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Appendix A contains detailed derivations, proofs of propositions, and extensions for
the model introduced in Section 4 of the main text. Additional information regarding
the empirical context of the data in Section 2, robustness related to stylized facts in
Section 3, the derivation and estimation of the quantitative model in Section 5, and
additional tables and figures mentioned in the main text are contained in Online Ap-
pendix B posted on both the authors’ websites and in the replication files on the journal
website.

A.1. MODEL DERIVATIONS

IN THIS SECTION, we present the derivations of several results in the main paper.

Approximation of Real Returns (equation (15)). First, to calculate the income of farm-
ers in a village, we substitute the arbitrage equation (10) into farmers’ income as a sum of
revenue across all crops to yield

Yi(s) =
(∑

g∈G
αig

(
p̄g(s)Qig(s)

αig

) εi
1+εi
) 1+εi

εi

� (24)

Similarly, combining equation (5) with (10) yields the following expression for the period
welfare of a farmer in village i:

Z
f
i (s) = 1

Li

×
(∑

g∈G
αig

(
p̄g(s)Qig(s)

αig

) εi
1+εi
)

×
∏
g∈G

(
Qig(s)

(
αig

p̄g(s)Qig(s)

) εi
1+εi
)αig

� (25)

In the autarky (i.e., εi = 0), equation (25) simplifies to Z
f�aut
i (s) ≡ 1

Li

∏
g∈G(Qig(s))αig , as

farmers consume what they produce. In free trade (i.e., εi → ∞), equation (25) simplifies
to Z

f�free
i (s) ≡ 1

Li
× (
∑

g∈G p̄g(s)Qig(s)) ×∏g∈G( αig

p̄g (s) )αig , as farmers sell what they produce
and purchase what they consume at the central market prices.

We now note, with a large number of villages and idiosyncratic shocks, that p̄g(s) = p̄g,
that is, the central market prices are state invariant. Taking logs of equation (25) then
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yields

lnZf
i (s) = ln

(∑
g∈G

θ
f
ig × αig

θig

(
p̄g(s)θig

αig

Aig(s)
) εi

1+εi
)

+
(

1
1 + εi

)∑
g∈G

αig lnAig(s)

+
∑
g∈G

αig

(
ln
(
αig

(
p̄gθig

αig

) 1
1+εi
)

− ln p̄g

)
� (26)

We then apply the following second-order approximation implying that the sum of log-
normal variables is itself approximately log-normal (see, e.g., Campbell and Viceira
(2002)). Suppose that lnxi(s) ∼ N(μx

i ��i) and Xi(s) ≡ ln(
∑

g∈G wi�gxi�g(s)) for some
weights

∑
g∈G wi�g = 1. Then a second-order approximation around the mean log returns

is

Xi(s) ≈ ln
(∑

g∈G
wi�g exp

(
μx

i�g

))+
∑

wi�g

(
lnxi�g(s) −μx

i�g

)

− 1
2

∑
h∈G

∑
g∈G

wi�gwi�hσ
x
i�gh + 1

2

∑
g∈G

wi�gσ
x
i�gg� (27)

In our case, we have

lnxig(s) ≡ ln
(
αig

θig

)
+ εi

1 + εi

ln
(
p̄gθig

αig

)
+ εi

1 + εi

ln
(
Aig(s)

)

and wi�g ≡ θ
f
i�g which implies that μx

i�g = ln( αig

θig
) + εi

1+εi
ln( p̄gθig

αig
) + εi

1+εi
μA�i

g and σx
i�gh =

( εi
1+εi

)2σA
i�gh. Applying the approximation (27) to the real returns (26) results in

lnZ
f
i (s) ≈ μZ

i +
∑
g∈G

((
εi

1 + εi

)
θ
f
i�g +

(
1

1 + εi

)
αig

)(
lnAig(s) −μA�i

g

)
�

where

μZ
i ≡

∑
g∈G

((
εi

1 + εi

)
θ
f
i�g +

(
1

1 + εi

)
αig

)
μA�i

g + ln
(∑

g∈G
θ
f
ig × αig

θig

(
p̄gθig

αig

exp
(
μA�i

g

)) εi
1+εi
)

− εi

1 + εi

∑
g∈G

θ
f
i�gμ

A�i
g +

∑
g∈G

αig

(
ln
(
αig

(
p̄gθig

αig

) 1
1+εi
)

− ln p̄g

)

+ 1
2

(
εi

1 + εi

)2(∑
g∈G

θ
f
i�g�

A�i
gg −

∑
h∈G

∑
g∈G

θ
f
i�gθ

f
i�h�

A�i
gh

)
� (28)

as required.
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It immediately follows that farmer utility is (approximately) log-normally distributed
across states of the world:

lnZf
i ∼ N

(
μZ

i �σ
2�Z
i

)
�

where

σ2�Z
i ≡

∑
g∈G

∑
h∈G

((
εi

1 + εi

)
θ
f
i�g +

(
1

1 + εi

)
αig

)((
εi

1 + εi

)
θ
f
i�h +

(
1

1 + εi

)
αih

)
�A�i

gh � (29)

Optimal Crop Choice First-Order Conditions (equation (17)). Beginning with the max-
imization problem

max
{θ

f
ig}

μZ
i + 1

2
(1 − ρi)σ

2�Z
i s.t. �g∈Gθ

f
ig = 1

and substituting in the expressions for μZ
i and σ2�Z

i from equations (28) and (29) results
in

max
{θ

f
ig}

ln
(∑

g∈G
θ
f
ig

αig

θig

(
p̄gθig

αig

exp
(
μA�i

g

)) εi
1+εi
)

+
(

1
1 + εi

)∑
g∈G

αigμ
A�i
g

+
∑
g∈G

αig

(
ln
(
αig

(
p̄gθig

αig

exp
(
μA�i

g

)) 1
1+εi
)

− ln p̄g

)

+ 1
2

(
εi

1 + εi

)2(∑
g∈G

θ
f
i�g�

A�i
gg −

∑
h∈G

∑
g∈G

θ
f
i�gθ

f
i�h�

A�i
gh

)

+ 1
2

(1 − ρi)
∑
g∈G

∑
h∈G

((
εi

1 + εi

)
θ
f
i�g +

(
1

1 + εi

)
αig

)((
εi

1 + εi

)
θ
f
i�h +

(
1

1 + εi

)
αih

)
�A�i

gh

subject to:

�g∈Gθ
f
ig = 1�

Taking the first-order conditions with respect to θ
f
ig (note that each farmer makes her crop

choice taking the crop choice of other farmers as given) results in the following first-order
conditions:

αig

θig

(
p̄gθig

αig

exp
(
μA�i

g

)) εi
1+εi

∑
g∈G

θ
f
ig × αig

θig

(
p̄gθig

αig

exp
(
μA�i

g

)) εi
1+εi

+ 1
2

(
εi

1 + εi

)2

�A�i
gg + εi

(1 + εi)2

∑
h∈G

αih�
A�i
gh

− ρi

(
εi

1 + εi

)∑
h∈G

((
εi

1 + εi

)
θ
f
i�h +

(
1

1 + εi

)
αih

)
�A�i

gh = λi�
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or equivalently,

μZ
ig − ρi

(
εi

1 + εi

)∑
h∈G

((
εi

1 + εi

)
θ
f
i�h +

(
1

1 + εi

)
αih

)
�A�i

gh = λi�

where μZ
ig ≡ 1

θig

αig (
p̄gθig
αig

exp(μA�i
g ))

εi
1+εi

∑
g∈G αig (

p̄gθig
αig

exp(μA�i
g ))

εi
1+εi

+ 1
2 ( εi

1+εi
)2�A�i

gg + εi
(1+εi)2

∑
h∈G αih�

A�i
gh , as required.

