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A.1. EXAMPLES

EXAMPLE A.1: IN THIS EXAMPLE, WE DESCRIBE a social environment which has no
MSS when iterated external stability is used in the definition instead of asymptotic exter-
nal stability.

Consider the social environment �= ({1}� (X�d)�E��1), where the state space is given
by X = {1/k | k ∈ N} ∪ {0} and d(x� y)= |x− y|. Note that X is compact. Preferences �1

are defined by x �1 y if and only if x = y or x < y . The effectivity correspondence E is
such that {1} ∈ E(1/k�1/(k + 1)) for every k ∈ N and E(x� y) = ∅ otherwise. It follows
that
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Observe that 0 ∈ f∞(x) for every x ∈X and that f (0)= {0}. It now follows easily that {0}
is an MSS.

We show that there is no closed set satisfying iterated external stability together with
deterrence of external deviations and minimality. Toward a contradiction, suppose that
the closed set M ⊆ X satisfies these properties. Since, for every k ∈ N, 0 /∈ f N(1/k), the
set {0} does not satisfy iterated external stability. Given that M �= {0} and M is nonempty,
there is k ∈N such that 1/k ∈ M . Let k be the smallest such number. From deterrence of
external deviations, we have that also 1/(k + 1) ∈ M . Based on the corresponding prop-
erties of M , it is easy to verify that the closed, non-empty set M ′ = M \ {1/k} satisfies
deterrence of external deviations and iterated external stability. Since M ′ is a proper sub-
set of M , M violates the minimality property.

EXAMPLE A.2: In the next example, we consider an infinite social environment for
which there is more than one MSS.
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Consider the social environment � = ({1}� (X�d)�E��1), where
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and the metric is given by d(x� y)= |x− y|.
The effectivity correspondence is such that the individual can move from both states

0 and 1 to state 1/2 and, for every k ∈ N \ {1�2}, from state 1 − 1/k to state 1/k and
from state 1/k to state 1 − 1/(k+ 1). The individual cannot make any other moves. The
preferences of the individual are such that
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We claim that both {0�1/2} and {1/2�1} are myopic stable sets. Since the effectivity cor-
respondence admits no move outside the respective sets, both {0�1/2} and {1/2�1} satisfy
deterrence of external deviations. For asymptotic external stability, observe that for every
k ∈N \ {1�2} it holds that {0�1} ⊂ f∞(1/k) and {0�1} ⊂ f∞(1 − 1/k). Moreover, we have
1/2 ∈ f (0) = f∞(0) and 1/2 ∈ f (1) = f∞(1). For minimality, the sets {0} and {1} violate
deterrence of external deviations since 1/2 ∈ f (0) and 1/2 ∈ f (1). The set {1/2} violates
asymptotic external stability as 1/2 /∈ f∞(x) for any x ∈ X different from 0, 1/2, and 1.

EXAMPLE A.3: This example provides a social environment in which the effectivity cor-
respondence is lower hemi-continuous and the preferences are continuous, but where the
weak dominance MSS is not unique.

Consider the social environment � = ({1�2}� (X�d)�E� (�1��2)), where
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and d is the Euclidean metric on X , so d(x� y) = ‖x − y‖2. It clearly holds that X is
compact.

Individual 1 only cares about the first component of the state while individual 2 only
cares about the second component. Both individuals prefer states where the component
they care about is lower over states where it is higher. Note that these preferences are
continuous.

The effectivity correspondence is as follows. For every k ∈N, the singleton {1} can move
from state (2�1/k) to state (1�1/k) and the singleton {2} can move from state (1�1/k)
to state (2�1/(k+ 1)). Moreover, for every k ∈ N, the singleton {2} can move from state
(0�2/k) to state (1�1/k). Coalition {1�2} can move from states (1�0) and (2�0) to state
(0�0) and, for every k ∈ N, from states (1�1/k) and (2�1/k) to state (0�2/k). No other
moves are possible.

To see that the effectivity correspondence is lower hemi-continuous, let the sequence
(xk)k∈N in X be such that xk → x. There are only three relevant sequences of states in X:
the sequence ((0�2/k))k∈N, the sequence ((1�1/k))k∈N, and the sequence ((2�1/k))k∈N.
The first converges to (0�0), the second to (1�0), and the third to (2�0).

Let some x ∈ {(0�0)� (1�0)� (2�0)} be given. Since G{1}(x) = {x} and G{2}(x) = {x}, it is
immediate that G{1} and G{2} are lower hemi-continuous.

For G{1�2}, the only nontrivial cases are x = (1�0) and x = (2�0). We give the argument
for state x= (1�0) explicitly. The argument for state (2�0) follows by symmetry. For every
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y ∈ G{1�2}(1�0), we have to find a sequence (yk)k∈N such that yk ∈ G{1�2}(1�1/k) and yk →
y . If y = (0�0), we take the sequence ((0�2/k))k∈N. If y = (1�0), we take the sequence
((1�1/k))k∈N.

Since f∞(0�0) = {(0�0)}, f∞(1�0) = {(1�0)}, and f∞(2�0) = {(2�0)}, it follows from
asymptotic external stability that {(0�0)� (1�0)� (2�0)} is a subset of any MSS. Since this
set satisfies deterrence of external deviations and asymptotic external stability, it follows
from minimality that the unique MSS is equal to {(0�0)� (1�0)� (2�0)}.

On the other hand, both sets {(0�0)� (1�0)} and {(0�0)� (2�0)} are a weak dominance
MSS. Indeed, from both (1�0) and (2�0), the coalition {1�2} can deviate to (0�0) if only
weak dominance is imposed. To satisfy asymptotic external stability, it is sufficient that
on top of the state (0�0), either the state (1�0) or the state (2�0) should be present. By
minimality, it follows that only one of these states is included.

EXAMPLE A.4: This example demonstrates that the stochastic approach to infinite en-
vironments based on irreducibility of the Markov chain can deliver predictions that differ
drastically from those of the MSS.

Consider the social environment � = (N� (X�d)�E� (�i)i∈N), where N = {1�2}, X =
[0�1] × [0�1], and the metric is d(x� y) = ‖x − y‖1 = |x1 − y1| + |x2 − y2|. The effectivity
correspondence is such that individual 1 can change the first component of the state and
individual 2 the second component, so {1} ∈ E(x� y) if and only if x2 = y2 and {2} ∈ E(x� y)
if and only if x1 = y1. The coalition {1�2} is never effective. The preferences of the indi-
viduals are such that

x�1 y if and only if 2x1x2 − x1 − x2 ≥ 2y1y2 − y1 − y2�

x�2 y if and only if 2x1x2 − x1 − x2 ≤ 2y1y2 − y1 − y2�

It is not hard to see that this social environment corresponds to the normal-form game of
matching pennies, where x1 is the probability of the row player choosing “up” and x2 is
the probability of the column player choosing “left.” The unique Nash equilibrium of this
game is equal to x∗ = (1/2�1/2).

