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THIS SUPPLEMENT is organized as follows. Appendix B discusses particular shape re-
strictions with the convex cone property, Appendix C specializes our test to the regular
case where rn{θ̂n − θ0} converges, Appendix D collects additional proofs and auxiliary
results, and Appendix E presents additional simulation studies and an empirical applica-
tion. Appendix F verifies the main assumptions for our examples, Appendix G provides
proofs for Appendix C, while Appendix H contains simulation results omitted from the
main text and Appendix E, all of which are relegated to the arXiv version of this paper
(https://arxiv.org/abs/1910.07689) due to space limitation. For ease of reference, we cen-
tralize some notation in the table below.

a� b For some constant M that is universal in the proof, a≤Mb.
a(j) The jth coordinate of a vector a ∈ Rd.
a(−j) The vector in Rd−1 obtained by deleting the jth entry of a ∈ Rd.
a∧ b For a�b ∈ Rd, a∧ b≡ (min{a(1)� b(1)}� � � � �min{a(d)� b(d)}).
a∨ b For a�b ∈ Rd, a∨ b≡ (max{a(1)� b(1)}� � � � �max{a(d)� b(d)}).
a� For a set � in a vector space and a ∈ R, a�≡ {aλ : λ ∈�}.
�+ θ For a set � and an element θ in a vector space, �+ θ≡ {λ+ θ : λ ∈�}.
� For a set � in a topological space, � is the closure of �.
� The standard normal cdf.
‖f‖∞ For a function f : T → Mm×k, ‖f‖∞ ≡ supt∈T

√
tr(f (t)ᵀf (t)).

�∞(T) For a nonempty set T , �∞(T)≡ {f : T → R : ‖f‖∞ <∞}.

APPENDIX B: SHAPE RESTRICTIONS AS CONVEX CONES

In this section, we discuss the convex cone property for some shape restrictions and
provide details in formulating the linearly constrained quadratic program (25), along with
additional references omitted from the main text. For ease of exposition, we shall work
with H = L2([0�1]d) except in Example B.3. In turn, we let {zj}kj=1 be a collection of grid
points over [0�1]d , based on which we approximate the ‖ · ‖H-norms via numerical inte-
gration; for example, if d = 2, then we may take {(s/N� t/N) : s = 0� � � � �N� t = 0� � � � �N}
with some suitably chosenN . Finally, letϑ≡ [θ(z1)� � � � � θ(zk)]ᵀ and defineDk ∈ M(k−1)×k

as the matrix such that Dkϑ= [θ(z2)− θ(z1)� � � � � θ(zk)− θ(zk−1)]ᵀ.
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EXAMPLE B.1—Monotonicity: Let � be the class of nondecreasing functions in H.
The convex cone property of � is well known—see, for example, Theorem 7.1 in Bar-
low, Bartholomew, Bremner, and Brunk (1972). To compute the projections onto �, let
θ ∈ H. If d = 1, then 
�θ may be approximated over {zj}kj=1 by h∗ that solves

min
h∈Rk

‖h−ϑ‖ s.t. Dkh≥ 0� (B.1)

If d = 2, then 
�θ is approximated by solving the same problem in (B.1) but subject to
Ah≥ 0, whereA= [Aᵀ

1�A
ᵀ
2]ᵀ such thatA1h≥ 0 enforces the monotonicity with respect to

the first coordinate andA2h≥ 0 enforces the second. Computations in higher dimensions
are analogous though more complicated.

There is a large literature on estimation by imposing solely shape restrictions, mostly
based on the maximum likelihood and least squares principles—see, for example, Han,
Wang, Chatterjee, and Samworth (2019) and references therein. Alternatively, mono-
tonicity may be enforced by applying certain operators, such as projection (Mammen,
Marron, Turlach, and Wand (2001)) and monotone rearrangement (Chernozhukov,
Fernández-Val, and Galichon (2010)), to unconstrained estimators. To retain smoothness,
smoothed monotone estimators have also been developed—see, for example, Mammen
et al. (2001) and Hall and Huang (2001). Finally, as discussed in the Introduction, an over-
whelming majority of existing tests, with the notable exception of Chetverikov (2019), are
based on least favorite configurations and limited to univariate settings.

EXAMPLE B.2—Concavity/Convexity: Let � be the family of concave functions in H,
and θ ∈ H be given. Proposition 3 in Lim and Glynn (2012) implies that � is a closed
convex cone. If d = 1 and {zj} are equidistanced, then the projection 
�θ may be approx-
imated over {zj}kj=1 by h∗ that solves

min
h∈Rk

‖h−ϑ‖ s.t. Dk−1Dkh≤ 0� (B.2)

Unfortunately, (B.2) is not readily generalizable to multivariate settings. As formalized in
Kuosmanen (2008), the projection
�θmay be approximated by the map z �→ minkj=1{a∗

j +
zᵀb∗

j }, where {a∗
j � b

∗
j }kj=1 solve the problem

min
ai∈R�bi∈Rd

{
k∑
i=1

[
θ(zi)− ai − bᵀ

i zi
]2

}1/2

s.t. ai + bᵀ
i zi ≤ aj + bᵀ

j zi for i� j = 1�1� � � � �k� (B.3)

Note that the number of effective constraints in (B.3) is k(k− 1). An attractive feature
of the formulation in (B.3) is that the joint test of monotonicity and concavity amounts to
the same problem but subject to the additional constraints bj ≥ 0 for all j.

As with monotonicity, there are three general estimation strategies: estimation un-
der solely convexity/concavity (Han and Wellner (2016)), smoothing (Hall and Huang
(2001), Mammen et al. (2001)), and post-processing (Chen, Chernozhukov, Fernández-
Val, Kostyshak, and Luo (2020)). The studies on testing are less extensive than mono-
tonicity, and in particular share the features that most of them are conservative and/or
limited to univariate settings—see the Introduction for references. Chen and Kato (2019)
developed a bootstrap version of Abrevaya and Jiang (2005), which, despite its noncon-
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servativeness, is computationally intensive to implement. Song, Chen, and Kato (2020)
proposed an “incomplete” version of Chen and Kato (2019), which, as documented in
their simulations, “is consistently on the conservative side.”

EXAMPLE B.3—Slutsky Restriction: For simplicity, let us consider the setup of Exam-
ple 2.4, and note that � being a convex cone is well known in linear algebra (see also
Aguiar and Serrano (2017), p. 195). The projection 
�θ of θ ∈ H onto � admits a closed
form expression. Specifically, for θσ ≡ (θ + θᵀ)/2 the symmetric part of θ, let θσ(t) =
U(t)S(t)U(t)ᵀ where S(t)≡ diag(λ1(t)� � � � � λdq(t)) and U satisfies U(t)U(t)ᵀ = Idq for all
t ≡ (p� y). Here, diag(a1� � � � � adq) ∈ Mdq×dq is the diagonal matrix whose diagonal entries
are a1� � � � � adq . In turn, letting S−(t) ≡ diag(λ1�−(t)� � � � � λdq�−(t)) with λj�− ≡ min{λj�0}
for all j = 1� � � � � dq, we have: for all t ≡ (p� y),

(
�θ)(t)=U(t)S−(t)U(t)ᵀ� (B.4)

Hoderlein (2011) and Dette, Hoderlein, and Neumeyer (2016) developed tests for fixed
(p� y). As theory predicts the restriction for all (p� y), one may employ these tests by
discretizing the data. However, discretization entails an extra tuning parameter whose
choice may be a delicate matter. Moreover, Dette, Hoderlein, and Neumeyer (2016)’s
test, as the authors noted, is in general conservative, while validity of Hoderlein (2011)’s
test has not been formally proven—see Chen and Fang (2019) for the challenges involved
in a related but different problem.

