x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threat + (1− φ) q(θ)v (x)

ˆ
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shock +Γz [V , V] (x, i)

where tU (x) updates x when an unemployed worker is met and not hired, but could be possibly used as

a threat in firm x. Similarly, tE(x′, i′, x) updates x when worker i′ employed at firm x′ is met, not hired,

but could be used as a threat. And, with a slight abuse of notation, Hn(x′, i′) gives the joint distribution

of firms x′ and worker types within firms i′.

Finally, Γz [V , V] (x, i) identifies the contribution of productivity shocks z to the Bellman equation.

At this stage we only require that the productivity process is Markovian with an infinitesimal generator.

Later we will specialize this to a diffusion process dzt = µ(zt)dt + σ(zt)dWt such that

Γz [V , V] (x, i) = µ (z) lim
dz→0

V ((x, z + dz) , i)−V (x, z, i)
dz

+
σ2 (z)

2
lim

dz→0

V ((x, z + dz) , i) + V ((x, z− dz) , i)− 2V (x, z, i)
dz2 (1)
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In the case that V = V, this becomes the standard expression for a diffusion featuring the first and second

derivatives of V with respect to z: Γz[V](x, i) = µ(z)Vz(x, z, i) + 1
2 σ(z)2Vzz(x, z, i).3

In the event productivity changes or n (x) changes because of exogenous labor market events, the

worker will want to reassess whether to stay with the firm or not. Additionally, the firm may want to

reassess whether to exit or fire some workers. Bold values V capture any case where the state changes.

A.2 Firm value function: J

Consistent with the notation we used for workers’ values, let J(x) and J(x) be the values of the firm at

the corresponding points of an interval dt. For now, we take the vacancy creation decision v (x) as given.

At the end of the section we describe the expected value of an entrant firm.

Stage I. Consistent with the first stage worker value function, we define the firm value before the

exit/layoff/quit decision, where we recall that ϑ is the firm’s value of exit, or scrap value:

J (x) = ε (x) ϑ + [1− ε (x)] J (s (x, κ (x))) .

Stage II. Given a vacancy policy v (x), let J (x) be the value of a firm with state x after the layoff/quit,

exit. It is convenient to split the value of the firm, as we did for the worker, into three components

ρJ (x) = y (x)−
n(x)

∑
i=1

wi (x, i)︸ ︷︷ ︸
Flow profits

+ ρJW (x)︸ ︷︷ ︸
Workforce events

+ ρJF (x)− c (v (x) , x)︸ ︷︷ ︸
Firm events net of vacancy costs

.

For a given policy v(x) there is a set of associated transfers between workers and the firm which, as

for the worker value function, are implicit in the wage function w(x, i).

3Note that in (1) we abuse notation and write the state as (x, z) with some redundancy since z is clearly a member of x. We
also note that we are not constrained to a diffusion process. We could also consider a Poisson process where, at exogenous rate
η, z jumps according to the transition density Π(z, z′): Γz [V , V] (x, i) = η[∑z′∈Z V ((x, z′) , i)Π (z′, z)−V (x, z, i)].
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The component JW (x) is given by

ρJW (x) =

Destruction δ
n(x)

∑
i=1

[J (d(x, i))− J (x)]

EE Quit + λE(θ)
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
J
(
qE
(
x, i, x′

))
− J (x)

]
dHv

(
x′
)

Retention + λE(θ)
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
− J (x)

]
dHv

(
x′
)

.

The component JF (x) is given by

ρJF (x) =

UE Hire φq(θ)v (x) [J (hU (x))− J (x)] · I{x∈A}

UE Threat + φq(θ)v (x) [J (tU (x))− J (x)] · I{x/∈A}

EE Hire + (1− φ) q(θ)v (x)
ˆ

x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
EE Threat + (1− φ) q(θ)v (x)

ˆ
x/∈QE(x′,i′)

[
J
(
tE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
Shock + Γz [J, J] (x)

It is useful to recall that, in continuous time at most one contact is made per instant. That is, either

one worker is exogenously separated, or one worker is contacted by another firm, or one worker is met

by posting vacancies (at rate q(θ)v(x)), or a shock hits the firm. Note also that we have bold J’s in each

line since after any of these events, the firm may want to layoff some workers or exit, and workers may

want to quit.

Entry. The expected value of an entrant firm is

J0 = −c0 +

ˆ
J (x0) dΠ0 (z0) (2)

where x0 is the state of the entrant firm which includes only the random productivity value z0 drawn

from Π0 since we assumed the initial number of workers is 0. The argument of the integral is J, which

incorporates the firm’s decision to exit or operate after observing z0. Entry occurs when J0 > 0.
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B Derivation of the joint value function Ω

We define the joint value of the firm and its employed workers Ω (x) := J (x) + ∑
n(x)
i=1 V (x, i). We also

define the joint value before exit/quit/layoff decisions: Ω (x) := J (x) + ∑
n(x)
i=1 V (x, i).

B.1 Combinining worker and firm values

In this section, we show that summing firm and worker values, then applying these definitions delivers

the following Bellman equation for the joint value:

ρΩ (x) = y (x)− c (v (x) , x) (3)

Destruction +
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

Retention + λE(θ)
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

EE Quit + λE(θ)
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
+ V

(
hE
(
x, i, x′

)
, i
)
−Ω (x)

]
dHv

(
x′
)

UE Hire + φq(θ)v (x) [Ω (hU (x))−U −Ω (x)] · I{x∈A}

UE Threat + φq(θ)v (x) [Ω (tU (x))−Ω (x)] · I{x/∈A}

EE Hire + (1− φ)q(θ)v (x)
ˆ

x∈QE(x′,i′)

[
Ω
(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i′
)
−Ω (x)

]
dHn

(
x′, i′

)
EE Threat + (1− φ)q(θ)v (x)

ˆ
x/∈QE(x′,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω (x)

]
dHn

(
x′, i′

)
Shock + Γz [Ω, Ω] (x) .

Note that this joint value is only written in terms of other joint values and worker values. However, it

involves both firm and worker decisions through the sets A,QE and the vacancy policy, v(x).
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Derivation. We start by computing the sum of the workers’ values at a particular firm. Summing

values of all the employed workers

ρ
n(x)

∑
i=1

V (x, i) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ [U −V (x, i)]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
V
(
r
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

))
−V (x, i)

]
dHv

(
x′
)

Incumbents +
n(x)

∑
i=1

ρVI(x, i)

Firm +
n(x)

∑
i=1

ρVD(x, i)

where the indirect term due to incumbents can be written as:

n(x)

∑
i=1

ρVI(x, i) =

Destructions
n(x)

∑
i=1

n(x)

∑
j 6=i

δ [V (d(x, j), i)−V (x, i)]

Retentions +
n(x)

∑
i=1

n(x)

∑
j 6=i

λE
ˆ

x′/∈QE(x,j)

[
V
(
r
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

EE Quits +
n(x)

∑
i=1

n(x)

∑
j 6=i

λE
ˆ

x′∈QE(x,j)

[
V
(
qE
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

and the indirect term due to the firm can be written as:
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n(x)

∑
i=1

ρVF(x, i) =

UE Hires qv (x) φ
n(x)

∑
i=1

[V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threats +qv (x) φ
n(x)

∑
i=1

[V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hires +qv (x) (1− φ)
n(x)

∑
i=1

ˆ
x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

n(x)

∑
i=1

ˆ
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shocks +

n(x)

∑
i=1

Γz[V , V](x, i)

We now collect terms.