Equilibrium Crop Choice (equation (18)). We rewrite the first-order conditions as

αig

θig

(
p̄gθig

αig

exp
(
μA�i

g

)) εi
1+εi

∑
g∈G

θ
f
ig × αig

θig

(
p̄gθig

αig

exp
(
μA�i

g

)) εi
1+εi

= λi −
(

1
2

(
εi

1 + εi

)2

�A�i
gg + εi

(1 + εi)2

∑
h∈G

αih�
A�i
gh

− ρi

(
εi

1 + εi

)∑
h∈G

((
εi

1 + εi

)
θi�h +

(
1

1 + εi

)
αih

)
�A�i

gh

)

⇐⇒ θig ∝ αig(p̄gBig)εi

=⇒ θig = αig(p̄gBig)εi∑
h∈G

αih(p̄hBih)εi
�

where Big ≡ expμA�i
g

(λi−( 1
2 ( εi

1+εi
)2�

A�i
gg + εi

(1+εi)
2
∑

h∈G αih�
A�i
gh

−ρi(
εi

1+εi
)
∑

h∈G (( εi
1+εi

)θi�h+( 1
1+εi

)αih)�A�i
gh

))
1+εi
εi

, as re-

quired.

A.2. PROOFS

This subsection contains the proofs of Propositions 1 and 2.

A.2.1. Proof of Proposition 1

We first restate the proposition:

PROPOSITION: Given any set of preferences {αig}g∈G , trade costs {εi}i∈N , and any state of
the world s ∈ S such that quantity produced is {Qig(s)}g∈G

i∈N :
(a) There exists a state equilibrium.
(b) If the trade costs {εi}i∈N are sufficiently close to 1, then that equilibrium is unique.
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Proof of Part (a) (Existence).

PROOF: In what follows, we omit dependence of prices pig(s) and quantities Qig(s) on
state s for clarity. To prove existence, we first show that it is sufficient to focus on the ex-
cess demand function of the central market. We then show that the central market excess
demand function satisfies all conditions necessary to guarantee existence from Proposi-
tion 17.C.1 of Mas-Colell, Whinston, and Green (1995).

We first note that given quantities {Qig}
g∈G
i∈N and the equilibrium central market prices

{p̄g}g∈G , village-level incomes {Yi}i∈N are given immediately from equation prices (24); in
turn, given village incomes {Yi}i∈N , village-level prices {pig}

g∈G
i∈N are then given immediately

from equation (10); and finally, given village-level prices {pig}
g∈G
i∈N , village-level consump-

tion {Cig}
g∈G
i∈N is given immediately from equation (9). That is, given quantities {Qig}

g∈G
i∈N and

the equilibrium central market prices {p̄g}g∈G , it is straightforward to find a set of village
prices {pig(s)}g∈G

i∈N and village consumption {Cig(s)}g∈G
i∈N such that markets clear within each

village (and condition 1 of the state equilibrium is satisfied). Hence, all that remains to
determine the full state equilibrium is the set of equilibrium central market prices {p̄g}g∈G
such that the central market clears.

To find the equilibrium central market prices, we consider the following central market
excess demand function Z ≡{Zg}g∈G :RG →R

G:

Zg

(
{p̄g}g∈G

) :
ᾱg

∑
h

∑
i

p̄h

(
1 −

(
p̄h

pih

)−1)(
1 −

(
p̄h

pih

)−εi
)
Qih

p̄g

−
∑
i

(
1 −

(
p̄g

pig

)−εi
)
Qig

⇐⇒
Zg

(
{p̄g}g∈G

) :
ᾱg

∑
h

∑
i

p̄h

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1) 1
εi
)(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1)
Qih

p̄g

−
∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

h

α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h

)−1))
Qig�

(30)

where the first term of Zg is the quantity of good g demanded by the central market at
price vector {p̄g}g∈G (see equation (12)) and the second term is the quantity of good g
supplied to the central market at price vector {p̄g}g∈G (see equation (11)) and the second
line uses equations (10) and (24) to substitute out for village-level prices.

We now verify that the excess demand function defined by (30) satisfies conditions (i) to
(v) of Proposition 17.B.2 of Mas-Colell, Whinston, and Green (1995), which from Propo-
sition 17.C.1 of Mas-Colell, Whinston, and Green (1995) guarantees the existence of a set
of central market prices {p̄g(s)}g∈G and central market consumption {C̄g(s)}g∈G that clear
the central market (i.e., satisfy condition 2 of the state equilibrium).
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Condition (i): Continuity. This is self-evident from equation (30).

Condition (ii): Homogeneity of degree zero in prices. For any C > 0, we have

Zg

(
{Cp̄g}

)

=

ᾱg

∑
h

∑
i

p̄h

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih (Cp̄h)

εi
1+εi∑

l

α
1

1+εi
il Q

εi
1+εi
il (Cp̄l)

εi
1+εi

)−1) 1
εi
)(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih (Cp̄h)

εi
1+εi∑

l

α
1

1+εi
il Q

εi
1+εi
il (Cp̄l)

εi
1+εi

)−1)
Qih

p̄g

−
∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig (Cp̄g)

εi
1+εi∑

h

α
1

1+εi
ih Q

εi
1+εi
ih (Cp̄h)

εi
1+εi

)−1))
Qig

=

ᾱg

∑
h

∑
i

p̄h

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1) 1
εi
)(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1)
Qih

p̄g

−
∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

h

α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h

)−1))
Qig

=Zg

(
{p̄g}

)
�

as required.

Condition (iii): Walras’s law. We have

∑
g

p̄gZg

=
∑
g

ᾱg

∑
h

∑
i

p̄h

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1) 1
εi
)

×
(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1)
Qih

−
∑
g

p̄g

∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

h

α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h

)−1))
Qig
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= −
∑
h

∑
i

(
(∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

) 1
εi

α
− 1

1+εi
ih Q

− εi
1+εi

ih p̄
− εi

1+εi
h

)
+
∑
h

∑
i

(
(∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+ε

h

) 1+εi
εi

α−1
ih

)

=
(∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

) 1
εi
[
−
∑
h

∑
i

α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h +

∑
h

∑
i

αih

∑
l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

]

=
(∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

) 1
εi
[
−
∑
h

∑
i

α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h +

∑
i

∑
l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

]

= 0�

as required.
Condition (iv): Bounded below. In particular, we need that there is an s > 0 such that

Zg(p) > −s for all p and all goods g. This is straightforward as the first sum must be
nonnegative. To see this, note that in each term we have something of the form p̄h(1 −
x)(1 − x

1
εi ) with x > 0. If x > 1, both 1 − x and 1 − x

1
εi are negative and the term is

positive. Similarly, if x < 1, both terms are positive. If x = 0, it is zero. For the second
sum, we have something of the form 1 − x for each term with x > 0. Therefore,

Zg

(
{p̄g}

)

=

ᾱg

∑
h

∑
i

p̄h

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1) 1
εi
)(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

l

α
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1)
Qih

p̄g

−
∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

h

α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h

)−1))
Qig

≥ −
∑
i

Qig�

Then we can take s = maxg
∑

i Qig, and Zg({p̄g}) ≥ −s for all g and {p̄g}.
Condition (v): Limiting behavior as prices go to zero. Condition (v) requires that if

pn → p, where p �= 0 and pg = 0 for some g, then maxg limn→∞ Zg(pn) → ∞. To see this,
choose g such that limn

pn
g

pn
h
< ∞ for all h; intuitively, pn

g goes to 0 as fast or faster than any

other price pn
h. Since p �= 0, there must be an h′ such that limn

pn
g

pn
h′

= 0. We have that

Zg

(
pn
)

=

ᾱg

∑
h

∑
i

pn
h

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih

(
pn

h

) εi
1+εi

∑
l

α
1

1+εi
il Q

εi
1+εi
il

(
pn

l

) εi
1+εi

)−1) 1
εi
)(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih

(
pn

h

) εi
1+εi

∑
l

α
1

1+εi
il Q

εi
1+εi
il

(
pn

l

) εi
1+εi

)−1)
Qih

pn
g
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−
∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig

(
pn

g

) εi
1+εi

∑
h

α
1

1+εi
ih Q

εi
1+εi
ih

(
pn

h

) εi
1+εi

)−1))
Qig

= ᾱg

∑
h

∑
i

pn
h

pn
g

(
1 −

(
αih

(
α

1
1+εi
ih Q

εi
1+εi
ih∑

l

α
1

1+εi
il Q

εi
1+εi
il

(
pn

l

pn
h

) εi
1+εi

)−1) 1
εi
)

×
(

1 − αih

(
α

1
1+εi
ih Q

εi
1+εi
ih∑

l

α
1

1+εi
il Q

εi
1+εi
il

(
pn

l

pn
h

) εi
1+εi

)−1)
Qih

−
∑
i

(
1 −

(
αig

(
α

1
1+εi
ig Q

εi
1+εi
ig

∑
h

α
1

1+εi
ih Q

εi
1+εi
ih

(
pn

h

pn
g

) εi
1+εi

)−1))
Qig�

This goes to ∞ as n → ∞. To see this, consider the h such that limn
pn
h

pn
g

= ∞. Then to
guarantee Zg(pn) → ∞, we simply need that

αih

∑
l

α
1

1+εi
il Q

εi
1+εi
il

(
pl

ph

) εi
1+εi

α
1

1+εi
ih Q

εi
1+εi
ih

does not equal 1 for one of those h and i. If there is any l and h such that limn
pn
l

pn
h

= 0 and

limn
pn
h

pn
g

= ∞, then clearly this must be the case as pl

ph
= ∞. The alternative is that there is

some subset (ph1� � � � �phn) such that 0 <
phi

phj

< ∞ and pg

phi

= 0 for all of the other goods.

