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This file contains the proofs of the statements of “on the efficiency of online learn-
ing,” with the exception of Theorem 2, which is proven in the main paper.

S1. THE BENCHMARK: PROOF OF THEOREM 1

WE HERE PROVIDE THE MISSING ARGUMENTS in the analysis of the benchmark case.

LEMMA S1: One has ψ∗(0) > 0.

PROOF: Recall that, for λ≥ 0, ψ(λ)= ln EL[exp(λ ln q̃

1−q̃ )], which, by virtue of Claim 1
in the paper, is equal to

ψ(λ)= ln EL

[(
fH

fL
(q̃)

)λ]
= ln

∫ 1

0
f λH(q)f

1−λ
L (q)dq�

This readily yields ψ(0)=ψ(1)= 0.
Since t �→ etx is convex, the setΛ := {λ≥ 0�ψ(λ) <+∞} is an interval. Since the private

belief q̃ is not a.s. constant, and since t �→ etx is strictly convex whenever x �= 0,ψ is strictly
convex on Λ. Since ψ(0) = ψ(1) = 0, this implies that ψ(λ) < 0 for each λ ∈ (0�1) and
ψ(λ) > 0 for each λ > 1. Thus,

ψ∗(0)= sup
[0�1]
(−ψ) > 0�

Q.E.D.

LEMMA S2: If F(q)= q for each q, one has ψ∗(0)= − ln π
4 .

PROOF: Recall from the proof of Lemma S1 that ψ∗(0)= −min[0�1]ψ. Since F(q)= q,
one has fH(q) = fL(1 − q) = 2q for each q ∈ [0�1], hence ψ(λ) = ψ(1 − λ) for each
λ ∈ [0�1]. Since ψ is convex on [0�1], this implies that

min
[0�1]

ψ=ψ
(

1
2

)
�
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and therefore,

ψ∗(0)= −ψ
(

1
2

)
= − ln

∫ 1

0
2
√
q(1 − q)dq= − ln

π

4
�

where the last equality follows using routine computations. Q.E.D.

S2. THE LAST-OBSERVED SETUP: PROOF OF THEOREM 3

In this section, we prove Theorem 3, following closely the outline in Section 3.1. We
thus assume that φn(a1� � � � � an−1)= an. The social belief at time n is given by πn = P(θ̃=
H | an).

For n≥ 1, we denote by xn := PL(an = h) the probability that agent n makes the wrong
choice (given L). Under Assumptions A1 and A2, we show that

∑
n≥1

xn <+∞ ⇔
∫ 1

0

q∫ q

0
F(x)dx

dx <∞� (S2.1)

Since EL[W ] = ∑+∞
n=1 xn, Theorem 3 will follow.

We start with some simple properties of the sequence (xn). The core of the argument
is in Section S2.2.

S2.1. The Sequence (xn)

LEMMA S3: For all n≥ 1, one has xn+1 − xn = −2
∫ xn

0 F(q)dq.

PROOF: Fix n≥ 1. By Bayes’s rule and for each a ∈ {l�h}, one has

P(θ̃=H | an = a)
P(θ̃=L | an = a) = PH(an = a)

PL(an = a) � (S2.2)

Since an+1 = h if and only if qn+1 +πn+1 ≥ 1, it follows from (S2.2) that

Pθ(an+1 = h)=
∑
a∈{l�h}

Pθ(an = h)Pθ
(
qn+1 + Pθ(H | an = a)≥ 1

)

=
∑
a∈{l�h}

Pθ(an = a)Pθ
(
qn+1 ≥ 1 − PH(an = a)

PL(an = a)+ PH(an = a)
)
� (S2.3)

The symmetry Assumption A1 implies inductively that PH(an = l)= PL(an = h) for each
n or, equivalently, PL(an = a) + PH(an = a) = 1 for each a and n ∈ N. Equation (S2.3)
thus yields

xn+1 =
∑
a∈{l�h}

PL(an = a)× PL
(
qn+1 ≥ PL(an = a))

= xn
(
1 − FL(xn)

) + (1 − xn)
(
1 − FL(1 − xn)

)
�

Substituting FL(q)= 2(1 − q)F(q)+ 2
∫ q

0 F(x)dx (see Section A), elementary manipula-
tions lead to the desired result. Q.E.D.
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Since FL and FH have the same support, the set of guesses that agent n makes with
positive probability is independent of θ. By symmetry, both guesses are made with positive
probability: Pθ(an = a) > 0, for each a, θ, and n. Thus, xn > 0.