Destructions. When worker i separates from firm x, the sum of the changes in values of all employed

workers at its own firm is given by:

Destructions = δ [U −V (x, i)] + δ
n(x)

∑
j 6=i

[V (d(x, i), j)−V (x, j)]

= δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−
n(x)

∑
j=1

V (x, j)

]

Retentions. When i renegotiates at firm x, the sum of the changes in values of all employed workers at

its own firm is given by:

Retentions = λE
ˆ

x′/∈QE(x,i)

[
V
(
r
(

x, i, x′
)

, i
)
−V (x, i)

]
dHv

(
x′
)

+λE
ˆ

x′/∈QE(x,i)

n(x)

∑
j 6=i

[
V
(
r
(
x, i, x′

)
, j
)
−V (x, j)

]
dHv

(
x′
)

= λE
ˆ

x′/∈QE(x,i)

[
V
(
r
(

x, i, x′
)

, i
)
+

n(x)

∑
j 6=i

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

= λE
ˆ

x′/∈QE(x,i)

[
n(x)

∑
j=1

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)
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Quits. Similarly, when i quits firm x, the sum of the changes in values of all employed workers at its

own firm is given by:

EE Quits = λE
ˆ

x′∈Q(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

Combining terms. Before summing up all these terms, define for convenience the total worker value:

ρV (x) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−
n(x)

∑
j=1

V (x, j)

]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

UE Hires +qv (x) φ
n(x)

∑
i=1

[V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threats +qv (x) φ
n(x)

∑
i=1

[V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hires +qv (x) (1− φ)
n(x)

∑
i=1

ˆ
x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

n(x)

∑
i=1

ˆ
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shocks +

n(x)

∑
i=1

Γz[V , V](x, i)
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Now sum, up all the previous terms, collect terms and use the definition of V (x):

ρV (x) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−V (x)

]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−V (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−V (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ

[
n(x)

∑
i=1

V (hU (x) , i)−V (x)

]
· I{x∈A}

UE Threats +qv (x) φ

[
n(x)

∑
i=1

V (tU (x) , i)−V (x)

]
· I{x/∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[
n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
−V (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

ˆ
x/∈QE(x′,i′)

[
n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
−V (x)

]
dHn

(
x′, i′

)
Shocks +Γz[V , V](x)
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Adding this last equation to the Bellman equation for J(x) yields

ρΩ (x) = y (x)− c (v (x) , x)

Destructions +
n(x)

∑
i=1

δ

[
J (d(x, i)) + U +

n(x)

∑
j 6=i

V (d(x, i), j)− J (x)−V (x)

]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
J
(
r
(

x, i, x′
))

+
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
− J (x)−V (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
J
(
qE
(

x, i, x′
))

+ V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
− J (x)−V (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ

[
J (hU (x)) +

n(x)

∑
i=1

V (hU (x) , i)− J (x)−V (x)

]
· I{x∈A}

UE Threats +qv (x) φ

[
J (tU (x)) +

n(x)

∑
i=1

V (tU (x) , i)− J (x)−V (x)

]
· I{x/∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′ ,i′)

[
J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(

x′, i′, x
)

, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

ˆ
x/∈QE(x′ ,i′)

[
J
(
tE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
Shocks +Γz[J + V , J + V](x)− J (x)−V (x)

Collecting terms and using the definition of Ω :

ρΩ (x) = y (x)− c (v (x) , x)

Destructions +
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
Ω
(
r
(

x, i, x′
))
−Ω (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
+ V

(
hE
(
x, i, x′

)
, i
)
−Ω (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ [Ω (hU (x))−U −Ω (x)] · I{x∈A}
UE Threats +qv (x) φ [Ω (tU (x))−Ω (x)] · I{x/∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′ ,i′)

[
Ω
(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i′
)
−Ω (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

ˆ
x/∈QE(x′ ,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω (x)

]
dHn

(
x′, i′

)
Shocks +Γz[Ω, Ω](x)
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B.2 Value sharing

To make progress on (3), we begin by stating seven intermediate results, conditions (C-RT)-(C-E) which

we prove from the assumptions listed in Section 2.2. These results establish how worker values V in

(3) evolve in the six cases of hiring, retention, layoff, quits, exit and vacancy creation. Next, we apply

conditions (C-RT)-(C-E) to (3).

To highlight the structure of the argument, we note a key implication our zero-sum game assumption

(A-IN): during internal negotiation, any value lost to one party must accrue to the other. This feature is

obvious in the static model, and extends readily to our dynamic environment. In other words, the joint

value of the firm plus its incumbent workers is invariant during the negotiation. We use this property

extensively in the proof. This generalizes pairwise efficient bargaining—commonly used in one-worker

firm models with linear production—to an environment with multi-worker firms and decreasing returns

in production.

We now state the seven conditions that we apply to (3). In section B.3 below, we prove how each of

them is implied by the assumptions of Section 2.2.

(C-RT) Retentions and Threats. First, if firm x meets an unemployed worker and the worker is not hired

but only used as a threat, then the joint value of coalition x does not change since threats only

redistribute value within the coalition. Second, when firm x uses employed worker i′ from firm x′

as a threat, the joint value of coalition x does not change. Third, when firm x meets worker i′ at x′

and the worker is retained by firm x′, the joint value of coalition x′ does not change. Formally,

Ω
(
r
(
x′, i′, x

))
= Ω(x′) , Ω (tU (x)) = Ω(x) , Ω

(
tE
(
x′, i′, x

))
= Ω(x).

Respectively, these imply that the Retention, UE Threat and EE Threat components of (3) are equal

to zero.

(C-UE) UE Hires. An unemployed worker that meets firm x is hired when x ∈ A. This set consists of firms

that have a joint value after hiring that is higher than the pre-hire joint value plus the outside value

of the hired worker. Due to the take-leave offer, the new hire receives her outside value, which is

the value of unemployment:

A = {x|Ω(hU(x))−Ω(x) ≥ U} , V (hU (x) , i) = U.

(C-EE) EE Hires. An employed worker i′ at firm x′ that meets firm x is hired when x ∈ QE (x′, i′). This set
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consists of firms that have a higher marginal joint value than that of the current firm:

QE (x′, i′
)
=
{

x
∣∣∣Ω (

hE
(
x′, i′, x

))
−Ω (x) ≥ Ω(x′)−Ω

(
qE
(
x′, i′, x

))}
.

Due to the take-leave offer, the new hire receives her outside value, which is the marginal joint

value at her current firm:

V
(
hE
(
x′, i′, x

))
= Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))
.

(C-EU) EU Quits and Layoffs. An employed worker i at firm x quits to unemployment when (x, i) ∈ QU .

This set consist of states x such that the marginal joint value is less than the value of unemployment:

QU =
{
(x, i)

∣∣∣Ω (ŝq1 (x, i)
)
+ U > Ω

(
ŝq0 (x, i)

)}
,

where ŝq1 (x, i) = s (x, (1− [qU,−i (x) ; qU,i (x) = 1]) ◦ (1− ` (x))) ,

ŝq0 (x, i) = s (x, (1− [qU,−i (x) ; qU,i (x) = 0]) ◦ (1− ` (x))) .

The first expression captures when worker i quits, and the second where worker i does not. Simi-

larly, an EU layoff will be chosen by the firm when (x, i) ∈ L:

L =
{
(x, i)

∣∣∣Ω (ŝ`1 (x, i)) + U > Ω (ŝ`0 (x, i))
}

,

where ŝ`1 (x, i) = s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) ,

ŝ`0 (x, i) = s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) .

The first expression captures when worker i is laid off, and the second when worker i is not.

(C-X) Exit. A firm x exits when x ∈ E . This set consists of the states in which the total outside value of

the firm and its workers is larger than the joint value of operation:

E =
{

x
∣∣∣ϑ + n (s (x, κ (x))) ·U > Ω (s (x, κ (x)))

}
.

(C-V) Vacancies. The expected return to a matched vacancy R(x) depends only on the joint value, and

so the firm’s optimal vacancy policy v(x) depends only on the joint value. The policy v(x) solves

max
v

q(θ)vR(x)− c (v, x) ,
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where the expected return to a matched vacancy is

R(x) = φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}︸ ︷︷ ︸
Return from unemployed worker match

+ (1− φ)

ˆ
x∈QE(x′,i′)

{[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]}
dHn

(
x′, i′

)
︸ ︷︷ ︸

Expected return from employed worker match

.

(C-E) Entry. A firm enters if and only if

ˆ
Ω (x0) dΠ0(z) ≥ c0 + n0U.

Summarizing (C). The substantive result is that all firm and worker decisions and employed workers’

values can be expressed in terms of joint value Ω and exogenous worker outside option U.

B.3 Proof of Conditions (C)

B.3.1 Proof of C-UE and C-RT (UE Hires and UE Threats)

In this subsection, we consider a meeting between a firm x and an unemployed worker. Following A-IN

and A-EN, the firm internally renegotiates according to a zero-sum game with its incumbent workers

and makes a take-leave offer to the new worker. Intuitively, having the worker “at the door” is identical

to having her hired at value U for the firm and for all incumbent workers: the firm can always make new

take-leave offers to its incumbents after hiring the new worker. Hence, we expect the firm to make one

take-leave offer to the new worker and its incumbents at the time of the meeting, and not make a new,

different offer to is incumbents afer hiring has taken place.

We start by showing this equivalence formally. To do so, when meeting an unemployed worker, we

let the firm conduct internal renegotiation with its incumbent workers and make an offer to the new

worker. Then, we let a second round of internal offers take place after the hiring. We introduce some

notation to keep track of values throughout the internal and external negotiations. To fix ideas, we

denote by (IR1) the first round of internal negotiation, pre-external negotiation. We denote by (IR2) the

second round of internal negotiation, post-hire.

Post-hire and post-internal negotiation (IR2) values are denoted with double stars. Post-internal-
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negotiation (IR1) but pre-external-negotiation values are denoted with stars.

