
Supplemental Appendix for “Estimating Semi-parametric Panel

Multinomial Choice Models Using Cyclic Monotonicity”

Xiaoxia Shi

University of Wisconsin-Madison

Matthew Shum

Caltech

Wei Song

Xiamen University

September 26, 2017

Abstract

This supplemental appendix contains three sections. Section B presents the proof for The-

orem 6.1 in the main text, the convergence rate theorem for the aggregate data case. Section

C presents a necessary condition for point identification of the binary choice model. Section D

reports Monte Carlo simulation results for the estimator using the Andrews and Shi (2013)-type

instrumental functions on the Cauchy designs described in the main text.

B Proof of Theorem 6.1: Convergence Rate for the Aggregate

Data Case

Proof of Theorem 6.1. First we define the limiting version of Qn(b) as n→∞:

Q(b) = E
{

[(b′∆Xc)E(∆Yic|ηc)]−
}
. (B.1)

Let Bδ stand for the set {b ∈ Rdx : b1 = 1, ‖b−β‖ ≤ δ}. Below we show the folowing results: given

a positive number δ, for all b ∈ Bδ,

(i) for all η > 0 (regardless of how small), |Qn(b)−Q(b)−(Qn(β)−Q(β))| ≤ η‖b−β‖2+Op(n
−1),

and

(ii) Q(b)−Q(β) ≥ c2‖b− β‖2/2, where c2 is the constant in Assumption 6.2(f).
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Choose η < c2/2. Results (i) and (ii) together with Assumption 6.2(c) imply that, with probability

approaching one,

c2‖β̂ − β‖2/2 ≤ η‖β̂ − β‖2 +Op(n
−1) +Qn(β̂)−Qn(β)

≤ η‖β̂ − β‖2 +Op(n
−1). (B.2)

where the second inequality holds because β̂ minimizes Qn(·) and hence Qn(β̂)−Qn(β) ≤ 0. Thus,

(c2/2− η)‖β̂ − β‖2 ≤ Op(n−1). (B.3)

This proves the theorem because (c2/2− η) > 0 by design.

Now we show result (i). Note that

Qn(b)−Q(b) = n−1
n∑
c=1

[b′(∆Xc)(∆Sc)]− − E
{

[b′(∆Xc)(∆Sc)]−
}

+ E
{

[b′(∆Xc)(∆Sc)]−
}
− E

{
[b′(∆Xc)E(∆Yic|ηc)]−

}
. (B.4)

The first two summands on the right hand-side together form an empirical process which we now

call νn(b) and will analyze later. The absolute value of the rest of the right hand-side is bounded

by

E
{
‖b′(∆Xc)‖‖(∆Sc)− E(∆Yic|ηc)‖

}
≤ 2 max

t=1,2
(E‖Sct − E(Yict|ηc)‖2)1/2(E‖b′(∆Xc)‖2)1/2

≤ O(n−1)‖b‖(E‖vec(Xc2 −Xc1)‖2)1/2, (B.5)

where the first inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by

Assumption 6.2(b) and the Cauchy-Schwarz inequality. The last line is op(n
−1) uniformly over

a op(1) neighborhood of β by Assumption 6.2(a). Therefore, we have, uniformly over a op(1)

neighborhood of β,

Qn(b)−Q(b)− (Qn(β)−Q(β)) = νn(b)− νn(β) +O(n−1). (B.6)

We now bound νn(b) − νn(β). Let Vc denote (∆Xc)(∆Sc), and let the space of Vc be denoted

by V.

We first show that the class of functions F = {f : V → R|f(v) = [b′v]−, b ∈ Rdx , b1 = 1}

is a Vapnik-Cervonenkis (VC)-subgraph class of functions. To begin, observe that a similar but
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different class of functions with F : F0 = {f : V → R|f(v) = −b′v} is a VC-subgraph of VC-index

at most dx + 1 because the space is a vector space of dimension equal to the dimension of the set

{b ∈ Rdx : b1 = 1}. That implies that the collection of subgraphs {(v, a) : −b′v > a} of functions in

F0 forms a VC-class of sets of dimension at most dx + 1. We use this to show that the collection of

subgraphs of functions in F is also a VC-class with finite dimension. The subgraph of a function

in F is

S(b) = {(v, a) : a < [b′v]−} = {(v, a) : a < 0} ∪ {(v, a) : a ≥ 0,−b′v > a}. (B.7)

Consider m points (v1, a1), . . . , (vm, am). In order for {S(b) : b ∈ Rdx , b1 = 1} to shatter these m

points, there can at most be one j ∈ {1, . . . ,m} such that aj < 0 because (v, a) ∈ S(b) for all b

as long as a < 0 and thus S(b) with different b cannot pick out two different points with a < 0.

