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Firm and Worker Dynamics in a Frictional Labor Market

Adrien Bilal, Niklas Engbom, Simon Mongey, Gianluca Violante

This Appendix contains the proof of the joint surplus representation in the fully dynamic model, the main result of
Section 3 in the main text, and computational details. Section A lays out the notation for the fully dynamic model.
Section B develops the proof. Section C contains details on the computation of the stationary equilibrium of the model.

A Notation for dynamic model

We first specify the value function of an individual worker 7 in a firm with arbitrary state x: V(x,i). We then specify the
value function of the firm: J(x). Combining all workers” value functions with that of the firm we define the joint value:
Q(x). We then apply the assumptions from Section 2 which allow us to reduce (x) to only the number of workers and
productivity of the firm, (z,n). Finally we take the continuous work force limit to derive a Hamilton-Jacobi-Bellman
(HJB) equation for Q(z,n) Applying the definition of total surplus used above, we obtain a HJB equation in S(z,n)
which we use to construct the equilibrium.

A.1 Worker value function: V

Let U be the value of unemployment. Define separately worker i’s value when employed at firm x before the quit, layoff
and exit decisions, V (x, i), and their value after these decisions, V (x,1).

Value of unemployment. Let /ij; (x) denote how the state of firm x is updated when it hires an unemployed
worker.! Let A denote the set of firms making job offers that an unemployed worker would accept. The value of
unemployment U therefore satisfies

pU = b+ 24(@) | 1V (hy (3),1) ~ U)dH, (3
xeA

where H, is the vacancy-weighted distribution of firms. If x ¢ A, then the worker remains unemployed.

Stage I. To relate the value of the worker pre separation, V(x,i), to that post separation, V(x,i), we require the
following notation regarding firm and co-worker actions. Since workers do not form “unions” within the firm, all of
these actions are taken as given by worker i.

- Lete(x) € {0,1} denote the exit decision of firm, and £ = {x : €(x) = 1} the set of x’s for which the firm exits.

- Let £(x) € {0,1}"%) be a vector of zeros and ones of length 7(x), with generic entry ¢;(x), that characterizes the
firm’s decision to lay off incumbent worker i € {1,...,n(x)}, and £ = {(x,i) : {;(x) = 1} the set of (x,i) such
that worker (x, 1) is laid off.

- Let gY (x) € {0,1}"™) be a vector of length n(x), with generic entry " (x) that characterizes an incumbent
workers’ decisions to quit, and QY = {(x,1) : g (x) = 1} the set of (x, i) such that worker (x,) quits into unem-
ployment.

For example, size would be update from 1 to 1 + 1 and possibly some of the incumbent wages would be bargained down.



- Letx (x) = (1 —£(x)) o (1 — qu (x)) be an element-wise product vector that identifies workers that are kept in the
firm,and S = LU QY = {(x,i) : k; (x) = 0}, the set of (x, i) such that worker (x, i) separates into unemployment.

- Let s(x, x(x)) denote how the state of firm x is updated when workers identified by «(x) are kept. This includes
any renegotiation.

Given these sets and functions, the pre separation value V (x, i) satisfies:

V (x,i) = e(x)U+(1 = () [ L ipes) Vs k() )+ LnesyU |

N~ N———
Exit Continuing employment Separations and Quits

Stage II. Itis helpful to characterize the continuation value of employment post separation decisions, V(x, i), in terms
of the three distinct types of events described in Figure . First, the value changes due to ‘Direct’ labor markets shocks to
worker i, Vp(x, i). These include her match being destroyed exogenously or meeting a new potential employer. Second,
the value changes due to labor market shocks hitting other workers in the firm, V;(x, i), including their matches being
exogenously destroyed or them meeting new potential employers. These events have an ‘Indirect’ impact on worker
i. Third, the value changes due to events on the ‘Firm’ side, V¢(x, i), including the firm contacting new workers and
receiving productivity shocks. Combining events and exploiting the fact that in continuous time they are mutually
exclusive, we obtain the following, where w (x,7) is the wage paid to worker i:

PV (x,i) = w (x,i) +pVp (x,1) + oV (x,i) + pVF (x,0) .

The wage function w(x, i) includes the transfers between worker i and the firm that may occur at the stage of
vacancy posting (after separations and before the labor market opens), as discussed in the Appendix Section A in the
context of the static example. These transfers can depend on the entire wage distribution inside the firm which is
subsumed in the state vector x.

Direct events. We first characterize changes in value due to labor market shocks directly to worker i in firm x,
Vp(x,1). Exogenous separation shocks arrive at rate § and draws of outside offers arrive at rate Af () from the vacancy-
weighted distribution of firms H,. If worker i receives a sufficiently good outside offer from x’, she quits to the new
firm. We denote by QF (x, i) the set of such quit-firms x’ for i. Otherwise, the worker remains with the current firm but
with an updated contract. Therefore Vp (x, i) satisfies

oVp (x,i) = S[U—-V (x,i)] + AE(B) [V (hg (x,1,x") ,i) =V (x,i)] dH, (x")
x'€ QF(x,i)
——————
Exogenous separation EE Quit

E r(x,i,x"),i) =V (x,i o (x),
EOA@) [ V() ) =V (] ()

Retention

where hg (x,1,x") describes how the state of a poaching firm x’ gets updated when it hires worker i from firm x. Simi-
larly, r (x,1,x") updates x when—after meeting firm x’—worker i in firm x is retained and renegotiates its value. In all
functions with three arguments (x,7,x’), the first argument denotes the origin firm, the second identifies the worker,
and the third the potential destination firm.

Indirect events. We next characterize changes in value due to the same labor market shocks hitting other workers
in firm x, Vj(x,i). The value Vj(x, i) satisfies



n(x)
LACHEDY {5[ (d(xj),i) =V (x,)] + AR(9) [V (9e (x,j,x) i) =V (x,i)] dHo (¥)

#i ¥/€QF (x,)

Exogenous separation EE Quit

E r(x,i,x"),1) —V(x,i o (x7) 3,
O [ Vi) v s ()}

Retention

where d(x, j) updates x when worker j exogenously separates, and g (x, j, x') when worker j quits to firm x’.

Firm events. Finally, we characterize changes in value due to events that directly impact the firm and hence indirectly
its workers, Vi (x, ). Taking as given the firm’s vacancy posting policy v(x) and other actions, Vr(x, i) satisfies

oVE (x,1) =
UE Hire $q(0)v (x) [V (hy (x),i) = V (x,1)] - Lire gy
UE Threat +¢q( Jo (x) [V (tu (x),1) =V (x,1)] - Lpg 4
EEHire  +(1—¢)q(0)v(x )/XEQW [V e (€,1,20.0) = )] b ()
EE Threat +(1—-¢)q(0)v(x) /xéQE(x’ " [V (tg (¥, 1, x) ,i) = V (x,i)] dH, (x',1")
Shock +T2 [V, V] (x,i)

where {7 (x) updates x when an unemployed worker is met and not hired, but could be possibly used as a threat in
firm x. Similarly, f¢(x’, 7, x) updates x when worker i’ employed at firm x’ is met, not hired, but could be used as a
threat. And, with a slight abuse of notation, H, (x’,i") gives the joint distribution of firms x’ and worker types within
firms 7.

Finally, T'; [V, V] (x, i) identifies the contribution of productivity shocks z to the Bellman equation. At this stage we
only require that the productivity process is Markovian with an infinitesimal generator. Later we will specialize this to
a diffusion process dz; = p(z¢)dt + o (z;)dW; such that

V((x,z+dz),i) — V (x,z,1)

V.V = p() i iz
o2 (z) .. V((x,z+dz),i)+V((x,z—dz),i) — 2V (x,z,i)
+ 2 dlzlglo dz? @

In the case that V = V, this becomes the standard expression for a diffusion featuring the first and second derivatives
of V with respect to z: T [V](x,i) = u(2)Va(x,z,i) + 10(2)?Vez(x, 2, i) 2

In the event productivity changes or n (x) changes because of exogenous labor market events, the worker will want
to reassess whether to stay with the firm or not. Additionally, the firm may want to reassess whether to exit or fire some
workers. Bold values V capture any case where the state changes.

2Note that in (1) we abuse notation and write the state as (x,z) with some redundancy since z is clearly a member of x. We also
note that we are not constrained to a diffusion process. We could also consider a Poisson process where, at exogenous rate 7, z jumps
according to the transition density I1(z,z'): I'; [V, V] (x,i) = 7] 0cz V ((x,2'),i) 11 (2, z) — V (x,z,1)].



A.2 Firm value function: |

Consistent with the notation we used for workers’ values, let J(x) and J(x) be the values of the firm at the corresponding
points of an interval dt. For now, we take the vacancy creation decision v (x) as given. At the end of the section we
describe the expected value of an entrant firm.

Stage I. Consistent with the first stage worker value function, we define the firm value before the exit/layoff/quit
decision, where we recall that ¢ is the firm’s value of exit, or scrap value:

J(x) =e(x) 0+ [1—e(@)]](s(x,x(x))).