For Zg to not explode, these must all equal 0. That gives n equations for a given i:

α
1

1+εi
ihj

Q
εi

1+εi
ihj

p
εi

1+εi
hj

= αihj

∑
k

α
1

1+εi
ihk

Q
εi

1+εi
ihk

p
εi

1+εi
hk

�∀j�

The only solution to this linear system is α
1

1+εi
ihj

Q
εi

1+εi
ihj

p
εi

1+εi
hj

= 0. This contradicts the fact
that p �= 0. Therefore, we must have that one of these does not equal to 1, meaning that
Zg(pn) → ∞.

Since the excess demand function Zg({p̄g}g∈G) satisfies conditions (i)–(v), recall from
above that Proposition 17.C.1 of Mas-Colell, Whinston, and Green (1995) guarantees the
existence of a set of central market prices {p̄g(s)}g∈G and central market consumption
{C̄g(s)}g∈G that clear the central market (i.e., satisfy condition 2 of the state equilibrium).



VOLATILITY AND THE GAINS FROM TRADE 9

As condition 1 is then trivially satisfied (see above), this establishes the existence of a state
equilibrium. Q.E.D.

Proof of Part (b) (Uniqueness).

PROOF: To establish sufficient conditions for uniqueness, we show that the excess de-
mand function Zg({p̄g}g∈G) defined in equation (30) satisfies the gross substitutes property
∂Zg({p̄g}g∈G)/∂p̄h > 0 for all h′ �= g as long as {εi} is sufficiently close to 1 for all i ∈ N .
Then from Proposition 17.F.3 of Mas-Colell, Whinston, and Green (1995), there exists at
most one equilibrium, which, when combined with part (a) (existence) of this proposition,
implies that the equilibrium is unique.

We have

pg

∂Zg(p)
∂ph′

=
∑
i

ᾱgQih′ − ᾱg

Qih′

1 + εi

α
εi

1+εi
ih′ Q

− εi
1+εi

ih′ p
− εi

1+εi
h′

(∑
h

α
1

1+εi
ih p

εi
1+εi
h Q

εi
1+εi
ih

)

− ᾱg

εi

1 + εi

(∑
h

α
εi

1+εi
ih p

1
1+εi
h Q

1
1+εi
ih

)
α

1
1+εi
ih′ Q

εi
1+εi
ih′ p

− 1
1+εi

h′

+ εi

1 + εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi
ih′ p

− 1
1+εi

h′ Q
εi

1+εi
ih′

=
∑
i

ᾱgQih′ − ᾱg

Qih′

1 + εi

α
εi

1+εi
ih′ Q

− εi
1+εi

ih′ p
− εi

1+εi
h′

(∑
h

α
1

1+εi
ih p

εi
1+εi
h Q

εi
1+εi
ih

)

− ᾱg

εi

1 + εi

Qih′

(∑
h

α
εi

1+εi
ih p

1
1+εi
h Q

1
1+εi
ih

)
α

1
1+εi
ih′ Q

− 1
1+εi

ih′ p
− 1

1+εi
h′

+ εi

1 + εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi
ih′ p

− 1
1+εi

h′ Q
εi

1+εi
ih′

≥
∑
i

ᾱgQih′
εi

1 + εi

[
α

εi
1+εi
ih′ Q

− εi
1+εi

ih′ p
− εi

1+εi
h′

(∑
h

α
1

1+εi
ih p

εi
1+εi
h Q

εi
1+εi
ih

)

− α
1

1+εi
ih′ Q

− 1
1+εi

ih′ p
− 1

1+εi
h′

(∑
h

α
εi

1+εi
ih p

1
1+εi
h Q

1
1+εi
ih

)]

+ εi

1 + εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi
ih′ p

− 1
1+εi

h′ Q
εi

1+εi
ih′ �

When εi = 1 for all i ∈N , we then have

pg

∂Zg(p)
∂ph′

≥ εi

1 + εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi
ih′ p

− 1
1+εi

h′ Q
εi

1+εi
ih′

⇐⇒ pg

∂Zg(p)
∂ph′

> 0�
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since εi
1+εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi
ih′ p

− 1
1+εi

h′ Q
εi

1+εi
ih′ > 0. Moreover, by continuity, the exists a δ > 0

where, for all εi such that |εi − 1|< δ, we have

εi

1 + εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi
ih′ p

− 1
1+εi

h′ Q
εi

1+εi
ih′

≥

∣∣∣∣∣∣∣∣∣
∑
i

ᾱgQih′
εi

1 + εi

⎡
⎢⎢⎢⎣

α
εi

1+εi
ih′ Q

− εi
1+εi

ih′ p
− εi

1+εi
h′

(∑
h

α
1

1+εi
ih p

εi
1+εi
h Q

εi
1+εi
ih

)

− α
1

1+εi
ih′ Q

− 1
1+εi

ih′ p
− 1

1+εi
h′

(∑
h

α
εi

1+εi
ih p

1
1+εi
h Q

1
1+εi
ih

)
⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
so that pg

∂Zg (p)
∂ph′ > 0 for all εi such that |εi − 1|< δ, as claimed. Q.E.D.

A.2.2. Proof of Proposition 2

We first restate the proposition:

PROPOSITION: Consider a village i which increases its openness to trade, that is, εi in-
creases by a small amount. Then:

(1) [Stylized Fact 1] Any increase in openness: (1a) decreases the responsiveness of local
prices to local yield shocks; and (1b) increases the responsiveness of local prices to the
central market price:

d

dεi

(
− ∂ lnpig(s)
∂ lnAig(s)

)
< 0 and

d

dεi

(
∂ lnpig(s)
∂ ln p̄g

)
> 0�

(2) [Stylized Fact 2] Starting from autarky, an increase in openness: (2a) causes farmers to
reallocate production toward crops with higher mean and less volatile yields (as long
as ρi > 1, i.e., farmers are sufficiently risk averse); and (2b) the reallocation toward
less volatile crops is attenuated the greater the access to insurance (i.e., the lower ρi).
Formally, for any two crops g �= h,

d

dεi

(
∂(lnθig − lnθih)

∂
(
μA�i

g −μA�i
h

)
)∣∣∣∣

εi=0

> 0�

d

dεi

(
∂ lnθig − ∂ lnθih

∂

(∑
h′∈G

αh′�A�i
g�h′ −

∑
h′∈G

αh′�A�i
h�h′

)
)∣∣∣∣

εi=0

< 0� and

− d2

dεidρi

(
∂ lnθig − ∂ lnθih

∂

(∑
h′∈G

αh′�A�i
g�h′ −

∑
h′∈G

αh′�A�i
h�h′

)
)∣∣∣∣

εi=0

> 0�

(3) [Stylized Fact 3] Consider a decomposition of the variance of real returns as follows:

σ2�Z
i = σ2�Y

i + σ2�P
i − 2 covY�P

i �

where

σ2�Y
i ≡ var

(
lnYi(s) − ci(s)

)
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is the farmers’ nominal income volatility,

σ2�P
i ≡ var

(∑
g∈G

αig lnpig(s) + ci(s)
)

is the farmers’ nominal price volatility,

covY�P
i ≡ cov

(
lnY

f
i (s) − ci(s)�

∑
g∈G

αig lnpig(s) + ci(s)
)

is the co-variance between the two, and ci(s) is a nuisance term capturing the aggregate
scale of both nominal prices and incomes, which does not affect the aggregate real
returns nor the volatility of the real returns. Any increase in openness increases the
farmers’ nominal income volatility (3a); decreases the farmers’ nominal price volatility
(3b); and has an ambiguous effect on farmers’ real income volatility (3c). Formally, we
have

∂σ2�Y
i

∂εi

> 0�
∂σ2�P

i

∂εi

< 0� and
∂σ2�Z

i

∂εi

≶ 0�

As sufficient condition for farmers’ real income volatility to increase with openness,

that is, ∂σ
2�Z
i

∂εi
≥ 0, is

∑
g∈G θi�g(

∑
h∈G �

A�i
gh αih) ≥∑g∈G αig(

∑
h∈G �

A�i
gh αih), which (loosely

speaking) occurs when a farmer’s crop allocation is more risky than her expenditure
allocation.

