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APPENDIX A: ADDITIONAL RESULTS

Proof of Nonidentification of the Full Structure

Because the data only provide information on the mixtures of equilibria,
there are limits to what can be learned about the structure from the data with-
out additional assumptions. This point is illustrated in this appendix using re-
sults from the literature on identifiability (or lack thereof) in mixture models.

Let θ denote the structure (ui� δi)
N
i=1 and Fε|X , and let Lx�θ denote the choice

probabilities profiles corresponding to BNE for a given x and parameter θ.
That is, Lx�θ ≡ {p ∈ [0�1]N :p solves (1) for θ and the given x}. We let Λx�θ be
an equilibrium selection mechanism. The following proposition illustrates the
limits of what can be learned about the structure from the mixture data without
imposing additional assumptions. Let #A denote the cardinality of set A and
define h : [0�1]N −→ [0�1]N as

h(p(x);x�θ) ≡
(
pi(x)− Fεi |X

(
ui(x)+ δi(x)

∑
j �=i

pj(x)

))
i=1�����N

�(A.1)

PROPOSITION A.1: Assume

det
(
∂h(p(x);x�θ)

∂p(x)

)
�= 0�

Then the structure is not identified if #Lx�θ >
2N−2
N

.

PROOF: We first show that, for given x, the number of equilibria is finite. An
equilibrium vector p(x) is a fixed point to the mapping depicted on display (1).
Equivalently, we represent it as a solution to the equation

h(p(x);x�θ) = 0�

Notice that {0�1} ∩ Fεi |x(R) = ∅ for any i, given the full support of εi. Conse-
quently, for a solution vector, pi(x) /∈ {0�1} and p(x) ∈ (0�1)N . Since

det
(
∂h(p(x);x�θ)

∂p(x)

)
�= 0�
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the implicit function theorem directly implies that the set of fixed points to
(A.1) is discrete (i.e., its elements are isolated points: each element is con-
tained in a neighborhood with no other solutions to the system). Infinitesi-
mal changes in p(x) will imply a displacement of h(·;x�θ) from zero, so local
perturbations in p(x) cannot be solutions to the system of equations. Since
p(x) ∈ [0�1]N , the set of solutions is a bounded subset of R

N . In R
N , every

bounded infinite subset has a limit point (i.e., an element for which every neigh-
borhood contains another element in the set) (Theorem 2.42 in Rudin (1976)).
Consequently, a discrete set, having no limit points, cannot be both bounded
and infinite. Being bounded and discrete, the set of solutions is finite.

In this case, the observed joint distribution of equilibrium actions is a finite
mixture. Given Assumption 1, the cumulative distribution function for the ob-
served actions is given by

Φ(y1� � � � � yN;x�θ) =
∑

Lx�θ

Λx�θ(p
l(x))

∏
i∈{1�����N}

(1 −pl
i(x))

1−yi �

For a given x, the problem of retrieving this cumulative distribution func-
tion and mixing probabilities from observed data was analyzed by Hall, Nee-
man, Pakyari, and Elmore (2005), who showed that the choice and mix-
ing probabilities (pl

i(x) and Λx�θ) cannot be obtained from observation of
Φ(y1� � � � � yN;x�θ) if #Lx�θ >

2N−2
N

. Consequently, it is necessary for identifia-
bility of the relevant probabilities that #Lx�θ ≤ 2N−2

N
. Finally, if the equilibrium-

specific choice probabilities cannot be identified, the utility function and the
distribution of private components cannot be identified either (or else one
could obtain the equilibrium-specific choice probabilities and use those to ob-
tain the mixing distribution from the data). Q.E.D.

The condition that det( ∂h(p(x);x�θ)
∂p(x)

) �= 0 is likely to be satisfied. With two play-
ers, for example, this determinant equals

1 − δ1(x)δ2(x)fε1|X(u1(x)+ δ1(x)p2(x))fε2|X(u2(x)+ δ2(x)p1(x))�

Also when there are two players, the bound on the number of equilibria implies
that, without further assumptions, the existence of more than one equilibrium
precludes identification.