LEMMA S4: The sequence (xn) is nonincreasing, with limxn = 0 if and only if qmin = 0.

PROOF: Denote by l ≥ 0 the limit of the nonnegative, nonincreasing sequence (xn), and
observe that l solves

∫ l

0 F(t)dt = 0. If qmin = 0, one has F(q) > 0 for all q > 0; therefore,
l = 0. If qmin > 0, either xn > qmin for all n and l ≥ qmin or xn̄ ≤ qmin for some n̄, in which
case xn = xn̄ for all n≥ n̄ and, thus, l= xn̄ > 0. Q.E.D.

Lemma S4 allows us to dispose of the case where qmin > 0. In that case, the sequence
(xn) is bounded away from zero; therefore,

∑
n xn = +∞: learning is inefficient and the

equivalence (S2.1) holds.
In the rest of the proof, we assume that F(q) > 0 for all q > 0, and we set G(x) :=

2
∫ x

0 F(t)dt.

S2.2. The Continuous-Time Approximation

We use a time-change technique to assess the convergence of
∑
xn. Fix a > 0 such that

aα > 1, where α> 0 is given by Assumption A2, and for k≥ 1, set

ωk := inf
{
n : xn < 1

ka

}
(with inf∅ = +∞)�

Note that ωk+1 ≥ωk and that ωk <+∞ for each k since (xn)→ 0.
Heuristically, the derivation of the continuous-time approximation is sufficiently sim-

ple. For ωk ≤ n < ωk+1, xn is of the order of 1/ka and xn − xn+1 is of the order of

G(1/ka). Therefore,ωk+1 −ωk is approximately equal to
1
ka

− 1
(k+1)a

G(1/ka) , which is of the order of
1

ka+1G(1/ka) . Thus,
∑+∞

n=1 xn = ∑+∞
k=1

∑ωk+1−1
ωk

xn is of the order of
∑+∞

k=1
1

k2a+1
1

G( 1
ka
)

(Lemmas

S6, S7, and S8). We then conclude with a simple series-integral comparison argument.
The details are, however, somewhat cumbersome.

Lemma S5 is the only place in the proof where Assumption A2 is used.

LEMMA S5: The sequence (ωk) is eventually strictly increasing.

PROOF: When integrating Assumption A2, one obtains G(x) ≤ 2C
α+1x

α+1 for x suffi-
ciently close to 0. In particular, G( 1

ka
)≤ 2C

α+1(
1
k
)a+aα for k large; thus,

G

(
1
ka

)
= o

(
1
ka+1

)
as k→ +∞�

since aα > 1.
Since 1

ka
− 1

(k+1)a ∼ a
ka+1 as k→ +∞, this implies the existence of K0 ∈ N such that

G

(
1
ka

)
<

1
ka

− 1
(k+ 1)a

for each k≥K0�
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On the other hand, let q̄ be the median of F : F(q̄)= 1
2 . Since 1 −G′(x)= 1 − 2F(x),

the map x �→ x −G(x) is nondecreasing on [0� q̄]. Let N be such that xn < q̄ for each
n ≥ N and K1 be such that ωK1 > N + 1. Finally, set K∗ := max(K0�K1). We will prove
that ωk+1 >ωk for each k≥K∗.

Let k≥K∗ be arbitrary and set n :=ωk − 1. Since k≥K1, one has n >N , so

1
ka

≤ xωk−1 = xn < q̄�

Thus,

xn+1 = xn −G(xn)≥ 1
ka

−G
(

1
ka

)
>

1
(k+ 1)a

�

where the first inequality holds since G is nondecreasing on [0� q̄] and the second holds
since k ≥ K0. Since n + 1 = ωk, we have thus proven that xωk >

1
(k+1)a , which implies

ωk+1 >ωk. Q.E.D.

LEMMA S6: One has

xωk − xωk+1 ∼ a

ka+1 � as k→ +∞�

PROOF: We let K∗ be defined as in the proof of Lemma S5. For k≥K∗, one has

1
ka

≥ xωk = xωk−1 −G(xωk−1)≥ 1
ka

−G
(

1
ka

)
� (S2.4)

where the first inequality holds by definition of ωk and the second holds since xωk−1 ∈
[ 1
ka
� q̄] and since x �→ x−G(x) is nonincreasing on [0� q̄].

