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Section S1 shows that a given path of earnings (z0(n)� z1(n)) is implementable. Sec-
tion S2 provides conditions for the existence of a solution to the maximization problem.
Section S3 discusses conditions ensuring no bunching in the optimum. Section S4 dis-
cusses the outcome of a more general model with heterogeneity in both work costs and
home production abilities. Section S5 provides technical details of the simulations.

S1. IMPLEMENTATION

AS IN THE ONE-DIMENSIONAL MECHANISM DESIGN theory, we define imple-
mentability as follows: An action profile (z0(n)� z1(n))n∈(n� n̄) is implementable
if and only if there exist transfer functions (c0(n)� c1(n))n∈(n� n̄) such that
(zl(n)� cl(n))l∈{0�1}�n∈(n� n̄) is a simple truthful mechanism.1 The central imple-
mentability theorem of the one-dimensional case carries over to our model.

LEMMA S.1: An action profile (z0(n)� z1(n))n∈(n� n̄) is implementable if and only
if z0(n) and z1(n) are both nondecreasing in n.

PROOF: The utility function c − nh(z/n) satisfies the classic single crossing
(Spence–Mirrlees) condition (here equal to x ·h′′(x) > 0 for all x > 0). Hence,
from the one-dimensional case, we know that z(n) is implementable, that is,
there is some c(n) such that c(n) − nh(z(n)/n) ≥ c(n′) − nh(z(n′)/n) for all
n�n′ if and only if z(n) is nondecreasing.2

Suppose (z0(n)� z1(n)) is implementable, implying that there exists (c0(n)�
c1(n)) such that (zl(n)� cl(n))l∈{0�1}�n∈(n� n̄) is a simple truthful mechanism. That
implies in particular that cl(n) − nh(zl(n)/n) ≥ cl(n

′) − nh(zl(n
′)/n) for all

n�n′ and for l = 0�1. Hence, the one-dimensional result implies that z0(n) and
z1(n) are nondecreasing.

Conversely, suppose that z0(n) and z1(n) are nondecreasing. Because z0(n)
is nondecreasing, the one-dimensional result implies there is c0(n) such that

1A mechanism is defined as truthful if there is a q̄(n) so that (i) when q < q̄(n), the set (l′ =
1�n′ = n) maximizes u(zl′(n

′)� l′� cl′(n′)� (n�q)) over all (l′�n′); (ii) when q ≥ q̄(n), the set (l′ =
0�n′ = n) maximizes u(zl′(n′)� l′� cl′(n′)� (n�q)) over all (l′�n′).

2As an informal reminder, recall that if z(n) is implementable, then the first-order con-
dition is ċ(n) − h′(z(n)/n)ż(n) = 0 and the second-order condition is c̈ − z̈h′(z(n)/n) −
(ż2/n)h′′(z(n)/n) ≤ 0. Differentiating the first-order condition leads to c̈ − z̈h′(z(n)/n) −
(ż2/n)h′′(z(n)/n) + (z(n)/n)h′′(z(n)/n)(ż/n) = 0. Combining with the second-order condition
implies (z(n)/n)h′′(z(n)/n)ż ≥ 0, which implies ż ≥ 0 using the Spence–Mirrlees condition.
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c0(n)−nh(z0(n)/n)≥ c0(n
′)−nh(z0(n

′)/n). Similarly, there is c1(n) such that
c1(n)− nh(z1(n)/n)≥ c1(n

′)− nh(z1(n
′)/n).

It is easy to show that the mechanism (zl(n)� cl(n))l∈{0�1}�n∈(n� n̄) is actually
truthful. Define Vl(n) = cl(n) − nh(zl(n)/n) for l = 0�1 and q̄(n) = V1(n) −
V0(n). We only need to prove the cross-inequalities. For all n�n′� q ≥ q̄(n),

u(z0(n)�0� c0(n)� (n�q))

= V0(n)≥ V1(n)− q ≥ u(z1(n
′)�1� c1(n

′)� (n�q));
for all n�n′� q < q̄(n),

u(z1(n)�1� c1(n)� (n�q))

= V1(n)− q ≥ V0(n)≥ u(z0(n
′)�0� c0(n

′)� (n�q))�

The key assumption that allows us to obtain those simple results is the fact that
q is separable in our utility specification. Q.E.D.