For every x ∈ X , we define

f1(x) =
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�
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2
�
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1
2
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1
2
�

so we can express the dominance correspondence as

f (x) = f1(x)∪ f2(x)�
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We consider the better-response dynamics where each element of f (x) is selected with
equal probability. To do so, we define ρ1 : X → [0�1] and ρ2 : X → [0�1] as the functions
that project x on its first and second coordinate, respectively. We use λ to denote the
Lebesgue measure. Let B(X) denote the Borel σ-algebra on X . The transition proba-
bility kernel resulting from better-response dynamics is obtained by defining, for every
x ∈X , and for every A ∈ B(X),

Q(x�A)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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The first and second equality above show that the better-response dynamics never leaves
the Nash equilibrium once reached. The third equality concerns the case where only
player 1 likes to move. Observe that if x1 = 1/2 and x2 �= 1/2, then λ(ρ1(f1(x))) = 1/2,
which explains the multiplication by 2. A similar remark applies to the fourth equality
above. For the last equality, notice that x1 �= 1/2 and x2 �= 1/2 implies that λ(ρ1(f1(x))) >
0 or λ(ρ2(f2(x))) > 0, so there is no division by zero.

The Markov process is illustrated in Figure 1. The arrows indicate the direction in which
a state changes. A typical state can change in two directions, either west or east and either
north or south, thereby generating two line segments on which the next state lies.

For every A ∈ B(X), Q(·�A) is a measurable function on X , but it is in general not con-
tinuous. For instance, if A = {x∗}, then Q(x�A)= 1 if x= x∗ and Q(x�A)= 0, otherwise.
Indeed, the state x∗ does not belong to f (x) unless x = x∗ and in that case f (x∗)= {x∗}.

In this setting and other settings with an infinite state space, the Markov chain returns
to a given state with probability zero, so the concept of a recurrent state is of less use and
importance. Instead, for infinite settings, the property of irreducibility is often studied,
which expresses that all parts of the state space can be reached by the Markov chain, no
matter what the starting point is. Given a state x ∈ X and a set A in the Borel σ-algebra
B(X) on X , let L(x�A) denote the probability that the Markov chain has a realization
belonging to A at some point in the future when starting from x. Let ϕ be the measure
on X that assigns to each set in B(X) its Lebesgue measure. A Markov process (X�Q)
is called ϕ-irreducible if for every A ∈ B(X) such that ϕ(A) > 0 it holds that L(x�A) > 0
for every x ∈ X .

The Markov process (X�Q) in Example A.4 is such that X can be decomposed in two
parts, namely {x∗} and X \ {x∗}. There is no transition between these two sets of states
and the restriction of the Markov process to each set is irreducible. This is obvious for
{x∗}. The next result shows this for X \ {x∗}.

THEOREM A.5: The restriction of the Markov process (X�Q) in Example A.4 to X \ {x∗}
is ϕ-irreducible.
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FIGURE 1.—Better-response dynamics for the game of matching pennies.

PROOF: According to Proposition 4.2.1 of Meyn and Tweedie (1993), we have to show
that for every x ∈ X \ {x∗}, for every A ∈ B(X \ {x∗}) such that ϕ(A) > 0, there exists
k ∈ N such that Qk(x�A) > 0, where Qk(x�A) denotes the probability of reaching A
from x in k transitions.

It is convenient to partition the set X \ {x∗} in four subsets,

X1 =
{
x ∈ X

∣∣∣ x1 ≤ 1
2
�x2 >

1
2

}
�
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∣∣∣ x1 >
1
2
�x2 ≥ 1

2

}
�
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{
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∣∣∣ x1 ≥ 1
2
�x2 <

1
2

}
�

X4 =
{
x ∈ X

∣∣∣ x1 <
1
2
�x2 ≤ 1

2

}
�

Let some x ∈X4 and some A ∈ B(X \ {x∗}) such that ϕ(A) > 0 be given. We partition A
in the four subsets A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, and A4 ⊆ X4. At least one of these four
sets has positive Lebesgue measure. From x, the probability to reach a point in the set
Y 1 = {y1 ∈ X1 | y1

1 = x1} is at least 1/3 and the probability distribution over Y 1 is uniform.
From y1 ∈ Y 1, the probability to reach a point in the set Y 2(y1) = {y2 ∈ X2 | y2

2 = y1
2 } is

at least 1/3 and the probability distribution over Y 2(y1) is uniform. Thus, the probability
to reach a point in X2 after 2 transitions is at least 1/9 and, conditional on reaching X2,
the distribution of this point is uniform on X2. It now follows that Q2(x�A) ≥ ϕ(A2)/9.
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Repeating this argument, we find that Q3(x�A) ≥ ϕ(A3)/27, Q4(x�A) ≥ ϕ(A4)/81, and
Q5(x�A) ≥ ϕ(A1)/243. Since at least one of A1, A2, A3, and A4 has strictly positive
Lebesgue measure, we have shown that the restriction of the Markov process to X \ {x∗}
is ϕ-irreducible. An analogous argument holds for x ∈ Xi, where i �= 4. Q.E.D.

Example A.4 shows that for the social environment corresponding to the normal-form
game of matching pennies, none of the strategy profiles is singled out by the stochastic
better-response dynamics. In contrast, we show in Section A.6 that the MSS is unique and
consists of the Nash equilibrium x∗.

EXAMPLE A.6: In this example, we show that the coalition structure core does not sat-
isfy iterated external stability.

Let (N�v) be a coalition function form game such that N = {1�2�3}, v({1�2}) = 1,
and v({2�3}) = 1. All other coalitions have a coalitional value of 0. Thus, player 2 can
choose to form a coalition with either player 1 or player 3 to form a two-person coalition
generating a surplus equal to one. The coalition structure core therefore consists of only
two states, y and y ′, with equal payoffs, u(y) = u(y ′)= (0�1�0), and coalitional structures
π(y) = {{1�2}� {3}} and π(y ′)= {{1}� {2�3}}.

Consider an initial state x0 ∈ X such that π(x0) = {{1}� {2}� {3}}, and u(x0) = (0�0�0).
Under our notion of a myopic improvement, where all players involved in a move have to
gain strictly, a state x1 �= x0 belongs to f (x0) if and only if either π(x1) = {{1�2}� {3}} and
u(x1) = (ε�1 − ε�0) for some ε ∈ (0�1) or π(x1) = {{1}� {2�3}}, and u(x1) = (0�1 − ε�ε)
for some ε ∈ (0�1). It follows that x1 is a state where either player 1 or player 3 receives
a payoff of zero and the other two players receive a strictly positive payoff summing up
to 1.