Stage II. Given a vacancy policy v (x), let J (x) be the value of a firm with state x after the layoff/quit, exit. It is
convenient to split the value of the firm, as we did for the worker, into three components

pI() =y ()=} wi(xi) +  plw(x) +  pJr(x)—c(v(x),x)

Flow profits Workforce events Firm events net of vacancy costs

For a given policy v(x) there is a set of associated transfers between workers and the firm which, as for the worker
value function, are implicit in the wage function w(x, 7).
The component [y (x) is given by

plw (x) =

Destruction ) ‘ [J (d(x,i)) —J (x)]
n(x)
EEQuit  + AE(6) Z/EQE( [T (e (00, 2)) — ] ()] dHy ()

Retention + AE(9) 2 / [J (r(x,i,x")) = ] (x)] dHy (x') .
x'¢ QF (x,i)
The component Jr (x) is given by

plr(x) =
UE Hire ¢q(0)v (x) [J (hu (x)) = J (X)] - Lixeay
UE Threat + ¢q(0)v (x) [J (tu (x)) = J (0)] - Lixgay

EEHire  + (1—¢)q(6)o () / ey [ (0230) = (o] (4.7)
EE Threat + (1—¢)q(8)v(x) /xaéQE(x/ " [J (te (x,i',x)) = J (x)] dHy (x', ")
Shock +T:07,7] (x)

Recall that, in continuous time at most one contact is made per instant. Either one worker is exogenously separated,
or one worker is contacted by another firm, or one worker is met by posting vacancies (at rate g(6)v(x)), or a shock hits
the firm. We have bold J’s in each line since after any of these events, the firm may want to layoff some workers or exit,
and workers may want to quit.



Entry. The expected value of an entrant firm is

Jo = —co +/I(xo)dHo (zo0) 2)

where x is the state of the entrant firm which includes only the random productivity value zy drawn from Il since we
assumed the initial number of workers is 0. The argument of the integral is J, which incorporates the firm’s decision to
exit or operate after observing zg. Entry occurs when Jo > 0.

B Derivation of the joint value function (2

We define the joint value of the firm and its employed workers Q (x) := J (x) + Z?g) V (x,i). We also define the joint
value before exit/quit/layoff decisions: Q (x) := J (x) + Z?:(? V (x,1).

B.1 Combinining worker and firm values

In this section, we show that summing firm and worker values, then applying these definitions delivers the following
Bellman equation for the joint value:

pQ(x) = y(x)—c(v(x),x) 3)
Destruction + nﬁ& [Q(d(x,1)) +U - Q(x)]
Retention + AE(0 ) X) / (x,i,x")) — Q(x)] dH, (x')
i—1 Jx'¢QF(x, z)
EEQuit  + AF(6 Z(_x) / ey (208 (2 2)) £V (e (58,5) ) = O ()] o ()
UEEie 4 000 00 [0 (g ()~ U— 03] Tren)
UEThreat  + ¢q(0)0 () [ (fu (¥)) — O ()] - Typny
EEHire  + (1—¢)q(8)v(x) / s [0 0 (103)) =V (1 (,0,2),7) = 0 (0] by (3,1
EEThreat  + (1—¢)q(0)o () / s, [0 UE (272)) — 0 @] @by (2,7)
Shock  + I.[0,0] (x).

This joint value is only written in terms of other joint values and worker values. However, it involves both firm and
worker decisions through the sets A, QF and the vacancy policy, v(x).



Derivation. We start by computing the sum of the workers’ values at a particular firm. Summing values of all the
employed workers

n(x) n(x)
pY Vi) = Y w(xi
i=1 i=1
n(x)
Destructions + ) 6[U—V(x,i)]
i=1
n(x)
Retentions +AE ) / [V (r (x,i,x"),i) =V (x,i)] dHy (x')
i=1 Jx'¢ QF (x,i)
n(x)
EEQuits  +AF Y / [V (ke (x,0,')) = V (x, )] dHo (')
i=1 /x'€QF (x,i)
n(x)
Incumbents + Y pVi(x,i)
i=1
n(x)
Firm + Y pVp(x,i)
i=1

where the indirect terms due to incumbents and the firm can be written as:

n(x)
Z pVI(xr Z) =
i=1
n(x) n(x)
Destructions Yo ) SV (d(x,j)i) =V (x,i)]
i=1 jAi
n(x) n(x)
Retentions + Z Z AE/ [V (r(x,j,x"),i) = V(x,i)] dH, (x)
i=1 j#i ¥ ¢QF(xj)
n(x) n(x)
EEQuits  +) ) AF / V (qe (x,j,') i) — V (x,i)] dHy (+') ,
i=1 j#i ¥'eQF(x)j)
n(x)
Y pVe(x,i) =
i=1
n(x) . .
UE Hires qu(x)¢ Y [V (hy (x),i) =V (x,0)] - Tixeny
i=1
n(x)
UE Threats +qu(x) ¢ Y [V (tu (x),1) =V (x,0)] - Tegay
i=1
n(x)
EE Hires +qv(x) (1—¢) Y, [V (hg (x',7,x),1) =V (x,i)] dH,, (', 1)
i=1 Jx€QF(xi)

n(x)
EE Threats +qu(x) (1—¢) ), / [V (te (¢, 7, x) ,i) = V (x,i)] dH, (x', ')
i=1 Jx¢QE(x'i)
n(x)
Shocks + ) L[V, V](x,i)
i=1

We now collect terms.



Destructions.

Destructions

Retentions.
is given by:

Retentions =

n(x)
S[U—-V(x,i)]+6) [V(d(xi),j)—

j#

: n(x)
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Quits.
given by:

EE Quits = AF /

Combining terms.
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When worker i separates from firm x, the sum of the changes in values of all employed workers at its
own firm is given by:

n(x)
_ Z %4

j=1

(%))

When i renegotiates at firm x, the sum of the changes in values of all employed workers at its own firm

—V (x,j)] dHy (x')

Similarly, when i quits firm x, the sum of the changes in values of all employed workers at its own firm is

dH, (x')

Before summing up all these terms, define for convenience the total worker value:

n(x)

Y w(x,i

i=1

n(x) n(x)
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i=1

j#

: n(x)
ey [
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Now sum, up all the previous terms, collect terms and use the definition of V (x):

pV(x) =

Destructions

Retentions

EE Quits

UE Hires

UE Threats

EE Hires

EE Threats

Shocks

Y w(x,i)
i=1
n(x) n(x) _
+ Y s |U+ Y V(d(xi),j)—V(x)
i-1 j#i
n(x) n(x) -
—i—)\EZ/ Y V(r(xix),j) =V (x)| dH, (x')
i=1 /X ¢QF(xi) | j=i
n(x) n(x) _
LAE Y / V(g (6,0,0) i)+ YV (qe (00,2) ) — V (x)| dHy (')
i=1 Jx'€QF(xi) j#i
n(x) o
+qo(x) ¢ | )V (hu (x),1) =V (2) | - Tixeny
i=1
n(x) o
+qv (x) ¢ V(tu(x),i) =V (x)| Lz ay
i=1

o (1) (1-9) [

xeQE(x'i)

o () (1-9) [

x¢ QE(x/ i)

i=1
+T; [V/V](x)

Adding this last equation to the Bellman equation for J(x) yields

pQ(x) = y(x) —c(v(x),x)

n(x) n(x)
Destructions +Y's [] (d(x,0))+U+ Y V(d(xi),j)—](x) =V (x)
i=1 iF
n(x) n(x) o
Retentions +AE ) / J(r(xix")+ Y V(r(xix),j)—](x)=V(x)| dH, (x')
i=1 /X' ¢QF (x,i) j=i
n(x) n(x)
EE Quits +/\EZ/ ‘ l](qE (x,0,x")) + V (hg (x,i,x") i) + Y V(g6 (x,1,%),j) = J (x) =V (x)
i—1 Jx'€QE(x,i) i
n(x) o
UEHires  +q0(x)¢ [1 (b () + YV (b (3),8) = ] (6) = 7 ()| ey
i=1
n(x) -
UE Threats +qv (x) ¢ [I(fu () + ) V(tu(x),i) = J(x) =V (x) | -Tzg
i1
n(x)
EEHires  +qo(x)(1—¢) / T (he (<, 1,%)) + Y V (ke (2,4, %) i) — ] (x) =V (x)
xeQE(x',i") i—1
n(x)
EE Threats +qv (x) (1—¢) /gg ) [] (te (i, 2)) + YV (te (¢, %) i) = ] (x) = V (x)
x¢ QE (/i i—1

Shocks +LJ+V, ]+ V](x) =] (x) =V (x)

dH, (x',")

dH, (¥, 1)



Collecting terms and using the definition of () :

=

6
Destructions + ) 0[Q(d(x,i)+U—-Q(x)]
i=1
n(x)
Retentions ~ +AF ) / [Q(r (x,0,2)) — Q (x)] dH, ()
5 Jrgor(e
n(x)
EEQuits  +AF Y / [Q (g8 (x0,x')) + V (e (x,i,2") i) — Q (x)] dH, ()
i—1 Jx'€QE(x,i)

pQ(x) = y(x) —c(v(x),x)
(

UE Hires +qu (x) ¢ [Q (hy (x)) —U — Q(x)] - L gy
UE Threats +qu (x) ¢ [Q (tu (x)) — Q(x)] - Lirgay
EE Hires +qv (x) (1—¢) /erE(x' ) [Q (ke (¢, 1,%)) =V (he (¥, 7, %) ,i') = Q (x)] dH, (¥, 1)
EE Threats +gv (x) (1 —¢) /J(QQE(x’,i’) [Q (te (¢, 7, x)) = Q(x)] dH, (x',1)
Shocks +I;[Q, Q] (x)

B.2 Value sharing

To make progress on (3), we begin by stating seven intermediate results, conditions (C-RT)-(C-E) which we prove from
the assumptions listed in Section 2.2. These results establish how worker values V in (3) evolve in the six cases of
hiring, retention, layoff, quits, exit and vacancy creation. Next, we apply conditions (C-RT)-(C-E) to (3).