For the same reason,

1
(k+ 1)a

≥ xωk+1 ≥ 1
(k+ 1)a

−G
(

1
(k+ 1)a

)
� (S2.5)

By combining (S2.4) and (S2.5), one obtains

1
ka

− 1
(k+ 1)a

−G
(

1
ka

)
≤ xωk − xωk+1 ≤ 1

ka
− 1
(k+ 1)a

+G
(

1
(k+ 1)a

)
�

Since 1
ka

− 1
(k+1)a ∼ a

ka+1 and G( 1
ka
) = o( 1

ka+1 ) as k→ +∞ (see the proof of Lemma S5),
the result follows. Q.E.D.

LEMMA S7: One has
∑+∞

n=1 xn <+∞ ⇔ ∑+∞
k=1

ωk+1−ωk
ka

<+∞.

PROOF: Since 1
(k+1)a < xn ≤ 1

ka
when ωk ≤ n <ωk+1, one has

+∞∑
k=1

ωk+1 −ωk

(k+ 1)a
<

+∞∑
n=ω1

xn ≤
+∞∑
k=K∗

ωk+1 −ωk

ka
�

Since 1
ka

∼ 1
(k+1)a as k→ +∞, the result follows. Q.E.D.
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LEMMA S8: One has
∑+∞

n=1 xn <+∞ ⇔ ∑+∞
k=1

1
k2a+1

1
G( 1

ka
)
<+∞.

PROOF: For each k and n such that ωk ≤ n <ωk+1,

G

(
1

(k+ 1)a

)
≤ xn − xn+1 ≤G

(
1
ka

)
;

hence, by summing over n,

(ωk+1 −ωk)G

(
1

(k+ 1)a

)
≤ xωk − xωk+1 ≤ (ωk+1 −ωk)G

(
1
ka

)
� (S2.6)

We note that without further information about F , it is unclear whetherG( 1
(k+1)a )∼G( 1

ka
)

as k→ +∞. Hence, it is not possible to derive from (S2.6) an asymptotic equivalent for
ωk+1 −ωk; more work is needed.

If
∑

n xn < +∞, then
∑

k

ωk+1−ωk
ka

< +∞ by Lemma S7; hence,
∑

k

xωk−xωk+1

kaG( 1
ka
)
< +∞ by

(S2.6), which by Lemma S6 implies
∑

k
1

k2a+1G(1/ka) <+∞.
Conversely, if

∑
k

1
k2a+1G(1/ka) <+∞, then

∑
k

1
(k−1)2a+1G(1/ka) <+∞ since 1

(k−1)2a+1 ∼ 1
ka

as

k→ +∞, hence
∑

k
1

k2a+1G(1/(k+1)a) < +∞, which by Lemma S6 implies
∑

k

xωk−xωk+1
kaG(1/(k+1)a) <

+∞ and, therefore,
∑

k

ωk+1−ωk
ka

<+∞ by (S2.6), which yields
∑

n xn <+∞ by Lemma S7.
Q.E.D.

To simplify the following statement, we introduce

a(t) := 1
t2a+1 and b(t) :=G

(
1
ka

)
(t > 0)�

LEMMA S9: One has
∑+∞

k=1
a(k)

b(k)
<+∞ ⇔ ∫ +∞

1
a(t)

b(t)
<+∞.

PROOF: Since a(·) and b(·) are decreasing on [1�+∞),

a(k+ 1)
b(k)

≤
∫ k+1

k

a(t)

b(t)
dt ≤ a(k)

b(k+ 1)

for each k and, therefore,

+∞∑
k=1

a(k+ 1)
b(k)

≤
∫ +∞

1

a(t)

b(t)
dt ≤

+∞∑
k=1

a(k)

b(k+ 1)
� (S2.7)

Since a(k) ∼ a(k + 1) as k → +∞, the three series
∑

a(k+1)
b(k)

,
∑

a(k)

b(k+1) , and
∑

a(k)

b(k)
are

simultaneously convergent or divergent; hence, the result follows from (S2.7). Q.E.D.