Ω∗∗ := J∗∗ +
n(x)

∑
j=1

V∗∗j + V∗∗i

Ω∗ := J∗ +
n(x)

∑
j=1

V∗j

Ω := J +
n(x)

∑
j=1

Vj

Proceeding by backward induction, under A-EN the firm makes a take-it-or-leave-it offer to the un-

employed worker, therefore

V∗∗i = U

We now divide the proof in several steps. We start by proving that for all incumbent workers j =

1...n(x), V∗∗j = V∗j . We then use A-IN to argue that Ω∗ = Ω. Once these claims have been proven, we

move on to proving C-UE (UE Hires) and the part of for threats from unemployment C-RT (UE Threats).

Finally, we show that our microfoundations for the renegotiation game deliver A-IN.

Claim 1: For all incumbents workers j = 1...n(x), we have V∗∗j = V∗j .

We proceed by backwards induction using our assumptions A-EN and A-IN. Immediately after (IR1)

has taken place, only the following events can happen:

1. Hire/not-hire

• Either the worker is hired from unemployment (H),

• Or the worker is not hired from unemployment (NH)

2. Possible new round of internal negotiation (IR2). This possible second round of internal negotia-

tion (now including the newly hired worker) leads to values V∗∗j .

We focus on subgame perfect equilibria in this multi-stage game. Therefore, after (IR1), workers

perfectly anticipate what the outcome of the hire/not-hire stage will be. That is, after (IR1), they know

perfectly what hiring decision (H or NH) the firm will make. Now suppose that internal renegotiation

(IR2) actually happens after the hire/not-hire decision, that is, that for some incumbent worker j ∈
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{1, ..., n(x)}, V∗∗j 6= V∗j . Note that the firm has no incentives to accept a change in the new worker’s

value to anything above U, so by A-MC her value does not change in the second round (IR2).

We construct the rest of the proof by contradiction. Consider for a contradiction an incumbent worker

j whose value changed in (IR2). Because of A-MC, her value can change only in the following cases:

• The firm has a credible threat to fire worker j, in which case V∗∗j < V∗j

• Worker j has a credible threat to quit, in which case V∗∗j > V∗j

In addition, those credible threats can lead to a different outcome than in (IR1), and thus V∗∗j 6= V∗j ,

only if the threat on either side was not available in (IR1). If that same threat was available in the first

round (IR1), then the outcome of the bargaining (IR1) would have been V∗∗j .

Recall that both incumbent worker j and the firm understand and anticipate which hire/not-hire

decision the firm will make after the first round (IR1). They also understand and anticipate that, in case

of hire, the value of the new worker will remain U in the second round (IR2).

Therefore, the firm can credibly threaten to hire the new worker in the first round if and only if it actually

hires her after the first round (IR1) is over. This implies that the firm can credibly threaten worker to fire

j in the second round (IR2), by A-LC, if and only if it could credibly threaten her with hiring the new

worker in the first round of internal renegotiation (IR1). This in turn entails that any credible threat the firm

can make in the second round (IR2) was already available in the first round.

On the worker side, quitting into unemployment is a credible threat when her value is below the

value of unemployment. So this threat does not change between the first round (IR1) and the second

round (IR2), because the equilibrium value to that worker will always be above the value of unemploy-

ment.

In sum, the set of credible threats both to the firm and to worker j does not change between the initial

round of internal renegotiation (IR1) and the post-hiring-decision round (IR2). This finally implies that

the outcome of the initial round of internal renegotiation (IR1) for any incumbent j remains unchanged

in the second round (IR2), that is:

V∗∗j = V∗j

which proves Claim 1.

We can now move on to proving C-UE.
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Proof of C-UE. Using the definitions of Ω∗∗ and Ω, we can write

Ω∗∗ −Ω =

[
J∗∗ +

n(x)

∑
j=1

V∗∗j + V∗∗i

]
−
[

J +
n(x)

∑
j=1

Vj

]

Now using V∗∗i = U, we obtain

Ω∗∗ −Ω =

[
J∗∗ +

n(x)

∑
j=1

V∗∗j

]
−
[

J +
n(x)

∑
j=1

Vj

]
+ U

Using Claim 1: V∗∗j = V∗j , and adding and subtracting J∗ we obtain

Ω∗∗ −Ω = [J∗∗ − J∗] +

[
J∗ +

n(x)

∑
j=1

V∗j

]
−
[

J +
n(x)

∑
j=1

Vj

]
+ U

Subsituting in the definition of Ω and of Ω∗,

Ω∗∗ −Ω = [J∗∗ − J∗] + [Ω∗ −Ω] + U

Finally recall that internal renegotiation is (1) individually rational, and (2) is a zero-sum game, according

to A-IN. Thus, all incumbent workers remain in the coalition after internal renegotiation, and the joint

value is unchanged: Ω∗ = Ω. Using Ω∗ = Ω

Ω∗∗ −Ω = [J∗∗ − J∗] + U

which can be re-written

J∗∗ − J∗ = [Ω∗∗ −Ω]−U

Now under A-LC, the firm will only hire if its value after hiring is higher than its value after internal

renegotiation: J∗∗ − J∗ ≥ 0. This inequality requires

Ω∗∗ −Ω ≥ U

Ω (hU (x))−Ω (x) ≥ U
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The firm does not hire when its value of hiring is below its value of renegotiation J∗∗ < J∗. This inequality

implies

Ω∗∗ −Ω < U

When the firm does not hire, we obtain using again A-IN and Ω∗ = Ω:

Ω∗∗ −Ω∗ < U

which finally implies

Ω (hU (x))−Ω (tU(x)) < U

Now, we argue that conditional on not hiring, Ω∗∗ = Ω∗ = Ω, where in this case Ω∗∗ denotes the

value of the coalition without hiring, and thus does not include the value of the unemployed worker. Just

as before, this is a direct consequence from A-IN and that the internal renegotiation game is zero-sum.

Therefore:

Ω (tU(x)) = Ω(x)

We have therefore shown C-UE and part of C-RT (UE Hires and UE Threats): An unemployed worker

that meets x is hired whenx ∈ QU , where

A =
{

x
∣∣∣Ω (hU (x))−Ω (x) ≥ U

}
and upon joining the firm, has value

V (hU (x, i)) = U.

and

Ω(tU(x)) = Ω(x).

B.3.2 Proof of C-EE and C-RT (EE Hires, EE Threats and Retentions)

Consider firm x that has met worker i′ at firm x′. We first seek to determine QE (x′, i′). Under A-IN

and A-EN, upon meeting an employed worker, internal negotiation may take place at the poaching firm

x, and x makes a take-it-or-leave-it offer. Internal negotiation may take place at x′ with all workers

including i′.

Proceeding by backward induction, we again define intermediate values but here at x′, noting that
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qE (x′, i′, x) gives the number of employees in x′ if the worker leaves:

Ω = J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

Ω∗ = J∗ +
n(qE(x′,i′,x))

∑
j=1

V∗j + V∗i′

Ω∗∗ = J∗∗ +
n(qE(x′,i′,x))

∑
j=1

V∗∗j

Note, in the second line we are describing the values of the firm in renegotiation where i′ stays with the

firm, so V∗i′ is the outcome of internal negotiation. In the third line we consider the firm having lost the

worker. Under A-EN the firm will respond to an offer V from x with

V∗i′ = V

The same result as in Claim 1 from section B.3.1 obtains: under A-EN and A-IN, the values accepted by

the incumbent workers after the internal renegotiation
(

V∗j
)

j
will be equal to the values they receive after

the external negotiation
(

V∗∗j

)
j
, that is

V∗∗j = V∗j

The argument are exactly the same.

Using these two results and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(qE(x′,i′,x))

∑
j=1

V∗∗j

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]

=

[
J∗∗ + J∗ − J∗ +

n(qE(x′,i′,x))

∑
j=1

V∗∗j + V∗i′ −V∗i′

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]

= [J∗∗ − J∗] +

[
J∗ +

n(qE(x′,i′,x))

∑
j=1

V∗j + V∗i′

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]
−V∗i′

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i′

= [J∗∗ − J∗] + [Ω∗ −Ω]−V

In this setup, A-IN again implies that any value lost to the firm must accrue to its workers, while any

value lost to a worker must accrue either to the firm, or to another worker, which we earlier formulated
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as “the joint value stays constant before and after an internal negotiation”. Mathematically, this statement

translates into

Ω∗ = Ω

Subsituting into the equation that we obtained above Ω∗∗ −Ω = [J∗∗ − J∗] + [Ω∗ −Ω]−V, we obtain

Ω∗∗ −Ω = [J∗∗ − J∗]−V

Now under A-LC, the firm x′ will only try to keep the worker if J∗ > J∗∗, which requires

Ω−Ω∗∗ ≤ V

Ω
(
r(x′, i′, x

)
−Ω

(
qE
(
x′, i′, x

))
≤ V

This determined the maximum value that x′ can offer to the worker to retain them. Knowing that firm

x′ can counter at most with V = Ω (r(x′, i′, x)−Ω (qE (x′, i′, x)), then will firm x successfully poach the

worker?