EXAMPLE B.4—Supermodularity: Let d ≥ 2 and � ⊂ H be the set of supermodular
functions, that is, f ∈� if and only if, for any y� z ∈ [0�1]d ,

f (y)+ f (z)≤ f (y ∨ z)+ f (y ∧ z)� (B.5)

By Lemma 2.6.1 in Topkis (1998), � is a closed convex cone. Consider d = 2 first, and pick
θ ∈ H. For simplicity, letϑ be the vectorization of the matrix�ᵀ such that the (i� j)th entry
of � is θ(i/n� j/n), for i� j = 0� � � � �N . Then, following Beresteanu (2007), computing

�(θ) amounts to solving: for k≡N + 1,

min
h∈Rk2

‖h−ϑ‖ s.t. (Dk ⊗Dk)ϑ≥ 0� (B.6)

where the number of constraints is N2. If d ≥ 3, then the equivalence of supermodularity
and pairwise supermodularity (Topkis (1998)) implies that each pair of covariates must
satisfy the constraint in (B.6). Despite its importance in economics, econometric studies
are rather limited. Chetverikov (2019)’s test on monotonicity, as the author noted, may
be adapted to handle supermodularity. Interestingly, separability of a function θ0 in its
arguments is equivalent to θ0 being supermodular and submodular (Topkis (1998), Theo-
rem 2.6.4), and thus also shares the convex cone property.

EXAMPLE B.5—Nonnegativity: Let �⊂ H be the family of nonnegative functions, and
θ ∈ H. As is well known (see, e.g., Deutsch (2012), p. 65), � is a convex cone and the
projection of θ onto � is given by: for any t ∈ [0�1]d ,

(
�θ)(t)= max
{
θ(t)�0

}
� (B.7)

There are numerous studies on nonnegativity, such as (conditional) moment inequali-
ties characterizing choice probabilities or payoffs (Pakes, Porter, Ho, and Ishii (2015)),
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(conditional) stochastic dominance for ordering uncertain prospects (Linton, Song, and
Whang (2010)), Lorenz dominance for measuring inequality (Sun and Beare (2019)), and
inequalities constraining equilibrium bid distributions or winning probabilities in auction
models (Guerre, Perrigne, and Vuong (2009)).

EXAMPLE B.6—Joint Restrictions: Shape restrictions often arise simultaneously in
economics—see, for example, Aït-Sahalia and Duarte (2003). Existing tests, however,
mostly focus on particular restrictions, and a multiple testing based on these tests is
generally conservative. In contrast, our framework allows for jointly testing restrictions
as intersections of convex cones remain convex cones. For example, letting � consist of
monotonic and supermodular functions leads to a joint test of monotonicity and super-
modularity, for which the constraints in the quadratic program are obtained by vertically
stacking the individual A matrices in (25).

We conclude by making a few remarks. First, just as the t-test is inconsistent in testing
H0 : θ0 < 0 vs. H1 : θ0 ≥ 0 for a mean parameter θ0, a level α test for a “strict” restriction
such as strict concavity is generally inconsistent. Assumption 3.1(i) ensures that “equal-
ity” is included under H0. We note that closedness of � (in H) may require identifying
shape restrictions through equivalent classes; for example, for monotonicity in L2([0�1]),
we have θ ∈ � if θ = ϑ almost everywhere for some monotonic function ϑ ∈ L2([0�1]).
Second, the convex cone property depends on a proper choice of the parameter; for
example, the range restriction �0 ≡ {f ∈ L2([0�1]) : f (x) ≤ 1 ∀x ∈ [0�1]} is not a con-
vex cone, but we may consider θ0 ≡ 1 − f0 if f0 is the original parameter, and define
�≡ {g ∈L2([0�1]) : g(x)≥ 0 ∀x ∈ [0�1]}. It may be necessary to choose a parameter that
involves some derivative(s); for example, in Example 2.4, Assumption 3.1 holds for the
Slutsky matrix θ0 (which involves derivatives of g0) but not for g0 itself. Third, while Sec-
tion 2.1 is centered around regression models as a result of their popularity and the space
limitation, our framework is also applicable to other settings, such as those concerning
densities/distributions, including monotonicity of densities (Fang (2019)), likelihood ratio
ordering (Beare and Moon (2015)), and stochastic monotonicity (Lee, Linton, and Whang
(2009)). Note that, in the presence of covariates (as controls), some of these results are
not directly applicable. Alternatively, one may apply our test in structural models where
shape restrictions arise as testable implications—see, for example, Pinkse and Schurter
(2019). Finally, in implementing our test, one may be prompted to ignore some features
of θ0 that coexist with the shape restriction but invalidate Assumption 3.1 when incorpo-
rated. For example, if θ0 ∈L2([0�1]) and 0 ≤ θ0(x)≤ 1 with θ0(0)= 0 and θ0(1)= 1, then
testing monotonicity on θ0 without the equality constraints may result in power loss—note
that Theorem 1.6 in Barlow et al. (1972) implies that projection preserves the range.

APPENDIX C: THE SPECIAL CASE

The aim of this section is twofold. First, we show that, when θ̂n admits an asymptotic
distribution, Assumptions 3.2 and 3.3 can be simplified to conditions that may be more
familiar to practitioners. Second, we expound the point that, even in this special case, our
test improves upon existing inferential methods along several dimensions.

We need additional notation and concepts. Specifically, define

BL1(H)= {
f : H → R : ∣∣f (x)∣∣ ≤ 1�

∣∣f (x)− f (y)∣∣ ≤ ‖x− y‖H

for all x� y ∈ H
}
� (C.1)
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and denote the tangent cone TθP of � at θP ∈ � ⊂ H by TθP ≡ ⋃
α>0α{�− θP}. In turn,

define a map φ′
θP

: H → R by φ′
θP
(h) ≡ ‖h − 
TθP

h‖H, which is in fact the so-called
Hadamard directional derivative of φ. Since only the functional form of φ′

θP
is relevant

to us here, we refer the reader to Fang and Santos (2019) for detailed discussions of this
concept.

We next impose an analog of Assumption 3.2 as follows.

ASSUMPTION C.1: (i) supf∈BL1(H)
|EP[f (rn{θ̂n − θP})] − E[f (GP)]| = o(1) uniformly in

P ∈ P for an estimator θ̂n : {Xi}ni=1 → H; (ii) Ĝn ∈ H is a bootstrap estimator satisfying
supf∈BL1(H)

|E[f (Ĝn)|{Xi}ni=1] −E[f (GP)]| = op(1) uniformly in P ∈ P.

Assumption C.1 simply requires uniform convergence in distribution and uniform va-
lidity of bootstrap, which may be verified by appealing to existing results (Giné and Zinn
(1991), Sheehy and Wellner (1992)). Assumption C.1 in fact automatically implies a weak
version of Assumption 3.2 obtained by replacing the independence condition in Assump-
tion 3.2(ii) with an asymptotical independence condition characterized as: uniformly in
P ∈ P,

sup
f∈BL1(H)

∣∣E[
f (Z̄n�P)|{Xi}ni=1

] −E[
f (Z̄n�P)

]∣∣ = op(1)� (C.2)

PROPOSITION C.1: Let H be a separable Hilbert space. If Assumption C.1 holds, then (i)
the above weak version of Assumption 3.2 follows, with cn = 1 and Zn�P copies of GP ,1 and

(ii) ψκn�P(Zn�P)
L−→φ′

θP
(GP) for all P ∈ P0, provided κn → ∞.

Since our results in Section 3.1 remain valid under the weak version of Assumption 3.2
by Lemma G.2, Proposition C.1(i) implies that our test is applicable to this special case
subject to Assumptions 3.1, C.1, and 3.3. Proposition C.1(ii) further implies that, if κn →
∞, then the coupling variables {ψκn�P(Zn�P)} admit a limit in distribution. Therefore, one
may replace Assumption 3.3(iii) with cP(1 − α −�) ≥ cP(0�5) + ς for some ς > 0 and
cP(τ) the τ-quantile of φ′

θP
(GP), which is effectively the same as requiring that φ′

θP
(GP)

be continuous and strictly increasing at cP(1 − α) as imposed in Fang and Santos (2019).
In turn, Assumption 3.3(iv) then reduces to cn = O(1) and so the coupling order op(cn)
becomes op(1).