Observe now that
∫ +∞

1
a(t)

b(t)
dt = ∫ 1

0
q

G(q)
dq, using the change of variables q = 1/ta. We

have thus proven that
∑
xn <+∞ if and only if

∫ 1
0

q

G(q)
<+∞. This concludes the proof

of Theorem 3.
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S3. ILLUSTRATIONS: PROOFS OF PROPOSITIONS 1 AND 2

Denote by � the cdf of the standard normal distribution. We start with the proof of
Proposition 1. Assume w.l.o.g. that 
μ := μH −μL > 0, and denote by gθ the conditional
density of sn given θ̃= θ. Following a signal realization s̃ and by Bayes’s rule, the private
belief q̃ is given by

ln
q̃

1 − q̃ = ln
gH(s̃)

gL(s̃)
= 
μ

σ2

(
s̃− μH +μL

2

)

and is therefore increasing in s̃. Thus, for q ∈ (0�1), one has

FL(q)= PL(q̃≤ q)= PL

(
ln

q̃

1 − q̃ ≤ ln
q

1 − q
)

= PL

(
s̃ ≤ μH +μL

2
+ σ2


μ
ln

q

1 − q
)
�

Since the r.v. s̃−μL
σ

follows a standard normal distribution conditional on θ̃ = L, this
yields FL(q)=�(x(q)) for each q, where

x(q) := 
μ

2σ
+ σ


μ
ln

q

1 − q �

We will use the inequality �(x)≤ e−x2/2, which holds for all x < 0 such that |x| is large
enough. Since

x(q)2 =
(

μ

2σ

)2

+ ln
q

1 − q +
(
σ


μ

)2(
ln

q

1 − q
)2

≥ lnq+ σ2

(
μ)2

(
ln

q

1 − q
)2

�

one obtains

FL(q)≤ e−(x(q))2/2 ≤ 1√
q

exp
{
− σ2

2(
μ)2

(
ln

q

1 − q
)2}

(S3.1)

for all q close enough to zero. The right-hand side of (S3.1) is equivalent to
1√
q

exp(− σ2

2(
μ)2 (lnq)
2) in the neighborhood of zero,1 which around zero is negligible rela-

tive to any polynomial function of q. Proposition 1 follows.
We turn to the proof of Proposition 2, which is similar. We assume w.l.o.g. that μH =

μL = 0. Following a signal realization s̃ and by Bayes’s rule, the private belief q̃ is given
by

q̃

1 − q̃ = σL

σH
e− s̃2

2δ �

1Indeed, the ratio of these two quantities is given by exp( 1
2a2 ln(1 − q) ln 2q

1−q ). Around zero, the expression
within the exponential is equivalent to − 1

2a2 × q lnq, which converges to zero as q→ 0.
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with 1
δ
= 1

σ2
H

− 1
σ2
L

> 0. Since the likelihood ratio q̃

1−q̃ does not exceed σL
σH

, the private belief

q̃ cannot possibly exceed qmax := σL
σL+σH < 1. For q ∈ (0� qmax], one has

FL(q)= PL

(
σL

σH
e− s̃2

2δ ≤ q

1 − q
)

= PL

(
s̃2 ≥ 2δ ln

1 − q
q

+ 2δ ln
σL

σH

)

= 2PL

(
s̃

σL
≥ 1
σL

√
2δ ln

(
1 − q
q

× σL

σH

))
�

Since the r.v. s̃
σL

follows a standard normal distribution, one has

FL(q)= 2
(
1 −�(

z(q)
))
�

with z(q) := 1
σL

√
2δ ln( 1−q

q
× σL

σH
). Recall from Section A that FL(q) ∼0 2F(q) as q→ 0.

Using the inequalities

z

z2 + 1
e−z2/2 ≤ 1 −�(z)≤ 1

z
e−z2/2 for z > 0�

see, for example, Revuz and Yor (1999, p. 30), it follows that F(q)∼ 1
z(q)
e−z(q)2/2 as q→ 0,

and thus, that
∫ 1

0
1

F(q)
dq <+∞ is equivalent to

∫ 1
0 z(q)e

z(q)2/2 dq <+∞.

Next, observe that z(q)∼
√

2δ
σL

√| lnq| as q→ 0, and that

ez(q)
2/2 = exp

(
δ

σ2
L

ln
(

1 − q
q

× σL

σH

))
=

(
1 − q
q

)δ/σ2
L
(
σL

σH

)δ/σ2
L

�

hence

z(q)ez(q)
2/2 ∼ C2

√| lnq|
qδ/σ

2
L

as q→ 0, for some constant C2 > 0. It follows that the integral
∫ 1

0 z(q)e
z(q)2/2 dp is finite if

and only if δ/σ2
L < 1, or equivalently, σ2

L > 2σ2
H , as desired.