To highlight the structure of the argument, we note a key implication our zero-sum game assumption (A-IN): during
internal negotiation, any value lost to one party must accrue to the other. This feature is obvious in the static model,
and extends readily to our dynamic environment. In other words, the joint value of the firm plus its incumbent workers
is invariant during the negotiation. We use this property extensively in the proof. This generalizes pairwise efficient
bargaining—commonly used in one-worker firm models with linear production—to an environment with multi-worker
firms and decreasing returns in production.

We now state the seven conditions that we apply to (3). In section B.3 below, we prove how each of them is implied
by the assumptions of Section 2.2.

(C-RT) Retentions and Threats. First, if firm x meets an unemployed worker and the worker is not hired but only used
as a threat, then the joint value of coalition x does not change since threats only redistribute value within the
coalition. Second, when firm x uses employed worker i’ from firm x’ as a threat, the joint value of coalition x
does not change. Third, when firm x meets worker i’ at x” and the worker is retained by firm x’, the joint value of
coalition x’ does not change. Formally,

Q(r(x,ix) =) , QUux)=0Qx) , Qe (¥, x))=0Q(x).

Respectively, these imply that the Retention, UE Threat and EE Threat components of (3) are equal to zero.

(C-UE) UE Hires. An unemployed worker that meets firm x is hired when x € \A. This set consists of firms that have a
joint value after hiring that is higher than the pre-hire joint value plus the outside value of the hired worker. Due
to the take-leave offer, the new hire receives her outside value, which is the value of unemployment:

A= {x|Q(hu(x)) —OQ(x) = U}, V(b (x),i) =U.



(C-EE) EE Hires. An employed worker i’ at firm x” that meets firm x is hired when x € QF (x/,i’). This set consists of
firms that have a higher marginal joint value than that of the current firm:

QOF (') = {x|Q (e (¥, 1, %)) = (x) = Q) — O (g5 (', %)) }
Due to the take-leave offer, the new hire receives her outside value, which is the marginal joint value at her
current firm:
V(he (¥, 1,x)) =Q(x) —Q(qe (¥, 7, x)).

(C-EU) EU Quits and Layoffs. An employed worker i at firm x quits to unemployment when (x,i) € QY. This set
consist of states x such that the marginal joint value is less than the value of unemployment:

ou — {(x,i)‘o(gql( )+ U > O (550 (x,i
where 5,1 (x,i) = s(x, (1= [qu,—i (x);qu; (x) =1])o ( (x)))
S0 (1) = s(x,(1—[qu—i(x);qui(x) =0])o(1-

The first expression captures when worker i quits, and the second where worker i does not. Similarly, an EU
layoff will be chosen by the firm when (x, i) € L:

L = {< >] ( (x/i))+u>0(5zo(xri))}r
where Sor (x,1
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The first expression captures when worker i is laid off, and the second when worker i is not.

(C-X) Exit. A firm x exits when x € £. This set consists of the states in which the total outside value of the firm and its
workers is larger than the joint value of operation:

= {x|o+n(s(xx () U>(s (xr(x)].

(C-V) Vacancies. The expected return to a matched vacancy R(x) depends only on the joint value, and so the firm’s
optimal vacancy policy v(x) depends only on the joint value. The policy v(x) solves

max q(0)vR(x) —c(v,x),

v

where the expected return to a matched vacancy is

R(x) = ¢ [Q(hu(x)) = Q(x) = U] Tpreny

Return from unemployed worker match
b0mg) [ {100 () - 0@) - [0() -0 g (7, aH, ().
xeQE(x' i)

Expected return from employed worker match

(C-E) Entry. A firm enters if and only if
/Q&@ﬂM@zw+mu

Summarizing (C). The substantive result is that all firm and worker decisions and employed workers’ values can
be expressed in terms of joint value () and exogenous worker outside option U.
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B.3 Proof of Conditions (C)
B.3.1 Proof of C-UE and C-RT (UE Hires and UE Threats)

In this subsection, we consider a meeting between a firm x and an unemployed worker. Following A-IN and A-EN,
the firm internally renegotiates according to a zero-sum game with its incumbent workers and makes a take-leave offer
to the new worker. Intuitively, having the worker “at the door” is identical to having her hired at value U for the firm
and for all incumbent workers: the firm can always make new take-leave offers to its incumbents after hiring the new
worker. Hence, we expect the firm to make one take-leave offer to the new worker and its incumbents at the time of the
meeting, and not make a new, different offer to is incumbents afer hiring has taken place.

We start by showing this equivalence formally. To do so, when meeting an unemployed worker, we let the firm
conduct internal renegotiation with its incumbent workers and make an offer to the new worker. Then, we let a second
round of internal offers take place after the hiring. We introduce some notation to keep track of values throughout the
internal and external negotiations. To fix ideas, we denote by (IR1) the first round of internal negotiation, pre-external
negotiation. We denote by (IR2) the second round of internal negotiation, post-hire.

Post-hire and post-internal negotiation (IR2) values are denoted with double stars. Post-internal-negotiation (IR1)
but pre-external-negotiation values are denoted with stars.

* Kk n(X) * K%k * H(X) * n(X)
O =7 +Z;Vj +V; Q::]JrZ;Vj Q::]+Zi\q
= = =

Proceeding by backward induction, under A-EN the firm makes a take-it-or-leave-it offer to the unemployed
worker, therefore

1

We now divide the proof in several steps. We start by proving that for all incumbent workers j = 1...n(x), V]** =V*
We then use A-IN to argue that O* = (). Once these claims have been proven, we move on to proving C-UE (UE Hires)
and the part of for threats from unemployment C-RT (UE Threats). Finally, we show that our microfoundations for the
renegotiation game deliver A-IN.

Claim 1: For all incumbents workers j = 1...n(x), we have V]** = V]*

We proceed by backwards induction using our assumptions A-EN and A-IN. Immediately after (IR1) has taken
place, only the following events can happen:

1. Hire/not-hire

o Either the worker is hired from unemployment (H),

o Or the worker is not hired from unemployment (NH)

2. Possible new round of internal negotiation (IR2). This possible second round of internal negotiation (now includ-
ing the newly hired worker) leads to values V]**

We focus on subgame perfect equilibria in this multi-stage game. Therefore, after (IR1), workers perfectly anticipate
what the outcome of the hire/not-hire stage will be. That is, after (IR1), they know perfectly what hiring decision (H
or NH) the firm will make. Now suppose that internal renegotiation (IR2) actually happens after the hire/not-hire
decision, that is, that for some incumbent worker j € {1,..,n(x)}, V]** #+ V]* The firm has no incentives to accept a
change in the new worker’s value to anything above U, so by A-MC her value does not change in the second round
(IR2).

We construct the rest of the proof by contradiction. Consider for a contradiction an incumbent worker j whose
value changed in (IR2). Because of A-MC, her value can change only in the following cases:
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o The firm has a credible threat to fire worker j, in which case V]** < V]*

 Worker j has a credible threat to quit, in which case V;™* > V/*

In addition, those credible threats can lead to a different outcome than in (IR1), and thus V]** =+ V]-*, only if the threat
on either side was not available in (IR1). If that same threat was available in the first round (IR1), then the outcome of
the bargaining (IR1) would have been V/**

Recall that both incumbent worker j and the firm understand and anticipate which hire/not-hire decision the firm
will make after the first round (IR1). They also understand and anticipate that, in case of hire, the value of the new
worker will remain U in the second round (IR2).

Therefore, the firm can credibly threaten to hire the new worker in the first round if and only if it actually hires her after
the first round (IR1) is over. This implies that the firm can credibly threaten worker to fire j in the second round (IR2),
by A-LC, if and only if it could credibly threaten her with hiring the new worker in the first round of internal renegotiation
(IR1). This in turn entails that any credible threat the firm can make in the second round (IR2) was already available in
the first round.

On the worker side, quitting into unemployment is a credible threat when her value is below the value of un-
employment. So this threat does not change between the first round (IR1) and the second round (IR2), because the
equilibrium value to that worker will always be above the value of unemployment.

In sum, the set of credible threats both to the firm and to worker j does not change between the initial round of
internal renegotiation (IR1) and the post-hiring-decision round (IR2). This finally implies that the outcome of the initial
round of internal renegotiation (IR1) for any incumbent j remains unchanged in the second round (IR2), that is:
which proves Claim 1.

We can now move on to proving C-UE.