Suppose without loss of generality that a1 < 0. Then, the collection of sets {{(v, a) : −b′v > a} :

b ∈ Rdx , b1 = 1} must shatter the set {(v2, a2), . . . , (vm, am)}. But this collection of sets is the

collection of subgraphs of functions in F0, which is of VC-dimension at most dx + 1. Therefore,

m − 1 can at most be dx + 1. This implies that m ≤ dx + 2. Thus, F is a VC-subgraph with

VC-index at most dx + 2.

Next define

Fδ = {f : V → R|f(v) = [v′b]− − [v′β]−, b ∈ Rdx , b1 = 1, ‖b− β‖ ≤ δ}. (B.8)

This collection of functions is a VC-class with the same VC-index as F due to Lemma 2.6.18 of van

der Vaart and Wellner (1996). Consider the envelope function Fδ(v) = ‖v‖δ. Then, Theorem 2.6.7

of van der Vaart of Wellner (1996) gives the polynomial bound on the covering number of Fδ:

N(εEQ‖Vc‖2δ2,Fδ, L2(Q)) ≤ Cε−2dx−2, (B.9)

where N(εEQ‖Vc‖2δ2,Fδ, L2(Q)) is the covering number of Fδ by L2(Q) balls of radius εEQ‖Vc‖2δ2,

and Q is an arbitrary probability measure on V, and C is a universal constant that depends only

on dx. Next we apply Theorem 2.14.1 of van der Vaart and Wellner (1996) to bound νn(b)− νn(β):

E

{
sup

b∈Rdx :b1=1,‖b−β‖≤δ
|νn(b)− νn(β)|2

}

≤ C sup
Q

∫ 1

0

√
1 + logN(εEQ‖Vc‖2δ2,Fδ, L2(Q))dε× E‖Vc‖2δ2/n
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= C

∫ 1

0

√
1 + logC − (2dx + 2) log εdε× E‖Vc‖2δ2/n, (B.10)

where the C ′s are universal constants which may not be the same each time it appears. A

change of variable technique can be used to show that the integral is finite. That combined with

E(‖vec(Xct)‖2) <∞ (Assumption 6.2(a)) implies that

E

{
sup

b∈Rdx :b1=1,‖b−β‖≤δ
|νn(b)− νn(β)|2

}
≤ Cδ2/n. (B.11)

Using this and the arguments used in the proof of Lemma 4.1 of Kim and Pollard (1990), we can

show that for arbitrarily small η, we have for all b such that b1 = 1, ‖b− β‖ ≤ δ,

|νn(b)− νn(β)| ≤ η‖b− β‖2 +Op(n
−1). (B.12)

This combined with (B.6) shows result (i).

Finally, we show result (ii). Consider any h = (0, h̃′)′ ∈ Rdx such that ‖h‖ = 1. Consider

Q(β + hz) as a function of z at a given β and h value. Below we show that for all z ∈ [0, c1),

∂Q(β + zh)

∂z
= −E[W′

ch1{W′
c(β + zh) < 0}], (B.13)

and that this first derivative is continuous in z. Below we also show that for all z ∈ (0, c1),

∂2Q(β + zh)

∂z2
= E[(W̃′

ch̃)2fW1
c |W̃c

(−W̃′
cβ̃ − zW̃′

ch̃|W̃c)1(W̃′
ch̃ < 0)]. (B.14)

Given those, for any z ∈ (0, c1), a Taylor expansion with Lagrangian remainder applies and gives1

Q(β + hz) = Q(β) +
∂Q(β + 0h)

∂t
z + 2−1

∂2Q(β + τh)

∂z2
z2

= 0 + 2−1z2h̃′E[W̃cW̃
′
cfW1

c |W̃c
(−W̃′

cβ̃ − τW̃′
ch̃|W̃c)1(W̃′

ch̃ < 0)]h̃

≥ c2z2‖h̃‖2 = c2z
2 (B.15)

for a τ in between 0 and z, where the inequality holds by Assumption 6.2(f). For an arbitrary

b ∈ Bc1 , let z = ‖b− β‖, and let h = (b− β)/‖b− β‖. The above display shows Result (ii).