Now consider any state xk such that either player 1 or player 3 receives 0 and the other
two players receive a strictly positive payoff summing up to 1. We claim that any state
xk+1 ∈ f (xk) has the same properties. Without loss of generality, assume that u3(x

k) = 0.
Let xk+1 be an element of f (xk) different from xk. Since u1(x

k)+u2(x
k)= 1, the moving

coalition is {2�3} and it holds that π(xk+1)= {{1}� {2�3}}. Moreover, it must also hold that
u2(x

k+1) > u2(x
k) > 0 and u3(x

k+1) > u3(x
k)= 0, which proves the claim. Thus, for every

k ∈N, if xk ∈ f k(x0)\{x0}, then xk is such that there are two players with a strictly positive
payoff. It follows that there is no k ∈N such that xk belongs to the coalition structure core.

A.2. THREE-PLAYER SIMPLE GAMES AND THE VNM STABLE SET

Let (N�v) be a coalition function form game with N = {1�2�3} corresponding to a
proper simple game. Let � be the social environment induced by the γ-model. We com-
pare the prediction of the MSS with the vNM stable set of �. The coalition function form
game keeps track of the partition of the set of players and imposes that a coalition fully
distributes its surplus between its members. The model of coalition function form games
is therefore different from the one of transferable utility games. Hence, we cannot rely
on the description of the vNM stable sets for three-player simple games as given in Lucas
(1992), but have to derive them from scratch instead.

We restrict ourselves to the three most interesting cases: there is one winning two-
player coalition, without loss of generality {1�3}; there are two winning two-player coali-
tions, without loss of generality {1�2} and {2�3}; all two-player coalitions are winning.
The second case is known as the three-person veto-power game and the third case as the
three-person simple majority game.
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The first example shows that if {1�3} is the only winning two-player coalition, then the
MSS and the vNM stable set are unique and equal to the coalition structure core. The
prediction is therefore that either coalition {1�3} or coalition {1�2�3} forms and payoffs
are such that the entire surplus is shared between players 1 and 3.

EXAMPLE A.7: Assume coalition {1�3} is the only winning two-player coalition and sin-
gletons are not winning. By direct computation or by Step 2 of the proof of Theorem 4.4,
it holds that the core of � is equal to the coalition structure core of (N�v), so

Y = {
y ∈ X | {1�3} ∈ π(y) or

[{1�2�3} ∈ π(y) and u2(y)= 0
]}
�

By Theorem 4.4, the MSS of � is unique and equal to Y . So either coalition {1�3} forms
or the grand coalition forms and payoffs are such that the entire surplus is shared between
players 1 and 3.

We argue that the vNM stable set is unique and equal to Y as well. Let V be a vNM
stable set. For every y ∈ Y it holds that f (y) = {y}, so by external stability Y ⊆ V .
We show that Y satisfies external stability. Let x /∈ Y be given. If {1�2�3} /∈ π(x),
then x does not contain a winning coalition, so u(x) = (0�0�0), and y ∈ Y defined
by π(y) = {{1�3}� {2}} and u(y) = (1/2�0�1/2) satisfies y ∈ f (x). If {1�2�3} ∈ π(x),
then x /∈ Y implies u2(x) > 0. Now y ∈ Y defined by π(y) = {{1�3}� {2}} and u(y) =
(u1(x) + u2(x)/2�0�u3(x) + u2(x)/2) satisfies y ∈ f (x). We have shown that the core
of � satisfies external stability. It must therefore be the unique vNM stable set.

We now turn to the three-person veto-power game, with player 2 being the veto player.
The MSS is unique and equal to the coalition structure core, so one of the winning coali-
tions forms and player 2 gets the entire surplus. The MSS therefore has three elements,
depending on the winning coalition that forms. We argue that there are two vNM stable
sets, both having a continuum of elements and containing the MSS as a proper subset.
In an element of the vNM stable set, it holds that a winning coalition forms and the en-
tire surplus is either shared between players 1 and 2 or between players 2 and 3. It is not
excluded that the veto player gets a payoff of 0.

EXAMPLE A.8: Assume singletons are not winning and {1�2} and {2�3} are the winning
two-player coalitions. By direct computation or by Step 2 of the proof of Theorem 4.4, it
holds that the core of � is equal to the coalition structure core of (N�v), so to the set

Y = {
y ∈X | π(y)∩W �= ∅ and u2(y)= 1

}
�

There are three states in Y . One of the winning coalitions {1�2}, {2�3}, and {1�2�3} forms
and players 1 and 3 receive a payoff of 0. By Theorem 4.4, the MSS of � is unique and
equal to Y .

We argue that there are two vNM stable sets, both having a continuum of elements and
containing the MSS as a proper subset. Let V be a vNM stable set. To satisfy external
stability, it must hold that Y ⊆ V . Since states in Y do not dominate any other state,
it follows by external stability that V contains Y as a proper subset. States x ∈ X such
that π(x) ∩ W = ∅ or π(x) = {{1�2�3}} do not dominate any state where a two-player
winning coalition forms. It therefore follows from external stability that V contains a state
x1 ∈ X \ Y such that {1�2} ∈ π(x1) or {2�3} ∈ π(x1). Without loss of generality, assume
that {1�2} ∈ π(x1). Notice that u1(x

1) > 0 since x1 ∈ X \ Y . We distinguish between two
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cases: Case 1. There is x2 ∈ V \Y such that {2�3} ∈ π(x2). Case 2. For every x ∈ V \Y , it
holds that {2�3} /∈ π(x).

Case 1. Since x2 ∈ V \Y , it holds that u3(x
2) > 0. In order to satisfy internal stability, it

must hold that u2(x
1) = u2(x

2) and, therefore, u1(x
1) = u3(x

2). Internal stability implies
that there cannot be any other x ∈ V \Y such that π(x) contains {1�2} or {2�3}. Now x3 ∈
X \ V such that π(x3)= {{1�2}� {3}} and u2(x

1) < u2(x
3) is not dominated by an element

of V , so V does not satisfy external stability, and we have obtained a contradiction.
Case 2. None of the states x ∈ X such that π(x) = {{1�2}� {3}} is dominated by a state

in V , so every such state must belong to V to satisfy external stability. The same applies
to a state x ∈ X such that π(x) = {{1�2�3}} and u3(x) = 0. We have that the set

V ′ = {
x ∈ X | π(x)∩ {{1�2}� {2�3}� {1�2�3}} �= ∅ and u3(x) = 0

}
is a subset of V . Notice that V ′ contains a single element with {2�3} as the winning coali-
tion, a continuum of elements with {1�2} as the winning coalition, and a continuum of
elements with {1�2�3} as the winning coalition. It is easily verified that all states in X \ V ′

are dominated by an element that belongs to V ′. None of the elements in V ′ dominate
each other. We have therefore shown that

V = {
x ∈X | π(x)∩ {{1�2}� {2�3}� {1�2�3}} �= ∅ and u3(x)= 0

}
�

By symmetry, it follows that{
x ∈ X | π(x)∩ {{1�2}� {2�3}� {1�2�3}} �= ∅ and u1(x) = 0

}
is a vNM stable set as well. This exhausts all possibilities.