Proof of C-UE. Using the definitions of O** and (), we can write

n(x) n(x)
j=1 j=1
Now using V;** = U, we obtain
n(x) n(x)
j=1 j=1
Using Claim 1: V;™* = V, and adding and subtracting J* we obtain
n(x) n(x)
p=i j=1

Subsituting in the definition of () and of )%,

Finally recall that internal renegotiation is (1) individually rational, and (2) is a zero-sum game, according to A-IN.
Thus, all incumbent workers remain in the coalition after internal renegotiation, and the joint value is unchanged:
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O* = Q. Using O* = O

Q" —Q=["—J]+U
which can be re-written

o =0 -l - U

Now under A-LC, the firm will only hire if its value after hiring is higher than its value after internal renegotiation:
J** — J* > 0. This inequality requires

Q" -a>Uu
Q(hy (x)) -Q(x) 2 U

The firm does not hire when its value of hiring is below its value of renegotiation J** < J*. This inequality implies
" -a<u

When the firm does not hire, we obtain using again A-IN and Q0" = Q):
Q" -0 <Uu

which finally implies
Q (hy (x)) — Q (ty(x) < U

Now, we argue that conditional on not hiring, 3** = * = (), where in this case (J** denotes the value of the
coalition without hiring, and thus does not include the value of the unemployed worker. Just as before, this is a direct
consequence from A-IN and that the internal renegotiation game is zero-sum.

Therefore:

Q (tu(x)) = O(x)

We have therefore shown C-UE and part of C-RT (UE Hires and UE Threats): An unemployed worker that meets x is
hired whenx € QY, where
A= {x‘Q (hy (%)) — Q (x) > u}

and upon joining the firm, has value
V (hy (x,1)) = U.

and
Q(tu(x)) = Q(x).

B.3.2 Proof of C-EE and C-RT (EE Hires, EE Threats and Retentions)

The structure of the argument for EE hires, threats and retentions follows closely the steps of the argument for UE hires,
threats and retentions. The only major difference is that the worker’s outside option is endogenously determined when
hired from employment. Consider firm x that has met worker i’ at firm x’. We proceed in two steps.

Maximum value at incumbent firm. We first seek to determine the maximum value that x” may offer to its worker
when it may be poached by firm x. Under A-IN and A-EN, upon meeting an employed worker, internal negotiation
may take place at the poaching firm x, and x makes a take-it-or-leave-it offer. Internal negotiation may take place at x’
with all workers including 7'.

Proceeding by backward induction, we again define intermediate values but here at x’, noting that g (x/, ', x) gives
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the number of employees in x’ if the worker leaves:

n(ge (¥ x)) n(qe (¥ 7'x) n(ge (¥ x))
Q=]+ )Y Vi+V Q' =7+ ), Vi+V Q" =7+ ), V"
j=1 j=1 j=1

In the second equation we are describing the values of the firm in renegotiation where i’ stays with the firm, so V; is
the outcome of internal negotiation. In the third equation we consider the firm having lost the worker. Under A-EN the
firm will respond to an offer V from x with

Vi =V

Following the same arguments as in Claim 1 from section B.3.1, the same result obtains: under A-EN and A-IN, the
values accepted by the incumbent workers after the internal renegotiation (V]*) j will be equal to the values they receive
after the external negotiation (V;'*);, that is

j
Then following the same steps as in section B.3.1, and using again that ()" = (), we obtain that:
O —Q=[" -]V
Now under A-LC, the firm x’ will only try to keep the worker if J* > J**, which requires
Q- <V Q(r(x,i,x) —Q(ge (¥, i",x)) <V

This determines the maximum value that x’ can offer to the worker to retain them.

Poaching. Our second step is to check when worker i’ moves from x’ to x. The bargaining protocol implies that x
firm will offer V if it is making an offer, since it need not offer more. For firm x the argument may proceed identically
to the case of unemployment, simply replacing U with V. The result is that the firm will hire only if and only if

Q(he (¥, 1,x)) —Q(x) >V

or, equivalently,
Q(he (x,7,x)) —Q(x) > Q (r(x,i',x)) —Q(qe (¥, 7, x))

When firm x does not hire, A-IN applies, and so
Ot (¥, 1, %)) = Ox)
Similarly, when firm x’ is not poached, A-IN applies, and so
Q(r(x,,x)) = Q)
The combination of these conditions deliver C-UE and part of C-RT (EE Hires, EE Threats and Retention):

1. The quit set of an employed worker is determined by

OF (x',i') = {x

Q(he (x,7,%)) —Q(x) > Q(x') — O (g (x’,i’,x))}

2. The worker’s value of being hired from employment from firm x’ is

V(he(x,x',i')) = Q (x") — Q (qe (¥, 7, x))
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3. Worker i’s value of being retained at x’ after meeting x is

V(r(x',i,x),i") = Q (hg (¥,7,x)) = Q(x)
4. The joint value of the potential poaching firm x when the worker is not hired does not change:
Q(te(¥,7,x)) = Q(x)
5. The joint value of the potential poached firm x” does not change when the worker stays:

Q(r(x,i,x)) = Q)

B.3.3 Proof of C-EU (EU Quits and layoffs)
We first derive our expression for £ on the firm side, and next our expression for QU on the worker side.
Part 1: Firm side Consider a firm x who is considering laying off worker i for whom q;;; (x) = 0. As above, we

start with definitions, noting that n(s(:)) = n (s (x, (1 — [ (x); ¢; (x) = 1]) o (1 — gy (x)))) is the number of workers if i
is laid off:
n(s(:)) n(s(-)) n(s(:))
j=1 j=1 j=1

Note that in the first line the coalition has still worker 7 in it. In the second line, the firm and the worker i have negotiated
(and internal negotiation has determined V;* which is what i will get if they stay in the firm). In the third line, the worker
has been fired and another round of negotiation has occurred among incumbents.

The same result as in Claim 1 from section B.3.1 obtains: under A-BP, V/** = V]* Using this result and the above
definitions as before,

QO — () = U**—]*]—i—[ﬂ*—ﬂ] —VF

1

Using again A-IN to conclude that ()* = (), we obtain

1
Now under A-LC, the firm x will only layoff the worker if J** > J*, which requires
As long as V;* > U the worker would be willing to renegotiate and transfer value to the firm to avoid being laid off,
implying
Q-0 < U
which we can re-write
O (s (x, (1= [£(x)3; (x) = 1)) o (L= qu (x))),8) + U > Qs (x, (1 = [¢ (x);6; (x) = 0]) o (1 = gu (x)) )

where the LHS is 3** + U (under the layoff) and the RHS is (). This concludes the proof for the firm side.

3Because offers are made at no cost, both firms always make an offer, even when they know that they cannot retain/hire the
worker in equilibrium. This is exactly the same as in Postel-Vinay Robin (2002).
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Part 2: Worker side Consider worker 7 in firm x who is considering quitting to unemployment for whom ¢; (x) = 0.
As above, we start with definitions, noting that n(s(-)) = n(s(x, (1 —£¢(x))o (1 —[qu—i (x);qu;(x) =1]))) is the
number of workers if i quits. As before, we define

n(s(:)) n(s()) n(s(-))
j=1 j=1 j=1
The same result as in Claim 1 from section B.3.1 obtains V;** = V/*. Using this result and the above definitions,

Again, (Y* = ) from A-IN, so that

1

Now under A-LC, worker i will quit into unemployment iff V;* < U, which requires

As long as J** < J*, the firm is willing to transfer value to worker i to retain her. Therefore, worker i quits into
unemployment iff the previous inequality holds at J** = J*, i.e.

Q-0 <U
Therefore, the worker quits iff

Qs (x, (1 =€(x)) o (1= [qu,—i (x);qu,i (x) =1])),i) + U
>0 (s (x, (1= £(x)) o (1= [qu,~i (x);qu,i (x) = 0])) 1)

which concludes the proof of the worker side. This delivers C-EU.

B.3.4 Proof of C-X (Exit)

Consider a firm x who contemplates exit after all endogenous quits and layoffs, thus when its employmentis 1 (s (x, x (x))).
As before we define values conditional on exiting:

n(s(-)) n(s(-))

j=1 j=1
The joint value after exit is simply the value of the firm, since all other workers have left because of exit. Following
similar calculations as before,

n(s())
j=1

Again, (O* = Q) from A-IN, so that
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The firm exits iff [** > J*, thatis, @ > [*. This is equivalent to

. nsl)
Q" -0>- )V

j=1
Using again that Q** = J** = ¢, the firm exits iff
n(s(-))
9+ ) V>0
j=1
Since any worker is better off under V;* > U than unemployed, all workers are willing to take a value cut down to

uifde>Q- Z?fl(')) V]* because then the firm can credibly exit. This observation implies that the firm exits if and only
if
O —Q(s(x,x(x)))+n(s(x,x(x))U>0

This last equality proves C-X (Exit): the set of x such that the firm exits is given by
&= {xlotn(s(er () U0 (xr ()

B.3.5 Proof of C-V (Vacancies)

We split the proof in two steps. First, we show that workers are collectively willing to transfer value to the firm in
exchange for the joint value-maximizing vacancy policy function. Second, we show that a single worker can create
a system of transfers that achieves the same outcome. These transfers are equivalent to wage renegotiation, which
explains why we have subsumed them in the wage function w(x, i) in the equations above. Similarly to wages, these
transfers drop out from the expression for the joint value.