PROOF: Stylized Fact 1. From equation (10), we have

lnpig(s) = −
(

1
1 + εi

)
lnQig(s) + εi

1 + εi

ln p̄g(s) + 1
1 + εi

ln
(
αigYi(s)

)
⇐⇒

lnpig(s) = −
(

1
1 + εi

)
lnAig(s) −

(
1

1 + εi

)
lnθig −

(
1

1 + εi

)
lnLi

+ εi

1 + εi

ln p̄g + 1
1 + εi

lnαig + 1
1 + εi

lnYi(s)

so that
∂ lnpig(s)
∂ lnAig(s)

= − 1
1 + εi

and hence
d

dεi

(
− ∂ lnpig(s)
∂ lnAig(s)

)
= d

dεi

(
1

1 + εi

)
= − 1

(1 + εi)2 < 0�

Similarly,

∂ lnpig(s)
∂ ln p̄g

= εi

1 + εi
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and hence

d

dεi

(
∂ lnpig(s)
∂ ln p̄g

)
= d

dεi

(
εi

1 + εi

)
= 1

(1 + εi)2 > 0�

as claimed.
Stylized Fact 2a. From equation (18), we have

θig = αig(p̄gBig)εi∑
h∈G

αih(p̄hBih)εi
�

where Big ≡ expμA�i
g

(λi−( 1
2 ( εi

1+εi
)2�

A�i
gg + εi

(1+εi)
2
∑

h∈G αih�
A�i
gh

−ρi(
εi

1+εi
)
∑

h∈G (( εi
1+εi

)θi�h+( 1
1+εi

)αih)�A�i
gh

))
1+εi
εi

, so that

lnθig − lnθih = ln(αig) − ln(αih) + εi(ln p̄g − ln p̄h) + εi(lnBig − lnBih)�

Differentiating this expression with respect to εi and evaluating at εi = 0 yields

d

dεi

(
∂(lnθig − lnθih)

∂
(
μA�i

g −μA�i
h

)
)∣∣∣∣

εi=0

= 1 > 0�

as claimed.
Stylized Fact 2b. We proceed similarly. Differentiating respect to εi and evaluating at

εi = 0 yields

d

dεi

(∂ lnθig − ∂ lnθih)
∣∣∣∣
εi=0

= 1
λi

(1 − ρi)
(∑

h′∈G
αh′
(
∂�A�i

gh′ − ∂�A�i
hh′
))

so that

d

dεi

(
∂ lnθig − ∂ lnθih

∂

(∑
h′∈G

αh′�A�i
g�h′ −

∑
h′∈G

αh′�A�i
h�h′

)
)∣∣∣∣

εi=0

= 1
λi

(1 − ρi)�

d

dεi

(
∂ lnθig − ∂ lnθih

∂�A�i
gg

)∣∣∣∣
εi=0

= 1
λi

(1 − ρi)αig�

which is negative as long as ρi > 1, as claimed.
Stylized Fact 2c. From the previous expression, we immediately have

d2

dεidρ

(
∂ lnθig − ∂ lnθih

∂

(∑
h′∈G

αh′�A�i
g�h′ −

∑
h′∈G

αh′�A�i
h�h′

)
)∣∣∣∣

εi=0

= −αh′

λi

�
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Stylized Fact 3. Let us first decompose the distribution of real returns into a price term,
an income term, and a covariance term. We have

Z
f
i (s) =

∏
g∈G

(
cig(s)

)αig

=
∏
g∈G

(
αigY

f
i (s)

pig(s)

)αig

= Y
f
i (s) ×

∏
g∈G

(αig)αig ×
∏
g∈G

(
pig(s)

)−αig

so that

lnZf
i (s) = lnY

f
i (s) +

∑
g∈G

αig lnαig −
∑
g∈G

αig lnpig(s)�

Hence, we can decompose the variance of the real returns as follows:

σ2�Z
i = σ2�Y

i + σ2�P
i + 2 covY�P

i � (31)

where

σ2�Y
i ≡ var

(
lnYf

i (s) − ci(s)
)
�

σ2�P
i ≡ var

(
−
∑
g∈G

αig lnpig(s) + ci(s)
)
�

covY�P
i ≡ cov

(
lnYf

i (s) − ci(s)�−
∑
g∈G

αig lnpig(s) + ci(s)
)
�

and ci(s) ≡ ln(Yi (s)
Li

)
1

1+εi term captures the aggregate scale of both prices and incomes,
which because it affects both terms with opposite signs, does not affect the aggregate
returns nor the volatility of the real returns. Let us examine each term in turn.

Focusing first on the income term, we have

lnYf
i (s) − ln

(
Yi(s)
Li

) 1
1+εi = ln

(∑
g∈G

θ
f
igAig(s)pig(s)

)
− ln

(
Yi(s)
Li

) 1
1+εi

⇐⇒

lnYf
i (s) − ln

(
Yi(s)
Li

) 1
1+εi = ln

(∑
g∈G

(
θ
f
ig

θig

)
× αig

(
p̄gAig(s)θig

αig

) εi
1+εi
)
�
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Applying the same second-order approximation as in the main text, we have

lnYf
i (s) − ln

(
Yi(s)
Li

) 1
1+εi

≈ ln
(∑

g∈G
αig

(
p̄g exp

(
μA�i

g

)
θig

αig

) εi
1+εi
)

−
∑
g∈G

θig ln
(
θ−1
ig αig

(
p̄g exp

(
μA�i

g

)
θig

αig

) εi
1+εi
)

+
∑
g∈G

θig ln
(
θ−1
ig αig

(
p̄gAig(s)θig

αig

) εi
1+εi
)

− −1
2

∑
h∈G

∑
g∈G

θigθih�
A�i
gh + 1

2

∑
g∈G

θig�
A�i
gh

so that

σ2�Y
i =

(
εi

1 + εi

)2∑
g∈G

∑
h∈G

θigθih�
A�i
gh � (32)

Now focusing on the price term, we have

−
∑
g∈G

αig lnpig(s) + ln
(
Yi(s)
Li

) 1
1+εi

=
∑
g∈G

αig ln
((

p̄gAig(s)θig

αig

) 1
1+εi

(p̄g)−1

)
⇐⇒

=
(

1
1 + εi

)∑
g∈G

αig lnAig(s) +
∑
g∈G

αig ln
((

p̄gθig

αig

) 1
1+εi

(p̄g)−1

)

so that the variance of the prices can be written as

σ2�P
i =

(
1

1 + εi

)2∑
g∈G

∑
h∈G

�A�i
gh αigαih�

pig = (AigθigLi)
− 1

1+εi (p̄g)
εi

1+εi (αigYi)
1

1+εi �

(33)

Finally, the covariance between prices and incomes can be written as

covY�P
i = εi

(1 + εi)2

∑
g∈G

∑
h∈G

θigαih�
A�i
gh � (34)

It is straightforward to verify that applying the decomposition (31) to expressions (32),
(33), and (34) immediately yields expression (29) for the variance of the total real returns.