We finally turn to the three-player simple majority game. The MSS is unique and equal
to the set of states such that a two-player winning coalition forms. We argue that there
are four vNM stable sets, none of them being a subset of the MSS or containing the MSS
as a subset. Every vNM stable set contains elements where the grand coalition forms. The
union of the four vNM stable sets contains the MSS as a proper subset.

EXAMPLE A.9: Assume all two-player coalitions are winning, whereas all singletons are
not winning. It follows from Theorem 4.5 that the MSS is unique and equal to the set

F(X)= {
x ∈ X | π(x)∩ {{1�2}� {1�3}� {2�3}} �= ∅}

�

In particular, it is excluded that the grand coalition forms.
Let V be a vNM stable set. Let x ∈ X be a state such that π(x) ∩ W = ∅, or π(x)

contains a two-player winning coalition with one of the players in that coalition having a
payoff of 1, or π(x) = {{1�2�3}}. Since x does not dominate any state in F(X), it follows
by external stability that V contains an element x1 ∈ F(X) with payoffs being strictly
positive for both players in the winning coalition. Without loss of generality, assume that
{1�2} ∈ π(x1). We distinguish between two cases: Case 1. There is x2 ∈ V such that {1�3}
or {2�3} belongs to π(x2) and u3(x

2) > 0. Case 2. For every x ∈ V , it holds that if {1�3} or
{2�3} belongs to π(x), then u3(x)= 0.

Case 1. Without loss of generality, assume {1�3} ∈ π(x2). To satisfy internal stability, it
must hold that u1(x

1) = u1(x
2) and, therefore, u2(x

1) = u3(x
2). There cannot be a state

x ∈ V \ {x1�x2} such that {1�2} ∈ π(x) or {1�3} ∈ π(x) and u1(x) < 1 since otherwise
internal stability would be violated.
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Suppose, in order to derive a contradiction, that there is no state x ∈ V with {2�3} ∈
π(x). If u1(x

1) ≥ 1/2, then the state x ∈ X such that π(x) = {{2�3}� {1}}, and u(x) =
(0�1/2�1/2) is not dominated by an element of V . If u1(x1) < 1/2, then the state x ∈ X
such that π(x) = {{1�2}� {3}}, and u(x) = (1/2�1/2�0) is not dominated by an element
of V . Since V satisfies external stability, we have obtained a contradiction. Consequently,
there is a state x3 ∈ V such that {2�3} ∈ π(x).

In order not to violate internal stability, it must hold that u2(x
3)= u2(x

1) and u3(x
3) =

u3(x
2). Since u2(x

1) = u3(x
2), this is only possible if u(x3) = (0�1/2�1/2). It follows

that u(x1) = (1/2�1/2�0) and u(x2) = (1/2�0�1/2). We define x4�x5�x6 ∈ X by π(x4) =
π(x5) = π(x6) = {{1�2�3}} and u(x4) = u(x1), u(x5) = u(x2), and u(x6) = u(x3). It is
easily verified that all states in X \ {x1� � � � � x6} are dominated by x1, x2, or x3. The states
x1� � � � � x6 do not dominate each other. This yields V = {x1� � � � � x6} as the unique vNM
stable set satisfying the assumptions of Case 1.

Case 2. None of the states x ∈ X such that π(x) = {{1�2}� {3}} is dominated by a state
in V , so every such state must belong to V to satisfy external stability. The same applies to
states x ∈ X such that π(x) = {{1�3}� {2}}, π(x) = {{2�3}� {1}}, or π(x) = {{1�2�3}} and
u3(x)= 0. We have that the set

V ′ = {
x ∈X | π(x)∩ {{1�2}� {1�3}� {2�3}� {1�2�3}} �= ∅ and u3(x) = 0

}
is a subset of V . It is easily verified that all states in X \ V ′ are dominated by an element
that belongs to V ′. It follows that

V = {
x ∈ X | π(x)∩ {{1�2}� {1�3}� {2�3}� {1�2�3}} �= ∅ and u3(x) = 0

}
�

We can easily check that V satisfies internal stability as well.
By symmetry, it follows that{

x ∈ X | π(x)∩ {{1�2}� {1�3}� {2�3}� {1�2�3}} �= ∅ and u1(x)= 0
}
�{

x ∈ X | π(x)∩ {{1�2}� {1�3}� {2�3}� {1�2�3}} �= ∅ and u2(x)= 0
}
�

are vNM stable sets as well. This exhausts all possibilities.

A.3. PROPER SIMPLE GAMES AND THE δ-MODEL

Let (N�v) be a coalition function form game. The effectivity correspondence E is said
to be induced by the δ-model if it satisfies coalitional sovereignty and for every x� y ∈ X ,
for every S ∈ E(x� y), for every T ∈ π(x) such that T \ S �= ∅, it holds that T \ S ∈ π(y).
The latter condition simply expresses that residual players in some coalition stay together
after coalition S leaves. Typically, it is assumed that the change in payoffs of the residual
players in a given coalition has the same sign. When we restrict the analysis to proper
simple games, we can obtain a characterization of the MSS without any such additional
assumptions.

Let (N�v) be a coalition function form game such that v is a proper simple game with
an empty core. We define the subset F ′(X) of X as the set of states such that its partition
contains a winning coalition different from the grand coalition:

F ′(X)= {
x ∈ X | π(x)∩ (

W \ {N}) �= ∅}
�

It holds that F(X) ⊆ F ′(X), where F(X) is defined in the main text. The only difference
between these two sets is that F ′(X) does not require the nonwinning coalitions in π(x)
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to be singletons. In terms of payoff vectors that can be supported, there is no difference
between F(X) and F ′(X).

THEOREM A.10: Let (N�v) be a coalition function form game such that v is a proper sim-
ple game with an empty core and let � = (N� (X�d)�E� (�i)i∈N) be the social environment
induced by the δ-model. It holds that the MSS of � is unique and equal to F ′(X).

PROOF: The proof that F ′(X) satisfies deterrence of external deviations follows exactly
the same steps as the corresponding part of the proof of Theorem 4.5. The same is true
for the proof of asymptotic external stability of F ′(X). The only difference is that there is
no need to verify that the nonwinning coalitions are singletons.