We next compare our test to some existing ones. Employing a generalized Delta
method, Fang and Santos (2019) obtained that, under Assumptions 3.1(i) and C.1(i),

rnφ(θ̂n)
L−→φ′

θP
(GP)≡ ‖GP −
TθP

GP‖H� (C.3)

for each P ∈ P0. Exploiting the insight that the limit in (C.3) is the composition of φ′
θP

and
GP , Fang and Santos (2019) then showed that a general consistent bootstrap of the limit
in (C.3) may be obtained by constructing φ̂′

n(Ĝn), a composition of a suitably consistent
estimator φ̂′

n of φ′
θP

with a consistent bootstrap Ĝn for GP .
While the bootstrap Ĝn is often straightforward to construct as in Section 3.1, obtain-

ing a suitable estimator φ̂′
n turns out to be nontrivial. The challenge involved may be

1We are indebted to Andres Santos for suggesting this result and sketching the proof.
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FIGURE C.1.—The tangent cone Tθ depends on θ discontinuously. As θ moves from the corner at θ1 but
still stays on the boundary at θ2, Tθ changes from the fourth orthant Tθ1 to the half plane Tθ2 . In turn, as θ
moves into the interior at θ3 from θ2, Tθ becomes the entire plane Tθ3 .

understood in view of the discontinuity of the cone-valued map θ �→ Tθ, as illustrated
in Figure C.1. In this regard, Fang and Santos (2019) proposed the following concrete
estimator: for any h ∈ H and some κn ↑ ∞,

φ̂′
n(h)= sup

θ∈�:rn‖θ−
�θ̂n‖H≤κn
‖h−
Tθh‖H� (C.4)

Evaluating the supremum in (C.4), however, may be computationally costly as it entails
estimation of a local parameter space, that is, TθP . Alternatively, one may employ a nu-
merical estimator following Hong and Li (2018), but there are no data-driven procedures
to date for selecting the step size (needed to carry out the numerical differentiation). This
raises substantive concerns because the resulting bootstrap may be sensitive to the choice
of the step size, as documented in Masten and Poirier (2021) and Chen and Fang (2019).
One may also appeal to the m out of n bootstrap or subsampling, but the choice of the
sub-sample size may be difficult, among other issues—see Remark 3.1 in Chen and Fang
(2019).

While our development is undertaken outside the scope of the Delta method, there is
an intriguing connection to the general theory of Fang and Santos (2019), as we now flesh
out. To this end, recall our bootstrap statistic ψ̂κn(Ĝn).

PROPOSITION C.2: Let Assumptions 3.1 and C.1(i) hold. If κn → ∞ and κn/rn → 0, then
it follows that ψ̂κn(h)

p−→φ′
θP
(h) for any h ∈ H and P ∈ P0.

Since h �→ ψ̂κn(h) is Lipschitz continuous, Proposition C.2 implies that ψ̂κn is consistent
in estimating φ′

θP
in the sense of Fang and Santos (2019)—see their Remark 3.4. There-

fore, when rn{θ̂n −θP} converges in distribution, our test is effectively the test of Fang and
Santos (2019) (with respect to their general theory), but based on a derivative estima-
tor that is new and simpler relative to (C.4). We stress that the computational advantage
hinges on the convex cone property but not convexity alone. In accord with previous dis-
cussions, Proposition C.2 also shows that, by letting κn → ∞ (in addition to κn/rn → 0),
our test is not conservative in the sense that it is pointwise (in P) asymptotically exact as
in Fang and Santos (2019).
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APPENDIX D: MORE PROOFS AND AUXILIARY RESULTS

PROOF OF PROPOSITION 3.1: Let F̂n be the conditional cdf of ‖Ĝn‖H given {Xi}ni=1, and
let Fn�P be the cdf of ‖Zn�P‖H. Note that Fn�P is also the cdf of ‖Z̄n�P‖H since Z̄n�P is a copy
of Zn�P by Assumption 3.2(ii). As a first step, we show that F̂n and Fn�P are suitably close
in probability. By Assumptions 3.2(ii), we obtain

P
(‖Ĝn − Z̄n�P‖H > δn

) = o(1)� (D.1)

for some δn = o(cn), uniformly in P ∈ P. Fix η > 0. By Markov’s inequality, Fubini’s the-
orem, and result (D.1), we may in turn have that, uniformly in P ∈ P,

P
(
P

(∣∣‖Ĝn‖H − ‖Z̄n�P‖H

∣∣> δn|{Xi}ni=1

)
>η

)
≤ 1
η
P

(∣∣‖Ĝn‖H − ‖Z̄n�P‖H

∣∣> δn) ≤ 1
η
P

(‖Ĝn − Z̄n�P‖H > δn
) = o(1)� (D.2)

Since η> 0 is arbitrary, we may therefore conclude from (D.2) that

P
(∣∣‖Ĝn‖H − ‖Z̄n�P‖H

∣∣> δn|{Xi}ni=1

) = op(1)� (D.3)

By simple manipulations, we then have: for all t ∈ R,

F̂n(t)− Fn�P(t)= P(‖Ĝn‖H ≤ t|{Xi}ni=1

) − P(‖Z̄n�P‖H ≤ t)
≤ P(‖Z̄n�P‖H ≤ t + δn|{Xi}ni=1

) − P(‖Z̄n�P‖H ≤ t)
+ P(∣∣‖Ĝn‖H − ‖Z̄n�P‖H

∣∣> δn|{Xi}ni=1

)
≤ P(∣∣‖Z̄n�P‖H − t∣∣ ≤ δn

) + op(1)� (D.4)

uniformly in P ∈ P, where the second inequality follows by Z̄n�P being independent of
{Xi}ni=1 (so that P(‖Z̄n�P‖H ≤ t)= P(‖Z̄n�P‖H ≤ t|{Xi}ni=1)) and result (D.3). By analogous
arguments, we also have: for all t ∈ R,

Fn�P(t)− F̂n(t)≤ P(∣∣‖Z̄n�P‖H − t∣∣ ≤ δn
) + op(1)� (D.5)

uniformly in P ∈ P. Combining results (D.4) and (D.5), we arrive at:

∣∣F̂n(t)− Fn�P(t)
∣∣ ≤ P(∣∣‖Z̄n�P‖H − t∣∣ ≤ δn

) + op(1)� (D.6)

for all t ∈ R, uniformly in P ∈ P, where the op(1) term does not involve t.
Let mn�P be the median of Fn�P . By Assumptions 3.3(i) and 3.4, we may apply

Lemma D.3 to conclude that, for any t >mn�P + δn,

P
(∣∣‖Z̄n�P‖H − t∣∣ ≤ δn

) =
∫ t+δn

t−δn
F ′
n�P(r)dr

≤
∫ t+δn

t−δn

2r −mn�P

(r −mn�P)
2 dr ≤ 2δn

2(t − δn)−mn�P

(t − δn −mn�P)
2 � (D.7)
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where the second inequality (in the second line) follows by r �→ (2r −mn�P)/(r −mn�P)
2

being decreasing on (mn�P�∞). Since Z̄n�P is a copy of Zn�P , by Kwapień (1994) and As-
sumption 3.3(ii), we then have: for some constant ζ > 0,

sup
P∈P

mn�P ≤ sup
P∈P

EP
[‖Z̄n�P‖H

] ≤ ζ <∞� (D.8)

Since δn = o(cn) = o(1) due to cn = O(1), we obtain from results (D.7) and (D.8) that,
for all n large so that δn ≤ 1 and for all t ≥ ζ + 2,

sup
P∈P0

P
(∣∣‖Z̄n�P‖H − t∣∣ ≤ δn

)

≤ 2δn

{
2

t − δn −mn�P

+ mn�P

(t − δn −mn�P)
2

}
≤ 2δn(2 + ζ)� (D.9)

Exploiting δn = o(1) again, we may combine (D.6) and (D.9) to conclude∣∣F̂n(t)− Fn�P(t)
∣∣ = op(1)� (D.10)

uniformly in P ∈ P0 and t ∈ [ζ + 2�∞).
Next, we aim to prove the first claim of the proposition. Let M > ζ + 2 be any large

constant. By Lemma 6.10 in Aliprantis and Border (2006), we have

‖Zn�P‖H = sup
h∈H1

〈h�Zn�P〉H� (D.11)

where H1 ≡ {h ∈ H : ‖h‖H ≤ 1}. In turn, it follows from result (D.11) that

Fn�P(M)= P
(

sup
h′∈H1

〈
h′�Zn�P

〉
H

≤M
)

