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APPENDIX A: STRONG MECHANISM DESIGN DUALITY—PROOF OF THEOREM 2

IN THIS SECTION, we give a formal proof of the strong mechanism duality theorem. To
carefully prove the statement, we specify that the proof is for Radon measures. A Radon
measure is a locally-finite inner-regular Borel measure. We use �(X)= Radon(X) (resp.
�+(X)= Radon+(X)) as the set of signed (resp. unsigned) Radon measures on X . The
transformed measure of a distribution is always a signed Radon measure as it defines a
bounded linear functional on the utility function u.12

A.1. A Strong Duality Lemma

The overall structure of our proof of Theorem 2 is roughly parallel to the proof of
Monge–Kantorovich duality presented in Villani (2008), although the technical aspects
of our proof are different, mainly due to the added convexity constraint on u. We be-
gin by stating the Legendre–Fenchel transformation and the Fenchel–Rockafellar duality
theorem.

DEFINITION 15—Legendre–Fenchel Transform: Let E be a normed vector space and
let Λ : E → R ∪ {+∞} be a convex function. The Legendre–Fenchel transform of Λ, de-
noted Λ∗, is a map from the topological dual E∗ of E to R∪ {∞} given by

Λ∗(z∗) = sup
z∈E

(〈
z∗� z

〉 −Λ(z))�
CLAIM 3—Fenchel–Rockafellar Duality: Let E be a normed vector space, E∗ its topolog-

ical dual, and Θ�Ξ two convex functions on E taking values in R∪{+∞}. LetΘ∗�Ξ∗ be the
Legendre–Fenchel transforms of Θ and Ξ, respectively. Assume that there exists z0 ∈ E such
that Θ(z0) <+∞, Ξ(z0) <+∞ and Θ is continuous at z0. Then

inf
z∈E

[
Θ(z)+Ξ(z)] = max

z∗∈E∗

[−Θ∗(−z∗) −Ξ∗(z∗)]�
LEMMA 4: Let X be a compact convex subset of Rn, and let μ ∈ �(X) be such that

μ(X)= 0. Then

inf
γ∈�+(X×X)
γ1�cvxμ+
γ2�cvxμ−

∫
X×X

‖x− y‖1 dγ(x� y)= sup
φ�ψ∈U(X)

φ(x)−ψ(y)≤‖x−y‖1

(∫
X

φdμ+ −
∫
X

ψdμ−

)

and the infimum on the left-hand side is achieved.

12More formally, this follows from the Riesz representation theorem.
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PROOF: We will apply Fenchel–Rockafellar duality with E = CB(X ×X), the space of
continuous (and bounded) functions onX×X equipped with the ‖ · ‖∞ norm. SinceX is
compact, by the Riesz representation theorem E∗ = �(X ×X).

We now define functions Θ�Ξ mapping CB(X ×X) to R∪ {+∞} by

Θ(f)=
{

0� if f (x� y)≥ −‖x− y‖1 for all x� y ∈X�
+∞� otherwise,

Ξ(f)=
⎧⎨
⎩

∫
X

ψdμ− −
∫
X

φdμ+� if f (x� y)=ψ(y)−φ(x) for some ψ�φ ∈ U(X)�
+∞� otherwise.

We note that Ξ is well-defined: If ψ(x) − φ(y) = ψ′(x) − φ′(y) for all x� y ∈ X ,
then ψ(x) − ψ′(x) = φ(y) − φ′(y) for all x� y ∈ X . This means that ψ′ differs from
ψ only by an additive constant, and φ differs from φ′ by the same additive constant,
and therefore (since μ+ and μ− have the same total mass),

∫
X
ψdμ− − ∫

X
φdμ+ =∫

X
ψ′ dμ− − ∫

X
φ′ dμ+.

It is clear that Θ(f) is convex, since any convex combination of two functions for which
f (x� y) ≥ −‖x− y‖1 will yield another function for which the inequality is satisfied. It is
furthermore clear thatΞ is convex, since we can take convex combinations of the ψ andφ
functions as appropriate. (Notice that U(X) is closed under addition and positive scaling
of functions.)