S4. RATES OF CONVERGENCE: PROOF OF THEOREM 4

The proof of Lemma 1 relies on Lemma S10 below, which is a classical result on asymp-
totic expansions of sequences. An equivalent statement appears in Francinou, Gianella,
and Nicolas (2013, in French). Related analysis may be found in De Bruijn (1961).

LEMMA S10: Let g : R+ → R+, and (un) a sequence be given, such that un+1 = g(un) for
each n. Assume that limun = 0 and that g(x) = x − axβ + o(xβ) in the neighborhood of
zero, with a > 0 and β> 1. Then

un ∼
(

1
a(β− 1)

1
n

)1/(β−1)

as n→ +∞�
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PROOF: We follow the proof in Francinou, Gianella, and Nicolas (2013). For x > 0,

g(x)1−β − x1−β = (
x− axβ + o(xβ))1−β − x1−β

= x1−β((1 − axβ−1 + o(xβ−1
))1−β − 1

)
= x1−β(−a(1 −β)xβ−1 + o(xβ−1

)) = a(β− 1)+ o(1)�

hence limx→0(g(x)
1−β − x1−β)= a(β− 1). Since limun = 0 and un+1 = g(un), this implies

lim(u1−β
n+1 − u1−β

n )= a(β− 1). By Cesaro Theorem, one has therefore lim u
1−β
n

n
= a(β− 1)

as well, hence un ∼ (a(β− 1)n)1/(1−β) as n→ +∞, as desired. Q.E.D.

PROOF OF LEMMA 1: We assume first that all choices are public, and recall that PL(τ >
n) ∼ (1 − π∗

n)PH(am = h for all m) as n→ +∞, using the notations of Section B.2. Set
un := 1 −π∗

n . From (B.6), one has

un+1

1 − un+1
= un

1 − un × 1 − FL(un)
1 − FH(un)�

or equivalently,

un+1 = g(un) := un
(
1 − FL(un)

)
un

(
1 − FL(un)

) + (1 − un)
(
1 − FH(un)

) � (S4.1)

Under the assumption that F(q)= aqα+o(qα) as q→ 0, Section A yields FL(q)= 2aqα+
o(qα) and FH(q)= o(qα) as q→ 0. Plugging into (S4.1), we obtain

g(x)= x− 2axα+1 + o(xα+1
)

as x→ 0�

The result then follows from Lemma S10.
Assume now that only the previous choice is observed. From Lemma 14, and the as-

sumption on F , one has

xn+1 = xn −
∫ xn

0
F(q)dq= xn − 2a

α+ 1
xα+1
n + o(xα+1

n

)
as n→ +∞�

The result again follows from Lemma S10. Q.E.D.

PROOF OF THEOREM 4: We rely on the following elementary observation on divergent
series. Let (xn) and (un) be two bounded sequences such that xn ∼ un as n→ +∞. As-
sume that un > 0 for each n and that the series

∑
un is divergent. Then

∑n

k=1 xk ∼ ∑n

k=1 uk
as n→ +∞, and

∑+∞
k=1 δ

k−1xk ∼ ∑+∞
k=1 δ

k−1uk as δ→ 1.
Assume as stated that F(q) ∼ aqα as q→ 0, with α ≥ 1. In the all-observed setup, let

xn := PL(τ > n) and un := c11/n1/α. Since
∑
un is divergent, and since EL[min(τ�n)] =

1 + ∑n−1
k=1 xk, one has

EL

[
min(τ�n)

] ∼ c1

n∑
k=1

1
k1/α as n→ +∞�
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Since α≥ 1 and since
∑

1/k1/α is divergent, a usual series-integral comparison argument
yields

∑n

k=1
1

k1/α ∼ ∫ n

1
1

x1/α dx as → +∞, and the first claim follows.
In the last-observed setup, we let xn := PL(an = h) and un := c21/n1/α. Since EL[Wn] =∑n

k=1 xk, it follows as in the previous paragraph that

EL[Wn] ∼ c2

∫ n

1

1
x1/α dx as n→ +∞�

We are left with the estimate of EL[Wδ]. Using the notations of the previous paragraph,
one has