Now consider a small increase in the openness of a location. How does it affect the vari-
ance of farmers’ incomes, prices, and the co-variance between the two? We immediately
have

∂σ2�Y
i

∂εi

= 2
ε2
i

(1 + εi)3

∑
g∈G

∑
h∈G

θigθih�
A�i
gh > 0�
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∂σ2�P
i

∂εi

= −2
1

(1 + εi)3

∑
g∈G

∑
h∈G

�A�i
gh αigαih < 0�

as required.
Let us turn now to the variance of the total real returns. Recall from equation (29) that

the variance of real returns is

σ2�Z
i ≡

∑
g∈G

∑
h∈G

((
εi

1 + εi

)
θ
f
i�g +

(
1

1 + εi

)
αig

)((
εi

1 + εi

)
θ
f
i�h +

(
1

1 + εi

)
αih

)
�A�i

gh ⇐⇒

=
∑
g∈G

∑
h∈G

(
ωiθ

f
i�g + (1 −ωi)αig

)(
ωiθ

f
i�h + (1 −ωi)αih

)
�A�i

gh �

where ωi ≡ εi
1+εi

. Note that ∂ωi

∂εi
= 1

1+εi
− εi

1+εi

1
1+εi

= 1
1+εi

(1 − εi
1+εi

) = 1
(1+εi)2 , so that ∂σ

2�Z
i

∂εi
=

1
(1+εi)2

∂σ
2�Z
i

∂ωi
. We then have

∂σ2�Z
i

∂εi

= 1
(1 + εi)2

∂

∂ωi

(∑
g∈G

∑
h∈G

(
ωiθ

f
i�g + (1 −ωi)αig

)(
ωiθ

f
i�h + (1 −ωi)αih

)
�A�i

gh

)
⇐⇒

= 2
(1 + εi)2

(
ωi

(∑
g∈G

∑
h∈G

(
θ
f
i�g − αih

)(
θ
f
i�h − αih

)
�A�i

gh

)
+
∑
g∈G

∑
h∈G

(
θ
f
i�g − αig

)
αih�

A�i
gh

)
�

Because �A�i
gh is positive definite, we know that

∑
g∈G
∑

h∈G(θf
i�g − αih)(θf

i�h − αih)�A�i
gh ≥ 0

for any crop allocation {θf
i�g} and expenditure shares {αig}. Hence, ∂σ

2�Z
i

∂εi
≥ 0 if

∑
g∈G

∑
h∈G

(
θ
f
i�g − αig

)
αih�

A�i
gh ≥ 0

⇐⇒
∑
g∈G

θ
f
i�g

(∑
h∈G

�A�i
gh αih

)
≥
∑
g∈G

αig

(∑
h∈G

�A�i
gh αih

)
�

as required. Q.E.D.

A.2.3. Proof of Proposition 3

We first restate the proposition:

PROPOSITION: (1) In the presence of volatility, moving from autarky to costly trade im-
proves farmer welfare, that is, the gains from trade are positive; (2) moving from a world with
no volatility to one with volatility amplifies farmers’ gains from trade; but (3) increasing the
volatility in an already volatile world may attenuate farmers’ gains from trade.
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PROOF: Part 1. From equation (25), the real income of farmer f in village i ∈N in state
s ∈ S with crop allocation {θf

ig}g∈G can be written as

Z
f
i

(
s;{θf

ig

}
g∈G
)

=

(∑
g∈G

θ
f
ig × αig

θig

(
p̄gθig

αig

Aig(s)
) εi

1+εi
)∏

g∈G

(
αig

(
p̄gθig

αig

Aig(s)
) 1

1+εi
)αig

∏
g∈G

(p̄g)αig
� (35)

Consider first the case of autarky, where εi = 0. From equation (18), a farmer’s optimal
autarkic crop allocation is simply equal to her expenditure share, that is, θf

ig = αig, so that,
from equation (35) her autarkic welfare is

Z
f�aut
i (s) =

∏
g∈G

(
αig ×Aig(s)

)αig �
Now consider the case of (costly) trade, where εi > 0 but farmer f chooses her autarkic
crop allocation. Then, from equation (35), her real income is

Z
f
i

(
s;{αig}g∈G

)

=

(∑
g∈G

αig × αig

θig

(
p̄gθig

αig

Aig(s)
) εi

1+εi
)∏

g∈G

(
αig

(
p̄gθig

αig

Aig(s)
) 1

1+εi
)αig

∏
g∈G

(p̄g)αig
� (36)

Note that from the generalized mean inequality, we have

∑
g∈G

αig × αig

θig

(
p̄gθig

αig

Aig(s)
) εi

1+εi ≥
∏
g∈G

(
αig

θig

(
p̄gθig

αig

Aig(s)
) εi

1+εi
)αig

�

with equality only in the case where αig

θig
( p̄gθig

αig
Aig(s))

εi
1+εi = ci for all g ∈ G. Substituting this

inequality into equation (36) immediately implies

Z
f
i

(
s;{αig}g∈G

)≥ Z
f�aut
i (s)�

again with equality only in the case where αig

θig
( p̄gθig

αig
Aig(s))

εi
1+εi = ci for all g ∈ G. Intuitively,

as long as the equilibrium price vector is not exactly equal to the slope of the production
possibility frontier, farmers can gain by selling goods for which they are relatively more
productive and buying goods for which they are relatively less productive. As the produc-
tivity realizations are log-normally distributed across states of the world, this equality only
occurs with measure zero. Hence, for almost all s ∈ S, we have Z

f
i (s;{αig}g∈G) >Z

f�aut
i (s),

which in turn implies that the expected utility of a farmer choosing her autarkic allocation
with costly trade is strictly greater than the expected utility of a farmer in autarky choosing
her autarkic allocation, that is, E[Uf

i ({αig}g∈G)] > E[Uf�aut
i ]. Finally, as farmers make their
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crop choice to maximize their expected utility, their actual expected welfare with costly
trade is at least as great as their expected utility holding their crop choice at the autarkic
allocation, so that E[max{θig}g∈G U

f
i ({θig}g∈G)] > E[Uf�aut

i ], that s, the gains from trade are
strictly positive, as claimed.

Part 2. In the absence of volatility, farmers’ utility is invariant to εi, that is, there are
zero gains from trade. From part 1, in the presence of volatility, there are strictly positive
gains from trade. Taken together, this implies that the presence of volatility amplifies the
gains from trade, as claimed.

Part 3. We prove the statement by example, illustrated in Online Appendix B Table B.7.
Consider a world where there are two types of villages (1 and 2) and two crops (A and B).
Suppose both villages have equal expenditure shares on both crops in equal proportions
and the means of both crops in both villages are identical. Suppose first that crop A in
village 1 and crop B in village 2 are “risky” (i.e., have equally volatile yields), whereas
crop B in village 1 and crop A in village 2 are “safe” (i.e., have zero yield volatility). In
autarky, both village types grow equal amounts of both crops, but with trade, the two types
of villages can specialize in the “safe” crops, achieving positive gains from trade (Case 1
in Online Appendix B Table B.7). Suppose now that we increase the volatility of the safe
crop in both village types so that it receives the same yield shock as the risky crop (i.e.,
the two crops have perfectly correlated yields within each village, although independent
yield realizations across villages). As the relative yields between the two crops are always
equal in both types of villages, there are no gains from trade (Case 2 in Online Appendix B
Table B.7), illustrating that increasing the volatility in an already volatile world can reduce
the gains from trade, as required. Q.E.D.

A.3. MODEL ISOMORPHISMS, EXTENSIONS, AND ADDITIONAL RESULTS

In this subsection, we present isomorphisms, extensions, and additional results for the
model presented in the main paper.

A.3.1. Endogenous Capacity Constraints

In this subsection, we show how the framework presented in the paper is isomorphic
to one in which better traders exchange greater amounts of goods, that is, have greater
capacity for arbitrage. To do so, we suppose that traders with lower trade costs (i.e., lower
τ’s) are able to offer greater capacity, with the following constant elasticity function:

Q(τ) = ciτ
−λ�

When λ= 0, capacity is fixed, but for λ > 0, we have the intuitive result that better traders
(with lower τ) are able to engage in greater amounts of trade. The constant elasticity
form—while analytically convenient—can be viewed as a first-order log-linear approxi-
mation to any function where better traders have greater capacity. The scalar ci is deter-
mined to ensure that a single trader handles each unit of production (if traders are buying
goods in the village to sell to the market) or consumption (if traders are buying goods in
the market to sell to the village). We consider each case in turn.