We complete the proof by showing that for every x ∈ F ′(X) it holds that f∞(x) =
F ′(X). Let some x� y ∈ F ′(X) be given and denote the winning coalition in π(y) by W .
We have to show that for every ε > 0 there exists k′ ∈ N and z ∈ f k′

(x) such that z ∈ Bε(y).
Let some ε ∈ (0�1/n) and S ∈ π(y) \ {W } be given. By following exactly the same

steps as in the proof of Theorem 4.5, it can be shown that there is k ∈ N and xk ∈ f k(x)
such that for every i ∈ N \ S, ui(x

k) < ε/n and π(xk) contains a winning coalition. Since∑
i∈N\S ui(x

k) < 1, it follows that
∑

i∈S ui(x
k) > 0 and that S has a nonempty intersection

with the winning coalition in π(xk).
Write π(y) as {S1� � � � � S
′ } with S1 = S and S
′ =W . For 
= 1� � � � � 
′ −2, let xk+
 ∈ X be

such that π(xk+
)= {S1� � � � � S
� S
+1 ∪· · ·∪S
′ }, uS
+1∪···∪S
′ (x
k+
)� uS
+1∪···∪S
′ (x

k+
−1) and
for every i ∈W , ui(x

k+
) < ε/n. In step 
, coalition S
+1 ∪ · · ·∪S
′ forms and increases the
payoffs of its members, whereas the payoffs of the players in W are kept strictly below ε/n.
Coalition S
 becomes part of π(xk+
) as a residual set of players. Since

∑
i∈S
 ui(x

k+
−1) >
0, such a state xk+
 exists.

We define the possibly empty set W 0 = {i ∈ W | ui(y) ≤ ε/n}. Let w ∈ W be a player
such that uw(y)≥ 1/n. Let z ∈ X be such that π(z)= π(y)= {S1� � � � � S
′ } and

uj(z)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε

n
� j ∈ W 0�

uj(y)� j ∈ W \ (
W 0 ∪ {w})�

uw(y)−
∑
i∈W 0

(
ε

n
− ui(y)

)
� j = w�

For every j ∈ W 0, it holds that uj(z) = ε/n > uj(x
k+
′−2), for every j ∈ W \ (W 0 ∪ {w}) it

holds that uj(z)= uj(y) > ε/n > uj(x
k+
′−2), and

uw(z)= uw(y)−
∑
i∈W 0

(
ε

n
− ui(y)

)
≥ 1

n
− n− 2

n

ε

n
>

ε

n
> uw

(
xk+
′−2

)
�

so uW (z) � uW (x
k+
′−2). It follows that z ∈ f (xk+
′−2) and therefore z ∈ f k+
′−1(x). We

have that π(y) = π(z), for every j ∈ W 0 it holds that |uj(y) − uj(z)| ≤ ε/n, for every
j ∈ W \ (W 0 ∪ {w}) it holds that |uj(y) − uj(z)| = 0, and |uw(y) − uw(z)| ≤ (n − 2)ε/n,
therefore z ∈ Bε(y), so z has all the desired properties.

It follows by Theorem 3.9 that F ′(X) is a subset of the MSS and since F ′(X) satisfies
deterrence of external deviations and asymptotic external stability, it must be equal to the
MSS. Q.E.D.
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We now turn to the case where (N�v) is a proper simple game with a non-empty core
and show that the analogue of Theorem 4.4 for the δ-model holds.

THEOREM A.11: Let (N�v) be a coalition function form game such that v is a proper
simple game with a non-empty core and let � = (N� (X�d)�E� (�i)i∈N) be the social en-
vironment induced by the δ-model. It holds that the MSS of � is unique and equal to the
coalition structure core Y of (N�v).

PROOF: The coalition structure core Y is the set of states such that a winning coalition
forms, the other players are partitioned in arbitrary coalitions, and the veto players are
the only ones with a positive payoff. Step 2 in the proof of Theorem 4.4 can be used to
show that also for the δ-model the core CO of � is equal to Y . Since CO is closed, the
remark below Theorem 3.13 implies that we only have to show that � satisfies the weak
improvement property.

We need to show that for every x ∈ X , f∞(x) ∩ Y �= ∅. This is trivial if x ∈ Y . Assume
x ∈ X \Y . We have to show that for every ε > 0 there exists k ∈ N, z ∈ f k(x), and y ∈ Y
such that z ∈ Bε(y). Let some ε ∈ (0�1/n) be given. It holds that either π(x) ∩W = ∅ or
there is i′ ∈N \ S∗ such that ui′(x) > 0.

If π(x)∩W = ∅, then choose a winning coalition W ∈W and a veto player w ∈ W ∩S∗.
Let z ∈ X be such that W ∈ E(x�z) and

zj = 0� j ∈N \W�

zj = ε

n
� j ∈ W \ {w}�

zj = 1 −
∑

i∈W \{w}

ε

n
� j =w�

It holds that z ∈ f (x). Let y ∈ Y be such that π(y) = π(z) and uw(y) = 1. It holds that
z ∈ Bε(y). This shows that z has the desired properties.

If there is i′ ∈ N \S∗ such that ui′(x) > 0, then let W be the unique element in π(x)∩W .
We show first that there exists k ∈ N and z ∈ f k(x) such that, for every i ∈ N \ S∗, ui(z) <
ε. If for every j ∈ W \ S∗, it holds that uj(x) < ε, then take z = x. Otherwise, there is
j ∈ W \ S∗ such that uj(x) ≥ ε. Since j is not a veto player, it holds that N \ {j} ∈ W . Let
x1 ∈ X be such that π(x1)= {N \ {j}� {j}}, uN\{j}(x1)� uN\{j}(x), and, for every i ∈ N \ {j}
such that ui(x) < ε, it holds that ui(x

1) < ε. Since uj(x) ≥ ε, such an element x1 exists.
It holds that x1 ∈ f (x) and uj(x

1) = 0. If there is j1 ∈ W \ S∗ such that uj1(x1) ≥ ε, then
we repeat this argument using j1. Since the set W \ S∗ is finite, we reach a state z with the
desired properties in a finite number of steps. Clearly, there is y ∈ Y with π(y) = π(z)
and z ∈ Bε(y). Q.E.D.

A.4. THE VNM STABLE SET FOR THE TAMURA EXAMPLE OF THE KNUTH MODEL

Let us reconsider the graph on page 316 of Tamura (1993). There is a total of 24 match-
ings, denoted by M1� � � � �M24. The core of the social environment induced by the Knuth
(1976) model is equal to CO = {M1�M8�M10�M19�M24}.

The MSS contains 13 matchings. In addition to the matchings in the core, we obtain 8
matchings in a closed cycle and find that the MSS is equal to

CO ∪ {M2�M16�M22�M12�M7�M9�M3�M4}�
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There are two different vNM stable sets in this example. The first vNM stable set V1 is
given by

V1 = CO ∪ {M4�M5�M9�M12�M13�M16�M17�M20�M21}�
Another vNM stable set is equal to

V2 = CO ∪ {M2�M3�M7�M11�M14�M17�M18�M22�M23}�
The prediction of the vNM stable sets seems rather unappealing. First, the dominated
state M17 is part of each vNM stable set. Second, for the largest connected subgraph of
the divorce digraph, half of the states is in V1, while the other half is in V2.