Consider the function z0 ∈ CB(X ×X) which takes the constant value of 1. It is clear
that Θ(z0)= 0 and Ξ(z0)= μ−(X) <∞. Furthermore, Θ(z)= 0 for any z ∈CB(X ×X)
with ‖z − z0‖∞ < 1, and therefore Θ is continuous at z0. We can thus apply the Fenchel–
Rockafellar duality theorem.

We compute, for any γ ∈ �(X ×X):

Θ∗(−γ)= sup
f∈CB(X×X)

[∫
X×X

f (x� y)d
(−γ(x� y))

−
{

0� if f (x� y)≥ −‖x− y‖1∀x� y ∈X�
+∞� otherwise,

]

= sup
f∈CB(X×X)

f(x�y)≥−‖x−y‖1

(
−

∫
X×X

f (x� y)dγ(x� y)

)

= sup
f̃∈CB(X×X)
f̃ (x�y)≤‖x−y‖1

(∫
X×X

f̃ (x� y)dγ(x� y)

)
�

We claim therefore that

Θ∗(−γ)=
⎧⎨
⎩

∫
X×X

‖x− y‖1 dγ(x� y)� if γ ∈ �+(X ×X)�
∞� otherwise.

Indeed, if γ is a positive linear functional, then the result follows from monotonicity, since
‖x− y‖1 is the point-wise greatest function f̃ satisfying the constraint f̃ (x� y)≤ ‖x− y‖1,
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and ‖x−y‖1 is continuous. Suppose instead that γ is a signed Radon measure which is not
positive everywhere. Then there exists a continuous nonnegative function g :X ×X → R
such that

∫
gdγ = −ε for some ε > 0.13 Since g(x� y)≥ 0, it follows that −kg(x� y)≤ 0 ≤

‖x− y‖1 for any k≥ 0. Therefore,

sup
f̃∈CB(X×X)
f̃ (x�y)≤‖x−y‖1

(∫
X×X

f̃ (x� y)dγ(x� y)

)

≥
∫

−kg(x� y)dγ(x� y)= kε�

The claim follows, since k> 0 is arbitrary.
We similarly compute, for any γ ∈ �(X ×X):

Ξ∗(γ)= sup
f∈CB(X×X)

[∫
X×X

f (x� y)dγ(x� y)

−
⎧⎨
⎩

∫
X

ψdμ− −
∫
X

φdμ+� if f (x� y)=ψ(y)−φ(x) and ψ�φ ∈ U(X)�
+∞� otherwise,

]

= sup
ψ�φ∈U(X)

[∫
X×X

(
ψ(y)−φ(x))dγ(x� y)−

∫
X

ψdμ− +
∫
X

φdμ+

]
�

We notice that Ξ∗(γ)≥ 0 for all γ ∈ �(X ×X) by setting ψ=φ= 0 and thus Θ∗(−γ)+
Ξ∗(γ)= ∞ if γ /∈ �+(X ×X). Moreover, when γ ∈ �+(X ×X),

Ξ∗(γ)= sup
ψ�φ∈U(X)

[∫
X×X

(
ψ(y)−φ(x))dγ(x� y)−

∫
X

ψdμ− +
∫
X

φdμ+

]

= sup
ψ�φ∈U(X)

[∫
X

ψd(γ2 −μ−)+
∫
X

φd(μ+ − γ1)

]

=
{

0� if γ1 �cvx μ+ and γ2 �cvx μ−�
∞� otherwise.