≤ P(〈h�Zn�P〉H ≤M) =�
(

M

σn�P(h)

)
� (D.12)

for all h ∈ H1, where σ2
n�P(h)≡E[〈h�Zn�P〉2

H]. By the definition of σ̄2
n�P , we may then select

a sequence {hj} in H1 such that σ2
n�P(hj)→ σ̄2

n�P as j→ ∞. By continuity of σ �→�(M/σ),
we thus obtain from (D.12) that

Fn�P(M)≤�
(
M

σ̄n�P

)
� (D.13)

for any P ∈ P0 and n. By Assumption 3.4, we may select some constant σ > 0 such that
infP∈P0 σ̄n�P > σ for large n. By result (D.13), we then must have

Fn�P(M)≤�
(
M

σ

)
< 1� (D.14)

for any P ∈ P0 and n. Now, by the definition of τ̂n�1−γn , we note that

P(τ̂n�1−γn ≤M)≤ P(
F̂n(M)≥ 1 − γn

)
= P(

op(1)+ Fn�P(M)≥ 1 − γn
)
� (D.15)
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uniformly in P ∈ P0, where the second equality follows by result (D.10) since M ≥ ζ + 2
by choice. Combining results (D.14) and (D.15), we therefore conclude that

lim sup
n→∞

sup
P∈P0

P(τ̂n�1−γn ≤M)= 0� (D.16)

whenever γn → 0. Since M is arbitrary, τ̂n�1−γn
p−→ ∞ uniformly in P ∈ P0 and so the first

claim of the proposition follows.
For the second claim, define ψ : H → �∞(H1) by: for each h ∈ H and t ∈ H1,

ψ(h)(t)≡ 〈t�h〉H� (D.17)

By Corollary 6.55 (the Riesz representation theorem) and Lemma 6.10 in Aliprantis and
Border (2006), supt∈H1

|ψ(Z̄n�P)(t)| = ‖Z̄n�P‖H. Clearly, ψ is linear and continuous. In turn,
by Assumption 3.3(i), ψ(Z̄n�P) is tight and centered Gaussian in �∞(H1) by Lemma 2.2.2
in Bogachev (1998). By Example 1.5.10 in van der Vaart and Wellner (1996) and Proposi-
tion 2.1.12 in Giné and Nickl (2016), {ψ(Z̄n�P)(t) : t ∈ H1} is separable as a process; it also
has finite median by (D.8). By Proposition A.2.4 in van der Vaart and Wellner (1996) and
(D.8), we have: for some absolute constant C > 0,

E
[‖Z̄n�P‖2

H

] ≤ C(
E

[‖Z̄n�P‖H

])2 ≤ Cζ2� (D.18)

By Proposition A.2.1 in van der Vaart and Wellner (1996) and result (D.18), we may thus
conclude that, for all x > 0, all n and all P ∈ P0,

P
(‖Z̄n�P‖H > x

) ≤ 2 exp
{
− x2

8E
[‖Z̄n�P‖2

H

]}
≤ 2 exp

{
− x2

8Cζ2

}
� (D.19)

By the definition of τ̂n�1−γn and the triangle inequality, we have

γn < P
(‖Ĝn‖H > τ̂n�1−γn − δn|{Xi}ni=1

)
≤ P(‖Z̄n�P‖H > τ̂n�1−γn − δn − en�P |{Xi}ni=1

)
� (D.20)

where en�P ≡ ‖Ĝn− Z̄n�P‖H = op(cn) uniformly in P ∈ P0 (by Assumption 3.2(ii)). By result
(D.16) and cn =O(1) by Assumption 3.2(i), we note that

lim inf
n→∞

inf
P∈P0

P(τ̂n�1−γn − δn − en�P > 0)= 1� (D.21)

Since Z̄n�P is independent of {Xi}ni=1, we may conclude from results (D.19), (D.20), and
(D.21) that, with probability approaching 1 and uniformly in P ∈ P0,

γn ≤ 2 exp
{
−(τ̂n�1−γn − δn − en�P)2

8Cζ2

}
� (D.22)

Taking natural logarithms on both sides of (D.22) plus simple algebra yield

1
8Cζ2

(
τ̂n�1−γn
rncn

− δn

rncn
− en�P

rncn

)2

≤ − logγn
r2
nc

2
n

+ log 2
r2
nc

2
n

� (D.23)
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Suppose (rncn)−2 logγn → 0. Then we must have rncn → ∞ since γn → 0 (and so logγn →
−∞). Since also δn = o(cn) and en�P = op(cn) uniformly in P ∈ P0, we obtain from (D.23)
that τ̂n�1−γn/(rncn)

p−→ 0 and hence κn ≡ rncn/τ̂n�1−γn
p−→ ∞ uniformly in P ∈ P0. This com-

pletes the proof of the second claim of the proposition. Q.E.D.

LEMMA D.1: Let Assumption 3.1 hold and θ0 ∈ �. Define ψa(h)≡ ‖h+ aθ0 −
�(h+
aθ0)‖H for h ∈ H and a≥ 0. Then a �→ψa(h) is weakly decreasing on [0�∞).

PROOF: The lemma immediately follows if we can show that

ψa(h)= min
|a′|≤a

∥∥h+ a′θ0 −
�

(
h+ a′θ0

)∥∥
H
� (D.24)

Let �◦
1 ≡ {h∗ ∈ H : 〈h∗�λ〉H ≤ 0 for all λ ∈��‖h∗‖H ≤ 1}. By Assumption 3.1 and Deutsch

(2012), pp. 125–127, we then have: for all h ∈ H,

min
|a′|≤a

∥∥h+ a′θ0 −
�

(
h+ a′θ0

)∥∥
H

= min
|a′ |≤a

max
h∗∈�◦

1

〈
h∗�h+ a′θ0

〉
H

= min
|a′ |≤a

max
h∗∈�◦

1

{〈
h∗�h

〉
H

+ a′〈h∗� θ0

〉
H

}
� (D.25)

In turn, by Theorems 49.A and 49.B in Zeidler (1985), we obtain

min
|a′|≤a

max
h∗∈�◦

1

{〈
h∗�h

〉
H

+ a′〈h∗� θ0

〉
H

}
= max

h∗∈�◦
1

min
|a′|≤a

{〈
h∗�h

〉
H

+ a′〈h∗� θ0

〉
H

}
� (D.26)

Since 〈h∗� θ0〉H ≤ 0 for all h∗ ∈�◦
1, it follows from result (D.25) that

max
h∗∈�◦

1

min
|a′|≤a

{〈
h∗�h

〉
H

+ a′〈h∗� θ0

〉
H

}
= max

h∗∈�◦
1

{〈
h∗�h

〉
H

+ a〈h∗� θ0

〉
H

}
= max

h∗∈�◦
1

{〈
h∗�h+ aθ0

〉
H

} = ∥∥(h+ aθ0)−
�(h+ aθ0)
∥∥

H
� (D.27)

where the last step is by Deutsch (2012), pp. 125–127. The equality in (D.24) then follows
from combining (D.25), (D.26), and (D.27). Q.E.D.

LEMMA D.2: Let Assumption 3.1 hold and P̄0 be as in Theorem 3.1. Then it follows that,
for any h ∈ H, a ∈ R+ and P ∈ P̄0,


�(h+ aθP)=
�(h)+ aθP� (D.28)

PROOF: Let �◦ ≡ {ϑ ∈ H : supλ∈�〈ϑ�λ〉H ≤ 0}. Fix any h ∈ H, a ∈ R+, and P ∈ P̄0. By
Assumption 3.1, 
�(h)+ aθP ∈�. First, note that, for any λ ∈�,〈

h+ aθP − {

�(h)+ aθP

}
�λ

〉
H

= 〈
h−
�(h)�λ

〉
H

≤ 0� (D.29)
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where the inequality follows by Assumption 3.1 and Theorem 4.7 in Deutsch (2012). Next,
for λ0 ≡
�(h)+ aθP ∈�, we have〈

h+ aθP − {

�(h)+ aθP

}
�λ0

〉
H

= 〈
h−
�(h)�
�(h)

〉
H

+ a〈h−
�(h)�θP
〉
H

= 0� (D.30)

where the second equality is due to 〈h − 
�(h)�
�(h)〉H = 0 by Assumption 3.1 and
Theorem 4.7 in Deutsch (2012), h−
�(h) ∈ �◦ by Assumption 3.1 and Theorem 5.6 in
Deutsch (2012), and the definition of P̄0. The conclusion of the lemma then follows from
applying Theorem 4.7 in Deutsch (2012) to (D.29) and (D.30). Q.E.D.