A.5. SHAPLEY–SCARF HOUSING MARKETS

Another prominent matching model is the housing matching model of Shapley and
Scarf (1974). This model can be represented by a tuple (N�H�(Pi)i∈N), where N is a
finite set of individuals, H is a finite set of houses with the same cardinality as the set
of individuals, and each individual i ∈ N has a strict preference relation Pi over H. The
original paper by Shapley and Scarf (1974) does not require a strict preference relation.
However, as shown in Roth and Postlewaite (1977), when preferences are strict, then the
strong core, that is, the core based on weak dominance, contains a unique element. The
version with strict preferences therefore became popular in the literature. Without loss of
generality, we assume that N = H and that the initial endowment of individual i is house i.
An allocation is represented by a permutation matrix A with rows indexed by elements of
N and columns indexed by elements of H. All entries of A are 0 or 1 and both rows and
columns of A sum up to 1. If for some h ∈ H, for some i ∈ N , entry Aih = 1, then house
h has been assigned to individual i. Row i ∈ N of the matrix A is denoted by Ai.

In this setting, it is convenient to define the state space X as the set of all permutation
matrices A. Since X is finite, we can endow it with the discrete metric d(A�A′)= 1{A�=A′}.

The preferences of the individuals (�i)i∈N over the set X are induced by their pref-
erences over houses in the following way. Let some individual i ∈ N be given as well as
A�A′ ∈ X . Let h�h′ ∈ H be such that Aih = A′

ih′ = 1. Notice that h and h′ are uniquely
determined. It holds that A �i A

′ if and only if h Pi h
′.

A coalition S ∈ N can arbitrarily redistribute the initial endowments of houses of its
members within the coalition. More formally, the effectivity correspondence satisfies the
following two conditions:

1. For every S ∈ N , for every A�A′ ∈ X , if S ∈ E(A�A′) then for all i ∈ S, there is
h ∈ S such that A′

ih = 1.
2. For every S ∈ N , for every A ∈ X , and for every bijection φ : S → S, there exists

A′ ∈X such that for all i ∈ S, A′
iφ(i) = 1 and S ∈ E(A�A′).

The first condition requires that if S is effective in moving from state A to state A′, then at
A′ the initial endowments of members of S are reallocated within S. The second condition
states that every reallocation of initial endowments of houses within a coalition is feasible.
Observe that the conditions impose no restrictions on how the houses of members outside
the deviating coalition are reallocated, so we allow for various reallocation processes here.
This completes the description of the social environment.

We show first that the MSS may contain closed cycles that do not correspond to a core
element. We consider the example illustrated in Table I. Since the initial endowments cor-
respond to every individual’s worst choice, every allocation in X is individually rational.
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TABLE I

A SHAPLEY–SCARF HOUSING MATCHING MARKET WITH CYCLING

Agents

1 2 3

First choice 2 3 1
Second choice 3 1 2
Third choice 1 2 3

We argue that the set {A1�A2�A3} is a closed cycle, where

A1 =
⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ � A2 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ � A3 =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ �

At A1, individual 1 obtains his first best house. Since A1 is individually rational, coalition
{2�3} is the only coalition that can achieve a strict improvement. The only state that dom-
inates A1 is therefore A2. By the same argument, the only state that dominates A2 is A3,
and the only state that dominates A3 is A1. We have obtained a closed cycle that does
not contain a core element. By Theorem 3.9, the core of the housing market model is a
proper subset of the MSS.

We now turn to the weak dominance MSS and show that it is equal to the strong core
by using the top trading cycle algorithm of Shapley and Scarf (1974).

THEOREM A.12: Let (N�H�(Pi)i∈N) be a housing matching problem and let � be the
induced social environment. The weak dominance MSS of � is equal to the strong core.

PROOF: Since the strong core of the housing matching problem is unique and satisfies
deterrence of external deviations, we only have to show that it satisfies iterated external
stability. Let S1� � � � � Sk′ be the coalitions that are successively formed by an application of
the top trading cycle algorithm of Shapley and Scarf (1974).

Consider any allocation A ∈ X that is not equal to the strong core allocation A∗ of
the housing matching model. Let f̃ denote the weak dominance correspondence. We
generate a sequence of allocations A1�A2� � � � �Ak′ such that for all k ≤ k′, Ak ∈ f̃ k(A)
and Ak′ =A∗. Let A0 =A and k = 1. We construct the sequence in the following way:

1. If k= k′ + 1, stop.
2. If for every i ∈ Sk, it holds that Ak−1

i =A∗
i , then we set Ak = Ak−1. Increase k by one

and go back to Step 1.
If there is i ∈ Sk such that Ak−1

i �= A∗
i , then define Tk = ⋃

j≤k S
j , and let Ak be an

allocation such that Tk ∈ E(Ak−1�Ak) and, for every i ∈ Tk, Ak
i = A∗

i . Increase k by one
and go back to Step 1.
We argue that for every k = 1� � � � �k′, Ak ∈ f̃ (Ak−1). This is trivial if for every i ∈ Sk it
holds that Ak−1

i =A∗
i , since then Ak =Ak−1.

Let k ∈ {1� � � � �k′} and i ∈ Sk be such that Ak−1
i �= A∗

i . By the rules of the top trading
cycle algorithm, the house corresponding to A∗

i is the best house for i in the set of houses
N \ Tk−1, so in particular it holds that A∗

i �i A
k−1
i . It now follows that Ak ∈ f̃ (Ak−1).

The proof is completed by observing that Ak′ = A∗. Q.E.D.
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In the proof of Theorem A.12, we have the union Tk of the coalitions S1� � � � � Sk gener-
ated in the first k steps of the top trading cycle algorithm deviating in iteration k of our
construction. The reason is that the assumptions on the effectivity correspondence are
so weak that a deviation by Sk might upset the assignment of individuals in Tk−1. Under
stronger assumptions on the effectivity correspondence, like those corresponding to the
γ or the δ-model, it would be sufficient to have deviations by Sk in iteration k.

A.6. MIXED ENVIRONMENTS

Let G = (N� ((Σi�di)�ui)i∈N) be a finite normal-form game, so for each player i ∈ N it
holds that Σi is finite and di(si� s

′
i)= 1{si �=s′i}.