S2. EXISTENCE OF A SOLUTION TO THE MAXIMIZATION PROBLEM

Formally, our maximization problem is the optimal control problem
V̇ = b(n�V � z) with maximization objective B0 = ∫ n̄

n
b0(n�V (n))dn and con-

straint
∫ n̄

n
b1(n� z(n)�V (n))dn≥ 0, where

b(n�V � z)=
(

−h

(
z0

n

)
+

(
z0

n

)
h′

(
z0

n

)
�−h

(
z1

n

)
+

(
z1

n

)
h′

(
z1

n

))
�

b0(n�V ) =
[∫ V1−V0

0
Ψ(V1 − qw)p(q|n)dq

+
∫ ∞

V1−V0

Ψ(V0 + qh)p(q|n)dq
]
f (n)�

b1(n�V � z)=
{[

z1 +w − nh

(
z1

n

)
− V1

]
P(V1 − V0|n)

+
[
z0 − nh

(
z1

n

)
− V0

]
(1 − P(V1 − V0|n))

}
f (n)�

The functions b, b0, and b1 are continuous in n and class C1 in (V � z) by as-
sumption. Some convexity assumptions are required to demonstrate the exis-
tence of a solution (V � z). Strict concavity of the functions b0 and b1, and strict
convexity of b in (V � z) are sufficient to obtain existence (and uniqueness); see,
for example, Mangasarian (1966, Theorem 1, p. 141). However, in our appli-
cation, concavity of b0 and b1 would be an unduly strong assumption.
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It is possible to obtain existence without such strong assumptions using our
Assumption 1 and the regularity assumptions on functions f�Ψ�P , and h. More
precisely, according to Macki (1982, Theorem 3, p. 96), if we assume (i) an a
priori bound on the path of admissible z,3 (ii) b�b0, and b1 are continuous,
and (iii) the sets B(n�V �λ) = {(y�b(n�V � z))|z0 ≥ 0� z1 ≥ 0� y ≥ −b0(n�V ) −
λ · b1(n�V � z)} are convex for all n�V and λ ≥ 0, then there exists an optimal
control z measurable on (n� n̄).4

Assumption (iii) is the only one that requires checking. In our problem, we
have:

B(n�V �λ)=
{(

y�−h

(
z0

n

)
+

(
z0

n

)
h′

(
z0

n

)
�

−h

(
z1

n

)
+

(
z1

n

)
h′

(
z1

n

))∣∣∣z0 ≥ 0� z1 ≥ 0�

y ≥ −b0(n�V )

− λf(n) ·
[
(1 − P) ·

(
z0 − nh

(
z0

n

)
− V0

)

+ P ·
(
w + z1 − nh

(
z0

n

)
− V1

)]}
�

Let us denote by K(·) the inverse of the strictly increasing function x →
−h(x)+ xh′(x). Note that K(0)= 0. Hence, we have

B(n�V �λ)

= {
(y�x0�x1)|x0 ≥ 0�x1 ≥ 0�

y + b0(n�V )≥ nf(n)λ
[
(1 − P) · (h(K(x0))−K(x0)+ V0

)
+ P · (h(K(x1))−K(x1)−w + V1

)]}
�

Therefore, B(n�V �λ) is convex if x → h(K(x)) − K(x) ≡ φ(x) is convex. By
definition of K(x), we have −h(K(x)) + K(x)h′(K(x)) = x, hence K(x) ·
h′′((K(x)) · K′(x)) = 1. Therefore, we have φ′(x) = (h′(K(x)) − 1)K′(x) =
−(1−h′(K(x)))/[K(x)h′′(K(x))]. As x →K(x) is strictly increasing, Assump-
tion 1 implies that φ′(x) is increasing.