The last equality is true because if γ1 �cvx μ+ does not hold, we can find a function
φ ∈ U(X) such that

∫
X
φd(μ+ − γ1) > 0. Since we are allowed to scale φ arbitrarily, we

can make the inside quantity as large as we want. The same holds when μ− �cvx γ2.
We now apply Fenchel–Rockafellar duality:

inf
f∈CB(X×X)

[
Θ(f)+Ξ(f)] = max

γ∈�(X×X)
[−Θ∗(−γ)−Ξ∗(γ)

]
�

inf
f (x�y)≥−‖x−y‖1
f (x�y)=ψ(y)−φ(x)

ψ�φ∈U(X)

(∫
X

ψdμ− −
∫
X

φdμ+

)
= max

γ∈�+(X×X)

[
−

∫
X×X

‖x− y‖1 dγ(x� y)−Ξ∗(γ)
]
�

13Formally, we have used Lusin’s theorem to find such a g which is continuous, as opposed to merely mea-
surable.
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inf
ψ�φ∈U(X)

φ(x)−ψ(y)≤‖x−y‖1

(∫
X

ψdμ− −
∫
X

φdμ+

)
= max

γ∈�+(X×X)
γ1�cvxμ+
γ2�cvxμ−

(
−

∫
X×X

‖x− y‖1 dγ(x� y)

)
�

sup
ψ�φ∈U(X)

φ(x)−ψ(y)≤‖x−y‖1

(∫
X

φdμ+ −
∫
X

ψdμ−

)
= min

γ∈�+(X×X)
γ1�cvxμ+
γ2�cvxμ−

(∫
X×X

‖x− y‖1 dγ(x� y)

)
�

Q.E.D.

A.2. From Two Convex Functions to one

LEMMA 5: Let X = ∏n

i=1[xlow
i � x

high
i ] for some xlow

i � x
high
i ≥ 0, and let μ ∈ �(X) such that

μ(X)= 0. Then

sup
φ�ψ∈U(X)

φ(x)−ψ(y)≤‖x−y‖1

(∫
X

φdμ+ −
∫
X

ψdμ−

)
= sup

u∈U(X)∩L1(X)

(∫
X

udμ+ −
∫
X

udμ−

)
�

Furthermore, if the supremum of one side is achieved, then so is the supremum of the other
side.

PROOF: Given any feasible u for the right-hand side of Lemma 5, we observe that
φ = ψ = u is feasible for the left-hand side, and therefore the left-hand side is at least
as large as the right-hand side. It therefore suffices to prove the reverse direction of the
inequality. Let φ and ψ be feasible for the left-hand side. Given φ, it is clear that ψ must
satisfy ψ(y)≥ supx[φ(x)− ‖x− y‖1].

Set ψ̄(y)= supx[φ(x)−‖x−y‖1]. Sinceψ exists, this supremum indeed has finite value.
Since ψ̄ ≤ ψ point-wise, it follows that

∫
X
ψ̄dμ− ≤ ∫

X
ψdμ−. We must now prove that

ψ̄ ∈ U(X), thereby showing that φ� ψ̄ is feasible for the left-hand side and that replacing
ψ by ψ̄ does not decrease the objective value.

CLAIM 4: ψ̄ ∈ U(X) and ψ̄ ∈L1(X).

PROOF: We will first show that ψ̄ ∈ U(X). We need to show continuity, monotonicity,
and convexity.

• Continuity. Continuity of ψ̄ follows from the Maximum Theorem since both φ and
‖ · ‖1 are uniformly continuous.

• Monotonicity. Let y ≤ y ′ coordinate-wise and let x be arbitrary. We must show that
there exists an x′ such thatφ(x)−‖x−y‖1 ≤φ(x′)−‖x′ −y ′‖1. Set x′

i = max{xi� y ′
i}. Since

x ≤ x′, we have φ(x) ≤ φ(x′). We notice that if xi ≥ y ′
i , then x′

i = xi and thus |x′
i − y ′

i| ≤
|xi − yi|, while if xi ≤ y ′

i , then |x′
i − y ′

i| = 0. Therefore, we have that ‖x− y‖1 ≥ ‖x′ − y ′‖1

and thus φ(x)− ‖x− y‖1 ≤φ(x′)− ‖x′ − y ′‖1, as desired.
• Convexity. Let y� y ′� y ′′ be collinear points inX such that y = y′+y′′

2 . Then, given any
x, we must show that there exist x′ and x′′ such that

φ
(
x′) − ∥∥x′ − y ′∥∥

1
+φ(

x′′) − ∥∥x′′ − y ′′∥∥
1
≥ 2φ(x)− 2‖x− y‖1�

We define x′
i and x′′

i as follows:
– If y ′

i ≥ y ′′
i , set x′

i = max{xi� y ′
i} and x′′

i = max{2xi − x′
i� y

′′
i }.