Part 1: Collective transfers In this step, we show that workers are collectively better off transferring value to the
firm in exchange of the firm posting the joint value-maximizing amount of vacancies.
The vacancy posting decision v/ that maximizes firm value is:

co (0 (x),n(x))
q

= QU s (1) = T (] Ty + (=) [ [T (1 (¢,1,)) = ] ()] s (4,7

xeQE(x'i")

Similarly, define v be the policy that maximizes the value of the coalition, and vV be the policy that maximizes the
value of all the employees. Let 07,]7, V" be the value of the coalition, firm and all workers under the v7, for v €
{Q,],V}. We now prove our claim in several steps.

Part 1-(a) Collective value gains. The policy v will lead to V" > V/ + [J) — %] where ]/ — J > 0.

Proof: By construction Qf? is greater than Q/: Q2 > (. By definition: Q® = JO + VQ, and Q) = ]/ + V. Use
those definitions to obtain inequality J + e >7+ ¥/, which can be re-arranged into v v > 71— 9 Since ]/ is
the value under the optimal policy for J, then J/ > J*. The above then implies that

V-V > -2 >0

This inequality implies that workers would be prepared to transfer T = J/ — ]2 > 0 to the firm in order for the firm to
pursue policy v instead of v/. This concludes the proof of Part 1-(a).
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Part 1-(b) Infeasibility of V", There does not exist an incentive-compatible transfer from workers to firm that
will lead to V" .

Proof: Suppose workers consider transferring even more to induce the firm to follow policy oV _that maximizes their
value. By construction 0o > av. Using definitions for each of these, then ] + v > 7V + v Rearranging this:
T2~V >V — V" Since V" is the value under the optimal policy for V, then V" > V. The above then implies that

Taking v as a baseline, the above implies that a change to 0V causes a loss of ]2 — JV to the firm, which is more than

the gain of 7" — 7 to the workers. This implies that workers could transfer all of their gains under 0V to the firm, but

v

the firm would still not choose v" over v®. This concludes the proof of Part 1-(b).

Part 1-(c) Optimality of V. There does not exist an incentive-compatible transfer from workers to firm that

willlead to V™ € <VQ,VV).
Proof: Call such a policy oV*. Then: 02 > OV* , and by definition,
IR A S

Since by definition Ve (VQ,VV> , then vo_v° > 0. Therefore

Taking v as a baseline, the above implies that a change to vV causes a loss of Je — ]V* to the firm, which is more than

the gain of V" — 7" to the workers. This concludes the proof of Part 1-(c).

Part 1-(d) Conclusion. Insummary, it is optimal for workers to transfer exactly T = J/ — J* to the firm, in order
for the firm to pursue v instead of v/. Further transfers to the firm would be required to have the firm pursue a better
policy for workers, but this is exceedingly costly to the firm and the workers are unwilling to make a transfer to cover
these costs. This concludes the proof of Step 1: Collective transfers.

Part 2: Individual transfers In this step, we show that a single, randomly drawn worker can construct a system of
transfers that induces the firm to post v* instead of v/, while leaving all agents better off.

Within dt, consider the single, randomly drawn worker jy. Consider the following system of transfers. Worker j
makes a transfer [/ — J© to the firm, in exchange of what (i) the firm posts v instead of v/, and (ii) the worker gets a
wage increase that gives her all the differential surplus vV

Following the same steps as in Part 1: Collective transfers, the firm gets J> + [J/ — J©] = J/ and is hence indifferent.
Similarly, workers j # jo do not get any value change, and are thus indifferent Finally, worker jj gets a value increase
of

VeV - =0

where the inequality similarly follows from Part 1: Collective transfers. This concludes the proof of Part 2: Individual
transfers.
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Conclusion. The previous arguments show that a single worker has an incentive to and can induce the firm to post
v}, Notice also that the same argument holds starting from any vacancy policy function 7 # v/ together with a value
of the firm T Thus, even if some worker induces the firm to post a different vacancy policy function which is not v
any other worker has an incentive to induce the firm to post v. Therefore, in equilibrium, the firm posts v}, which
concludes the proof of C-V.

B.4 Applying Conditions (C)

Having established that Assumption (A) can be used to prove Conditions (C), we now apply conditions (C) to the
Bellman equation for the joint value. The goal of this section is to show that for x € £¢ the complement of the exit set,
we can considerably simplify the recursion for the joint value:

p0() = (), (0) - (o (x),n(x),2(x)
Destructions —5@ [Q(x) = Q (d(x, ) — U]
UEHies  +40(x)9 [0 (x)) — O () — U] - Tes
EE Hires +qv (x) (1—¢) /xEQE(x/’i/) [[Q(he (x,7,%)) —Q(x)] = [Q(x') —Q (g (¥, 7, x))]] dH, (x', 1)

Shocks +T[Q, Q] 4)

with the sets

QU = {(x,0)| (s (x, (1= £(x)) o (1 = [qu,—i (x) 3 qu, (x) = 1)),i) + U

> Q (s (x, (L= £(x)) o (1= [qu,—i (x);qu,i (x) = 0])) i) } ®)
£= {0 (o (-6 (x) = 1)) 0 (1= qu (1)) 1) + U
> Q (s (x, (1= [£(x) ;4 (x) = 0) o (1 = qu (x))) 1) } (6)
& = {x[o+n(s(ex(x)) - U = O(s(x,x(x)) | )
A= {20 (hy () - Q (x) = U} ®)
oF (¥,i) = {x Q (he (x',7,x)) —Q(x) > Q(x) —Q (ge (x’,i’,x))} )

and—as per (C-V)—the vacancy policy v (x) is given by the solution to the following:

Co (0 (x) 1 (x))

: = ¢[Q(hy (x) —Q(x)] - Tire

e[ (0 () 0] - [0) -0 (710)]) dHy (€,7) 00

In continuous time, the exit decision is captured by x € £. The Bellman equation above holds exactly for x € £¢. Exit is
accounted for in the “bold” continuation values, which all include the possible exit decision should the firm’s state fall
into £ after an event.

We first proceed one term at the time, working through (B.4.1) exogenous destructions, (B.4.2) retentions, (B.4.3) EE
(poached) quits, (B.4.4) UE hires, (B.4.5) UE threats, (B.4.6) EE (poached) hires, and (B.4.7) EE threats.
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B.4.1 Exogenous destructions

() n(d(x,i)) n(x)
Destructions = Y_ 6 |J(d(x, i)+ Y, V(d(xi),j)+U—-Q(x)| =Y 6[Q(d(x,i)) +U—Q(x)]
i=1 j=1 i=1

n(d(x,i

where we simply have used the definition Q (d(x,i)) := J (d(x,i)) + Zjil Dy (d(x,i),).

B.4.2 Retentions

) )

etentions = ., ,i,x"),7) — o («

Retent AEZ/ [](r(xix’))JrZV(r(xix’) i) — Q)| dH, (+')
i=1 /¥ 2 QF (xi) j=i
)

= / sy [0 () = Q) e ()

where we simply have used the definition Q (r (x,i,x")) = J (r (x,1,x")) + Z}qg) V (r(x,i,x"),j). Now using the result
in C-RT that
Q(r(x,i,x")) =Qx)

we obtain that
Retentions = 0

B.4.3 EE Quits

n(x) n(x)
EE Quits = AF E //egE( ) l] (98 (x,i,x")) + V (qg (x,i,x") i) + Z V (qe (x,i,x"),j) —Q(x) | dHy (x")

i=1 i
Now by definition
n(qe(xix')) n(x)
Qe (i 2)) =T (ge (i) + ), V(e (xix).j) =T @e (v x) + 3,V (4e (8,%') )
j=1 J#

Using this last equality in the term in square brackets

n(x)

EE Quits = AF ) / ‘ [Q (g9 (x,4,x")) —Q(x) + V (qe (x,1,x") ,i)] dH, (x)
i=1 Jx' € QF (x,0)

Using C-EE, the value going to the poached worker is V (¢ (x,i,x")) = Q (x) — Q (gg (x,1,x")). Substituting this into
the last equation, we observe that the term in the square brackets is zero, and so

EE Quits =0

B.4.4 UE Hires

n(x)

UE Hires = qov (x) ¢ | ] (hu (x)) + );1 V (hu (x),i) = Q(x) | - Tizeny
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Now, by definition

n(hy(x)) n(x)
Q (hy (x)) = J (hu (x)) + ; V (hy (x),i) = J (hu (x)) + ; V (hy (x),i) +V (hy (x),i

and so, re-arranging,

P (90 + 52 (0 9,0) = 0 ()~ G 0.1
iz
Substituting this last equation into the term in the square brackets of the first equation,
UE Hires = qo (x) ¢ [Q (hy (x)) — Q(x) = V (hy (x) ,1)] - Lixe
Following C-UE, the value going to the hired worker is V (hy; (x),i) = U. Substituting in:
UE Hires = qu (x) ¢ [ (hy (x)) — Q (x) = U] - Lye 1
B.4.5 UE Threats

n(x)
UE Threats = qov(x) ¢ |J (fu (x)) + Y} V (tu (x),0) = Q(x) | - Tizgay
i=1
Using the definition of Q(f(;(x)), we can re-write this term as
UE Threats = qov(x)¢[Q (ty (x)) — Q(x)] - L 4y

Now using our result in condition C-UE that Q (f; (x)) = Q(x), we can conclude that