3That means that we know a priori that there is some Z > 0 possibly large such that
0 ≤ zl(n) ≤ Z for all n ∈ (n� n̄) and l = 0�1. This assumption is weak when n̄ < ∞ as we do not ex-
pect the optimal tax system to generate infinitely large subsidies that drive up earnings z without
bound.

4Macki (1982) presented optimal control as a minimization problem. Our maximization prob-
lem can be seen as minimizing − ∫

b0 dn. Macki (1982) did not include constraints such as∫
b1 dn ≥ 0, but such a constraint can be added by using a standard Lagrange multiplier λ and

considering the objective b0 + λ · b1.
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S3. NO BUNCHING WITH LOW REDISTRIBUTIVE TASTES

As discussed in the main text, when redistributive tastes are low, the optimal
solution is close to the laissez-faire no tax solution (where z0 = z1 = n), and,
therefore, will have the property that zl is strictly increasing in n and hence
display no bunching.

A formal proof of this statement requires using advanced functional analysis
(see Kleven, Kreiner, and Saez (2007)), but the argument is easy to understand.
Let us parametrize redistributive tastes with γ and assume that social welfare is
CRRA so that Ψ(V )= V 1−γ/(1−γ). The no redistributive case is γ = 0. When
γ = 0, the unique solution is z0 = z1 = n.5 Let us denote by zγ the solution
for γ ≥ 0 and assume that the strong convexity assumptions hold so that the
solution is unique for γ > 0. It is possible to show that the solution is smooth in
γ and can be written as zγ = z0 +γ ·Z+o(γ), where n →Z(n) is the first-order
deviation from z0 for small γ and o(γ) is small relative to γ (in a C1 sense).
Z actually satisfies a linear second-order differential equation with a unique
smooth solution. As a result, żγ

l (n) = 1 + γ · Żl(n) + o(γ) > 0 for γ small so
that zγ does not display bunching.

This result is of course true as well in the one-dimensional case and can
be demonstrated without using advanced functional analysis. To our knowl-
edge, this result has not been presented in the literature before6 and is formally
proven below.

PROPOSITION S.1: Consider the one-dimensional Mirrlees (1971) optimal in-
come tax problem with Ψ(V ) = V 1−γ/(1 − γ). Assume that Assumption 1 in the
main text is satisfied, n → f (n) is of class C1 and bounded away from 0, x → h(x)
is of class C3, n > 0, and n̄ < ∞. Then the solution does not display bunching for
γ > 0 small enough.

PROOF: In the one-dimensional case, under the assumptions of the proposi-
tion, the Hamiltonian is strictly concave in (z�V ) for γ > 0 so that the solution
is unique and given by the maximum principle first-order condition:

ϕ

(
z

n

)
· nf(n)=

∫ n̄

n

(
1 − V (m)−γ

λ

)
f (m)dm(S.1)

with ϕ(x) = (1 − h′(x))/(xh′′(x)), λ = ∫ n̄

n
V (n)−γf (n)dn, and V̇ (n) =

−h′(z/n) + (z/n)h′(z/n) ≥ 0. Transversality conditions imply that z(n) = n
and z(n̄)= n̄.

5In that case, it is actually possible to prove by contradiction directly that only z0 = z1 = n can
satisfy the first-order conditions spelled out in Proposition 1.