First, note that the bargaining protocol implies that x firm will offer V if it is making an offer, since

it need not offer more. For firm x the argument may proceed identically to the case of unemployment,

simply replacing U with V. The result is that the firm will hire only if

Ω
(
hE
(
x′, i′, x

))
−Ω (x) ≥ V

or

Ω
(
hE
(

x′, i′, x
))
−Ω (x) ≥ Ω

(
r(x′, i′, x)

)
−Ω

(
qE
(
x′, i′, x

))
Finally, when firm x does not hire, the same argument as in Claim 32 in Section B.3.1 applies: Ω∗∗ =

Ω∗ = Ω. This observation implies

Ω(tE(x′, i′, x)) = Ω(x)

Similarly, the same argument as in Claim 2 implies that when firm x′ does not lose its worker, Ω∗∗ =

Ω∗ = Ω, thereby implying

Ω(r(x′, i′, x)) = Ω(x′)

The combination of these conditions deliver C-UE and part of C-RT (EE Hires, EE Threats and Re-

tention):
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1. The quit set of an employed worker is determined by

QE (x′, i′
)
=

{
x

∣∣∣∣∣Ω (
hE
(
x′, i′, x

))
−Ω (x) ≥ Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))}

2. The worker’s value of being hired from employment from firm x′ is

V(hE(x, x′, i′)) = Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))
3. Worker i′s value of being retained at x′ after meeting x is4

V(r(x′, i′, x), i′) = Ω
(
hE
(
x′, i′, x

))
−Ω (x)

4. The joint value of the potential poaching firm x when the worker is not hired does not change:

Ω(tE(x′, i′, x)) = Ω(x)

5. The joint value of the potential poached firm x′ does not change when the worker stays:

Ω(r(x′, i′, x)) = Ω(x′)

B.3.3 Proof of C-EU (EU Quits and layoffs)

We first show that

L =
{
(x, i)

∣∣∣Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i) + U

> Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)
}

from the firm side, then that

QU =
{
(x, i)

∣∣∣Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
}

4Because offers are made at no cost, both firms always make an offer, even when they know that they cannot retain/hire
the worker in equilibrium. This is exactly the same as in Postel-Vinay Robin (2002).
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on the worker side.

Part 1: Firm side Consider a firm x who is considering laying off worker i for whom qU,i (x) = 0. As

above, we start with definitions, noting that n (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x)))) is the number

of workers if i is laid off.

Ω = J +
n(s(·))

∑
j=1

Vj + Vi

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j + V∗i

Ω∗∗ = J∗∗ +
n(s(·))

∑
j=1

V∗∗j

Note that in the first line the coalition has still worker i in it. In the second line, the firm and the worker

i have negotiated (and internal negotiation has determined V∗i which is what i will get if they stay in the

firm). In the third line, the worker has been fired and another round of negotiation has occurred among

incumbents.

The same result as in Claim 1 from section B.3.1 obtains: under A-BP, the values accepted by the

incumbent workers after the internal renegotiation
(

V∗j
)

will be equal to the values they receive after the

external negotiation
(

V∗∗j

)
, that is V∗∗j = V∗j .

Using this result and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(s(·))

∑
j=1

V∗∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

=

[
J∗∗ − J∗ + J∗ +

n(s(·))

∑
j=1

V∗j + V∗i −V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

= [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j + V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]
−V∗i

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i

Using again A-IN to conclude that Ω∗ = Ω, we obtain

Ω∗∗ −Ω = [J∗∗ − J∗]−V∗i
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Now under A-LC, the firm x will only layoff the worker if J∗∗ > J∗, which requires

Ω−Ω∗∗ < V∗i

As long as V∗i > U the worker would be willing to transfer value to the firm to avoid being laid off,

implying

Ω−Ω∗∗ < U.

which we can re-write

Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i)+U > Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)

where the LHS is Ω∗∗ + U (under the layoff) and the RHS is Ω. This concludes the proof for the firm

side.

Part 2: Worker side Consider worker i in firm x who is considering quitting to unemployment for

whom `i (x) = 0. As above, we start with definitions, noting that n (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])))

is the number of workers if i quits. As before,

Ω = J +
n(s(·))

∑
j=1

Vj + Vi

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j + V∗i

Ω∗∗ = J∗∗ +
n(s(·))

∑
j=1

V∗∗j

The same result as in Claim 1 from section B.3.1 obtains V∗∗j = V∗j .
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Using this result and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(s(·))

∑
j=1

V∗∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

=

[
J∗∗ + J∗ − J∗ +

n(s(·))

∑
j=1

V∗j + V∗i −V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

= [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j + V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]
−V∗i

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i

Again, Ω∗ = Ω from A-IN, so that

Ω∗∗ −Ω = [J∗∗ − J∗]−V∗i

Now under A-LC, worker i will quit into unemployment iff V∗i < U, which requires

J∗∗ − J∗ + [Ω−Ω∗∗] < U

As long as J∗∗ < J∗, the firm is willing to transfer value to worker i to retain her. Therefore, worker i

quits into unemployment iff the previous inequality holds at J∗∗ = J∗, i.e.

Ω−Ω∗∗ < U

Therefore, the worker quits iff

Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)

which concludes the proof of the worker side. This delivers C-EU.
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B.3.4 Proof of C-X (Exit)

Consider a firm x who contemplates exit after all endogenous quits and layoffs, thus when its employ-

ment is n (s (x, κ (x))). As before we define values conditional on exiting:

Ω = J +
n(s(·))

∑
j=1

Vj

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j

Ω∗∗ = J∗∗ + 0

Notice that the joint value after exit is simply the value of the firm, since all other workers have left

because of exit. We can compute:

Ω∗∗ −Ω = J∗∗ −
[

J +
n(s(·))

∑
j=1

Vj

]

(add and subtract J∗) = [J∗∗ − J∗] + J∗ −
[

J +
n(s(·))

∑
j=1

Vj

]

(add and subtract
n(s(·))

∑
j=1

V∗j ) = [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj

]
−

n(s(·))

∑
j=1

V∗j

(definition of Ω, Ω∗) = [J∗∗ − J∗] + [Ω∗ −Ω]−
n(s(·))

∑
j=1

V∗j

Again, Ω∗ = Ω from A-IN, so that

Ω∗∗ −Ω = [J∗∗ − J∗]−
n(s(·))

∑
j=1

V∗j

The firm exits iff J∗∗ ≥ J∗, that is, ϑ ≥ J∗. This is equivalent to

Ω∗∗ −Ω ≥ −
n(s(·))

∑
j=1

V∗j

Using again that Ω∗∗ = J∗∗ = ϑ, the firm exits iff

ϑ +
n(s(·))

∑
j=1

V∗j ≥ Ω
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Since any worker is better off under V∗i ≥ U than unemployed, all workers are willing to take a value

cut down to U if ϑ ≥ Ω−∑
n(s(·))
j=1 V∗j because then the firm can credibly exit.

This implies that the firm exits if and only if

ϑ−Ω (s (x, κ (x))) + n (s (x, κ (x)))U ≥ 0

This proves C-X (Exit): the set of x such that the firm exits is given by

E =
{

x
∣∣∣ϑ + n (s (x, κ (x))) ·U ≥ Ω (s (x, κ (x)))

}
B.3.5 Proof of C-V (Vacancies)

We split the proof in two steps. First, we show that workers are collectively willing to transfer value

to the firm in exchange for the joint value-maximizing vacancy policy function. Second, we show that

a single worker can create a system of transfers that achieves the same outcome. These transfers are

equivalent to wage renegotiation, which explains why we have subsumed them in the wage function

w(x, i) in the equations above. Similarly to wages, these transfers drop out from the expression for the

joint value.

Part 1: Collective transfers In this step, we show that workers are collectively better off transferring

value to the firm in exchange of the firm posting the joint value-maximizing amount of vacancies.

The vacancy posting decision vJ that maximizes firm value is:

cv
(
vJ (x) , n (x)

)
q

= φ [J (hU (x))− J (x)] · I{x∈A}+(1− φ)

ˆ
x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
.

Similarly, define vΩ be the policy that maximizes the value of the coalition, and vV be the policy that

maximizes the value of all the employees. Let Ωγ,Jγ, Vγ be the value of the coalition, firm and all workers

under the vγ, for γ ∈
{

Ω, J, V
}

. We now prove our claim in several steps.