Now we derive the first derivative of Q(β + hz) with respect to z. Its first derivative equals the

limit of the following quantity as τ → z, if the limit exists:

E([W′
c(β + τh)]−)− E([W′

c(β + zh)]−)

τ − z
(B.16)

1See, for example, Apostol (1967, Section 7.7).
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By Assumption 6.2(d), we have, for small enough z (z < c1) with probability one

lim
τ→z

[W′
c(β + zh+ (τ − z)h)]− − [W′

c(β + zh)]−
τ − z

= −W′
ch1{W′

c(β + zh) < 0}. (B.17)

Also observe that∣∣∣∣ [W′
c(β + τh)]− − [W′

c(β + zh)]−
τ − z

∣∣∣∣ ≤ ∣∣∣∣W′
c(β + τh)−W′

c(β + zh)

τ − z

∣∣∣∣
= |W′

ch|. (B.18)

Assumption 6.2(a) implies that the right hand-side has finite first moment. Equations (B.17) and

(B.18) together combined with the dominated convergence theorem imply that,

lim
τ→z

E

(
[W′

c(β + τh)]− − [W′
c(β + zh)]−

τ − z

)
= −E[W′

ch1{W′
c(β + zh) < 0}]. (B.19)

This shows (B.13). The derivative is continuous in z by a similar application of the dominated

convergence theorem.

Next we derive the second derivative at z ∈ (0, c1). It is convenient to write ∂Q(β + zh)/∂z as

∂Q(β + zh)

∂z
= −E

[
W̃′

ch̃FW1
c |W̃c

(−W̃′
c(β̃ + zh̃)|W̃c)

]
(B.20)

The derivative of of this equals the limit of the following quantity as τ → z, if the limit exists:

E

(
W̃′

ch̃FW1
c |W̃c

(−W̃′
c(β̃ + τ h̃)|W̃c)− W̃′

ch̃FW1
c |W̃c

(−W̃′
c(β̃ + zh̃)|W̃c)

τ − z

)
. (B.21)

Under Assumption 6.2(e), the limit of the quantity inside the large brackets exists almost surely

and equals

−(W̃′
ch̃)2fW1

c |W̃c
(−W̃′

cβ̃ − zW̃′
ch̃|W̃c)1(zW̃′

ch̃ < 0). (B.22)

Also, under Assumption 6.2(e), the absolute value of the quantity inside the large brackets in (B.21)

is bounded above by |C(W̃′
ch̃)2|, which has finite first moment by Assumption 6.2(a) and the fact

that ‖h̃‖ = 1. Therefore, the bounded convergence theorem applies and shows that the limit of

(B.21) exists and equals the expectation of (B.22). This concludes the proof of (B.14).
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C Appendix: Primitive necessary condition for point identifica-

tion

In this section we characterize a primitive necessary condition for point identification, in the special

case of a binary choice model.2

In the binary choice case, it is without loss to consider only cycles of length 2. Moreover,

because K = 1, there is no need for the bold font on Xit, εit, Ai, v, and a. Similarly, there is also

no need for the choice index superscript on these symbols. Thus, we omit them in this section.

Consider the G set defined in Section 3.2 and specialized to the binary case. Theorem C.1 below

is the main result of this section. It shows that, if one regressor has finite support and all other

regressors have bounded support, then point identification cannot be achieved at all values of β.

Assumption C.1. For some j = 1, . . . , dx, (a) Gj is a finite set, and

(b) G−j is a bounded set.

Theorem C.1 (Necessary conditions for point identification). Under Assumptions 3.1(a)-

(b) and 3.2, if Assumption C.1 holds, then it is not always true that Q(b) > 0 for all b ∈ Rdx such

that ‖b‖ = 1 and b 6= β.