EL[Wδ] =
+∞∑
k=1

δk−1xk ∼ c2

+∞∑
k=1

δk−1

k1/α �

which in turn is equivalent to c2
∑+∞

k=1
δk

k1/α as δ→ 1.
Since

δk+1

(k+ 1)1/α ≤
∫ k+1

k

δx

x1/α dx≤ δk

k1/α for each k≥ 1�

one gets, by summation over k,

+∞∑
k=2

δk

k1/α ≤
∫ +∞

1

δx

x1/α dx≤
+∞∑
k=1

δk

k1/α �

and therefore,
∑+∞

k=1
δk

k1/α ∼ ∫ +∞
1

δx

x1/α dx as δ→ 1, since limδ→1

∫ +∞
1

δx

x1/α dx= +∞.
Using the change of variable y = −x lnδ, the latter integral is equal to

∫ +∞

1

δx

x1/α dx= (− lnδ)1/α−1 ×
∫ +∞

− lnδ
e−yy−1/α dy� (S4.2)

If α > 1, the desired estimate follows from equation (S4.2) since − ln(δ)∼ (1 − δ) and
since

∫ +∞
− lnδ e

−yy−1/α dy converges to
∫ +∞

0 e−yy−1/α dy = �(1 − 1/α) as δ→ 1.
If α = 1, the integral

∫ +∞
0 e−yy−1/α dy is infinite. Since e−y/y ∼ 1/y as y → 0, routine

arguments show that ∫ +∞

− lnδ

e−y

y
dy ∼

∫ 1

− lnδ

1
y
dy = − ln ln

1
δ
�

and the result also follows from equation (S4.2). Q.E.D.

For completeness, we give a quick proof that the constants c1 and c2 in Lemma 1 are
equal to 1

π
and to 1, when private beliefs are uniformly distributed.

When all guesses are public, one has un := PL(τ > n) = ∏n

k=1(1 − FL(1 − πk)). With
F(p)= p, one has FL(p)= p(2 −p) and FH(p)= p2, hence un = ∏n

k=1π
2
k and the belief

updating equation (3.6) reduces to πn+1
1−πn+1

= 2−πn
1−πn , from which it follows that ( 1

1−πn )n is an
arithmetic sequence, and πn = 1 − 1

2n for each n≥ 1.
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Consequently,

un =
(

n∏
k=1

(
1 − 1

2k

))2

=
(
(2n)!

22n(n!)2

)2

�

Using the Stirling formula, it follows that un ∼ 1
πn

as n→ +∞.
When only the previous guess is observed, the probability xn := PL(an = h) of a wrong

guess is given by xn+1 − xn = −2
∫ xn

0 F(p)dp, which reduces to a discrete-time logistic
equation

xn+1 = xn(1 − xn)� (S4.3)

Since x1 ∈ (0�1), it is obvious from (S4.3) that (xn) is decreasing and must converge to
zero. An easy induction shows that xn < 1

n+1 for all n≥ 2. Set now yn := nxn, and observe
that

yn+1 − yn = xn
(
1 − (n+ 1)xn

) ≥ 0� (S4.4)

The sequence (yn) being nondecreasing with yn ≤ 1, it has a positive limit, which we de-
note by l > 0.

Equation (S4.4) also yields

yn+1 − yn = yn(1 − yn)
n

− y2
n

n2 �

Since the sequence (yn) converges, the series
∑
(yn+1 − yn) converges as well, hence

l= 1.2 We have thus shown that xn ∼ 1
n

as n→ +∞.
The latter estimate implies that EL[τ] < +∞, and therefore, that the two efficiency

criteria EL[W ]<+∞ and EL[τ]<+∞ are not equivalent when only the previous action
is observed. One indeed has, for each n, P(θ̃=H | an = h)= PH(an = h)= 1 − xn, which
implies

PL(τ > n+ 1 | τ > n)= PL(an+1 = h | an = h)
= 1 − FL(xn)= (1 − xn)2�

The sequence (PL(τ > n))n satisfies

PL(τ > n+ 1)
PL(τ > n)

= (1 − xn)2 = 1 − 2
n

+ o
(

1
n

)
�

This implies that the series
∑

PL(τ > n) is convergent, using the Raabe–Duhamel rule,
and therefore, EL[τ]<+∞.

S5. INEFFICIENCY OF RANDOM SAMPLING: PROOF OF THEOREM 5

The proof of Theorem 5 follows closely the proof of Theorem 3 and we refer to Sec-
tion C for notations. In addition, we will denote by x̄n := 1

n

∑n

k=1 xn the expected propor-
tion of wrong choices among the first n agents, and by αn the random action observed by
agent n+ 1. Thus, the social belief is here equal to πn = P(θ̃=H | αn−1).