UE Threats =0

B.4.6 EE Hires

n(x)
EE Hires = gov (x) (1 — ¢) [] (he («',7,x)) + Y V (he (¥, 7, x) i) — Q (x)] dHy (x',i")
xeQE(x i) i—1
Now by definition
n(hg(x'i',x))

Q (he (&, 1, %)) =T (he («',7,x)) + Z V (he (X, 1, x) i)

n(x)
V (b (¥,7,7) i)
=1

[ (he (,7,x)) + +V (hg (¥, 1, x) i)

i
which can be re-arranged into

n(x)
J (he (x',1',2)) + Y V (he (¥,,x) ,i) = Q (hg (X, i, x)) = V (hg («, 7, x) ,0)
i—1
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Using this in the term in the square brackets

EE Hires = qo (x) (1 — ¢) / [ (hp (¢, 7, %)) — Q (x) = V (g (.7, x),i)] dH, (2, )

x€QE(x i)

Under C-EE, the value going to the hired worker is V (hg (x/,i’,x),i) = Q (x') — Q (g (x',7, x)). Substituting this in:

EE Hires = qv (x) (1 — ¢) / [0 (e (¢, 7,%)) — Q (x)] - [Q (x') — Q (g (', %))]] dHy (', )

x€QE(x i)
B.4.7 EE Threats

n(x)
[] (tg (X, i, %))+ Y V(tg (¥, 7,x) i) = ] (x) =V (x) | dH, (x', 1)

i=1

EE Threats = gqv(x)(1— ¢)/
xQQE(X/,I'/)

Using the definition of Q(tg(x/,i’,x)), we obtain
EE Threats = o (x) (1—¢) / Q2 (te (.7, %)) — Q(x)] dHy (¥, 7)
x¢ QE(x' i)

Now using the result in condition C-RT that Q (tg (x/,7,x)) = Q(x), we obtain that

EE Threats = 0

B.5 Reducing the state space

We have obtained the simplified recursion (4)-(10). Inspection of the system (4)-(10) reveals that the only payoff-relevant
states are (z, 1), and the details of the within-firm contractual structure do not affect allocations. Any extra information
contained in x beyond (z,n) would be redundant given (z, n).

Therefore, it is straightforward to see that we may express the exit and separation decisions as

Q(z,n) = H{(Z,n)eg}{ 9+ nU} + ]I{(z,n)egu}{ Q(z,n—1)+ U} + H{(z,n)eQng}Q(Zr”>/ (11)
where & = {nz|[0+nU>Q(zn)},
QY = {zn|Q(zn—1)+U>Q(zn)}.

The first expression is the value of exit. A firm that does not exit, chooses whether to separate with a worker or not. If
separating with a worker, the firm re-enters (11) with Q(z, n — 1), having dispatched with a worker with value U, and
again choosing whether to exit, fire another worker, or continue. Iterating on this procedure delivers

Q(z,n)=max{19+nu, max Q(z,n—s)+sU}. (12)

s€|0,...,1]
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Second, the post-exit/separation decision joint value is given by the Bellman equation

0Q(z,n) = maxy (z,n) —c(v,n,z)
Destruction + 511{ (Q(z,n—1)+U) —Q(zn) }
UEHire + ¢q(0)0 I{znyeay - {Q (z,n+1)— (Q(z,n) + U)}
EE Hi + 1-— 0 Q(z,n+1)-Q(z,n)] - [Q(Z,n)-Q((Z,n -1 dH, (Z/,n'
e+ (1—¢)q(0)0 /(Zln)GQE(Z,ﬂ,){[ (21 +1) = Q(zn)] - [Q(Z,n) ~ Q(<,n' 1)) baH, (2,n')

Shock + T,[0Q,0](z,n),
where A {z,n|Q(zn+1)>Q
QF (Z,n) = {zn|Q(zn+1)-Q

(z,n)+ U},
(z,n) >Q(Z,n")—Q(,n -1)}.

Finally, firms enter if and only if
/Q (z,0)dIIp(z) > ce. (13)

This condition pins down the entry rate per unit of time.* Details of the proof are available upon request.

B.6 Continuous workforce limit

Up to this point the economy has featured a continuum of firms, but an integer-valued workforce. We now take the
continuous workforce limit by defining the ‘size” of a worker—which is 1 in the integer case—and taking the limit as
this approaches zero. Specifically, denote the “size” of a worker by A, such that n = NA where N is the old integer
number of workers. Now define Q% (z,n) := Q(z,1n/A), and likewise define y*(z,n) := y(z,n/A) and c®(v,n,z) =
c(v/A,n/A,z). We also define b := b/A and 9* := ¢/A. These imply, for example, that Q(z, N) = Q%(z, NA).
Substituting these terms into (12) and (13), and taking the limit A — 0, while holding n = NA fixed, we would
obtain a version of (14) in which all functions have the A super-script notation. We also specialize the productivity to a
diffusion process dz; = p(z¢)dt + o (z¢)dW.

The result is the joint value representation of Section 3: a Hamilton-Jacobi-Bellman (HJB) equation for the joint
value conditional on the firm and its workers operating:

Q) (z,n) = max Y (z,n) —c(v,n,z) (14)
v>
Destruction —on[Qy(z,n) — U]

UE Hire +¢q(0)v[Qpu(z,n) —U

EEHire  +(1-— 4))q(9)v/max {Qn(z,n) -0, (n',7), O}dHn (', n")

2
Shock  +u(z)Qz(z,n) + (7(;) O,z (z,n).

Boundary conditions for the firm and its workers operating require the state to be interior to the exit and separation
boundaries:

Exitboundary:  Q(z,n) > 0+ nU,
Layoff boundary: Qu(z,n) > U

Note the absence of () terms. Since the value we track is that of a hiring firm subject to boundary conditions, then

4Recall that Jo = —c. + [ J(x0)dT1(zg). Given Q(zo,0) = J(z0,0), we have Jo = —ce + [ Q(z,0)dI1(zg). Free-entry implies
Jo = 0, which delivers (13).
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pw (1A, z) = max

Q = Q. This admits the simplification of ‘Shock’ terms we noted when discussing (1).

We proceed in three steps:

(B.6.1) Define worker size and the renormalization
(B.6.2) Take the limit as worker size goes to zero

(B.6.3) Introduce a continuous productivity process.

B.6.1 Define worker size and the renormalization

We denote the “size” of a worker by A. That is, we currently have an integer work-force n € {1,2,3,...}. We now
consider m € {A,2A,3A,...}. So then n = m/A. We use this to make the following normalizations:

w(z,m) =Q (%,z)

m
yiem =y ()
These definition imply

Q(z,n) = w(nA,z) y(z,n) = Y(nh,z)

In addition, the value of unemployment solves pU = b. Define

and

Substituting these definitions into the Bellman equation, we obtain

A — A, nA
max Y (nA,z) — C (vA,nA, z)

L w(m'A)—w('A-AZ)

C(z,m)=c (%, %,z)

c(v,z,n) = C(vA,nA,z)

Destructions —dnA [w (nd,z) — (Z (nA—4,z) Z/{}
EEHires  +qoA (1 — ¢) / w (nA+ A, z) — w (A, z)
(nAz)€QE(n'Az) A
Shocks  +T; [w,w] (nA,z)
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with the set definitions

&= {nA,z max  w(kA,z) + (nA — kAU < 6+ nAU}
kAE{0,...,nA}
w (nA+A,z) —w (nA, z)
= >
A {nA, A >U
ou — {nA L@ (nA,z) —w (nA — A, z) < LI}
7 A —
E /a1 w(nA+A,z) —w (nA, z) >w(n’A,z’)—w(n’A—A,z’)
Q" (n A,z)—{nA,z A > A
and the definition:
w(nh,z) = max { max w(kA,z) + (nA—kAU, 0+ nAL{}
kAE{0,...nA}

B.6.2 Continuous limit as worker size goes to zero

Now we take the limit A — 0, holding m = nA fixed. We note v = lima_,o vA. We see derivatives appear. We denote

wm(z,m) = 32 (z,m).

First, we note that the following limit obtains:

w(z,m) = max{ max w(k,z)+ (m—kU, 0 +mAZ/l}
ke[0,m]

In particular, the exit set limits to

£ = {Z,m

In equilibrium, the w(z, m) terns on the right-hand-side of the Bellman equation are the result of endogenous quits,
layoffs and hires. Because our continuous time assumption has been made before we take the limit to a continu-
ous workforce limit, we need only consider those changes in the workforce one at a time. Hence, for any (z,m) €
Interior(E° N A), the interior of the continuation set, there is always A > 0: such that for any A < A:

max w(k,z)+ (m—k)U <0+ mu}
ke[0,m]

wimtA,z)=wlmtA,z)

Using this observation in the Bellman equation, we can obtain derivatives on the right-hand-side. We obtain, for pairs
(z,n) in the interior of the continuation set (z,#) € Interior(E° N A):

pw (z,m) =max Y (z,m)—C(7,z,m)
>0
Destructions —om[wm(z,m) — U]

UE Hires +q0¢ (Wi (z, m) — U] ']I{(z,m)eA}

EEHires  +40(1—¢) /

(z;m)€QE (m' ")

Shocks +T; [w, w] (z,n)

lwm(z,m) — wp(m',2') |dH, (m',2')
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with the set definitions

Sz{z,m max w(k,z)+(nk)u<9+m2/l} A
ke[0,m]

W (z,m) > U}

{z,m

oY = {Z, m|wy (z,m) < Z/l} = A, the complement of A

z,m|wp (z,m) — wy(m',z') > 0}

and the definition
w(z,m) = max { max w(k,z)+ (m—kU, 6 —l—mbl}
ke[0,m]

Note that now, the only place where w enters in the Bellman equation is the contribution of shocks. To replace it with
w, we need to apply the same argument to z as the one we applied to n. We thus need to specialize to a continuous
productivity process.