6Except in the monopoly problem (where social marginal welfare weights are constant), the
literature does not seem to have presented any conditions that rule out bunching.
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Obviously, if γ = 0, then λ = 1, and (S.1) implies z = n. With γ > 0, for
all n, 0 < n(1 − h(1)) ≤ V (n) ≤ V (n) ≤ V (n̄) ≤ n̄(1 − h(1)) < ∞ (as redis-
tribution will increase the utility of the lowest skilled relative to laissez-faire
and decrease utility of the highest skilled). Hence, V (n)−γ → 1 uniformly in n
when γ → 0. Hence λ → 1 when γ → 0. Assumption 1 (ϕ strictly decreasing
and smooth) along with (S.1) and the normalization assumption h′(1)= 1 then
implies that z/n→ 1 uniformly in n when γ → 0. Differentiating (S.1) implies

ϕ′
(
z

n

)
·
[
ż − z

n

]
f (n)+ϕ

(
z

n

)
· (n+ nf ′(n))=

(
V (n)−γ

λ
− 1

)
f (n)�

As ϕ(1) = 0 and ϕ′(1) < 0, z/n → 1 and V (n)−γ/λ → 1 uniformly in n when
γ → 0, we have ż → 1 uniformly in n when γ → 0. Hence, for γ small enough,
ż > 0 for all n, implying that there is no bunching for γ small enough. Q.E.D.

S4. MODEL WITH BOTH WORK COSTS AND HOME PRODUCTION:
OPTIMAL ZERO TAX CONDITION

In the main text, we are considering the polar models with either only work
costs (qw = q�qh = 0) or only home production (qh = q�qw = 0). We consider
here the more general model with both work costs and home production. We
assume that (qw�qh) are distributed with density k(qw�qh|n) conditional on
primary earnings ability n. We characterize conditions on k(·� ·|n) so that there
should be no tax on secondary earnings so that T1 ≡ T0.

PROPOSITION S.2: If, for each n, (qw�qh) is distributed symmetrically around
the diagonal qh + qw = w, that is, k(qh�qw|n) = k(w − qw�w − qh|n) for all
qh + qw ≤w, and the first-order conditions described in Proposition 1 are suffi-
cient for a solution, then T0 ≡ T1, that is, there should be no tax on secondary
earnings.

PROOF: In the general model (qw�qh), equation (1) implies that secondary
earners work if and only if qw + qh ≤ V1 − V0. Let us denote (as in the polar
cases) by P(V1 − V0|n) the probability that qw + qh ≤ V1 − V0. The symmetry
property implies that P(w|n)= 1/2. Suppose that V1 − V0 = w. Then

g0 =

∫
qh+qw>w

Ψ ′(V0 + qh)k(qh�qw|n)dqh dqw

(1 − P(w|n)) · λ

=

∫
w−qh+w−qw<w

Ψ ′(V1 − (w − qh))k(qh�qw|n)dqh dqw

P(w|n) · λ �
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Changing variables to rh =w − qw and rw =w − qh, we have

g0 =

∫
rh+rw<w

Ψ ′(V1 − rw)k(w − rw�w− rh|n)drh drw

P(w|n) · λ = g1�

where the last equality is obtained using the symmetry property. This im-
plies that if the tax system is such that T0 ≡ T1, then V1 − V0 = w, 	T = 0,
z0 = z1, ε0 = ε1 ≡ ε, g0 = g1 ≡ g, P = 1/2, and T ′

0 = T ′
1 ≡ T ′ with T ′/(1 − T ′) =

(1/(εnf (n)))
∫ n̄

n
(1−g)f (m)dm (the standard Mirrlees (1971) formula) satisfy

both first-order conditions (7) and (8). If those conditions are sufficient for an
optimum, that means that the standard Mirrlees (1971) tax system with no tax
on secondary earnings is the full optimum. The sufficiency condition would be
satisfied under concavity assumptions (as we discussed in Section S2). Q.E.D.