PROPOSITION D.1: Let Assumptions 3.1 and 3.3 hold, and ψa�P be defined as in (14).
Then for any sequence {εn} of positive scalars satisfying εn = o(cn),

lim sup
n→∞

sup
P∈P0

sup
x∈[cn�P (0�5)+ςn�∞)

P
(∣∣ψκn�P(Zn�P)− x∣∣ ≤ εn

) = 0� (D.31)

PROOF: Let {εn} be an arbitrary sequence of positive scalars satisfying εn = o(cn) as
n→ ∞. Fix n ∈ N and P ∈ P0 for the moment. Let �◦

1 ≡ {t ∈ H : 〈t�λ〉H ≤ 0 for all λ ∈
��‖t‖H ≤ 1}. By Assumption 3.1 and Deutsch (2012), pp. 125–127, we may then write: for
et(n�P)≡ κn〈t� θP〉H,

ψκn�P(Zn�P)= max
t∈�◦

1

{〈t�Zn�P〉H + et(n�P)
}
� (D.32)

Since 0 ∈�◦
1 and 〈t�Zn�P〉H +et(n�P)= 0 at t = 0, the maximum in (D.32) must be attained

at t ∈ �◦
1 such that 〈t�Zn�P〉H + et(n�P) ≥ 0. Moreover, 〈t�Zn�P〉H ≤ ‖Zn�P‖H for all t ∈ �◦

1
by the Cauchy–Schwarz inequality. Therefore, whenever ‖Zn�P‖H ≤M with M > 0, the
maximum in (D.32) must be attained at some t ∈ �◦

1 with et(n�P)≥ −M . It follows that,
whenever ‖Zn�P‖H ≤M ,

ψκn�P(Zn�P)= max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et(n�P)
}
� (D.33)

where �◦
1�M(n�P)≡ {t ∈�◦

1 : et(n�P)≥ −M}. Hence, for any x ∈ R,

P
(∣∣ψκn�P(Zn�P)− x∣∣ ≤ εn

)
≤ P

(∣∣∣ max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et(n�P)
} − x

∣∣∣ ≤ εn
)

+ P(‖Zn�P‖H >M
)

≤ P
(∣∣∣ max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et(n�P)
} − x

∣∣∣ ≤ εn
)

+ ζ

M
� (D.34)

for some constant ζ > 0 satisfying supP∈PE[‖Zn�P‖H]< ζ, where the existence of ζ is guar-
anteed by Markov’s inequality and Assumption 3.3(ii).

We next aim to control the first term on the right-hand side of (D.34) by bound-
ing the density of maxt∈�◦

1�M(n�P)
{〈t�Zn�P〉H + et(n�P)}. To this end, let Fn�P�M be the cdf

of maxt∈�◦
1�M(n�P)

{〈t�Zn�P〉H + et(n�P)}. We proceed with some useful facts. First, by As-
sumption 3.3(i), Lemma 1.3.2 in van der Vaart and Wellner (1996), and the corollary to
Theorem I.3.1 in Vakhania, Tarieladze, and Chobanyan (1987), Zn�P is a centered Radon
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Gaussian variable in H. Second, for rM(n�P) ≡ inf{r ∈ R : Fn�P�M(r) > 0}, Theorem 11.1
in Davydov, Lifshits, and Smorodina (1998) in turn implies that Fn�P�M is absolutely con-
tinuous on (rM(n�P)�∞) so that it admits a density on (rM(n�P)�∞) which we denote
by fn�P�M . Third, by Proposition 11.2 in Davydov, Lifshits, and Smorodina (1998), we may
assume without loss of generality that �◦

1�M(n�P) is countable. Fourth, since et(n�P)≤ 0
for any t ∈ �◦

1 and P ∈ P0, we have et�M(n�P)≡ et(n�P)+M ≤M , which, together with
the Cauchy–Schwarz inequality and Zn�P ∈ H (by Assumption 3.2(i)), implies

max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et�M(n�P)
} ≤ ‖Zn�P‖H +M <∞� (D.35)

almost surely. Fifth, for σ̄2
n�P�M ≡ supt∈�◦

1�M(n�P)
E[〈t�Zn�P〉2

H], we shall show towards the end
of the proof that, for all large M > 0,

σ̄2
n�P�M > 0� (D.36)

In what follows, we fix any such large M . Sixth, for any r > rM(n�P), we note

Fn�P�M(r)≡ P
(

max
t∈�◦

1�M(n�P)
{〈t�Zn�P〉H + et(n�P)≤ r

)

= P
(

max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et�M(n�P)
} ≤ r +M

)
� (D.37)

Seventh, for mn�P�M the median of Fn�P�M , we have by the quantile equivariance that
the median of maxt∈�◦

1�M(n�P)
{〈t�Zn�P〉H + et�M(n�P)} is mn�P�M + M . Note that mn�P�M ≥

rM(n�P)≥ 0 because maxt∈�◦
1�M(n�P)

{〈t�Zn�P〉H + et(n�P)} ≥ 0.
With the above preparations, we may apply Theorem 2.2.2 in Yurinsky (1995) with

b=mn�P�M +M and u= r +M to conclude:

fn�P�M(r)= F ′
n�P�M(r)≤ 2(r +M)− (mn�P�M +M)[

(r +M)− (mn�P�M +M)]2

= 2r −mn�P�M +M
(r −mn�P�M)

2 (D.38)

for all r >mn�P�M . By the choice of εn and cn =O(1), we note that

εn = o(cn)= o
(√
cn/ς2

n

√
cnςn

)
= o(ςn)� (D.39)

as n→ ∞. Therefore, we have εn ≤ ςn/2 for all n sufficiently large, so that

x− εn −mn�P�M ≥mn�P�M + ςn − εn −mn�P�M ≥ ςn

2
(D.40)

whenever x ≥mn�P�M + ςn. Since r �→ (2r −mn�P�M +M)/(r −mn�P�M)
2 is decreasing on

(mn�P�M�∞), we may thus conclude by the fundamental theorem of calculus and results
(D.37) and (D.38) that, for all x≥mn�P�M + ςn and n large,

P
(∣∣∣ max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et(n�P)
} − x

∣∣∣ ≤ εn
)
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=
∫ x+εn

x−εn
fn�P�M(r)dr ≤ 2εn

2(mn�P�M + ςn/2)−mn�P�M +M
(ςn/2)2 � (D.41)

Since �◦
1�M(n�P)⊂�◦

1, we obtain in view of (D.32) and Lemma D.1 that

max
t∈�◦

1�M(n�P)

{〈t�Zn�P〉H + et(n�P)
} ≤ψkn�P(Zn�P)≤ψ0�P(Zn�P)

= ‖Zn�P‖H� (D.42)

By result (D.42), Kwapień (1994), and Assumption 3.3(ii), we note

mn�P�M ≤mn�P ≡ cn�P(0�5)≤E[‖Zn�P‖H

] ≤ ζ� (D.43)

where we remind the reader our choice of ζ from (D.34). Combining results (D.34),
(D.41), and (D.42), we thus obtain that

sup
P∈P0

sup
x∈[cn�P (0�5)+ςn)

P
(∣∣ψκn�P(Zn�P)− x∣∣ ≤ εn

)
� εn

ζ + ςn +M
ς2
n

+ ζ

M
� (D.44)

Since εn = o(cn), we may select a sequence an ↓ 0 (sufficiently slow) such that εn =
o(ancn). In turn, by setting M ≡Mn = a−1

n which diverges to infinity, we may then con-
clude by Assumption 3.3(iv) and results (D.39) and (D.44) that

sup
P∈P0

sup
x∈[cn�P (0�5)+ςn)

P
(∣∣ψκn�P(Zn�P)− x∣∣ ≤ εn

) → 0� (D.45)