Part 1-(a) Collective value gains. The policy vΩ will lead to VΩ ≥ V J
+ [J J − JΩ] where J J − JΩ ≥ 0.

Proof: By construction ΩΩ is greater than ΩJ : ΩΩ ≥ ΩJ . By definition: ΩΩ = JΩ + VΩ, and ΩJ =

J J + V J . Use those definitions to obtain inequality JΩ + VΩ ≥ J J + V J , which can be re-arranged into

VΩ − V J ≥ J J − JΩ. Since J J is the value under the optimal policy for J, then J J ≥ JΩ. The above then
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implies that

VΩ −V J ≥ J J − JΩ ≥ 0

This implies that workers would be prepared to transfer T = J J − JΩ ≥ 0 to the firm in order for the firm

to pursue policy vΩ instead of vJ . This concludes the proof of Part 1-(a).

Part 1-(b) Infeasibility of VV . There does not exist an incentive-compatible transfer from workers

to firm that will lead to VV .

Proof: Suppose workers consider transferring even more to induce the firm to follow policy vV that

maximizes their value. By construction ΩΩ ≥ ΩV . Using definitions for each of these, then JΩ + VΩ ≥

JV + VV . Rearranging this: JΩ − JV ≥ VV − VΩ. Since VV is the value under the optimal policy for V,

then VV ≥ VΩ. The above then implies that

JΩ − JV ≥ VV −VΩ ≥ 0

Taking vΩ as a baseline, the above implies that a change to vV causes a loss of JΩ − JV to the firm, which

is more than the gain of VV − VΩ to the workers. This implies that workers could transfer all of their

gains under vV to the firm, but the firm would still not choose vV over vΩ. This concludes the proof of

Part 1-(b).

Part 1-(c) Optimality of VΩ. There does not exist an incentive-compatible transfer from workers to

firm that will lead to V∗ ∈
(

VΩ, VV
)

.

Proof: Call such a policy vV∗. Then: ΩΩ ≥ ΩV∗ , and by definitions

JΩ + VΩ ≥ JV∗ + VV∗

JΩ − JV∗ ≥ VV∗ −VΩ

Since by definition V∗ ∈
(

VΩ, VV
)

, then VV∗ −VΩ ≥ 0. Therefore

JΩ − JV∗ ≥ VV∗ −VΩ ≥ 0

Taking vΩ as a baseline, the above implies that a change to vV∗ causes a loss of JΩ− JV∗ to the firm, which
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is more than the gain of VV∗ −VΩ to the workers. This concludes the proof of Part 1-(c).

Part 1-(d) Conclusion. In summary, it is optimal for workers to transfer exactly T = J J − JΩ to the

firm, in order for the firm to pursue vΩ instead of vJ . Further transfers to the firm would be required to

have the firm pursue a better policy for workers, but this is exceedingly costly to the firm and the workers

are unwilling to make a transfer to cover these costs. This concludes the proof of Step 1: Collective

transfers.

Part 2: Individual transfers In this step, we show that a single, randomly drawn worker can construct

a system of transfers that induces the firm to post vΩ instead of vJ , while leaving all agents better off.

Within dt, consider the single, randomly drawn worker j0. Consider the following system of trans-

fers. Worker j0 makes a transfer J J − JΩ to the firm, in exchange of what (i) the firm posts vΩ instead of

vJ , and (ii) the worker gets a wage increase that gives her all the differential surplus VΩ −V J .

Following the same steps as in Part 1: Collective transfers, the firm gets JΩ + [J J − JΩ] = J J and is

hence indifferent. Similarly, workers j 6= j0 do not get any value change, and are thus indifferent Finally,

worker j0 gets a value increase of

[VΩ −V J
]− [J J − JΩ] ≥ 0

where the inequality similarly follows from Part 1: Collective transfers. This concludes the proof of Part

2: Individual transfers.

Conclusion. The previous arguments show that a single worker has an incentive to and can induce the

firm to post vΩ. Notice also that the same argument holds starting from any vacancy policy function

ṽ 6= vJ together with a value of the firm J̃. Thus, even if some worker induces the firm to post a different

vacancy policy function which is not vΩ any other worker has an incentive to induce the firm to post vΩ.

Therefore, in equilibrium, the firm posts vΩ, which concludes the proof of C-V.

B.4 Applying Conditions (C)

Having established that Assumption (A) can be used to prove Conditions (C), we now apply conditions

(C) to the Bellman equation for the joint value. The goal of this section is to show that for x ∈ E c the
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complement of the exit set, we can considerably simplify the recursion for the joint value:

ρΩ (x) = y (z(x), n (x))− c (v (x) , n (x) , z(x))

Destructions −δ
n(x)

∑
i=1

[Ω (x)−Ω (d(x, i))−U]

UE Hires +qv (x) φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
Shocks +Γ[Ω, Ω]

with the sets

QU =
{
(x, i)

∣∣∣Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
}

L =
{
(x, i)

∣∣∣Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i) + U

> Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)
}

E =
{

x
∣∣∣ϑ + n (s(x, κ(x))) ·U ≥ Ω(s(x, κ(x)))

}
A =

{
x
∣∣∣Ω (hU (x))−Ω (x) ≥ U

}
QE (x′, i′

)
=

{
x

∣∣∣∣∣Ω (
hE
(

x′, i′, x
))
−Ω (x) ≥ Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))}

and—as per (C-V)—the vacancy policy v (x) is given by the solution to the following:

cv (v (x) , n (x))
q

= φ [Ω (hU (x))−Ω (x)] · I{x∈A}

+ (1− φ)

ˆ
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
In continuous time, the exit decision is captured by x ∈ E . The Bellman equation above holds exactly

for x ∈ E c. Exit is accounted for in the “bold” continuation values, which all include the possible exit

decision should the firm’s state fall into E after an event.

We first proceed one term at the time, working through (B.4.1) exogenous destructions, (B.4.2) re-

tentions, (B.4.3) EE (poached) quits, (B.4.4) UE hires, (B.4.5) UE threats, (B.4.6) EE (poached) hires, and

(B.4.7) EE threats.
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B.4.1 Exogenous destructions

Destructions =
n(x)

∑
i=1

δ

[
J (d(x, i)) +

n(d(x,i))

∑
j=1

V (d(x, i), j) + U −Ω (x)

]

=
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

where we simply have used the definition Ω (d(x, i)) := J (d(x, i)) + ∑
n(d(x,i))
j=1 V (d(x, i), j).

B.4.2 Retentions

Retentions = λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
+

n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−Ω (x)

]
dHv

(
x′
)

= λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

where we simply have used the definition Ω (r (x, i, x′)) = J (r (x, i, x′)) + ∑
n(x)
j=i V (r (x, i, x′) , j). Now

using the result in C-RT that

Ω
(
r
(
x, i, x′

))
= Ω(x′)

we obtain that

Retentions = 0

B.4.3 EE Quits

EE Quits = λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
J
(
qE
(
x, i, x′

))
+ V

(
qE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−Ω (x)

]
dHv

(
x′
)

Now by definition

Ω
(
qE
(

x, i, x′
))

= J
(
qE
(
x, i, x′

))
+

n(qE(x,i,x′))

∑
j=1

V
(
qE
(
x, i, x′

)
, j
)

= J
(
qE
(
x, i, x′

))
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
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Using this last equality in the term in square brackets

EE Quits = λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
−Ω (x) + V

(
qE
(
x, i, x′

)
, i
)]

dHv
(
x′
)

Using C-EE, the value going to the poached worker is V (qE (x, i, x′)) = Ω (x)−Ω (qE (x, i, x′)). Substi-

tuting this into the last equation, we observe that the term in the square brackets is zero, and so

EE Quits = 0

B.4.4 UE Hires

UE Hires = qv (x) φ

[
J (hU (x)) +

n(x)

∑
i=1

V (hU (x) , i)−Ω (x)

]
· I{x∈A}

Now by definition

Ω (hU (x)) = J (hU (x)) +
n(hU(x))

∑
i=1

V (hU (x) , i)

= J (hU (x)) +
n(x)

∑
i=1

V (hU (x) , i) + V (hU (x) , i)

and so, re-arranging,

J (hU (x)) +
n(x)

∑
i=1

V (hU (x) , i) = Ω (hU (x))− V (hU (x) , i)

Substituting this last equation into the term in the square brackets of the first equation,

UE Hires = qv (x) φ [Ω (hU (x))−Ω (x)− V (hU (x) , i)] · I{x∈A}

Following C-UE, the value going to the hired worker is V (hU (x) , i) = U. Substituting in:

UE Hires = qv (x) φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}

B.4.5 UE Threats

UE Threats = qv (x) φ

[
J (tU (x)) +

n(x)

∑
i=1

V (tU (x) , i)−Ω (x)

]
· I{x/∈A}

32



Using the definition of Ω(tU(x)), we can re-write this term as

UE Threats = qv (x) φ [Ω (tU (x))−Ω(x)] · I{x/∈A}

Now using our result in condition C-UE that Ω (tU (x)) = Ω(x), we can conclude that

UE Threats = 0

B.4.6 EE Hires

EE Hires = qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
−Ω (x)

]
dHn

(
x′, i′

)
Now by definition

Ω
(
hE
(

x′, i′, x
))

= J
(
hE
(
x′, i′, x

))
+

n(hE(x′,i′,x))

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)

=

[
J
(
hE
(

x′, i′, x
))

+
n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)]

+ V
(
hE
(
x′, i′, x

)
, i
)

which can be re-arranged into

J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(

x′, i′, x
)

, i
)
= Ω

(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i
)

Using this in the term in the square brackets

EE Hires = qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)− V

(
hE
(
x′, i′, x

)
, i
)]

dHn
(
x′, i′

)
Under C-EE, the value going to the hired worker is V (hE (x′, i′, x) , i) = Ω (x′)−Ω (qE (x′, i′, x)). Substi-

tuting this in:

EE Hires = qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
B.4.7 EE Threats

EE Threats = qv (x) (1− φ)

ˆ
x/∈QE(x′,i′)

[
J
(
tE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
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Using the definition of Ω(tE(x′, i′, x)), we obtain

EE Threats = qv (x) (1− φ)

ˆ
x/∈QE(x′,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω(x)

]
dHn

(
x′, i′

)
Now using the result in condition C-RT that Ω (tE (x′, i′, x)) = Ω(x), we obtain that

EE Threats = 0

B.5 Reducing the state space

Now that we obtained the simplified recursion, we are in a position to argue that the only payoff-relevant

states are (z, n), and that the details of the within-firm contractual structure do not affect allocations. The

goal of this section is to show that we can express the joint values pre- and post- separation and exit

decisions as follows. First, the exit and separation decisions are characterized by

Ω(z, n) = I{(z,n)∈E}

{
ϑ + nU

}
+ I{(z,n)∈QU}

{
Ω(z, n− 1) + U

}
+ I{(z,n)/∈QU∪E}Ω(z, n), (4)

where E =
{

n, z
∣∣ϑ + nU > Ω(z, n)

}
,

QU =
{

z, n
∣∣Ω (z, n− 1) + U > Ω (z, n)

}
.

The first expression is the value of exit. A firm that does not exit, chooses whether to separate with a

worker or not. If separating with a worker, the firm re-enters (4) with Ω(z, n− 1), having dispatched

with a worker with value U, and again choosing whether to exit, fire another worker, or continue. Iter-

ating on this procedure delivers

Ω(z, n) = max
{

ϑ + nU , max
s∈[0,...,n]

Ω(z, n− s) + sU
}

. (5)
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Second, the post-exit/separation decision joint value is given by the Bellman equation

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, n, z)

Destruction + δn
{(

Ω (z, n− 1) + U
)
−Ω (z, n)

}
UE Hire + φq(θ)v · I{(z,n)∈A} ·

{
Ω (z, n + 1)−

(
Ω (z, n) + U

)}
EE Hire + (1− φ) q(θ)v

ˆ
(z,n)∈QE(z′,n′)

{
[Ω (z, n + 1)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
z′, n′ − 1

)] }
dHn

(
z′, n′

)
Shock + Γz [Ω, Ω] (z, n) ,

where A =
{

z, n
∣∣Ω (z, n + 1) ≥ Ω (z, n) + U

}
,

QE (z′, n′
)

=
{

z, n
∣∣Ω (z, n + 1)−Ω (z, n) ≥ Ω

(
z′, n′

)
−Ω

(
z′, n′ − 1

) }
.

Finally, firms enter if and only if ˆ
Ω (z, 0) dΠ0(z) ≥ ce. (6)

This condition pins down the entry rate per unit of time.5

We proceed in three steps. First, we isolate (z, n) in the state vector x by writing x = (z, n, χ) where

χ collects all other terms in x. Second, we introduce functions that update χ following events to the firm

and worker. Third, we argue that χ is a redundant state. This delivers the final Bellman equation for the

joint value function for the discrete workforce model, equation (6).

5Recall that J0 = −ce +
´

J(x0)dΠ(z0). Given Ω(z0, 0) = J(z0, 0), we have J0 = −ce +
´

Ω(z0, 0)dΠ(z0). Free-entry implies
J0 = 0, which delivers (6).
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B.5.1 Isolate (z, n) in the state vector

It is immediate that x should contain at least the pair (z, n). Call everything else χ. Then we express

x = (z, n, χ). Making this substitution into the above conditions:

ρΩ (z, n, χ) = y (z, n)− c (v (z, n, χ) , n)

Destructions −δ
n(x)

∑
i=1

[Ω (z, n, χ)−Ω (d (z, n, χ, i))−U]

UE Hires +qv (z, n, χ) φ [Ω (hU (z, n, χ))−Ω (z, n, χ)−U] · I{(z,n,χ)∈A}

EE Hires +qv (z, n, χ) (1− φ)

ˆ
(z,n,χ)∈QE(n′,z′,χ′,i′)

[ [
Ω
(
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
qE
(
n′, z′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Shocks +Γz[Ω, Ω](z, n, χ)

with sets

QU =

{
(z, n, χ, i)

∣∣∣Ω (s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 1])) , i) + U

> Ω (s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 0])) , i)

}

L =

{
(z, n, χ, i)

∣∣∣Ω (s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 1]) ◦ (1− qU (z, n, χ))) , i) + U

> Ω (s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 0]) ◦ (1− qU (z, n, χ))) , i)

}
E =

{
z, n, χ

∣∣∣ϑ + n (s(z, n, χ, κ(z, n, χ))) ·U ≥ Ω(s(z, n, χ, κ(z, n, χ)))
}

A =

{
z, n, χ

∣∣∣∣∣Ω (hU (z, n, χ))−Ω (z, n, χ) ≥ U

}

QE (z′, n′, χ′, i′
)
=

{
z, n, χ

∣∣∣∣∣Ω (
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ) ≥ Ω

(
n′, z′, χ′, i′

)
−Ω

(
qE
(
z′, n′, χ′, i′, z, n, χ

))}
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and vacancy posting

cv (v (z, n, χ) , z, n)
q

= φ [Ω (hU (z, n, χ))−Ω (z, n, χ)] · I{(z,n,χ)∈A}

+ (1− φ)

ˆ
(z,n,χ)∈QE(z′,n′,χ′,i′)

[ [
Ω
(
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
qE
(
n′, z′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Finally, note that the contribution of shocks writes explicitly

Γz[Ω, Ω] = lim
dt→0

Et

[
Ω(zt+dt, nt+dt, χt+dt)

dt

]
To avoid introducing too much stochastic calculus notation, we will show that χ is a redundant state

under the special case that shocks z follow a multi-point Poisson jump process. The logic of the proof

with other stochastic processes would be exactly the same, at the expense of more notation. In the

Poisson case, we have

Γz[Ω, Ω] = τ(z)Ez

[
Ω(η, n, χ′(z, n, χ, η))−Ω(z, n, χ)

]
where τ(z) is the intensity at which the Poisson shocks hit, and η is a random variable following the

distribution of those shocks conditional on arrival and conditional on the initial productivity z.
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B.5.2 Introduce functions that update the residual χ

We define the following functions given that we know how n changes in each of the cases

s(z, n, χ, κ(z, n, χ)) = (N (z, n, χ), z, sχ(z, n, χ))

d (z, n, χ, i) = (n− 1, z, dχ (z, n, χ, i))

s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 1])) = (N (z, n, χ)− τ1(z, n, χ), z, τ
χ
1 (z, n, χ, i))

s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 0])) = (N (z, n, χ), z, τ
χ
0 (z, n, χ, i))

s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 1]) ◦ (1− qU (z, n, χ))) = (N (z, n, χ)− η1(z, n, χ), z, η
χ
1 (z, n, χ, i))

s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 0]) ◦ (1− qU (z, n, χ))) = (N (z, n, χ), z, η
χ
0 (z, n, χ, i))

hU (z, n, χ) =
(
n + 1, z, hχ

U (z, n, χ)
)

hE
(
z′, χ′, i′, z, n, χ, n′

)
=

(
n + 1, z, hχ

E
(
z′, n′, χ′, i′, z, n, χ

))
qE
(
z′, n′, χ′, i′, z, n, χ

)
=

(
n′ − 1, z′, qχ

E
(
n′, z′, χ′, i′, z, n, χ

))
Hn
(
z′, n′, χ′, i′

)
=

1
n′

Hn
(
z′, n′, χ′

)
gz (z, n, χ, η) =

(
η, n, gχ

z (z, n, χ, η)
)

