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This appendix provides additional results on equilibria of exit game Γσ as the noise
parameter σ becomes small. Section S.1 shows that all Markovian equilibria will be ap-
proximately symmetric for σ small. Section S.2 studies the structure of time-dependent
Markovian equilibria. Finally, Section S.3 provides sufficient conditions under which
game Γσ is asymptotically dominance solvable.

S.1. ASYMPTOTICALLY SYMMETRIC PLAY IN MARKOVIAN EQUILIBRIA

THEOREM 1 ESTABLISHES that for noise parameter σ small enough, the set of
rationalizable strategies of Γσ is bounded by a most cooperative and a least
cooperative equilibria, that are Markovian and take a threshold form.

The following proposition shows that for σ small enough, all Markovian
equilibria take a threshold form and are asymptotically symmetric.

PROPOSITION S.1: There exists σ > 0 such that for all σ ∈ (0�σ), every
Markovian equilibrium s of Γσ takes a threshold form with thresholds (xi�σ� x−i�σ).
Furthermore, we have that |xi�σ − x−i�σ |< 2σ .

PROOF: The fact that for σ small enough, all Markovian equilibria take a
threshold form is a direct consequence of Lemma A.1, applied to the class of
one-shot games augmented with the continuation values associated to Markov-
ian equilibria.

We now show that thresholds (xi�σ� xi�σ) satisfy |xi�σ − x−i�σ |. This follows
from the fact that given an equilibrium threshold x−i�σ , then player i knows
that if xi�t < x−i�σ − σ player −i will play E, so that player i’s best reply is to
play E as well. Similarly, if xi�t > x−i�σ + σ , then player i knows that player −i
will play S and her best reply is to play S as well. Q.E.D.

This result highlights that, asymptotically, the likelihood of actual miscoor-
dination is vanishing. Note that since the players’ payoffs may be asymmetric,
the continuation values associated with approximately symmetric Markovian
equilibria may be quite different.

In games where payoffs are symmetric, and error terms εi and ε−i have
identical distributions, Proposition S.1 can be strengthened to show that all
Markovian equilibria are symmetric.

PROPOSITION S.2: Whenever payoff functions are symmetric, and error terms
εi�t and ε−i�t have identical distributions, there exists σ > 0 such that for all σ ∈
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(0�σ), every Markovian equilibrium takes a threshold form with thresholds xi�σ =
x−i�σ .

PROOF: Consider σ small enough that all Markovian equilibria take a
threshold form. Consider such a Markovian equilibrium with thresholds
(xi�σ� x−i�σ), associated with values (Vi�σ� V−i�σ). The proof proceeds by contra-
diction. Assume, for instance, that xi�σ > x−i�σ . Because of Assumption 5—
that staying benefits one’s partner—it follows that Vi�σ > V−i�σ . Given that
player i is indifferent between staying and exiting at signal xi�t = xi�σ and
that V−i�σ < Vi�σ , player −i must strictly prefer exiting to staying when ob-
serving signal x−i�t = xi�σ . This contradicts xi�σ > x−i�σ and implies that xi�σ =
x−i�σ . Q.E.D.

S.2. TIME-DEPENDENT MARKOVIAN EQUILIBRIA

Section 4 used a dynamic programming approach à la Abreu, Pearce, and
Stacchetti (1990) to characterize Markovian equilibria of Γσ . The same ap-
proach can be used to characterize time-dependent Markovian equilibria.

DEFINITION S.1: A strategy si is time-dependent Markovian if and only if
si(hi�t) depends only on time t and player i’s current signal xi�t .

For σ small enough and for any pair of values V ∈ ∏
i∈{1�2}[mi�Mi], we con-

sider the mappings x∗
σ(V), and φσ(V) defined in Appendix A.2. Recall that

x∗
σ(V) is the unique equilibrium threshold of the augmented one-shot global

game Ψσ(V) and that φσ(V) is the value of playing Ψσ(V) according to its
unique equilibrium threshold.

A profile of time-dependent Markovian strategies s = (si� s−i) is associated
with the sequence of values (Vt)t∈N = (Vi�t� V−i�t)t∈N, where Vt is the pair of val-
ues associated with playing according to strategies s in the subgame starting at
date t. A sequence of values (Vt)t∈N is supported by a time-dependent Markov-
ian equilibrium of Γσ if and only if the sequence (Vt)t∈N is bounded and satis-
fies the recurrence equation Vt = φσ(Vt+1) for all t ∈ N. Furthermore, such
a sequence of continuation values is sustained by a unique perfect Bayesian
equilibrium such that players choose to stay in period t according to threshold
x∗
σ(Vt). The proof of these results is straightforward, and essentially identical

to that of Theorem 2.
To say more about time-dependent Markovian equilibria, the rest of the sec-

tion focuses on symmetric games and symmetric equilibria. Mapping Φ can
be reduced to a mapping from R to R. Denote by U S(Φ) the set of unstable
fixed points of mapping Φ and denote by S(Φ) the set of stable fixed points of
mapping Φ. The analysis assumes that all the fixed points of Φ are nonsingu-
lar.
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Consider s a symmetric time-dependent Markovian equilibrium and (Vt)t∈N

the associated sequence of values. Since Vt must be bounded, we can always
extract a converging sequence converging to some value Vσ�∞.

PROPOSITION S.3: Pick any η > 0. There exists σ > 0 such that for all σ ∈
(0�σ), the following conditions hold:

(i) If Vσ�∞ ∈ R \ ⋃
V ∈U S(Φ)[V − η�V + η], then there exists V ∗ ∈ S(Φ) such

that for all t ∈ N, Vt ∈ [V ∗ −η�V ∗ +η].
(ii) If Vσ�∞ ∈ R \ ⋃

V ∈S(Φ)[V − η�V + η], then there exists V ∗ ∈ U S(Φ) and
T > 0 such that for all t ≥ T , Vt ∈ [V ∗ −η�V ∗ +η].