It remains to prove (D.36). For this, we fix n and P ∈ P0 in what follows. Let σ̄2
n�P ≡

supt∈�◦
1
E[〈t�Zn�P〉2

H]. Then we must have σ̄2
n�P > 0. Indeed, suppose by way of contradic-

tion that σ̄2
n�P = 0. This implies 〈t�Zn�P〉H = 0 almost surely for all t ∈�◦

1. By result (D.32)
and Proposition 11.2 in Davydov, Lifshits, and Smorodina (1998), we have ψκn(Zn�P)= 0
almost surely. Then all quantiles of ψκn(Zn�P) are equal to zero, contradicting Assump-
tion 3.3(iii). Next, fix η> 0. Then we may select some tn�P ∈�◦

1 such that

σ̄2
n�P ≤ E[〈tn�P�Zn�P〉2

H

] +η� (D.46)

Moreover, by choosingM ≥ κn‖θP‖H, we may employ the Cauchy–Schwarz inequality and
‖tn�P‖H ≤ 1 (due to tn�P ∈�◦

1) to obtain that∣∣etn�P (n�P)∣∣ ≡ ∣∣κn〈tn�P� θP〉H

∣∣ ≤ κn‖θP‖H ≤M� (D.47)

In turn, it follows from result (D.47) that tn�P ∈�◦
1�M(n�P) so that

E
[〈tn�P�Zn�P〉2

H

] ≤ sup
t∈�◦

1�M(n�P)

E
[〈t�Zn�P〉2

H

] = σ̄2
n�P�M� (D.48)

Combining results (D.46) and (D.48), we may then conclude that

σ̄2
n�P ≤ σ̄2

n�P�M +η≤ σ̄2
n�P +η (D.49)

whenever M ≥ κn‖θP‖H. Since η is arbitrary, result (D.49) implies that σ̄2
n�P�M → σ̄2

n�P as
M → ∞. This, together with σ̄2

n�P > 0, implies (D.36). Q.E.D.
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LEMMA D.3: Let D be a Banach space with norm ‖ · ‖D and D∗
1 ≡ {x∗ ∈ D∗ :

sup‖x‖D≤1 |x∗(x)| ≤ 1}, the unit ball in the topological dual D∗ of D. If G ∈ D is a tight centered
Gaussian variable such that supx∗∈D∗

1
E[x∗(G)2] > 0, then the cdf F of ‖G‖D is absolutely

continuous on (0�∞), and, for any r >mF with mF the median of F ,

F ′(r)≤ 2r −mF

(r −mF)
2 � (D.50)

PROOF: Since G is tight and D is Banach, Lemma 1.3.2 in van der Vaart and Wellner
(1996) and the corollary to Theorem I.3.1 in Vakhania, Tarieladze, and Chobanyan (1987)
imply that G is Radon. Hence, since G is centered Gaussian, we know by the remark
following Proposition 7.4 in Davydov, Lifshits, and Smorodina (1998) that the support D0

of G is a closed separable subspace of D and hence a separable Banach space under ‖ · ‖D.
Therefore, by Proposition 1.12.17 in Bogachev and Smolyanov (2017), it follows that, for
all x ∈ D0,

‖x‖D = ∞
sup
n=1
x∗
n(x)� (D.51)

where {x∗
n}∞
n=1 live in D∗

0�1, the unit ball of the topological dual space D∗
0 of D0. By the

Hahn–Banach extension theorem (see, e.g., Theorem 5.53 in Aliprantis and Border
(2006)), each x∗

n admits an extension that belongs to D∗
1, which we continue to denote

by x∗
n with some abuse of notation. In other words, (D.52) holds with {x∗

n}∞
n=1 living in D∗

1.
Since P(G ∈ D0)= 1, we then obtain that, almost surely,

‖G‖D = ∞
sup
n=1
x∗
n(G)� (D.52)

For each n, we have E[x∗
n(G)] = 0 due to G being centered. Moreover, the supremum in

(D.52) is finite almost surely. Since supx∗∈D∗
1
E[x∗(G)2]> 0 by assumption, Theorem 2.2.1

in Yurinsky (1995) implies that F is absolutely continuous on (r0�∞) with r0 ≡ inf{r ∈
R : F(r) > 0}. Since the support D0 of G as a subspace includes 0 (in D), we have by
Problem 11.3 in Davydov, Lifshits, and Smorodina (1998) that r0 = 0. This proves the first
claim. The second claim follows immediately by applying Theorem 2.2.2-(a) in Yurinsky
(1995) with b=mF and noting that t ≡�−1(F(mF))≥�−1(0�5)= 0. Q.E.D.

APPENDIX E: MORE SIMULATION STUDIES AND EMPIRICAL APPLICATION

E.1. More Simulation Studies

This section conducts more simulation studies for three restrictions: concavity/
convexity, monotonicity jointly with convexity, and Slutsky restriction. For the first two,
we shall compare to the test by Lee, Song, and Whang (2017) which is asymptotically non-
conservative and meanwhile computationally manageable—see the discussions of other
existing tests in Example B.2. For the Slutsky restriction, one may also adopt the noncon-
servative test by Chernozhukov, Newey, and Santos (2015). However, its implementation
requires nonlinearly constrained optimization (in addition to optimization over the esti-
mated set of minimizers) in each bootstrap repetition, and the computation cost grows
quickly with the relevant dimension (Zhu (2020), p. 617). By restricting to linear (in g0 in
the context of Example 2.4) constraints, Zhu (2020) developed a computationally simpler
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inferential framework, which unfortunately excludes the Slutsky restriction. For these
reasons, we shall only implement our test for the Slutsky restriction. We stress, however,
that Chernozhukov, Newey, and Santos (2015) accommodated partial identification while
we cannot.

The first set of simulations makes use of exactly the same univariate design (26) in
Section 4, and we aim to test whether θ0 is convex, and whether θ0 is nondecreasing and
convex. The implementation of our tests remains unchanged other than adjusting linear
constraints in quadratic programs accordingly. Following Fan and Gijbels (1996), p. 59,
the LSW tests are implemented similarly as before but now based on local polynomial
regression of order q= 3 for both restrictions (so that the bandwidths are evaluated at q=
3). Note in particular that, for the joint test of monotonicity and convexity, we estimate the
first and second derivatives of θ0 in a single local polynomial regression of order 3, instead
of two separate regressions, for ease of computation. Thus, in assessing that “additional
restrictions help improve power,” one should compare the resulting power curves to those
for convexity, rather than those for monotonicity in Section 4 which are associated with a
different convergence rate rn (through its dependence on q).

The second set of simulations are based on the same design for (27) except

θ0(z1� z2)= a

(
1
2
zb

1 + 1
2
zb

2

)1/b

+ c log
(
1 + 5(z1 + z2)

)
� (E.1)

where we adopt the same set of choices for (a�b� c) but with �= 0�05 replaced by �= 0�2,
so that the power of the implemented tests is close to 1 as δ increases from 1 to 10. We
then aim to test concavity of θ0. To ease computation, the L2-integrals for our test are
evaluated over [0�1�0�9]2 but now with marginal step size 0�1. The LSW tests are based on
the Hessian matrix z �→�0(z) of θ0 so that, in the notation of LSW, J = 1 and vτ�1(z)=
aᵀ
τ�0(z)aτ with aτ ≡ [cos(τ)� sin(τ)]ᵀ. To reduce computation cost, we approximate the

resulting triple integrals over z ∈ [0�1�0�9]2 with marginal step size 0�1 and over τ based
on 500 draws from the uniform distribution on [0�2π]. As with the LSW tests for (27), the
number of Monte Carlo simulation replications for the LSW tests in the bivariate design
(E.1) is decreased to be 1000.

Tables E.I–E.II summarize the empirical sizes with γn ∈ {1/n�0�01/ logn�0�01}—see
also Tables H.II–H.III in Appendix H. Once again, our tests are insensitive to the choice
of γn. In the univariate case, our tests control sizes well across shapes, sample sizes, and
the number of knots, while LSW’s tests for monotonicity jointly with convexity are slightly
over-sized. In the bivariate case, our tests, especially FS-C1 (in which case the sieve di-
mension is 25), tend to over-reject, though to an overall lesser extent as n increases. The
size distortions in small samples may be explained by the fact that the Gaussian approx-
imation is inaccurate due to a “large” number of regressors being used in the sieve es-
timation. On the other hand, LSW-L and in particular LSW-S exhibit overall less size
distortions compared to our tests except FS-Q0.