APPENDIX B: HETEROGENEOUS PAYOFF IMPACTS

Here we define U1i(X�εi) ≡ ui(X) + δi(X)fi(X�D−i) − εi. For a fixed x,
any function fi(x�D−i) can take at most 2N−1 values corresponding to the
possible D−i vectors: {fi(x�π) :π ∈ {0�1}N−1}. We can then write fi(x�D−i) =∑

π∈{0�1}N−1 fi(x�π)
∏

j �=i 1{Dj = πj} = ∑
π∈{0�1}N−1 fi(x�π)

∏
j �=i D

πj

j (1 − Dj)
1−πj ,

where πj denotes the jth component of π and 1{·} is the indicator function.
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For example, if N = 3 and fi(x�D−i) = maxj �=i(Dj), we have that f1(x�D−1) =
1 × D2D3 + 1 × D2(1 − D3) + 1 × (1 − D2)D3 + 0 × (1 − D2)(1 − D3) =
D2(1 − D3) + D3(1 − D2) + D2D3 (and analogously for i = 2�3). By Assump-
tion 1, in a single equilibrium indexed by l,

E
[
fi

(
X�(Sl

j(X�εj))j �=i

)|X = x�εi

]
= E

[
fi

(
X�(Sl

j(X�εj))j �=i

)|X = x
]

=
∑

π∈{0�1}N−1

fi(x�π)P
l(D−i = π|x)

=
∑

π∈{0�1}N−1

[
fi(x�π)

∏
j �=i

pl
j(x)

πj (1 −pl
j(x))

1−πj

]

≡φfi(x�p
l
−i(x))�

where pl
j(x) ≡ E(Sl

j(X�εj)|X = x) as before, pl
−i(x) ≡ (pl

j(x))j �=i, and Pl(ω|x)
denotes the probability that the event ω happens conditional on x, as implied
in the equilibrium pl. Notice also that the mapping φfi :ΩX × [0�1]N−1 → R is
a simple extension of fi to ΩX × [0�1]N−1. It is known as long as fi is known.
The equations that characterize a single equilibrium pl in (1) now become

pl
i(x)= Fεi |X=x

(
ui(x)+ δi(x)φfi(x�p

l
−i(x))

)
for all i = 1� � � � �N�

Then the results in Proposition 1 now apply with γl
i(x) ≡ φfi(x�p

l
−i(x)). Note

that, by the law of total probability,

γ∗
i (x) ≡

∑
π∈{0�1}N−1

[fi(x�π)P∗(D−i = π|x)]�(B.1)

where P∗(ω|x) denotes the probability that ω occurs conditional on x, ob-
served from the data. Furthermore,

γ̃∗
i (x) ≡

∑
π∈{0�1}N−1

[
fi(x�π)P

∗{(D−i�Di)= (π�1)|x}](B.2)

given the fact that Pl{(D−i�Di)= (π�1)|x} = pl
i(x)

∏
j �=i p

l
j(x)

πj (1−pl
j(x))

1−πj

under Assumption 1 in the paper, the law of total probability, and the definition
of P∗(·|x). Hence p∗

i (x) and γ∗
i (x) as defined in (B.1), and γ̃∗

i (x) as defined in
(B.2) can all be expressed in terms of observable distributions. Thus the sign
of δi(x) is identified and multiple BNE can be detected as in Proposition 1.
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APPENDIX C: A WALD TEST FOR MULTIPLE BNE

By the delta method,

G1/2(TG −�)
d−→ N(0N�VΣV′) as G→ ∞�

where �≡ (�i)
N
i=1. The Jacobian V is an N-by-Ñ matrix, with its ith row Vi de-

fined by the following table (where μ(m) and Vi�(m) denote the mth coordinates
of two Ñ vectors μ and Vi, respectively, and j�k �= i):

μ(m) μ0 μi μj μij or μji μjk

Vi�(m)

∑
j �=i(−μij

μ2
0
+ 2μiμj

μ3
0
) −∑

j �=i

μj

μ2
0

− μi

μ2
0

1
μ0

0

Let Σ̂ and V̂ be estimates for Σ and V, respectively, constructed by replacing
μ0 and μI with nonparametric estimates

μ̂0 = G−1
∑
g

1(Xg = x)� μ̂I =G−1
∑
g

[∏
i

Di�g1(Xg = x)
]
�

PROPOSITION C.1: Suppose the data have G independent games with the same
underlying structure, and both V and Σ are full rank. Then

G(TG −�)′(V̂Σ̂V̂′)−1(TG −�)
d→ χ2

df=N as G→ ∞�

Under the null, � = 0N and the chi-squared distribution can be used to ob-
tain critical values for the test statistic GT′

G(V̂Σ̂V̂′)−1TG. Because N ≥ 3 and
conditional choice probabilities are bounded away from 0 and 1 (due to the
rich support condition in Assumption 1), the full-rank conditions above are
not restrictive.