2Otherwise, yn+1 − yn would be equivalent to l(1 − l)/n.
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LEMMA S11: For each n≥ 1, one has x̄n+1 − x̄n = − 2
n+1

∫ x̄n

0 F(q)dq.

PROOF: Since agent n+ 1 samples uniformly among all previous agents, one has

Pθ(αn = a)= 1
n

n∑
k=1

Pθ(ak = a) for each θ and a�

On the event αn = a, Bayes’s rule leads to πn+1
1−πn+1

= πn
1−πn × PH(αn=a)

PL(αn=a) . Using Pθ(an+1 = h)=
Pθ(qn+1 ≥ 1 −πn+1) and the symmetry Assumption A1, elementary manipulations similar
to those in the proof of Lemma 14 lead to

xn+1 = x̄n
(
1 − FL(x̄n)

) + (1 − x̄n)
(
1 − FL(1 − x̄n)

)
= x̄n − 2

∫ x̄n

0
F(q)dq�

Since x̄n+1 = n
n+1 x̄n + 1

n+1xn+1, the result follows. Q.E.D.

LEMMA S12: One has
∑+∞

n=1 xn <+∞ ⇔ ∑+∞
n=1 x̄n <+∞.

PROOF: The argument that xn > 0 applies without change, and yields x̄n > 0 for each n.
The proof of Lemma 15 requires minor changes. Set l := lim x̄n. Since (xn) is nonin-
creasing, one has limxn = l as well. As in the proof of Lemma 15, and if qmin > 0, either
x̄n > qmin for all n, and then l ≥ qmin, or x̄n1 ≤ qmin for some n1, in which case x̄n = x̄n1 for
all n≥ n1, and thus l= x̄n1 > 0. In that case, both

∑
xn and

∑
x̄n are divergent.

In the rest of the proof, we may thus assume that F(q) > 0 for each q > 0. We claim
that l = 0. Otherwise, indeed, one would have x̄n+1 − x̄n ∼ − 1

n
× ∫ l

0 F(q)dq as n→ +∞.
Since the series

∑ 1
n

is divergent, this would imply lim x̄n = −∞, a contradiction. Hence
l= 0, as claimed.

Using again Lemma S11, |xn+1 − x̄n| ≤ 2x̄nF(x̄n), hence xn+1 ∼ x̄n as n→ +∞ since
limF(x̄n) = 0. Hence, the convergence of the series

∑
xn is equivalent to that of

∑
x̄n.

Q.E.D.

By Assumption A2 (and when possibly lowering α), one has F(q) ≤ 1
2(α + 1)qα in a

neighborhood of zero. Using Lemma S11, there is N0 ∈ N s.t.

x̄n+1 ≥ x̄n − 1
n+ 1

x̄1+α
n for all n≥N0� (S5.1)

On the other hand, the map y �→ y − y1+α is increasing over the interval [0� 1
(α+1)1/α ].

Choose N1 s.t. x̄n ∈ [0� 1
(α+1)1/α ] for each n≥N1, and set N := max(N0�N1).

Introduce now a sequence (yn) s.t. yN = xN and yn+1 − yn = − 1
n+1y

1+α
n for each n ≥N .

From the choice ofN , it follows by induction that x̄n ≥ yn for all n≥N . It is thus sufficient
to prove that the series

∑
yn is divergent.
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Obviously, the sequence (yn) is positive, decreasing, with lim yn = 0.3 Hence

yn+1

yn
= 1 − 1

n
yαn = 1 + o

(
1
n

)
�

It follows from the Raabe–Duhamel criterion that
∑
yn is divergent.

S6. ALTERNATIVE SETUP: PROOF OF THEOREM 5

Since F(q) = q satisfies Assumption A1, Eθ[τ] is independent of θ. We choose θ = L
for concreteness.

Let C2 be an upper bound for the sequence (dk+1/dk). For k ≥ 1, denote by 
k :=
d1 + · · ·+dk the cumulative size of the first k generations, with 
0 = 1. We will prove that∑+∞

k=1 dkPL(τ > 
k)= +∞. Since

EL[τ] =
+∞∑
k=1


k∑
n=
k−1+1

PL(τ ≥ n)≥
+∞∑
k=1

dkPL(τ > 
k)�

the result will follow.
Since F(q)= q, one has FH(q)= q2 and FL(q)= q(2 − q) for each q (see Section A),

and thus 1 − FL(1 − ρ)= ρ2 for each ρ. For k≥ 1, we denote by

ρk := PL(θ̃=H | a1 = · · · = a
k−1 = h)
the (common) social belief of agents from the kth generation, in the event τ > 
k−1 where
all agents from all previous generations have chosen h.