In turn, Figures E.1–E.2 depict the power curves, where we only show our tests with
γn = 0�01/ logn due to space limitation and the fact that other choices of γn enjoy very
similar curves—see also Figures H.2–H.3 and H.5 in Appendix H. Overall, our tests ap-
pear to be significantly more powerful than the LSW tests across shapes, sample sizes,
and the number of interior knots, in both univariate and bivariate designs. The power of
the LSW tests in the bivariate case is less than 25% across sample sizes. The substantial
power gaps are in line with the fact that the LSW tests entail estimation of the second
derivatives of θ0, which admit slower rates of convergence. We note, however, that our
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TABLE E.I

EMPIRICAL SIZE OF SHAPE TESTS FOR θ0 IN (26) AT α= 5%a

FS-C3: kn = 7 FS-C5: kn = 9 FS-C7: kn = 11

Shape n γn D1 D2 D3 D1 D2 D3 D1 D2 D3

Con 500 1/n 0.048 0.042 0.009 0.056 0.047 0.016 0.053 0.045 0.017
0�01/ logn 0.048 0.042 0.009 0.056 0.047 0.016 0.053 0.045 0.017

0�01 0.049 0.042 0.009 0.056 0.048 0.016 0.053 0.045 0.017

750 1/n 0.058 0.046 0.007 0.062 0.055 0.011 0.059 0.055 0.019
0�01/ logn 0.058 0.046 0.007 0.062 0.055 0.011 0.059 0.055 0.019

0�01 0.058 0.046 0.008 0.062 0.055 0.011 0.059 0.056 0.020

1000 1/n 0.052 0.044 0.005 0.055 0.047 0.010 0.054 0.044 0.013
0�01/ logn 0.052 0.044 0.005 0.055 0.047 0.010 0.054 0.044 0.013

0�01 0.052 0.044 0.005 0.055 0.047 0.010 0.054 0.045 0.013

Mon-Con 500 1/n 0.050 0.026 0.007 0.054 0.032 0.011 0.054 0.032 0.013
0�01/ logn 0.050 0.026 0.007 0.054 0.032 0.011 0.054 0.032 0.013

0�01 0.050 0.026 0.007 0.054 0.033 0.011 0.054 0.032 0.014

750 1/n 0.056 0.026 0.005 0.059 0.034 0.008 0.057 0.034 0.017
0�01/ logn 0.056 0.026 0.005 0.059 0.034 0.008 0.057 0.034 0.017

0�01 0.056 0.026 0.005 0.059 0.035 0.008 0.057 0.034 0.018

1000 1/n 0.055 0.022 0.004 0.055 0.029 0.006 0.053 0.030 0.010
0�01/ logn 0.055 0.022 0.004 0.055 0.029 0.006 0.053 0.030 0.010

0�01 0.055 0.023 0.004 0.056 0.029 0.006 0.053 0.030 0.010

n= 500 n= 750 n= 1000

Shape Tests D1 D2 D3 D1 D2 D3 D1 D2 D3

Con LSW-S 0.059 0.058 0.048 0.063 0.058 0.049 0.057 0.055 0.046
LSW-L 0.063 0.066 0.050 0.064 0.064 0.047 0.058 0.058 0.046

Mon-Con LSW-S 0.065 0.057 0.030 0.065 0.052 0.032 0.060 0.048 0.026
LSW-L 0.068 0.057 0.030 0.069 0.053 0.031 0.065 0.054 0.026

aNote: “Con” refers to “Convexity,” and “Mon-Con” refers to “Monotonicity and Convexity.” The parameter γn determines κ̂n
proposed in Section 3.2 with cn = 1/ logn and rn = (n/kn)1/2.

test of convexity in the design (26) has power slightly below 5% when δ = 1. This is a
setting where θ0 is visually close to being convex. By further imposing monotonicity, the
power discrepancies at δ= 1 then vanish—see the second row in Figure E.1.

Our final set of Monte Carlo simulations concerns Slutsky restriction based on Ex-
ample 2.4 with dq = 2. Concretely, we draw i.i.d. samples {P∗

1i� P
∗
2i�Y

∗
i �Z

∗
i �U1i�U2i}ni=1

from the standard normal distribution in R6 and set Pi = [P1i� P2i]ᵀ with Pji = 1 +�(P∗
ji),

Yi = �(Y ∗
i ), Zi = �(Z∗

i ), and Ui = [U1i�U2i]ᵀ for all i and j = 1�2. In turn, we let
�0 = [1�1]ᵀ and consider three specifications for g0 ≡ [g10� g20]ᵀ under the null:

gj0(p1�p2� y)= ap
1

b−1
j

y

pb/(b−1)
1 +pb/(b−1)

2

+ c� j = 1�2� (E.2)

with (a�b� c) = (0�0�5�0�5)� (0�5�0�0), and (1�0�5�0), labeled D1, D2, and D3, respec-
tively. Note that D1 is a least favorable case, while D2 and D3 may be respectively ratio-
nalized by a Cobb–Douglas and a CES (constant elasticity of substitution) utility function.
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TABLE E.II

EMPIRICAL SIZE OF CONCAVITY TESTS FOR θ0 IN (E.1) AT α= 5%a

FS-Q0: kn = 9 FS-Q1: kn = 16 FS-C0: kn = 16 FS-C1: kn = 25

n γn D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

500 1/n 0.062 0.061 0.015 0.069 0.067 0.029 0.070 0.067 0.028 0.083 0.081 0.044
0�01/ logn 0.062 0.061 0.015 0.069 0.067 0.029 0.070 0.067 0.028 0.083 0.081 0.044

0�01 0.063 0.061 0.015 0.069 0.067 0.029 0.071 0.068 0.029 0.084 0.082 0.045

750 1/n 0.064 0.063 0.011 0.073 0.073 0.027 0.072 0.073 0.024 0.069 0.071 0.035
0�01/ logn 0.064 0.063 0.011 0.073 0.073 0.027 0.072 0.073 0.024 0.069 0.071 0.035

0�01 0.065 0.063 0.011 0.074 0.074 0.028 0.074 0.074 0.024 0.069 0.071 0.036

1000 1/n 0.057 0.059 0.004 0.067 0.066 0.018 0.069 0.067 0.014 0.066 0.065 0.027
0�01/ logn 0.057 0.059 0.004 0.067 0.066 0.018 0.069 0.067 0.014 0.066 0.065 0.027

0�01 0.057 0.059 0.004 0.067 0.067 0.018 0.070 0.068 0.014 0.067 0.065 0.027

LSW-S LSW-L

n D1 D2 D3 D1 D2 D3

500 0.046 0.049 0.043 0.059 0.055 0.049
750 0.068 0.056 0.049 0.071 0.074 0.048

1000 0.053 0.053 0.043 0.062 0.051 0.037

aNote: The parameter γn determines κ̂n proposed in Section 3.2 with cn = 1/ logn and rn = (n/kn)1/2.

For specifications under the alternative, we choose[
g10(p1�p2� y)�g20(p1�p2� y)

]
= [

exp
{
(p1 − 1�5)0�1δ

}
�exp

{−(p2 − 1�5)0�1δ
}]
� (E.3)

where δ= 1� � � � �10. The resulting Slutsky matrix θ0(p1�p2� y) at each (p1�p2� y) (as de-
fined in (8)) has one of its eigenvalues positive and the other negative.

To implement our test, we construct a vector hkn of series functions via tensor product of
univariate B-splines, obtain ĝn by regressing {Qi}ni=1 on {hkn(Pi�Yi)�Zi}ni=1, and then derive
θ̂n by differentiating ĝn. The whole procedure can be streamlined by the commands sp-
mak, fnval, and fnder provided by the Curve Fitting Toolbox in MATLAB. A practical
issue of grave concern is, however, that estimation of θ0 now involves trivariate nonpara-
metric functions, resulting in potentially too large a sieve dimension kn (e.g., kn = 125 for
FS-C1). For this reason, we employ the same set of B-splines as in the bivariate design,
but experiment with n ∈ {1000�3000�5000}. In turn, we evaluate the integrals (see (9))
over [1�1�1�9]2 × [0�1�0�9] with marginal step size 0�05. Finally, we construct the critical
values based on the sieve score bootstrap with i.i.d. standard normals as weights—see
Appendix F.3 (note that our designs are configured without endogeneity for simplicity).