Let us now introduce the mixed extension G̃ = (N� ((�i� δi)� vi)i∈N) of G, where �i is
the set of probability distributions on Σi. For σi ∈ �i, σi�si denotes the probability that
player i uses pure strategy si. The metric δi on �i is defined by

δi

(
σi�σ

′
i

) = max
si∈Σi

∣∣σi�si − σ ′
i�si

∣∣�
We denote � = ∏

i∈N �i and endow � with the product metric δ(σ�σ ′) = ∑
i∈N δi(σi�σ

′
i ).

For a given strategy profile σ ∈ �, we denote the probability that pure strategy profile
s ∈ Σ is played by σs = ∏

i∈N σi�si . Let vi : � → R be the expected utility associated to
strategy profiles σ ∈ �,

vi(σ)=
∑
s∈Σ

σsui(s)�

Preferences (�i)i∈N are such that σ �i σ
′ if and only if vi(σ) ≥ vi(σ

′). The social en-
vironment �̃ = (N� (��δ)�E� (�i)i∈N) corresponds to the game G̃ where E only allows
singletons to deviate and {i} ∈ E(σ�σ ′) if and only if σ−i = σ ′

−i.
A strategy profile σ ∈ � is said to be a mixed strategy Nash equilibrium of G if it is

a pure strategy Nash equilibrium of G̃. The core of �̃ coincides with the set of mixed
strategy Nash equilibria of G. Additionally, note that the expected utility functions (vi)i∈N
are continuous on � and that E is lower hemi-continuous. As such, Theorems 3.7 and
3.13 give the following result.

COROLLARY A.13: Let G̃ be the mixed extension of the finite normal-form game G and
let �̃ be the social environment corresponding to G̃. The MSS of �̃ coincides with the set of
mixed strategy Nash equilibria of G if and only if �̃ satisfies the weak improvement property.

Clearly, the pure strategy Nash equilibria of G are also mixed strategy Nash equilibria
of G, so belong to the MSS of �̃. On the other hand, it is easy to find examples such that
some profiles in the MSS of � are not in the MSS of �̃.

A finite two-player game G = (N� ((Σi�di)�ui)i∈{1�2}) is zero-sum if for all strategy pro-
files s ∈ Σ, u1(s)+ u2(s) = 0. The following result shows that for such games the MSS of
�̃ coincides with the set of mixed strategy Nash equilibria of G.

THEOREM A.14: Let G̃ be the mixed extension of a finite two-player zero-sum game G
and let �̃ be the social environment corresponding to G̃. Then the MSS of �̃ coincides with
the set of mixed strategy Nash equilibria of G.
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PROOF: Using Corollary A.13, it remains to show that �̃ satisfies the weak improve-
ment property, that is, for every strategy profile σ ∈ �, f∞(σ) contains a mixed strategy
Nash equilibrium of G. Let v denote the value of the game.

Let some σ ∈ � be given which is not a mixed strategy Nash equilibrium of G, that is,
there is a player i such that σi is not a minmax strategy. We distinguish between two cases.

Case 1: σ1 and σ2 are not minmax strategies.
1.1 If v1(σ) �= v, then there exists a player i who is below his minmax payoff. Without

loss of generality, let this be player 1, so v1(σ) < v. Let (σ∗
1 �σ

∗
2 ) be a profile of minmax

strategies. Note that v1(σ
∗
1 �σ2) ≥ v. Since σ2 is not a minmax strategy, there exists a pure

strategy s1 ∈ �1 such that v1(s1�σ2) > v. Thus, for every ε ∈ (0�2], it holds that

v1

(
ε

2
s1 +

(
1 − ε

2

)
σ∗

1 �σ2

)
> v�

It holds that

v2

(
ε

2
s1 +

(
1 − ε

2

)
σ∗

1 �σ
∗
2

)
≥ −v�

so for every ε > 0, f 2(σ) contains a state which is in an ε-neighborhood of a mixed strategy
Nash equilibrium of G and, therefore, f∞(σ) contains a mixed strategy Nash equilibrium
of G.

1.2 Suppose v1(σ)= v. Then there exists a pure strategy s1 ∈ �1 such that

v1(s1�σ2) > v�

since otherwise σ2 would be a minmax strategy. If s1 is a minmax strategy, then player 2
can deviate to a minmax strategy σ∗

2 to obtain v2(s1�σ
∗
2 ) = −v, that is, f 2(σ) contains

a mixed strategy Nash equilibrium of G. If s1 is not a minmax strategy, then (s1�σ2) ∈
f1(σ) is a state as in Case 1.1, so for every ε > 0, f 3(σ) contains a state which is in a ε-
neighborhood of a mixed strategy Nash equilibrium of G, and therefore f∞(σ) contains
a mixed strategy Nash equilibrium of G.

Case 2: σ1 is a minmax strategy and σ2 is not, or σ1 is not a minmax strategy and σ2 is.
Without loss of generality, assume σ1 is a minmax strategy.

2.1 If v1(σ) > v, then player 2 can profitably switch to a minmax strategy σ∗
2 and we are

done.
2.2 If v1(σ) = v, then since σ2 is not a minmax strategy, there exists a deviation to a

pure strategy s1 ∈ �1 such that v1(s1�σ2) > v. If s1 is a minmax strategy, then (s1�σ2) ∈
f1(σ) is a state as in Case 2.1, so f2(σ) contains a mixed strategy Nash equilibrium of G.
If s1 is not a minmax strategy, then (s1�σ2) ∈ f1(σ) is a state as in Case 1.1, and for every
ε > 0 it holds that f 3(σ) contains a state which is in an ε-neighborhood of a mixed strategy
Nash equilibrium of G, so f∞(σ) contains a mixed strategy Nash equilibrium of G.

Q.E.D.

As a final result, we show the equivalence between the set of mixed strategy Nash equi-
libria of G and the MSS of the social environment �̃ for finite two-player games where
one of the two players has two pure strategies.

THEOREM A.15: Let G̃ be the mixed-extension of a finite two-player game G and let �̃ be
the social environment corresponding to G̃. Assume that one player has two pure strategies
in G. Then the MSS of �̃ coincides with the set of mixed strategy Nash equilibria of G.
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PROOF: Assume without loss of generality that player 1 has two pure strategies. Let the
set of pure strategies of player 1 be {U�D} with generic element A ∈ {U�D} and let the
set of pure strategies of player 2 be given by {s1� � � � � s
} with generic element sj . We also
use the notation U and D for the mixed strategy that puts probability 1 on pure strategy
U and D, respectively, and similarly for sj .

Let some σ ∈ � be given. By Corollary A.13, it suffices to show the weak improvement
property of �̃, that is, f∞(σ) contains a mixed strategy Nash equilibrium of G. We distin-
guish between two cases.