Suppose first that p̄≥ pi, so that traders buy goods produced in the village and sell them
in the market. In this case, it must be that each unit produced in the village is handled by
a trader, that is,

Qi =
∫

Q(τ) dF (τ)�
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Maintaining the assumption in the main text that the distribution of traders is Pareto
distributed with shape parameter εi, we have

Qi = ciεi

∫ ∞

1
τ−λ−εi−1 dτ

⇐⇒ Qi

(
λ+ εi

λ

)
= ci�

It is straightforward to calculate the quantity of units the traders purchase in the village
and sell to the market:

Qim =
∫ p̄

pi

1
Q(τ) dF (τ)

⇐⇒ Qim =
(

1 −
(
p̄

pi

)−(λ+εi))
Qi�

And the remainder of the production is sold to consumers locally, so that

Ci =
(
p̄

pi

)−(λ+εi)

Qi� (37)

Suppose now that p̄ < pi, so that traders buy goods in the market and sell them to
farmers in the village. In this case, it must be that each unit consumed in the village is
handled by a trader, that is,

Ci =
∫

Q(τ) dF (τ)�

which yields, through an identical derivation as above,

Ci

(
λ+ εi

λ

)
= ci�

It is then straightforward to calculate the quantity of units the traders purchase in the
market and sell to the village:

Qmi =
∫ pi

p̄

1
Q(τ) dF (τ)

⇐⇒ Qim =
(

1 −
(
pi

p̄

)−(λ+εi))
Ci�

The remainder of the consumption in the village comes from local production, that is,

Qi =
(
pi

p̄

)−(λ+εi)

Ci� (38)

Equations (37) and (38) are identical and isomorphic to equation (9) in the main text.
This demonstrates that the shape parameter of the Pareto distribution εi (where traders
are assumed to be infinitely capacity constrained) can be equivalently thought of as a
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combination of the exogenous heterogeneity of the trade costs across traders and an en-
dogenous component related to the fact that better traders are able to engage in greater
amounts of arbitrage.

A.3.2. Expressions for Trader and Driver Incomes

In this subsection, we derive the trader and driver income separately. Let Y trader
ig (s) and

Y driver
ig (s) be the income earned by the trader (from price-arbitrage) and the driver (from

the iceberg trade costs), respectively, for the trade of good g between village i and the
central market.

It is convenient to first calculate the sum of the trader and driver incomes. Suppose first
that the central market price p̄g(s) exceeds the village price pig(s), so that trade will flow
from the village to the central market. In this case, the sum of trader and driver income
can be expressed as

Y trader
ig (s) +Y driver

ig (s) = (p̄g(s) −pig(s)
)(
Qig(s) −Cig(s)

)
�

Suppose now that the central market price p̄g is below the village price pig(s), so that
trade will flow from the central market to the village. In this case, the sum of trader and
driver income can be expressed as

Y trader
ig (s) +Y driver

ig (s) = (pig(s) − p̄g(s)
)(
Cig(s) −Qig(s)

)
�

In both cases, when combined with equation (9), the following expression for combined
income of traders and drivers is obtained:

Y trader
ig (s) +Y driver

ig (s) = (p̄g(s) −pig(s)
)(

1 −
(
pig(s)
p̄g(s)

)εi
)
Qig(s)� (39)

Total trader and driver income can then be calculated by summing across all villages and
all goods, as in equation (12).

Now consider the income of traders alone. Suppose first that the central market price
exceeds the village price, that is, p̄g(s) ≥ pig(s). Then the trader income earned from
arbitrage can be calculated by integrating the arbitrage profits across the distribution of
trade costs incurred by traders:

Y trader
ig (s) = Qig(s)︸ ︷︷ ︸

# of matches

∫ ∞

1

(
p̄g(s) − τpig(s)

)
︸ ︷︷ ︸

arbitrage profits

1
{
p̄g(s) ≥ τpig(s)

}
︸ ︷︷ ︸

only trade if profitable

dF (τ)︸ ︷︷ ︸
trader dist.

�

Given the assumed Pareto distribution of trade costs from equation (6) and equation (9),
this expression simplifies to

Y trader
ig (s) = 1

εi

p̄g(s)
(
Qig(s) −Cig(s)

)+ 1
εi − 1

(
p̄g(s)Cig(s) −pig(s)Qig(s)

)
� (40)

Suppose now that the central market price is below the village price, that is, p̄g(s) ≤
pig(s). Then the trader income earned from arbitrage can again be calculated by integrat-
ing the arbitrage profits across the distribution of trade costs incurred by traders:

Y trader
ig (s) = Cig(s)︸ ︷︷ ︸

# of matches

∫ ∞

1

(
pig(s) − τp̄g(s)

)
︸ ︷︷ ︸

arbitrage profits

1
{
pig(s) ≥ τp̄g(s)

}
︸ ︷︷ ︸

only trade if profitable

dF (τ)︸ ︷︷ ︸
trader dist.

�
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Again, given the assumed Pareto distribution of trade costs from equation (6) and equa-
tion (9), this expression simplifies to

Y trader
ig (s) = 1

εi

pig(s)
(
Cig(s) −Qig(s)

)+ 1
εi − 1

(
pig(s)Qig(s) − p̄g(s)Cig(s)

)
� (41)

Together, equations (40) and (41) characterize the portion of trade income earned by the
trader; the difference between the expressions and the total income to both traders and
drivers given in equation (39) is then the income earned by the driver.

A.3.3. A Microfoundation for Insurance

In the baseline model presented in Section 4, the farmer’s utility function is given by
equation (5):

U
f
i (s) ≡ 1

1 − ρi

((
Z

f
i (s)

)1−ρi − 1
)
�

where ρi is the “effective” risk aversion parameter and we show that lnZ
f
i (s) ∼

N(μZ
i �σ

2�Z
i ), which then implies that farmers’ expected utility can be written as in equa-

tion (16):

E
[
U

f
i

]=
(

1
1 − ρi

)(
exp
(

(1 − ρi)
(
μZ

i + 1
2

(1 − ρi)σ
2�Z
i

))
− 1
)
� (42)

In what follows, we will show that there exists a microfoundation for the “effective” risk
aversion parameter ρi whereby farmers purchase insurance from perfectly competitive
lenders (“banks”). In this microfoundation, the “effective” risk aversion parameter ρi can
then be written as a function of the (fundamental) risk aversion of farmers and a (techno-
logical) parameter governing the efficiency of the insurance market. As a result, we can
interpret changes to the “effective” risk aversion parameter as technological changes in
the access to banks, allowing us to perform normative counterfactual analysis.

Suppose that all farmers have identical and fundamental risk aversion parameters ρ0

and have access to banks that offer insurance at perfectly competitive rates. To save on
notation, in what follows, we will omit the location of the farmer and denote states of
the world with subscripts, the probability of state of the world s with πs. Suppose that
the insurance pays out one unit of the consumption bundle in state of the world s for
price ps.27 Hence, consumption in state of the world s will be the sum of the realized
consumption in that state and the insurance payout less the cost of insurance: Cs = Zs +
qs −∑t ptqt , where qs is the quantity of insurance for state s purchased by the farmer.
A farmer’s expected utility function ex post insurance is then

E
[
Uf�ins

]=∑
s

πs

1
1 − ρ0

(
(Cs)1−ρ0 − 1

)
�

Farmers purchase their insurance from a large number of “money-lenders” (or, equiv-
alently, banks). Money-lenders have the same income realizations and preference-
structure as farmers and face the same prices, but are distinct from farmers in that they

27For simplicity, and without loss of generality as the state of the world defines the price index, we measure
both the insurance payout and the prices in real (i.e., price index adjusted) units.
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are less risk averse. Let money-lenders’ risk aversion parameter be denoted by λ ≤ ρ0,
where we view λ as a technological parameter governing the quality/access farmers have
to credit: the better farmers’ access to credit, the lower the risk aversion of money-lenders.