B.6.3 Continuous productivity process

We now specialize to a continuous productivity process, as this makes the formulation of the problem very economical.
It allows to simplify the contribution of productivity shocks and get rid of the remaining “bold” notation. We suppose
that productivity follows a diffusion process:

dzy = p(ze)dt + o(zp)dWy

In this case, for any (z,m) in the interior of the continuation set, productivity shocks in the interval [t,  + dt] cannot
move the firm towards a region in which it would endogenously separate or exit, when dt is small enough. In this case,
we can write the following, where we have also replaced the OF set with the max operator:

pw (z,m) = max Y (z,m)—C(v,z,m)
v>0
Destructions —om|wp(z,m) — U]
UE Hires +qup [wi(z,m) — U]
EE Hires +qo (1 —¢) /max {wm(z,m) —wp (2, m'), O}dm (m',2")
2
Shocks +u(z)wz(z,m) + @wzz(z, m)
s.t.
No Exit w(z,m) >0+ miU
No Separations wm(z,m) >U
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To make the notation more comparable, we slightly abuse notation and use the same letters as before, but now for the
continuous workforce case. We obtain finally:

0Q (z,n) = max y(z,n)—c(v,zn)
v>0
Destructions —on[Qy(z,n) — U
UE Hires +qup [y (z,n) — U]
EE Hires +qo (1 —¢) /max lQn(Z,n) —Qu(<,n"), 0|dH, (', n")
2
Shocks +u(z)Qz(z,n) + U(;) Oz (z,n)
s.t.
No Exit Q(z,n) > 0+nlU
No Separations Qy(z,n) > U

When the coalition hits ), (z, ) = U, it endogenous separates worker to stay on that frontier. It exits when it hits the
frontier Q(z,n) = 9 + nU.

In addition to these “value-pasting” boundary conditions, optimality implies necessary “smooth-pasting” bound-
ary conditions (see Stokey 2009): Q);(z,n) = 0 if the firm actually exits at (z,n) following productivity shocks, and
0y (z,n) = 0 if the firm actually exits at (z,1) following changes in size. These are necessary and sufficient for the
definition of our problem (Brekke and Qksendal 1991). Its general formulation terms of optimal switching between
three regimes (operation, layoffs, exit) on the entire positive quadrant, can be made as a system of Hamilton-Jacobi-
Bellman-Variational-Inequality (see Pham 2009), which we present here for completeness :

max { —pQ(z,n) + max —on[Qp(z,n) — U] + qo¢ [Qn(z,n) — U]

LZ>ZQZZ(Z,71) ;

+qv (1 —¢) /max lQn(z,n) - Q2,1 O] dH, (z/,n") + u(z)Q:(z,n) + >

O+nl—Q(z,n); krggi]ﬂ(z,k) +(n—kU-— Q(z,n)} =0 , V(zn) €eR%
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C Computational details

C.1 Numerical Solution to Surplus HJB Equation
C.1.1 Simplifying the Bellman equation
o Recall that the stochastic process for z; is

dZt =Hu (Zt) dt+o (Zt) th

o We want to solve:

pS(z,n) = max y(z,n) —nb—cy —nSy, (z,n)

Su(zn)
+q |¢Sn (z,n) + (1 — 47)/0 [Su (z,n) — S;] dHy (Sy,) | v —c (v, n)

Expected benefit per vacancy :=H (S;)

+u(z)Sz(z,n) + 022('2) Szz(z,n)

where p = (p + ) to account for exogneous exit at rate dy, which we use in the quantitative model.

e The expected benefit per vacancy, H (S;) is a function only of marginal surplus S, and integrating by parts is:

H(Su) = q [9Su+ (1~ ) A (S0)]

where
A5 = [ H)ds . Hy (S = [ )ds . (S0 = O s0)
n n) — : n 7 n n) — 0 n 7 n n) — n n
e Asin our quantitative exercise, let c(v,n) = = (2)"o.

o The first order condition for vacancies is then as follows, with associated vacancy rate:

s - (2
”(‘Z”) - EILMH (Su (z,1))} .

o The terms that depend on vacancies in the Bellman equation can therefore be simplified:

H(Sy(z,n))v—c(v,n) =EH (Sy (z,n))HT7 n,

_ 1 7
A1y

e Substituting this back into the Bellman equation, and re-arranging we have flow payoffs, terms that depend on
the drift of n and terms that depend on the dynamics of z:

pS (z,n) =y (z,n) —nb—cy

+ gw_(s] nSy (z,n) )
2(z
+ 1(2)Sz(z,n) + 02( )Szz(z,n).
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o This is subject to boundary conditions and the previous definitions:

S(z,n) >0
Sn(z,n) >0
H (Su (z,m)) = q [9Su (2,m) + (1= @) (Su (2,))]

N Sn(zmn)
Hy (Sn (z,n)) = /0 Hy(s)ds

C.1.2 Change of variables

o Define the following objects

w(zn) = y(zn)—nb—c

e Up to this point, the stochastic process for z; has been a general geometric Brownian motion with drift and
volatility y (z¢)and o (z;), respectively:

dZt =Hu (Zt) dt+o (Zt) th

o In the quantitative model, we consider a random walk in logs:
dlogz; = pudt 4 cdW;

o Jto’s Lemma implies that

2
dz; = |:ﬂ+ U] zidt + oz AW
2 NI
——— o(z¢)
p(zt)

o Substituting these into the Bellman equation

o?(z)

0S (z,n) = 7w (z,n) + pn (z,n) 1Sy (z,n) + u(z)Sz(z,n) + ——=S22(z,n)

2 2
0S (z,n) = 1w (z,n) + pn (z,n) nSy, (z,n) + []1 + (72] z8;(z,n) + %zzszz(z,n)

o Now consider a change of variables. Let Z = logz, 7 = logn. Now define S (Z,7) = S (ez, eﬁ> = S(z,n),

R(EH) =mn (eE, eﬁ) ,and jiy (Z,7) = pin (ef, eﬁ)
o Note that
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e Applying the chain rule to S (z,1) = S (logz,log 1), and re-arranging:

o Substituting these into the Bellman equation

0'2~ ~ o~

55 (Z,7) = 7 (Z,7) + pn (sn (e'f, eﬁ)) Si (&) + uS: (2,7) + 5 8= (2,7) (16)

e The boundary conditions are the same, since S (z,n) = S (z,7),and S, (z,n) > 0, which since n > 0, is true if and
only if S, (z,n) n > 0, which is equivalent to Sy (z,7) > 0.

C.1.3 Implicit method
e We solve (16) using an implicit method.
o Let A denote step-size and 7 the iteration of the algorithm.
e Then given ST (Z,7), the implicit method gives an update:

1 2

% [s~ i) -5z ﬁ)} +pST (3,71) = 7 (2, 7) + i (sn (ef, eﬁ)) ST (z,7) + uSL (Z,7) + %Sl Z,7)

zz

Rearranging this expression:

(i + ﬁ) ST M) — pn (sn (ef, eﬁ)) ST (z,7) — uSE (3,7) — %sm (z,7) = 7% (3,7) + %s?f—l i) (17)

We now discretize 7 on an evenly spaced Ny x 1 grid, 11 = (#ig, g + Ay, g + 24, g + (N; — 1) Ay), and Z on an
evenly spaced Nz x 1 grid, Z = (2o, 20 + Az,20 + 205,20 + (Nz — 1) Az).

Stack these according to:

El/ ﬁl
Z2,
. . ZN,, i
$=[in,®ZAQiN.| =
E11/ ﬁNg
ZN., N,
o Discretized, we can write (17) as N3 X Nj equations:
1 ~\ QT QT QT o QT ~ 1 qr—1

e Let Dj be the (N5 x Nj) x (N5 x Nj;) square matrix that, when pre-multiplying S, gives an approximation of
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§% Analogously, define D5 and D5

ST = D;pS*
ST = Ds5T
ST = DzS"

o Using these we can write (18) as
1\ - o? o o~ 1oy
Z‘FP _]/lnDﬁ— “l,ng'f'?Dgzv S :7T+KS

o Define

NU :,ﬁnDﬁ

0.2

Z? = uDs + 5

Dz

e Then we have

Ki +ﬁ> ~ N7 — zv] ST =7+ %§T’l
o Therefore the implicit method works by updating S® through
BST = [T+ ~571
A
B:(i+ﬁ)—NU—ZU (19)

C.1.4 Derivative matrices

o To compute the derivative matrices Dj, Dz, and D3z, we follow an upwind scheme.

That is, we use a forward approximation when the drift of the state variable is positive, and a backward approx-
imation when the drift of the state is negative.