The above uses the functionN (z, n, χ), which gives the number of workers the firm retains after endoge-

nous quits and layoffs. It solves

N (z, n, χ) = arg max
k∈{0,...,n}

Ω(k, z, χ) + (n− k)U

In addition, τ1(z, n, χ), η1(z, n, χ) ∈ {0, 1}. τ1(z, n, χ) = 0 if `i(z, n, χ) = 1. Similarly, η1(z, n, χ) = 0 if

qU,i(z, n, χ) = 1. Using these definitions in the Bellman equation above:

ρΩ (z, n, χ) = y (z, n)− c (v (z, n, χ) , z, n)

Destructions −δ
n(x)

∑
i=1

[Ω (z, n, χ)−Ω (n− 1, z, sχ (z, n, χ, i))−U]

UE Hires +qv (z, n, χ) φ
[
Ω
(
n + 1, z, hχ

U (z, n, χ)
)
−Ω (z, n, χ)−U

]
· I{(z,n,χ)∈A}

EE Hires +qv (z, n, χ) (1− φ)

ˆ
(z,n,χ)∈QE(n′,z′,χ′,i′)

[ [
Ω
(
n + 1, z, hχ

E
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, qχ

E
(
z′, n′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Shocks +τ(z)Ez

[
Ω
(

η, n, gχ
z (z, n, χ, η)

)
−Ω (z, n, χ)

]
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and sets

E =
{

z, n, χ
∣∣∣ϑ +N (z, n, χ) ·U ≥ Ω(N (z, n, χ), z, sχ(z, n, χ))

}
QU =

{
(z, n, χ, i)

∣∣∣Ω(N (z, n, χ)− τ1(z, n, χ), z, τ
χ
1 (z, n, χ, i)) + U

> Ω(N (z, n, χ), z, τ
χ
0 (z, n, χ, i))

}

L =

{
(z, n, χ, i)

∣∣∣Ω(N (z, n, χ)− η1(z, n, χ), z, η
χ
1 (z, n, χ, i)) + U

> Ω(N (z, n, χ), z, η
χ
0 (z, n, χ, i))

}

A =

{
z, n, χ

∣∣∣∣∣Ω (n + 1, z, hχ
U (z, n, χ)

)
−Ω (z, n, χ) ≥ U

}

QE (z′, n′, χ′, i′
)
=

{
z, n, χ

∣∣∣∣∣Ω (
n + 1, z, hχ

E
(
z, n, χ, z′, n′, χ′, i′

))
−Ω (z, n, χ)

≥ Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, pχ

(
z′, n′, χ′, i′, z, n, χ

)) }

and the definition

N (z, n, χ) = arg max
k∈{0,...,n}

Ω(k, z, χ) + (n− k)U

and vacancy posting

cv (v (z, n, χ) , z, n)
q

= φ
[
Ω
(
n + 1, z, hχ

U (z, n, χ)
)
−Ω (z, n, χ)

]
· I{(z,n,χ)∈A}

+ (1− φ)

ˆ
(z,n,χ)∈QE(z′,n′,χ′,i′)

[ [
Ω
(
n + 1, z, hχ

E
(
z, n, χ, n′, z′, χ′, i′

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, qχ

E
(
z′, n′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
B.5.3 Argue that (χ, i) are a redundant state

The system above defines a functional fixed point equation. Inspection of the Bellman equation reveals

that χ has no direct impact on the flow payoff, continuation values, or mobility sets. Its only impact

is through the dependence of Ω on χ. This observation implies that χ is a redundant state, and can be

removed from the fixed point equation. The same argument ensures that the worker index i is redundant
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as well.

B.5.4 Bellman equation without (χ, i)

We can re-write our Bellman equation for (z, n) ∈ E c as:

ρΩ (z, n) = y (z, n)− c (v (z, n) , n)

Destructions −δ
n

∑
i=1

[Ω (z, n)−Ω (n− 1, z)−U]

Retentions +λE
n

∑
i=1

ˆ
(n′ ,z′)∈R(z,n)

[Ω (z, n)−Ω (z, n)] dHv
(
x′
)

UE Hires +qv (z, n) φ [Ω (n + 1, z)−Ω (z, n)−U] · I{(z,n)∈A}

EE Hires +qv (z, n) (1− φ)

ˆ
(z,n)∈QE(z′ ,n′)

[
[Ω (n + 1, z)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)] ]
dH̃n

(
z′, n′

)
Shocks +Γz[Ω, Ω](z, n)

with the sets

E c =

{
z, n

∣∣∣∣∣Ω(N (z, n)) ≥ ϑ +N (z, n)U

}

L = QU =

{
z, n

∣∣∣∣∣Ω(N (z, n), z)−Ω(N (z, n)− 1, z) ≤ U

}

A =

{
z, n

∣∣∣∣∣Ω (n + 1, z)−Ω (z, n) ≥ U

}

QE (z′, n′
)
=

{
z, n

∣∣∣∣∣Ω (n + 1, z)−Ω (z, n) ≥ Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)}

and the definition

N (z, n) = arg max
k∈{0,...,n}

Ω(k, z) + (n− k)U

and the vacancy policy function:

cv (v (z, n) , z, n)
q

= φ [Ω (n + 1, z)−Ω (z, n)] · I{(z,n)∈A}

+ (1− φ)

ˆ
(z,n)∈QE(z′,n′)

[
[Ω (n + 1, z)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)] ]
dH̃n

(
n′, z′

)
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B.5.5 Expressing “bold” values

In this step we express “bold” values – that encode the optimal quit, layoff and exit decisions – as simple

functions of non-bold values.

From the definition of the exit and quit sets E ,QU , we can express:

Ω(z, n) = max

{
Ω(z, n)︸ ︷︷ ︸
Operate

, Ω(n− 1, z) + U︸ ︷︷ ︸
Separate one worker and re-evaluate

, ϑ + nU︸ ︷︷ ︸
Exit

}

We can iterate on this equation. To see the logic, consider the first few steps.

Ω(z, n) = max

{
Ω(z, n) , Ω(n− 1, z) + U , ϑ + nU

}

= max

{
Ω(z, n) , max

{
Ω(n− 1, z) , Ω(n− 2, z) + U , ϑ + (n− 1)U

}
+ U , ϑ + nU

}

= max

{
Ω(z, n) , Ω(n− 1, z) + U , Ω(n− 2, z) + 2U , ϑ + (n− 1)U + U , ϑ + nU

}

= max

{
Ω(z, n) , Ω(n− 1, z) + U , Ω(n− 2, z) + 2U , ϑ + nU

}

By recursion, it is easy to see that

Ω(z, n) = max

{
Ω(N (z, n), z) + (n−N (z, n)) ·U , ϑ + nU

}

= max

{
max

k∈{0,...,n}
Ω(k, z) + (n− k)U , ϑ + nU

}

where recall that

N (z, n) = arg max
k∈{0,...,n}

Ω(k, z) + (n− k)U

B.6 Continuous workforce limit

Up to this point the economy has featured a continuum of firms, but an integer-valued workforce. We

now take the continuous workforce limit by defining the ‘size’ of a worker—which is 1 in the integer

case—and taking the limit as this approaches zero. Specifically, denote the “size” of a worker by ∆, such

that n = N∆ where N is the old integer number of workers. Now define Ω∆(z, n) := Ω(z, n/∆), and

likewise define y∆(z, n) := y(z, n/∆) and c∆(v, n, z) := c(v/∆, n/∆, z). We also define b∆ := b/∆ and
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ϑ∆ := ϑ/∆. These imply, for example, that Ω(z, N) = Ω∆(z, N∆). Substituting these terms into (5) and

(6), and taking the limit ∆→ 0, while holding n = N∆ fixed, we would obtain a version of (7) in which

all functions have the ∆ super-script notation. We also specialize the productivity to a diffusion process

dzt = µ(zt)dt + σ(zt)dWt.

The result is the joint value representation of section 3: a Hamilton-Jacobi-Bellman (HJB) equation

for the joint value conditional on the firm and its workers operating:

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, n, z) (7)

Destruction −δn[Ωn(z, n)−U]

UE Hire +φq(θ)v [Ωn(z, n)−U]

EE Hire +(1− φ)q(θ)v
ˆ

max
{

Ωn(z, n)−Ωn(n′, z′) , 0
}

dHn
(
z′, n′

)
Shock +µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n).