Because lenders are also risk averse, farmers will not be able to perfectly insure them-
selves. Money-lenders compete with each other to lend money, and hence the price of
purchasing insurance in a particular state of the world is determined by the marginal cost
of lending money. We first calculate the price of a unit of insurance in state of the world
s. Since the price of insurance is determined in perfect competition, it must be the case
that each money-lender is just indifferent between offering insurance and not:

∑
t �=s

πt

1
1 − λ

(Zt + εps)1−λ +πs

1
1 − λ

(Zt + εps − ε)1−λ =
∑
t

πt

1
1 − λ

Z1−λ
t �

where the left-hand side is the expected utility of a money-lender offering a small amount
ε of insurance (which pays εps with certainty but costs ε in state of the world s) and
the right-hand side is expected utility of not offering the insurance. Taking the limit as ε
approaches zero yields that the price ensures that the marginal utility benefit of receiving
psε in all other states of the world is equal to the marginal utility cost of paying ε(1 −ps)
in state of the world s:

psε
∑
t �=s

πtZ
−λ
t = ε(1 −ps)πsZ

−λ
s

⇐⇒ ps = πsZ
−λ
s∑

t

πtZ
−λ
t

� (43)

Equation (43) is intuitive: it says that the price of insuring states of the world with low
aggregate income is high.

Now consider the farmer’s choice of the optimal level of insurance. Farmers will choose
the quantity of insurance to purchase in each period in order to maximize their expected
utility:

max
{qs}

∑
s

πs

1
1 − ρ0

((
Zs + qs −

∑
t

ptqt

)1−ρ0

− 1
)
�

which yields the following FOC with respect to qs:

πs

(
Zs + qs −

∑
t

ptqt

)−ρ0

= ps

∑
t

πt

(
Zt + qt −

∑
t

ptqt

)−ρ0

⇐⇒ πsC
−ρ0
s∑

t

πtC
−ρ0
t

= ps� (44)

Substituting the equilibrium price from equation (43) into equation (44) and noting that
E[C−ρ0 ] =∑t πtC

−ρ0
t and E[I−λ] =∑t πtI

−λ
t yields

C−ρ0
s

E
[
C−ρ0

] = Z−λ
s

E
[
Z−λ

] � (45)
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Because the first-order conditions (44) are homogeneous of degree zero in consumption,
they do not pin down the scale of ex post real income, so to ensure that access to insurance
only affects welfare through the second moment of returns, we assume that access to
insurance does not affect the log mean real returns of farmers, that is, E[lnCs] = μZ . As
a result, we can write

Cs = Z
λ
ρ0
s

(
exp
(
μZ
))1− λ

ρ0 � (46)

that is, access to insurance means that the ex post realized real returns after insurance
payouts are a Cobb–Douglas combination of the ex ante realized returns prior to insur-
ance payouts and the (log) mean real returns. This is intuitive: when money-lenders have
the same level of risk aversion as the farmers (i.e., λ = ρ0), farmers’ ex post returns are
equal to their ex ante returns, that is, there is no scope for insurance. Conversely, when
money-lenders are risk neutral (i.e., λ = 0), farmers’ ex post returns are simply equal
to their mean real returns, that is, they are perfectly insured. When money-lenders are
still risk averse but less so than farmers, there is scope for imperfect insurance, where the
scope depends on the degree of risk aversion of the money-lenders. Indeed, equation (46)
can be viewed as a first-order log-linear approximation of any insurance technology that
reduces the variance of ex post realized returns around its mean.

Given that the ex ante realized returns are log-normally distributed lnZs ∼ N(μZ�
σ2�Z), the ex post realized returns are also log-normally distributed with

lnCs ∼N

(
μZ�

(
λ

ρ0

)2

σ2�Z

)
�

so that farmers’ expected utility ex post insurance can be written as

E
[
Uf�ins

]= 1
1 − ρ0

(
exp
(

(1 − ρ0)
(
μZ + 1

2
(1 − ρ̃)σ2�Z

))
− 1
)
� (47)

where

ρ̃= 1 + (ρ0 − 1)
(
λ

ρ0

)2

is the effective level of risk aversion. As a result, we have now shown that the effective
level of risk aversion can be written as a function of the innate risk aversion of farmers (ρ0)
and the technological parameter governing their access to insurance markets (as captured
by λ), as claimed.

Finally, consider the evaluation of the welfare impact of some counterfactual that
changes potentially both the access to insurance markets and the distribution of real re-
turns from {λA�μ

Z
A�σ

2�Z
A } to {λB�μ

Z
B�σ

2�Z
B }. The change in expected utility is

(1 − ρ0)
(
E
[
U

f�ins
B

]−E
[
U

f�ins
A

])= exp
(

(1 − ρ0)
(
μZ

B + 1
2

(1 − ρ0)
(
λB

ρ0

)2

σ2�Z
B

))

− exp
(

(1 − ρ0)
(
μZ

A + 1
2

(1 − ρ0)σ2�Z
A

(
λA

ρ0

)2))
�

We now define what we call the certainty equivalent variation (CEV), which is the hypo-
thetical percentage increase in income an individual would need to receive with certainty
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that would yield an equivalent change in expected welfare as the counterfactual, holding
constant all prices and parameters at their baseline levels. It is straightforward to show
that the CEV can be written as

CEV =
(
μZ

B + 1
2

(1 − ρ0)
(
λB

ρ0

)2

σ2�Z
B

)
−
(
μZ

A + 1
2

(1 − ρ0)
(
λA

ρ0

)2

σ2�Z
A

)
� (48)

or, equivalently, we can write the CEV in terms of the effective risk aversion:

CEV =
(
μZ

B + 1
2

(1 − ρ̃B)σ2�Z
B

)
−
(
μZ

A + 1
2

(1 − ρ̃A)σ2�Z
A

)
�

where ρ̃A ≡ 1 + (ρ0 − 1)( λA
ρ0

)2 and ρ̃B ≡ 1 + (ρ0 − 1)( λB
ρ0

)2 are the effective risk aversion
parameters we estimate in Section 5.2. This is the welfare metric we report in Section 5.

A.3.4. Convex Transportation Costs

In equation (9), we show that under the appropriate set of assumptions, heterogeneous
traders and a market clearing condition imply the following no-arbitrage condition:

Cig(s)
Qig(s)

=
(
pig(s)
p̄g(s)

)εi

�

that is, goods flow toward locations with higher relative prices. In this subsection, we
provide an alternative setup that generates the same no-arbitrage condition assuming that
transportation costs are increasing and convex in the quantity traded.28 For notational
simplicity, we omit the good g and state s notation in what follows.

As in the model in the paper, suppose there is a (small) village i engaging in trade with
a (large) market subject to trade costs. Unlike the model in the paper where the trade
costs are heterogeneous across traders, suppose now that they increase convexly with the
quantity shipped between the village and the market. In particular, let M̄i denote the
quantity of goods imported by village i from the market and X̄i denote the quantity of
goods exported by village i to the market. Suppose that the iceberg trade cost τi between
the village i and its market can be written as

lnτi = 1
εi

ln
(

1 + M̄i

Qi

+ X̄i

Ci

)
� (49)

where Qi and Ci are the quantity produced and consumed in village i, respectively. Intu-
itively, equation (49) says that the greater the flows of goods between the village and the
market—relative to the quantity produced in i for imports and relative to the quantity
consumed in i for exports—the greater the iceberg trade costs incurred.

Now consider what equation (49) implies when combined with a no-arbitrage condition.
Suppose first that the market price exceeds the village price, that is, p̄ ≥ pi. In this case,
the village will only export the good to the market, that is, M̄i = 0 and X̄i ≥ 0 and the

28We are grateful to Rodrigo Adao for pointing out this alternative setup.
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following no-arbitrage condition will hold:

ln p̄− lnpi = lnτi

⇐⇒ ln p̄− lnpi = 1
εi

ln
(

1 + X̄i

Ci

)

⇐⇒ 1 + X̄i

Ci

=
(
p̄

pi

)εi

� (50)

Now consider the case where the village price exceeds the market price, that is, pi ≥ p̄. In
this case, the village will only import the good from the market, that is, M̄i ≥ 0 and X̄i = 0
and the following no-arbitrage condition will hold:

lnpi − ln p̄= lnτi

⇐⇒ lnpi − ln p̄ = 1
εi

ln
(

1 + M̄i

Qi

)

⇐⇒ 1 + M̄i

Qi

=
(
pi

p̄

)εi

� (51)

Finally, we impose market clearing in village i, which requires that the total quantity
consumed in village i is equal to the total quantity it produces less the net quantity it
exports to the market:

Ci =Qi + M̄i − X̄i�

Combined with either equation (50) or (51), the market clearing condition immediately
yields the same equation:

Ci

Qi

=
(
pi

p̄

)εi

�

which is identical to equation (9) in the main text, as claimed.