Conditional on τ > 
k−1, agent n from the kth generation chooses an = h if and only if
qn ≥ 1 − ρk, which occurs with probability 1 − FL(1 − ρk)= ρ2

k in state L. Since there are
dk such agents, PL(τ > 
k | τ > 
k−1)= ρ2dk

k and thus,

PL(τ > 
k)=
k∏
i=1

ρ
2di
i � (S6.1)

On the other hand, Bayes’s rule leads to the belief updating formula

ρk+1

1 − ρk+1
= ρk

1 − ρk ×
(

1 − FH(1 − ρk)
1 − FL(1 − ρk)

)dk

= ρk

1 − ρk ×
(

2 − ρk
ρk

)dk

� (S6.2)

Setting uk := 1
2

ρk
1−ρk , we have ρk = 1 − 1

1+2uk
, and (S6.2) rewrites

uk+1 = uk
(

1 + 1
uk

)dk

� (S6.3)

We proceed with a series of claims.

3If (yn) instead had a positive limit l, we would have yn+1 − yn ≤ − lα

n
for each n, which by summation would

imply lim yn = −∞.
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CLAIM S1: One has uk+1 ≥ 
k + 1 for all k.

PROOF: The inequality (1 + x)α ≥ 1 +αx (valid for α > 1, x > 0) yields un+1 ≥ un + dn.
The result then follows by induction. Q.E.D.

CLAIM S2: The series
∑ dk

(uk)
2 is convergent.

PROOF: Thanks to Claim S1, since u1 = 1
2 and since 
k = 
k−1 +dk ≤ 
k−1(1+C2), one

has
∞∑
k=1

dk

(uk)
2 ≤ 4d1 +

∞∑
k=2

dk

(
k−1)
2 ≤ 4d1 + (1 +C2)

2
+∞∑
k=1

dk

(
k)
2 �

Observe finally that the series
∑ dk

(
k)
2 is convergent, since

+∞∑
k=2

dk

(
k)
2 =

+∞∑
k=2


k −
k−1

(
k)
2 ≤

+∞∑
k=2

∫ 
k


k−1

1
x2 dx=

∫ +∞

d1

1
x2 dx� Q.E.D.

CLAIM S3: The series
∑ dk

uk
is divergent.

PROOF: Observe that uk+1
uk

= (1 + 1
uk
)dk ≤ edk/uk (since ln(1 + x)≤ x for x > 0). Taking

products over k, this implies

1
2
un+1 ≤ exp

(
n∑
k=1

dk

uk

)
�

The result follows, since limun = ∞ by Claim S1. Q.E.D.

CLAIM S4: The series
∑
dne

−∑n
k=1 dk/uk is divergent.

PROOF: Since ln(1 +x)≥ x−x2 for x≥ 0, one has uk+1
uk

= (1 + 1
uk
)dk ≥ exp( dk

uk
− dk

u2
k

), or
equivalently,

exp
(

−dk
uk

)
≥ uk

uk+1
× exp

(
−dk
u2
k

)
�

Taking products over k, and multiplying by dn, one obtains

dn exp

{
−

n∑
k=1

dk

uk

}
≥ dn

2un
exp

{
−

+∞∑
k=1

dk

(uk)
2

}
� (S6.4)

The result follows from Claims S2 and S3. Q.E.D.

We now conclude. Since limρk = 1 and ln(1 + x)≥ x− x2 for x >− 1
2 , one has

lnρk ≥ ρk − 1 − (ρk − 1)2 = − 1
1 + 2uk

−
(

1
1 + 2uk

)2

≥ − 1
2uk

− 1
(2uk)2 (S6.5)
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for all i large enough. Plugging into (S6.1), one gets

PL(τ > 
k)=
k∏
i=1

ρi2di = exp

(
k∑
i=1

2di lnρi

)
≥ exp

{
−

k−1∑
i=1

di

ui

}
× exp

{
−1

2

k−1∑
i=1

di

(ui)
2

}

for some C3 > 0 and all k ≥ 1.4 From Claims S2 and S4, it follows that the series∑
dkPL(τ > 
k) is divergent, as desired.
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