Case 1: G has a pure strategy Nash equilibrium, without loss of generality, (U� s∗).
If σ is a mixed strategy Nash equilibrium of G, we are done, so assume σ is not a mixed

strategy Nash equilibrium of G. If player 2 has a profitable deviation from σ , then there is
a pure strategy best response sj ∈ �2 such that (σ1� s

j) ∈ f (σ). If (σ1� s
j) is a mixed strategy

Nash equilibrium of G, we are done. If not, then player 1 must have a pure strategy best
response to (σ1� s

j), say A. Thus, f 2(σ) contains a mixed strategy Nash equilibrium of G
or a pure strategy profile (A� sj). The same conclusion holds if player 1 has a profitable
deviation from σ . If the pure strategy profile (A� sj) is a Nash equilibrium of G, we are
done. If not, at least one player has a profitable deviation from it. We distinguish between
two cases.

1.1 A =D.
1.1.a Assume player 1 can profitably deviate from (D� sj). Then it holds that (U� sj) ∈

f (D� sj). If (U� sj) is a Nash equilibrium of G, we are done. If not, then player 2 can
profitably deviate to the Nash equilibrium (U� s∗) of G and we are done.

1.1.b Assume player 2 can profitably deviate from (D� sj). Let sh be a best response for
player 2, so (D� sh) ∈ f (D� sj). If this is a Nash equilibrium of G, we are done. Otherwise,
player 1 can profitably deviate to (D� sh), which brings us back to Case 1.1.a.

1.2 A =U .
1.2.a Assume player 2 can profitably deviate form (U� sj). It holds that the Nash equi-

librium (U� s∗) of G belongs to f (U� sj), so we are done.
1.2.b Assume player 1 can profitably deviate from (U� sj). Then it holds that (D� sj) ∈

f (U� sj). If (D� sj) is a Nash equilibrium of G, then we are done. Else, player 2 must have
a profitable deviation from (D� sj), which brings us back to Case 1.1.b.

Case 2: G has no pure strategy Nash equilibrium.
We first show that in every mixed strategy Nash equilibrium of G, player 1 plays both U

and D with strictly positive probability. Toward a contradiction, suppose there is a mixed
strategy Nash equilibrium (A�σ∗

2 ) of G such that player 1 plays a pure strategy, without
loss of generality, strategy A =U . It holds that any pure strategy of player 2 in the support
of σ∗

2 is a best response against U . Since G has no pure strategy Nash equilibrium, it must
hold that playing D against any pure strategy in the support of σ∗

2 gives player 1 a strictly
higher payoff than playing U . It follows that D is a profitable deviation for player 1 from
(U�σ∗

2 ). This contradicts (U�σ∗
2 ) being a mixed strategy Nash equilibrium of G.

To complete the proof, we show that f∞(σ) contains a mixed strategy Nash equilibrium
of G. As in the first part of Case 1, we can show that f 2(σ) contains a mixed strategy
Nash equilibrium of G and we are done, or a pure strategy profile which is not a Nash
equilibrium of G. Player 1 or player 2 has a profitable deviation from this pure strategy
profile. In the latter case, player 2 can choose a pure strategy best response and in the
next step, player 1 can profitably deviate to a pure strategy. In both cases, it holds that
there is k ∈ N such that f k(σ) contains a pure strategy profile (A� sj) from which player 1
has a profitable deviation. Without loss of generality, let A= U .
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Observe that for player 1 any completely mixed strategy is a profitable deviation from
(U� sj). Let σ∗ be a mixed strategy Nash equilibrium of G and let p ∈ (0�1) denote the
probability that σ∗

1 puts on U . We distinguish 3 cases.
2.1 v2(D�σ∗

2 )− v2(U�σ∗
2 ) > v2(D� sj)− v2(U� sj).

For ε ∈ (0�p), let σ ′
1 be the strategy where player 1 plays U with probability p − ε/2.

Since any completely mixed strategy of player 1 is a profitable deviation from (U� sj), it
holds that (σ ′

1� s
j) ∈ f (U� sj). We have that

v2

(
σ ′

1� s
j
) = v2

(
σ∗

1 � s
j
) + ε

2
(
v2

(
D�sj

) − v2

(
U�sj

))
< v2

(
σ∗) + ε

2
(
v2

(
D�σ∗

2

) − v2

(
U�σ∗

2

))
= v2

(
σ ′

1�σ
∗
2

)
�

where the strict inequality uses that σ∗
2 is a best response against σ∗

1 and the assumption
of Case 2.1. It follows that (σ ′

1�σ
∗
2 ) ∈ f (σ ′

1� s
j). Since ε > 0 can be chosen arbitrarily small,

this shows that σ∗ ∈ f∞(σ).
2.2 v2(D�σ∗

2 )− v2(U�σ∗
2 ) < v2(D� sj)− v2(U� sj).

For ε ∈ (0�1−p), let σ ′
1 be the strategy where player 1 plays U with probability p+ε/2.

The proof now follows as in Case 2.1.
2.3 v2(D�σ∗

2 )− v2(U�σ∗
2 )= v2(D� sj)− v2(U� sj).

It holds that (D� sj) ∈ f (U� sj).
Let sh be a best response of player 2 against D and, for ε ∈ (0�1), let σ ′

2 be the strategy
that puts weight (1 − ε) on σ∗

2 and weight ε on sh. We have that

v2

(
D�σ∗

2

) = v2

(
σ∗) +pv2

(
D�σ∗

2

) −pv2

(
U�σ∗

2

)
≥ v2

(
σ∗

1 � s
j
) +pv2

(
D�sj

) −pv2

(
U�sj

)
= v2

(
D�sj

)
� (A.1)

where the inequality uses that σ∗ is a mixed strategy Nash equilibrium of G and the
assumption of Case 2.3. Since (D� sj) is not a Nash equilibrium of G, it holds that
v2(D� sh) > v2(D� sj). By (A.1) and the definition of σ ′

2, it now follows that v2(D�σ ′
2) >

v2(D� sj), so (D�σ ′
2) ∈ f (D� sj). Since (D� sh) is not a Nash equilibrium of G and sh is a

best response against D, we have that v1(σ
∗
1 � s

h) > v1(D� sh). It follows that

v1

(
σ∗

1 �σ
′
2

) = (1 − ε)v1

(
σ∗) + εv1

(
σ∗

1 � s
h
)
> (1 − ε)v1

(
D�σ∗

2

) + εv1

(
D�sh

) = v1

(
D�σ ′

2

)
�

so (σ∗
1 �σ

′
2) ∈ f (D�σ ′

2). Since ε > 0 can be chosen arbitrarily small, we have that σ∗ ∈
f∞(σ), which concludes the proof. Q.E.D.

We analyzed the game of matching pennies in Example A.4 and concluded that better-
response dynamics did not single out any strategy profile. The game of matching pennies
satisfies the assumptions of both Theorems A.14 and A.15. The MSS of this game there-
fore consists of the unique mixed strategy Nash equilibrium where each pure strategy is
played with probability 1/2.
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