Boundary conditions for the firm and its workers operating require the state to be interior to the exit and

separation boundaries:

Exit boundary: Ω(z, n) ≥ ϑ + nU,

Layoff boundary: Ωn(z, n) ≥ U

Note the absence of Ω terms. Since the value we track is that of a hiring firm subject to boundary condi-

tions, then Ω = Ω. This admits the simplification of ‘Shock’ terms we noted when discussing (1).

We proceed in three steps:

(A.5.1) Define worker size and the renormalization

(A.5.2) Take the limit as worker size goes to zero

(A.5.3) Introduce a continuous productivity process.

B.6.1 Define worker size and the renormalization

We denote the “size” of a worker by ∆. That is, we currently have an integer work-force n ∈ {1, 2, 3, . . . }.

We now consider m ∈ {∆, 2∆, 3∆, . . . }. So then n = m/∆. We use this to make the following normaliza-
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tions:

ω(z, m) = Ω
(m

∆
, z
)

Y(z, m) = y
(m

∆
, z
)

C(z, m) = c
( v

∆
,

m
∆

, z
)

These definition imply

Ω(z, n) = ω(n∆, z)

y(z, n) = Y(n∆, z)

c(v, z, n) = C(v∆, n∆, z)

In addition, the value of unemployment solves

ρU = b

Define

U =
b

ρ∆
=

U
∆

and

θ =
ϑ

∆

Substituting these definitions into the Bellman equation, we obtain

ρω (n∆, z) = max
v∆≥0

Y (n∆, z)− C (v∆, n∆, z)

Destructions −δn∆
[

ω (n∆, z)−ωωω (n∆− ∆, z)
∆

−U
]

UE Hires +qv∆φ

[
ωωω (n∆ + ∆, z)−ω (n∆, z)

∆
−U

]
· I{(n∆,z)∈A}

EE Hires +qv∆ (1− φ)

ˆ
(n∆,z)∈QE(n′∆,z′)

[
ωωω (n∆ + ∆, z)−ω (n∆, z)

∆
− ω (n′∆, z′)−ωωω (n′∆− ∆, z′)

∆

]
dH̃n

(
n′∆, z′

)
Shocks +Γz [ωωω, ω] (n∆, z)
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with the set definitions

E =

{
n∆, z

∣∣∣∣∣ max
k∆∈{0,...,n∆}

ω(k∆, z) + (n∆− k∆)U < θ + n∆U
}

A =

{
n∆, z

∣∣∣∣∣ωωω (n∆ + ∆, z)−ω (n∆, z)
∆

≥ U
}

QU =

{
n∆, z

∣∣∣∣∣ω (n∆, z)−ωωω (n∆− ∆, z)
∆

≤ U
}

QE (n′∆, z′
)
=

{
n∆, z

∣∣∣∣∣ωωω (n∆ + ∆, z)−ω (n∆, z)
∆

≥ ω (n′∆, z′)−ωωω (n′∆− ∆, z′)
∆

}

and the definition:

ωωω(n∆, z) = max

{
max

k∆∈{0,...,n∆}
ω(k∆, z) + (n∆− k∆)U , θ + n∆U

}

B.6.2 Continuous limit as worker size goes to zero

Now we take the limit ∆→ 0, holding m = n∆ fixed. We note v̂ = lim∆→0 v∆. We see derivatives appear.

We denote ωm(z, m) = ∂ω
∂m (z, m).

First, we note that the following limit obtains:

ωωω(z, m) = max

{
max

k∈[0,m]
ω(k, z) + (m− k)U , θ + m∆U

}

In particular, the exit set limits to

E =

{
z, m

∣∣∣∣∣ max
k∈[0,m]

ω(k, z) + (m− k)U < θ + mU
}

In equilibrium, the ωωω(z, m) terns on the right-hand-side of the Bellman equation are the result of endoge-

nous quits, layoffs and hires. Because our continuous time assumption has been made before we take the

limit to a continuous workforce limit, we need only consider those changes in the workforce one at a

time. Hence, for any (z, m) ∈ Interior(E c ∩A), the interior of the continuation set, there is always ∆ > 0:

such that for any ∆ ≤ ∆:

ωωω(m± ∆, z) = ω(m± ∆, z)
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Using this observation in the Bellman equation, we can obtain derivatives on the right-hand-side. We

obtain, for pairs (z, n) in the interior of the continuation set (z, n) ∈ Interior(E c ∩A):

ρω (z, m) = max
v̂≥0

Y (z, m)− C (v̂, z, m)

Destructions −δm[ωm(z, m)−U ]

UE Hires +qv̂φ [ωm(z, m)−U ] · I{(z,m)∈A}

EE Hires +qv̂ (1− φ)

ˆ
(z,m)∈QE(m′,z′)

[
ωm(z, m)−ωm(m′, z′)

]
dH̃n

(
m′, z′

)
Shocks +Γz [ωωω, ω] (z, n)

with the set definitions

E =

{
z, m

∣∣∣∣∣ max
k∈[0,m]

ω(k, z) + (n− k)U < θ + mU
}

A =

{
z, m

∣∣∣∣∣ωm(z, m) ≥ U
}

QU =

{
z, m

∣∣∣∣∣ωm(z, m) ≤ U
}

= A , the complement of A

QE (z′, m′
)
=

{
z, m

∣∣∣∣∣ωm(z, m)−ωm(m′, z′) ≥ 0

}

and the definition

ωωω(z, m) = max

{
max

k∈[0,m]
ω(k, z) + (m− k)U , θ + mU

}

Note that now, the only place where ωωω enters in the Bellman equation is the contribution of shocks. To

replace it with ω, we need to apply the same argument to z as the one we applied to n. We thus need to

specialize to a continuous productivity process.

B.6.3 Continuous productivity process

We now specialize to a continuous productivity process, as this makes the formulation of the problem

very economical. It allows to simplify the contribution of productivity shocks and get rid of the remain-
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ing “bold” notation. We suppose that productivity follows a diffusion process:

dzt = µ(zt)dt + σ(zt)dWt

In this case, for any (z, m) in the interior of the continuation set, productivity shocks in the interval

[t, t + dt] cannot move the firm towards a region in which it would endogenously separate or exit, when

dt is small enough. In this case, we can write the following, where we have also replaced theQE set with

the max operator:

ρω (z, m) = max
v≥0

Y (z, m)− C (v, z, m)

Destructions −δm[ωm(z, m)−U ]

UE Hires +qvφ [ωm(z, m)−U ]

EE Hires +qv (1− φ)

ˆ
max

{
ωm(z, m)−ωm(z′, m′) , 0

}
dH̃n

(
m′, z′

)
Shocks +µ(z)ωz(z, m) +

σ(z)2

2
ωzz(z, m)

s.t.

No Exit ω(z, m) ≥ θ + mU

No Separations ωm(z, m) ≥ U

To make the notation more comparable, we slightly abuse notation and use the same letters as before,
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but now for the continuous workforce case. We obtain finally:

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, z, n)

Destructions −δn[Ωn(z, n)−U]

UE Hires +qvφ [Ωn(z, n)−U]

EE Hires +qv (1− φ)

ˆ
max

[
Ωn(z, n)−Ωn(z′, n′) , 0

]
dH̃n

(
z′, n′

)
Shocks +µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n)

s.t.

No Exit Ω(z, n) ≥ ϑ + nU

No Separations Ωn(z, n) ≥ U

When the coalition hits Ωn(z, n) = U, it endogenous separates worker to stay on that frontier. It exits

when it hits the frontier Ω(z, n) = ϑ + nU.

In addition to these “value-pasting” boundary conditions, optimality implies necessary “smooth-

pasting” boundary conditions (see Stokey 2009): Ωz(z, n) = 0 if the firm actually exits at (z, n) following

productivity shocks, and Ωn(z, n) = 0 if the firm actually exits at (z, n) following changes in size. These

are necessary and sufficient for the definition of our problem (Brekke and Øksendal 1991). Its general

formulation terms of optimal switching between three regimes (operation, layoffs, exit) on the entire pos-

itive quadrant, can be made as a system of Hamilton-Jacobi-Bellman-Variational-Inequality (see Pham

2009), which we present here for completeness :

max

{
− ρΩ (z, n) + max

v≥0
−δn[Ωn(z, n)−U] + qvφ [Ωn(z, n)−U]

+qv (1− φ)

ˆ
max

[
Ωn(z, n)−Ωn(z′, n′) , 0

]
dH̃n

(
z′, n′

)
+ µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n) ;

ϑ + nU −Ω(z, n) ; max
k∈[0,n]

Ω(z, k) + (n− k)U −Ω(z, n)

}
= 0 , ∀(z, n) ∈ R2

+
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