APPENDIX D: ALGORITHMS FOR STEPWISE PROCEDURE

The following algorithm summarizes the stepwise multiple-testing proce-
dure we adopt from Romano and Wolf (2005).

ALGORITHM D.1—Basic Nonstudentized Step-Down Procedure:
Step 1. Relabel the hypotheses in descending order of the test statistics TG�i.

Let H0
ik

denote the individual null hypothesis whose test statistic is the kth
largest.

Step 2. Set k = 1 and R1 = 0.
Step 3. For Rk + 1 ≤ s ≤ N , if TG�(s) − ĉk > 0, then reject the individual null

H0
is

.
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Step 4. If no (further) null hypotheses are rejected, then stop. Otherwise let
Rk+1 denote the total number of hypotheses rejected so far (i.e., Rk plus the
number of hypotheses rejected in the kth step) and set k= k+ 1. Then return
to Step 3 above.

We consider two alternative methodologies for the computation of ĉk: boot-
strap and using the asymptotic distribution of the test statistic. The two are
summarized in the following two algorithms.

ALGORITHM D.2—Computing ĉk Using Bootstrap:
Step 1. Let ik and Rk be defined as in Algorithm D.1 above.
Step 2. Generate B bootstrap data sets.
Step 3. From each bootstrap data set (indexed by b), compute the vector of

test statistics (T ∗�b
G�1� � � � �T

∗�b
G�N).

Step 4. For 1 ≤ b≤ B, compute max∗�b
G�k = maxRk+1≤s≤N(T

∗�b
G�is

− TG�is ).
Step 5. Then compute ĉk as the (1 − α)th empirical quantile of the B values

{max∗�b
G�k}b≤B.

ALGORITHM D.3—Computing ĉk Using Parametric Simulations:
Step 1. Estimate the covariance matrix of the vector of test statistics that

corresponds to hypotheses which are not rejected after the first k − 1 steps,
that is, (TG�(Rk+1)� TG�(Rk+2)� � � � � TG�(N)). Denote the estimate by Σ̂k.

Step 2. Simulate a data set of M observations {vm}Mm=1 from the (N − Rk)-
dimensional multivariate normal distribution with parameters (0N−Rk

� Σ̂k),
where 0k is a k vector of zeros.

Step 3. Then ĉk is computed as the (1 − α)th empirical quantile of the max-
imum coordinates of vm in the simulated data. (M can be large relative to the
number of bootstrap samples B in Algorithm D.2 above.)

The studentized stepwise procedure is summarized in the following algo-
rithm. As before, Rk denotes the total number of hypotheses not rejected in
the first k− 1 steps.

ALGORITHM D.4—Studentized Step-Down Procedure:
Step 1. Relabel the individual hypotheses in descending order of studentized

test statistics ZG�i ≡ TG�i/σ̂G�i, where σ̂G�i are estimates for standard deviation
of TG�i.

Step 2. Set k = 1 and R1 = 0.
Step 3. For Rk + 1 ≤ s ≤ S, if ZG�is > d̂j , then reject the individual null H0

is
.

Step 4. If no further individual null hypotheses are rejected, stop. Otherwise
let Rk+1 denote the total number of hypotheses rejected so far and set k =
k+ 1. Then return to Step 3 above.
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The critical values for the studentized stepwise method d̂k are computed by
an algorithm similar to Algorithm D.1, where standard errors (σ̂∗�b

G�1� � � � � σ̂
∗�b
G�N)

are also computed in Step 3 and max∗�b
G�k ≡ maxRk+1≤s≤N(T

∗�b
G�is

− TG�is )/σ̂
∗�b
G�is

in
Step 4.
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