Intuitively, if qh and qw have the symmetry property, then under no tax on
secondary earnings, (V0 +qh)/(qh+qw) > w and V1 −qw = V0 +(w−qw)/(qh+
qw) < w have the same distribution and hence one- and two-earner couples
have the same marginal welfare weights (g0 = g1). As a result, there is no
point in that case for the government to tax (or subsidize) secondary earnings.
The symmetry property holds in the particular case where qh and qw are iden-
tically and independently distributed with density p(q) symmetric around w/2
(p(w − q) = p(q)). The property can also hold when qh and qw are positively
(or negatively) correlated. For example, when qh = qw (perfect correlation),
the property holds if again the density is symmetric around w/2.

When the symmetry property fails, under no tax on secondary earnings, (V0 +
qh)/(qh + qw) > w will have a less favorable distribution than V1 − qw = V0 +
(w − qw)/(qh + qw) < w if there is more “heterogeneity” in qw than in qh.
In that case, g1 < g0 under no tax on secondary earnings. Hence, imposing a
positive tax on secondary earners is desirable. As Assumption 2 in the main
text, strict convexity of Ψ ′ will tend to make the difference between g0 and g1

shrink with n so that we would expect the optimal system to display negative
jointness. Symmetrically, if there is more “heterogeneity” in qh than qw, g1 > g0

and secondary earnings should be subsidized, and we should expect the size of
subsidy to shrink with n if Ψ ′ is convex.

S5. NUMERICAL SIMULATIONS

Simulations are performed with Matlab software and our programs are avail-
able upon request. We select a grid for n, from n to n̄ with 1000 elements:
(nk)k. Integration along the n variable is carried out using the trapezoidal ap-
proximation. All integration along the q variable is carried out using explicit
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closed form solutions using the incomplete β function:
∫ V1−V0

0
Ψ ′(V1 − q)p(q)dq =

∫ V1−V0

0

1
(V1 − q)γ

η · qη−1

qη
max

dq

= η

qη
max

∫ V1−V0

0
(V1 − q)−γqη−1 dq

= η · V η−γ
1

qη
max

∫ 1−V0/V1

0
tη−1(1 − t)−γ dt

= η · V η−γ
1

qη
max

·β
(

1 − V0

V1
�η�1 − γ

)
�

where the incomplete beta function β is defined as (for 0 ≤ x≤ 1)

β(x�a�b) =
∫ x

0
ta−1(1 − t)b−1 dt�

Matlab does not compute it directly for γ ≥ 1 (b ≤ 0), but we have used the
development in series to compute it very accurately and quickly with a subrou-
tine:

β(x�a�b) = 1 +
∞∑
n=1

(1 − b)(2 − b) · · · (n− b)

n! · xn+a

n+ a
�

Simulations proceed by iteration:
We start with given T ′

0 and T ′
1 vectors, derive all the vector variables z0, z1,

V0, V1, q̄, T0, T1, λ, and so forth which satisfy the government budget constraint
and the transversality conditions.7 This is done with a subiterative routine that
adapts T0 and T1 as the bottom n until those conditions are satisfied. We then
use the first-order conditions (7) and (8) from Proposition 1 to compute new
vectors T ′

0 and T ′
1. To allow convergence, we use adaptive iterations where we

take as the new vectors T ′
0 and T ′

1, a weighted average of the old vectors and
newly computed vectors. The weights are adaptively adjusted downward when
the iteration explodes. We then repeat the algorithm.

This procedure converges to a fixed point in most circumstances. The fixed
point satisfies all the constraints and the first-order conditions. We check that
the resulting z0 and z1 are nondecreasing so that the fixed point solution is
implementable. Hence, the fixed point is expected to be the optimum.8

7Then adjust the constants for Tl(n) until all those constraints are satisfied. This is done using
a secondary iterative procedure.

8We also compute total social welfare and verify on examples that it is higher than social wel-
fare generated by other tax rates T ′

1 and T ′
0 that satisfy the government budget constraint.
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The central advantage of our method is that the optimal solution can be
approximated very closely and quickly. In contrast, direct maximization where
we search the optimum over a large set of parametric tax systems by computing
directly social welfare would be much slower and less precise.
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