Remark. According to the Theorem C.1, if one coordinate of Xis −Xit has finite support for all

s, t, then another coordinate of it must have unbounded support for some pair (s, t). The variable

Xj,is −Xj,it may have finite support, either when Xj,it has finite support, or when the change of

Xj,it across time periods is restricted to a few grids. When that is the case, point identification

requires that another regressor, say, Xj′,it to change unboundedly as t changes.

Theorem C.1 does not imply that β can never be point identified (up to scale normalization)

under the conditions of the theorem. Point identification may still be achieved in part of the

parameter space, but not on the whole space of β. In other words, there can be β values such that,

when the population is generated from the model specified in (1.1) and (1.2) with β being one of

those values, we have Q(b) > 0 for all b ∈ {b ∈ Rdx : ‖b‖ = 1} such that b 6= β. �

2We were not able to obtain an analogous result in the more general multinomial choice case because (i) cycles

longer than 2 would need to be considered, and (ii) the simultaneous variation of Xk
it for all k would also need to be

taken into account.
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Proof of Theorem C.1. It suffices to find at least one β value that generates a population for which

point identification fails. Below we find such a value among β’s that satisfy βj > 0, βj∗ > 0 for

some j∗ 6= j, and βj′ = 0 for j′ 6= j, j∗. It is useful to note that G is symmetric about the origin by

definition. So are Gj′ ’s for all j′ = 1, . . . , dx.

We discuss two cases. In the first case, Gj ∩ (−∞, 0) = ∅. Then Gj = {0} because it is

symmetric about the origin. Then G is contained in the subspace {g ∈ Rdx : gj = 0}. Let b∗ be

equal to β except that b∗j = 0, and let b = b∗/‖b∗‖. Then (b∗)′g = β′g for all g ∈ G. This implies

that b′g ≥ 0 for all g ∈ G, and thus Q(b) = Q(β) = 0.

In the second case, Gj ∩ (−∞, 0) 6= ∅. Assumption C.1(a) implies that Gj is a finite set. Then

η ≡ max(Gj ∩ (−∞, 0)) is well defined and η < 0. Assumption C.1(b) implies that there is a

positive constant C such that Gj∗ ⊆ [−C,C]. Let β further satisfy βj∗/βj < −η/C. Consider an

arbitrary g ∈ G with gj < 0. Then gj ≤ η and gj∗ ≤ C, which implies that

β′g = βjgj + βj∗gj∗ ≤ βjη + βj∗C < 0.

Next we use this to show that G does not contain any g such that gj < 0. We show this by

contradiction. Suppose that it does contain a g∗ such that g∗j < 0. Then g∗ = E[∆Yi|Xi1 =

x1, Xi2 = x2]∆Xi = x2 − x1 for some values x1, x2 of Xi1, Xi2. It must not be that E[∆Yi|Xi1 =

x1, Xi2 = x2] = 0 because g∗ 6= 0. If λ := E[∆Yi|Xi1 = x1, Xi2 = x2] > 0, we have g := λ−1g∗ ∈

supp(∆Xi) ⊆ G, and gj < 0. Then (C) implies that β′g < 0, which in turn implies that β′g∗ < 0,

which contradicts the fact that G ⊆ {b ∈ Rdx : β′g ≥ 0} (implied by equation (3.8)). Similar

arguments (using the fact that supp−∆Xi ⊆ G leads to the same contradiction if λ < 0.

Therefore, G does not contain any point whose jth element is negative. Let b∗ be the same as

β except that b∗j > βj . Let b = b∗/‖b∗‖. Then (b∗)′g ≥ β′g for all g ∈ G. Because β′g ≥ 0 for all

g ∈ G, we have (b∗)′g ≥ 0 for all g ∈ G, and thus b′g ≥ 0 for all g ∈ G. This implies that Q(b) = 0

and we have constructed a b 6= β that is not identifiable from β.
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D Appendix: Monte Carlo Results for Instrumental Function-

Based Estimator

In this section we report the Khan and Tamer (2009)-variant of the moment inequality estimator.

In this approach, rather than estimating the conditional choice probabilities and plugging them into

the CM inequalities, we transform the conditional moment inequalities into unconditional moment

inequalities for estimation.