PROOF: The fixed points of Φ belong to some compact interval [m�M].
Since by assumption every fixed point of Φ is nonsingular, this means that there
are only finitely many of them.

Furthermore, since Φ is increasing and all its fixed points are nonsingular,
then for every ζ > 0, there exist k ∈ N and ν ∈ (0� ζ) such that the following
statements hold:

• For all V ∈ [m�M] \ ⋃
V ∈U S(Φ)[V − ζ�V + ζ], Φk(V ) ∈ ⋃

V ∈S(Φ)[V − ζ +
ν�V + ζ − ν].

• For all V ∗ ∈ S(Φ), Φ([V ∗ − ζ�V ∗ + ζ]) ⊂ [V ∗ − ζ + ν�V ∗ + ζ − ν].
Since φσ converges uniformly to Φ as σ goes to 0, there exists σ > 0 such

that for all σ ∈ (0�σ), the following conditions hold:
(a) For all V ∈ [m�M] \ ⋃

V ∈U S(Φ)[V − ζ�V + ζ], φk
σ(V ) ∈ ⋃

V ∈S(Φ)[V −
ζ�V + ζ].

(b) For all V ∗ ∈ S(Φ), φσ([V ∗ − ζ�V ∗ + ζ])⊂ [V ∗ − ζ�V ∗ + ζ].
This implies Proposition S.3(i). Indeed, pick η> 0 and apply (a) and (b) above
with ζ < η. Since Vσ�∞ ∈ [m�M] \ ⋃

V ∈U S(Φ)[V −η�V +η], there are infinitely
many times t ∈ N such that Vt ∈ [m�M] \ ⋃

V ∈U S(Φ)[V − ζ�V + ζ]. By point (a)
above, this implies that there exists V ∗ ∈ S(Φ) such that there are infinitely
many times t at which Vt ∈ [V ∗ − ζ�V ∗ + ζ]. By point (b) it follows that in
every earlier period, and hence in every period s, Vs ∈ [V ∗ − ζ�V ∗ + ζ] ⊂ [V ∗ −
η�V ∗ +η]� This proves point (i).

We now move to point (ii). Pick the same σ as in the proof above. The
fact that Vσ�∞ ∈ R \ ⋃

V ∈S(Φ)[V − η�V + η] implies that there exists T1 > 0
large enough such that for all t > T1, Vt ∈ ⋃

V ∈U S(Φ)[V − η�V + η]. Other-
wise we would be in case (i), which implies that Vσ�∞ should be within a small
neighborhood of S(Φ). Furthermore, since Φ is increasing, it is not possi-
ble to transition from a unstable fixed point of Φ to an other unstable fixed
point of Φ without being in the neighborhood of a stable fixed point of Φ.
Hence this means that there exist T2 and V ∗ ∈ U S(Φ) such that for all t ≥ T2,
Vt ∈ [V ∗ −η�V ∗ +η]. Q.E.D.

Furthermore, note that if we are in case (ii) of Proposition S.3, then for
η small, the continuation equilibrium after time T is in an arbitrarily small
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neighborhood of a Markovian equilibrium that is asymptotically unstable in
the sense developed in Section 4.4. This follows from the fact that unstable
fixed points of φ are associated to unstable fixed points of ξ.

Altogether this means that a time-dependent Markovian equilibrium is ei-
ther very close to an asymptotically stable Markovian equilibrium or is arbi-
trarily close to an asymptotically unstable Markovian equilibrium sufficiently
far away in the future.

S.3. SUFFICIENT CONDITIONS FOR UNIQUENESS

Theorem 2 implies that whenever the mapping Φ has a unique fixed point,
then the set of rationalizable strategies of Γσ converges to a singleton as σ
goes to 0. The following proposition provides sufficient conditions under which
mapping Φ has a unique fixed point.

PROPOSITION S.4—Uniqueness: Pick K a compact of R
2. There exists a con-

stant η > 0, depending only on payoff functions and K, such that whenever
(i) players have individually rational values for playing game Γ0 that belong to
K and (ii) the distribution of states of the world f satisfies max f < η, mapping Φ
admits a unique fixed point and the set of rationalizable strategies of Γσ converges
to a singleton as σ goes to 0.

PROOF: Let ‖ · ‖1 denote the norm on R
2 defined by ‖V‖1 = |Vi| + |V−i| and

let ‖ · ‖∞ denote the sup norm. It results from Theorem 2(iii) that

‖Φ(V)−Φ(V′)‖1

≤ β‖V − V′‖1

+ ‖f‖∞
∑

i∈{1�2}
‖gi

11 +βVi −W i
22‖∞

∥∥∥∥
∂xRD

∂Vi

+ ∂xRD

∂V−i

∥∥∥∥
∞

‖V − V′‖1�

Since

∑

i∈{1�2}
‖gi

11 +βVi −W i
22‖∞

∥∥∥∥
∂xRD

∂Vi

+ ∂xRD

∂V−i

∥∥∥∥
∞

is finite, for any δ ∈ (β�1), there exists ‖f‖∞ small enough such that ‖Φ(V)−
Φ(V′)‖1 ≤ δ‖V − V′‖1. Hence Φ is a contraction mapping, which concludes the
proof. Q.E.D.

Intuitively, Proposition S.4 implies that when the state of the world wt has
sufficient variance, then game Γσ is asymptotically dominance solvable. Indeed,
when the density of distribution f becomes arbitrarily small, a given change in
cooperation levels induces an arbitrarily small change in continuation values,
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which is not enough to make the original change in cooperation levels self-
sustaining.
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