In the simple case of D;, since our estimation delivers y < 0, D is built considering a backward difference such
that, for example, the derivative at point S; (z3, n2) is computed as
S (23,712) — S: (22, 712)

S. (23,11) = Ao :
Z

This requires that Ds is as follows, where I is an N; x Nj identity matrix:

“1/A;  1/As 0 0
“1/a; 1Ya; 0 :
0 “1/A;  1/A; 0
0 -1/A;  1/A;

n

: . . .. . 0
0 0 “1/A; 1/A;

N3><NZ

which gives a backward approximation for any i except for i = 1 in which case it uses a forward approximation.
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o For the case of the second derivative with respect to z, we use a central approximation by building the following

matrix®
71/A‘zz“ 1/A% 0 0
a2 -2/m2 /a2 0 :
1/A2 —2/A2
Dgg = 0 /AZ /AZ &I 1
0 o YA 0
: . /a2 =2/A2 1/AZ
0 0 /a2 —1/A2

NEXNZ

o Finally, care must be taken in the case of Dj since the drift of n endogenously depends on (z,7), and thus the

upwind scheme dictates that the direction of the finite difference depends on (z, 7). We construct both Dé that
considers a forward approximation, D} for a backward approximation, and use the former for positive values of
1in (z,7) and the latter for negative values,

F.2 Numerical Solution to Kolmogorov Forward Equation
o Substituting these into the Bellman equation

2

0S (Z,71) = 7 (Z,71) + jin (Z,7) Si (Z,71) + S5 (,7) + %523 (z,7) (20)
o We continue to work in the transformed variables.
e Note that ~
dn/n _ dlogn dlz
dt at dt
e Let /i (Z, 1) be the stationary distribution of firms in the economy.
e Recall S (Z,71) = S (z,1), so operating firms have S (Z,7) > 0.
e Then & (Z, 1) satisfies
0 [dn(zn) . dn (z,7) o~
0——£ T~~~ h(Z,Vl) + T~~~ I’l(Z,Vl)
S(z,7)>0 S(zm)<0

2
— phs (2,71) + hsz (2,70) — 0xh (,71) +morto (2) A (i)

Note that firm exit from negative surplus is not treated as part of the drift in n, hence two % terms: firm exit

takes mass away from certain states without returning it anywhere in particular, while layoffs shift mass from
one state to another.

o We can vectorize this in the same way as above, and obtain

2
0 = —Djith — uDsh + %Dﬁh — Xh — 8.k + hy

[5(Zia,7;) =S (Zi'ﬁf)}A_z[g (Zi1;) =S (2]
(En.. 1) -5 (zNiz,l,ﬁj) .

Z

5For any j the (i, ) entry of Sz = D;S reads
S(z21;)-5(27)
A

for any i except for i = 1 in which case it reads

and for i = N; in which case it reads
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dii(Z,7)

e Where (i) & is the stacked as above, (ii) 71 is a (Nz x N;) x (Nz x N;) diagonal matrix with —a |5Emso as
Zn)>
its entries, (iii) X' is a (N3 x Nj) x (N3 x Nj) diagonal matrix with — dﬁg’ﬁ) as its entries, and hy is the
S(z,71)<0

stacked (N3 x Nj) x 1 vector version of my7tg (z) A (n).

o The derivative matrices follow the same purpose as before, however note that D; must use a forward difference and
Dj; must use upwinding to determine the approximation, depending on the sign of # (forward approximation
for negative drift and backward approximation for negative drift).

o This expression can be rearranged to yield

~ 0'2
(—Dﬁn) + (—]JDZ + ZDZZ) —-X - 5xINZ><Nﬁ h = —hy. (21)
Nd
zd
L

E.3 Stationary equilibrium algorithm

o The algorithm consists of three steps, implemented in MATLAB by SolveBEMV.m, which is called by the master
file MAIN.m.

Step 0 - Construct initial guess
e Start by constructing a Ny x Ny grid for log productivity and log size.
o Letm(z,n) =y (ez, eﬁ) —e'h—c ¢ denote the stacked (Nz x Nj) x 1 vector of flow payoffs on this grid.

e Guess an initial surplus S° on this grid (a (N5 x Nj;) x 1 column vector); a distribution of firms over productivity
and size h° (a (N; x Nj) x 1 column vector); aggregate finding rates q° and A%; and an efficiency-weighted share
of unemployed searchers, 6°.

e Bundle together these aggregates X? = {qO, ¢°, o, SO}.

o Construct marginal surplus. Construct exit regions, separation regions and the vacancy policy. File InitialGuess.m
does this.

o Sett=1.

Step I - Given aggregate states, iterate to convergence on the coalition’s problem
e Given X~1 = {41, ¢!~1, n'=1,S5!1} solve the coalition’s problem to obtain S'.
o The equation we use is

e We compute B—which depends on the distribution of marginal surplus, and other elements of X!~!—using X!~!
and keep it fixed. Denote this B;_1.

e Set T = 0. Set ST = S'~1. Iterate using (19), until convergence to S**, where ||S"T — S/T71|| < gs.
t,T+1 -1 ( 1 fT)
st =B (114 8"

These iterations are performed using IndividualBehavior.m, and the solution is assigned as the updated S'. At
each step we update gt using S, = D,S.
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o We also obtain from the converged solution the updated separation, exit and vacancy policies.

o Note that the step size A cannot be too large, otherwise the problem will not converge.

Step II - Given individual behavior, iterate to convergence on aggregate states

o Given updated individual behavior in outer iteration ¢, obtain through iteration in an inner loop 7 the distribution
of firms h', the aggregate finding rates ¢’ and p', the share ¢, the distribution of workers over marginal surplus
H!, the distribution of vacancies over marginal surplus H/, and the entry rate of firms m/,

o File AggregateBehavior.m proceeds to do this in four steps.
e Initiate each aggregate object with the previous outer iteration solution, x' =0 = x~1. Then:

o Step II-a. Update the distribution of workers over marginal surplus to Hi7VT and its integral AT given a
distribution of firms #'~1"~! and marginal surplus S!, where the latter was obtained in Step I above. This is
done by file Cdf_Gn.m.

- First consider the employment-weighted pdf:
t—1,7 nt-1,7-1
hy, VP (z,n) = =K' (z,n)
n

Where aggregate employment n can be normalized so that nioLT (z,n) integrates to 1.

- We then sort 1, by marginal surplus. Note that S, (z,n)n = Sj(z,1), and that we solved the Bellman
equation in Sj; (2, 11), therefore we have to obtain S, (z, 1) by

Sn (Z,T’l) = Sﬁ (:Z’jﬁ) /n = Sﬁ (E,ﬁ) /en'

— Then sort h;, by marginal surplus and compute
SH (Z’n)
Hi V(S (z,n) = / Wil (s) ds
0

R St (zn)
a7 (Sh(zn)) = /0 H 7V (s)ds

e Step II-b. Update the distribution of vacancies over marginal surplus HiLT given the vacancy policy of, k=171,
Hy VT, gt=171, ¢t=17=1 and the entry rate m{ "". This is done by file Cdf _Gv.m.

— First construct vacancies per worker for the entrants, which is the necessary amount of vacancies you need
to post to get 1y workers:

otV (z,n) = " m YTy (2) A (n)
e qt—l,T—l [(Pt—l,’['—l + (1 _ (Pt—l,T—1> H;—l,T (S; (Z, Tl)):| 0

— Now consider the distribution weighted by vacancies, both of incumbents (using the policy function) and

entrants:

ot (z,n) =171 (z,n) + 0LV (2,n)

v

hﬁf“ (z,n) =

Where aggregate vacancies v can be normalized so that HEVT (2, n) integrates to 1.
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— Then simply, sort h, by marginal surplus and
St (zn)
HIVT(SE (z,n)) = / WL (s) ds
0

e Step II-c. Update the distribution of firms h'~17 and get the entry rate mg_l'f following the Kolmogorov forward

t—1,7-1 t—1,7

equation in steady-state given HiVT, BT, gt=tm1, pt=ltl g and m; ~". This is executed by file

Distribution.m.
- Using (21), this can be solved in one line.
htfl,‘r — —L71h0
- To compute the entry rate, note that in the stationary equilibrium, the entry rate must be equal to the exit

rate of firms, which can be obtained from mg_ LT — ppt-17,

t—1,t ,,t—1,7T
7

o Step II-d. Update the finding rates q p and share ¢' 1’7 that are consistent with the vacancy policy v and
the distribution of firms '~ 17. This is done by file FindingRates.m.

— First get the total units of search efficiency in the labor market and total vacancies to construct:

Wl = ﬁ—m//ndHtfl'T (z,n)

st—l,T _ uf—l,T+§ut—1,T
t—1,7

¢t71,T — u
St—l,T

— Then, get total vacancies and use the matching function:

vitlT = m//vt (z,n) + 0LV (z,n) dH! "V (2,n)

thl,r

st—l,r

qtfl,'r — A <9t71,r)ﬁ_1
pt—l,r - A (9t—1,T)ﬁ

o Iterate over the four sub-steps Step II-a - Step II-d until convergence and assign the updated aggregate states
q', p!, ¢!, W', H! and H}.

We subsequently iterate on Step I - Step II until both the surplus function and the aggregate states have converged.
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