Table E.III and Figure E.3 report partial results of our simulations—see Table H.VI
and Figure H.6 in Appendix H for the full set of results. Not surprisingly, our tests exhibit
marked size distortions when the sieve dimension is “large” relative to the sample size,
but otherwise control size reasonably well. As emphasized previously, Gaussian approxi-
mation may be inaccurate if kn is “too large.” On the other hand, the power performance
is influenced by kn through two channels: accuracy of the Gaussian approximation and
the rate rn = √

n/kn. This may explain the relative low power of our tests when n= 1000,
though all power curves improve as n increases.
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FIGURE E.1.—Empirical power of shape tests for (26) where our tests are implemented with γn = 0�01/ logn
and corresponding to δ= 0 are the empirical sizes under D1.

To conclude, we report the run-times of a single replication based on designs D1 in
the computing environment of Section 4. As before, we only report our tests with the
smallest and the largest kn, based on γn = 0�01/ logn. Overall, Table E.IV supports our
previous claim on the relative computational simplicity of our tests—when comparing
run-times across shapes and the dimensions of covariates, keep in mind that the fineness
of discretization varies. When working with real data sets, one may increase the number
of grid points and the number of bootstrap repetitions, as the computational cost is no
more than one Monte Carlo simulation replication.

E.2. Empirical Application

To further illustrate the implementation of our test, we revisit the problem of option
pricing functions under shape restrictions in financial economics. As forcefully argued

FIGURE E.2.—Empirical power of concavity tests for (E.1) where our tests are implemented with
γn = 0�01/ logn and corresponding to δ= 0 are the empirical sizes under D1.
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TABLE E.III

EMPIRICAL SIZE OF TESTING SLUTSKY RESTRICTION ON g0 IN (E.2) AT α= 5%a

FS-Q0: kn = 27 FS-Q1: kn = 64 FS-C0: kn = 64 FS-C1: kn = 125

n γn D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1000 1/n 0.072 0.037 0.022 0.092 0.056 0.037 0.098 0.058 0.039 0.153 0.101 0.072
0�01/ logn 0.072 0.037 0.022 0.092 0.056 0.037 0.098 0.058 0.039 0.153 0.101 0.072

0�01 0.073 0.037 0.022 0.092 0.057 0.037 0.098 0.058 0.039 0.155 0.101 0.072

3000 1/n 0.054 0.019 0.009 0.065 0.026 0.014 0.065 0.024 0.012 0.083 0.035 0.016
0�01/ logn 0.054 0.019 0.009 0.065 0.026 0.014 0.065 0.024 0.012 0.083 0.035 0.016

0�01 0.054 0.019 0.009 0.065 0.026 0.014 0.065 0.024 0.012 0.084 0.036 0.017

5000 1/n 0.056 0.020 0.008 0.067 0.022 0.009 0.066 0.021 0.008 0.067 0.023 0.009
0�01/ logn 0.056 0.020 0.008 0.067 0.022 0.009 0.066 0.021 0.008 0.067 0.023 0.009

0�01 0.056 0.020 0.008 0.067 0.022 0.009 0.066 0.021 0.008 0.067 0.023 0.009

aNote: The parameter γn determines κ̂n proposed in Section 3.2 with cn = 1/ logn and rn = (n/kn)1/2.

in the literature, parametric models are barely grounded in financial theory and may be
inadequate in capturing key aspects of the relationship under consideration. This has
spurred a line of research on nonparametric estimation of option pricing functions under
shape restrictions (Aït-Sahalia and Duarte (2003), Birke and Pilz (2009)). In particular,
completeness of the market and absence of arbitrage opportunities imply two prominent
restrictions: monotonicity and convexity of the call/put option price with respect to the
strike price of the option, at a specific valuation date and for the same time-to-expiration.
Below, we complement the literature by testing the validity of these restrictions.

We approach the problem in the setup of Example 2.1 following the aforementioned
studies, where Y denotes the option price and Z the corresponding strike price. We aim
to test three shape restrictions on θ0, that is, monotonicity, convexity, and monotonicity
jointly with convexity. While θ0 should be convex for both call and put options, θ0 should
be nonincreasing for the former and nondecreasing for the latter. We make use of the
data set analyzed in Beare and Schmidt (2016), which consists of prices for European
call and put options written on the S&P 500 index—see Section 4 in Beare and Schmidt
(2016) for detailed descriptions of the data set. We select two dates for our test problems:
October 22, 2008 which has the maximal number of call options (n= 93), and October 19,
2011 which has the maximal number of put options (n = 143). Such small sample sizes,

FIGURE E.3.—Empirical power of testing Slutsky restriction on g0 in (E.3) with γn = 0�01/ logn, where
corresponding to δ= 0 are the empirical sizes under D1.
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TABLE E.IV

RUN-TIMES (IN SECONDS) OF SHAPE TESTSa

Convexity: (26) Mon-Con: (26) Concavity: (E.1) Slutsky: (E.2)

FS LSW FS LSW FS LSW FS

n C3 C7 L S Q0 C1 L S Q0 C1 L S Q0 C1

500 0.24 0.24 23�02 22�32 0.24 0.27 23�61 23�25 16.05 17.09 13.16 13.29 9�59 16.85
750 0.25 0.26 56�42 57�43 0.26 0.29 57�56 57�59 14.96 16.53 38.76 38.78 9�80 17.23

1000 0.25 0.25 102�21 101�64 0.26 0.26 101�41 102�78 16.12 17.12 68.08 69.11 10�45 19.00

aNote: The sample sizes for the Slutsky restriction from top to bottom should be 1000, 3000, and 5000.

while not uncommon in practice, may raise concerns on the performance of our test. In
unreported simulations based on the univariate designs in Section 4, we found that, with
the sample size equal to n = 100 and γn ∈ {0�01/ logn�1/n}, series estimation based on
quadratic B-splines with two interior knots (labeled Q2) and cubic B-splines with one
knot (labeled C1) delivers null rejection rates no larger than 0�068 (at 5% nominal level)
and reasonable power (over 0�5 at δ= 10). Thus, our implementation below will be based
on these choices of splines and knots.

The remaining details of the implementation are the same as those in Sections 4 and
E.1 (for the univariate designs) beyond the following changes. First, the strike prices are
converted via the affine transformation z �→ 2(z−a)/(b−a)−1, with a and b respectively
the minimal and maximal strike prices in the data. As a result, the converted strike prices
fall within the range [−1�1] (to be consistent with Section 4) without changing the shape
restrictions under consideration. Second, the number of bootstrap repetitions is increased
to 1000, while the step size for numerical integration is decreased to 0�01. These changes
echo our previous remark that, in applications, “one may increase the number of grid
points and the number of bootstrap repetitions, as the computational cost is no more
than one Monte Carlo simulation replication.”

Table E.V reports the p-values of our test (with γn = 0�01/ logn). We fail to reject
the three null hypotheses for both call and put options, at all conventional significance
levels. In some cases, there are sizable discrepancies in the p-values across Q2 and C1
(for the same shape). This may be explained by the small sample issue, which is also in
line with our simulation results for the Slutsky restrictions (those with high ratios of kn/n).
Overall, though, our findings point to strong evidences of the presence of the three shape
restrictions (in the present rather restrictive setting).

TABLE E.V

TESTING SHAPE RESTRICTIONS OF OPTION PRICING FUNCTIONS: p-VALUES

Call options Put options

Monotonicity Convexity Mon-Con Monotonicity Convexity Mon-Con

Q2 C1 Q2 C1 Q2 C1 Q2 C1 Q2 C1 Q2 C1

0.70 0.22 0.55 0.14 0.61 0.30 0.57 0.76 0.36 0.89 0.72 0.86
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