The instrumental functions are indicator functions of hypercubes in the space of Xi, where

Xi = (vec(Xi1)
′, vec(Xi2)

′)′. There are many ways to choose and weight the hypercubes to use,

among which Khan and Tamer (2009) suggests to use the hypercubes formed by pairs of observations

in the data. That suggests the criterion function below:

QIFn (b) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

[ḡn(Xi,Xj)
′b]−,

where

ḡn(x, x̄) = n−1
n∑
i=1

gi(x, x̄)

gi(x, x̄) = ∆Xi∆Yi1{x ≤ Xi < x̄}.

When implementing this approach, we were faced with two problems: (1) there are too many pairs

involved for our sample sizes (e.g. 499,500 pairs for n = 1000), which makes computation very

difficult, and (2) most of the hypercubes end up being empty simply due to the the fact that our

Xi is 12 dimensional (3 variables × 2 time periods × 2 inside alternatives), which means that the

criterion function often does not give a meaningful estimate.

For those reasons, we use the high-dimensional version of the hypercubes suggested in Andrews

and Shi (2013) instead. In our design our variables are supported in the unit interval. Thus, we

first evenly divide [0, 1] into q subintervals (q = 3 for n = 250, 4 for n = 500, 5 for n = 1000,

and 6 for n = 2000). Then use all the hypercubes that are the Cartesian products of two such

sub-intervals and ten copies of [0, 1]. Let the collection of all such hypercubes be denoted by C.

Specifically, we form

QIFn (b) =
1

n(n− 1)

n∑
i=1

∑
C∈C

[ḡn(C)′b]−,
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where ḡn(C) = n−1
∑n

i=1 gi(C) and gi(C) = ∆Xi∆Yi1{Xi ∈ C}. We do not divide up all dimen-

sions of the space of Xi precisely to avoid the same difficulties that arise with the Khan and Tamer

(2009) instrumental functions discussed above.

We take the Cauchy design in Section 4.1 and report statistics of the instrumental function

based estimator of β2 in Table VII below. Comparing to Table II, we can see that the instrumental

function-based CM estimator has larger bias and standard deviation. In addition, the standard

deviation decreases slower with the sample size. For this reason, we focus on the estimator based

on the nonparametric estimator of p(·, ·) in the main text.

Table VII: Monte Carlo Performance of Estimators of β2 (Cauchy Design, β0,2 = 0.5)

n BIAS SD rMSE 25% quantile median 75% quantile

Instrumental Function-Based CM Estimator

500 -0.1132 0.1496 0.1876 0.2847 0.3831 0.4830

1000 -0.0808 0.1172 0.1424 0.3402 0.4162 0.4955

2000 -0.0471 0.0970 0.1078 0.3853 0.4501 0.5151

E A Lemma Used in the Proof of Theorem 3.1

Lemma E.1. Suppose that {g ∈ RJ : β′g ≥ 0} ⊆ {g ∈ Rdx : b′g ≥ 0} and that ‖β‖ = ‖b‖ = 1.

Then b = β.

Proof. Let (β, g1, . . . , gJ−1) be an orthonormal basis of RJ . Then agj ∈ {g ∈ RJ : β′g ≥ 0} for all

a ∈ R and j = 1, . . . , J − 1 because

β′(agj) = a(β′gj) = a× 0 = 0.

The condition of the lemma implies that agj ∈ {g ∈ RJ : b′g ≥ 0} for all a ∈ R and j = 1, . . . , J−1.

With a unrestricted, this means that

b′gj = 0 for all j = 1, . . . , J − 1.

Let c, d1, . . . , dJ−1 be the constants such that b = cβ +
∑J−1

j=1 djg
j . Then,

0 = b′gj = cβ′gj +
J−1∑
j′=1

dj((g
j)′gj)
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= dj‖gj‖2 = dj for all j = 1, . . . , J − 1. (E.1)

Therefore

b = cβ.

That and ‖b‖ = ‖β‖ = 1 implies that |c| = 1. Now we just need to rule out c = −1. Suppose

without loss of generality that β1 > 0, then e1 = (1, 0, . . . , 0)′ ∈ {g ∈ RJ : β′g ≥ 0}. Thus,

e1 = (1, 0, . . . , 0)′ ∈ {g ∈ RJ : b′g ≥ 0}. Therefore, b1 > 0, which rules out c = −1.
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