A.3.5. Farmer Cooperative

In the baseline model, we assume that each farmer makes her crop choice taking the
prices as given. Here we explore what would occur if a farmer takes into account the
effect of her crop choice on prices, for example, if all the farmers worked together to
form a cooperative. In this case, the cooperative will maximize

max
θg

(
Yi

(
{θig}

))∏
g

(
αig

pig

(
{θig}

)
)αig

subject to ∑
g

θig = 1�
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Recall:

pig = (AigθigLi)
− 1

1+εi (p̄g)
εi

1+εi (αigYi)
1

1+εi �

Yi(s) =
(∑

g∈G
αig

(
p̄g(s)Qig(s)

αig

) εi
1+εi
) 1+εi

εi

�

so that we have

Zi = (Yi)
∏
g

(
αig

(AigθigLi)
− 1

1+εi (p̄g)
εi

1+εi (αigYi)
1

1+εi

)αig

⇐⇒ Zi = Y
εi

1+εi
i

∏
g

(
αig(AigθigLi)

1
1+εi

(p̄g)
εi

1+εi

)αig

⇐⇒ Zi =
(∑

g∈G
αig

(
p̄gAigLiθig

αig

) εi
1+εi
)∏

g

(
αig(AigθigLi)

1
1+εi

(p̄g)
εi

1+εi

)αig

⇐⇒ Zi =
(∑

g∈G
αig

(
p̄gAigLiθig

αig

) εi
1+εi
)∏

g

(
αig(AigθigLi)

1
1+εi

(p̄g)
εi

1+εi

)αig

�

Relative to the case where prices are taken as given, the first-order conditions of the
farmer cooperative are a little more involved. We have

∂Zi

∂θig

= ri

⇐⇒ θig ∝ εi

⎛
⎜⎜⎜⎜⎜⎝

αig

(
p̄gAigLiθig

αig

) εi
1+εi

∑
g∈G

αig

(
p̄gAigLiθig

αig

) εi
1+εi

⎞
⎟⎟⎟⎟⎟⎠+ αig

=⇒ θig =

εi

⎛
⎜⎜⎜⎜⎜⎝

αig

(
p̄gAigLiθig

αig

) εi
1+εi

∑
g∈G

αig

(
p̄gAigLiθig

αig

) εi
1+εi

⎞
⎟⎟⎟⎟⎟⎠+ αig

∑
g

⎛
⎜⎜⎜⎜⎜⎝εi

( αig

(
p̄gAigLiθig

αig

) εi
1+εi

∑
g∈G

αig

(
p̄gAigLiθig

αig

) εi
1+εi

)
+ αig

⎞
⎟⎟⎟⎟⎟⎠

�
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Recall that when farmers take prices as given, their equilibrium crop choice is given by
equation (14):

θig = (Aigp̄g)εiαig∑
h∈G

(Aihp̄h)εiαih

�

so this demonstrates that the farmer cooperative chooses a different optimal crop allo-
cation. In particular, the elasticity of the relative crop choice to the central market price
p̄g is smaller for the cooperative (where it is bounded above by εi

1+εi
) than for the price

taking farmers (where it is equal to εi). Intuitively, the cooperative purposefully restricts
the quantity produced of its high value (high p̄g) crops to ensure greater local prices.

A.4. COMPARING THE MODEL TO A TRADITIONAL ARBITRAGE MODEL

In this subsection, we describe the methodology used to construct panel (c) of Figure 3
that compares the price arbitrage of our model to a traditional arbitrage model where
iceberg trade costs are homogeneous. In both cases, consider a “village” (a district, in the
data) whose autarkic relationship between prices and yields follows from CES preferences
and the market clearing:

logpaut
ig = − 1

σ
logAig + 1

σ
logβiαig + 1

σ
log

G∑
h=1

paut
ih LiθihAih

Liθig

G∑
h=1

αih

(
paut

ih

)1−σ

� (52)

where we omit the state of the world for readability. Suppose that the village is small
in size relative to a market (a state, in the data) which has a price p̄g. Note that given
estimates of β, α, and σ from Section 5.2 and observed yields {Aig}, allocations {θig},
and land areas {Li}, there exists a unique (to-scale) set of autarkic prices paut

ig that satisfy
equation (52).

A Standard “Kinked” Model. First consider a standard trade model, where the village
is separated from the regional market by an iceberg trade cost τi > 1. Then a standard
no-arbitrage condition delivers the following relationship between the equilibrium local
prices pig, the given market price p̄g, and the autarkic local price paut

ig :

logpig − log p̄g =

⎧⎪⎨
⎪⎩

logτi for logpaut
ig − log p̄g > logτi�

logpaut
ig − log p̄g for logpaut

ig − log p̄g ∈ [− logτi� logτi]�
− logτi for logpaut

ig − log p̄g <− logτi�
(53)

The difference between the equilibrium local prices and the regional market prices then
are a “kinked” function of the trade costs between the two (when trade occurs and the no-
arbitrage equation holds) and the autarkic price paut

ig (when the trade costs are sufficiently
high such that no trade occurs).
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Our “Smooth” Model. Now consider our framework, where, from equation (60), equi-
librium prices are

logpig = − 1
σ + εi

logAig + εi

σ + εi

log p̄m(i)g + 1
σ + εi

logβiαig

+ 1
σ + εi

log

G∑
h=1

pihLiθihAih

Liθig

G∑
h=1

αih(pih)1−σ

� (54)

Combining equations (54) and (52), we can then write the difference between the equi-
librium local price and the central market price:

logpig − log p̄g = σ

σ + εi

(
logpaut

ig − log p̄g

)
� (55)

Hence, unlike equation (53), equation (55) states that the local price relative to the mar-
ket price should smoothly vary with the difference with the local autarkic price relative
to the market price. Note that equations (53) and (55) coincide with each other under
autarky (εi = 0, τi = ∞) or free trade (εi = ∞, τi = 1).

Empirical Strategy. The basic idea is to compare the model fit of equations (53) and
(55). In order to do so, we have to first solve a few implementation issues. First, as autarkic
prices are only identified up to scale, we add a location-specific constant ci to both models,
so that the standard “kinked” model becomes

logpig − log p̄g

=

⎧⎪⎨
⎪⎩

logτi + ci for logpaut
ig − log p̄g > logτi + ci�

logpaut
ig − log p̄g for logpaut

ig − log p̄g ∈ [− logτi + ci� logτi + ci]�
− logτi + ci for logpaut

ig − log p̄g <− logτi + ci�

(56)

and our “smooth” model becomes

logpig − log p̄g = σ

σ + εi

(
logpaut

ig − log p̄g

)+ ci� (57)

The advantage of the additional constant is that both models are now ensured to have an
R-squared statistic between 0 and 1, which will be our statistic for goodness of fit. The
second issue is how to measure prices. Because of the potential endogeneity of yields to
prices, as in Section 5.2, we use rainfall-predicted yields to construct a rainfall-predicted
measure of autarkic prices from equation (52). Also as in Section 5.2, we measure the
market price as the quantity weighted average price in all districts within a state except the
one being examined to avoid mechanical correlations between market and local prices.

Estimation and Results. As in Section 5.2, we allow the trade costs to vary by district-
decade. To do so, we conduct the estimation of both the standard “kinked” model and our
“smooth” model separately for each district-decade combination. The estimation for our
smooth model is simply a linear regression of the log district price (relative to the state
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leave-one-out price) on the log rainfall-predicted autarkic price (again relative to the
state leave-one-out price). The kinked model is similar, but uses a nonlinear least squares
routine to capture the kinks present in equation (56), where we constrain logτi ≥ 0. Note
that in both cases, we are estimating just two parameters using the same left-hand side
and right-hand side variables: the constant ci and a measure of trade costs (logτi for the
standard model and σ

σ+εi
for our model).

We compare the residual sum of squares from both models and normalize this by the
variance of the dependent variable to create a comparable version of the R2 for compari-
son. Panel (c) of Figure 3 plots the cumulative density of the fits for the two models. The
smooth model has a better fit than the kinked model in nearly 71% of all district-decade
combinations. The mean R2’s of the smooth and kinked model runs are 0.11 and 0.15,
respectively.
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