– If y ′
i < y

′′
i , set x′′

i = max{xi� y ′
i} and x′

i = max{2xi − x′′
i � y

′
i}.



STRONG DUALITY FOR MULTIPLE-GOOD MONOPOLIST 5

Notice that x′ + x′′ ≥ 2x, and thus (since φ is convex and monotone) we have φ(x′) +
φ(x′′)≥ 2φ(x).

Suppose without loss of generality that y ′
i ≥ y ′′

i . We now consider two cases:
• y ′

i ≥ xi. We then have x′
i = y ′

i and x′′
i = max{2xi − y ′

i � y
′′
i }. Therefore, |y ′

i − x′
i| = 0

and |y ′′
i − x′′

i | ≤ |y ′′
i − 2xi + y ′

i| = 2|yi − xi| since y ′
i + y ′′

i = 2yi.
• y ′

i < xi. We now have x′
i = xi and x′′

i = max{xi� y ′′
i } = xi. Therefore, |y ′′

i −x′′
i |+ |y ′

i −
x′
i| is equal to |y ′

i + y ′′
i − 2xi|, which equals |2yi − 2xi|.

Therefore, we have that |y ′
i − x′

i| + |y ′′
i − x′′

i | ≤ |2yi − 2xi| for all i, which implies that
‖x′ − y ′‖1 + ‖x′′ − y ′′‖1 ≤ 2‖x− y‖1.

We have thus shown that ψ̄ ∈ U(X). We will now show that ψ̄ ∈L1(X). We have

ψ̄(x)− ψ̄(y)= sup
z

inf
w

(
φ(z)− ‖z− x‖1 −φ(w)+ ‖w− y‖1

)
≤ sup

z

(
φ(z)− ‖z− x‖1 −φ(z)+ ‖z− y‖1

)
= sup

z

(‖z− y‖1 − ‖z− x‖1

) ≤ ‖x− y‖1� Q.E.D.

Since φ� ψ̄ are a feasible pair of functions for the left-hand side of Lemma 5, we
know that φ satisfies the inequality φ(x) ≤ infy[ψ̄(y) + ‖x − y‖1]. We now set φ̄(x) =
infy[ψ̄(y)+ ‖x− y‖1]. It is clear that the value of the left-hand objective function under
φ̄, ψ̄ is at least as large as its value under φ, ψ̄.

We claim that not only is φ̄ continuous, monotonic, and convex, but in fact that φ̄= ψ̄.
We notice that φ̄(x) ≤ ψ̄(x)+ ‖x− x‖1 = ψ̄(x). To prove the other direction of the in-
equality, we compute

φ̄(x)= inf
y

[
ψ̄(y)+ ‖x− y‖1

] = ψ̄(x)+ inf
y

[
ψ̄(y)− ψ̄(x)+ ‖x− y‖1

] ≥ ψ̄(x)�

where the last inequality holds since ψ̄(x)− ψ̄(y)≤ ‖x− y‖1. Therefore, φ̄= ψ̄, and thus
φ̄ ∈ U(X). Since φ̄ satisfies the inequality φ̄(x)− φ̄(y) ≤ ‖x− y‖1, it is feasible for the
right-hand side of Lemma 5, and the value of the right-hand objective under φ̄ is at least
as large as the value of the left-hand objective under φ�ψ. We notice finally that if φ�ψ
are optimal for the left-hand side, then φ̄ is optimal for the right-hand side. Q.E.D.

A.3. Proof of Theorem 2

By combining Lemma 1, Lemma 4, and Lemma 5, we have

inf
γ∈�+(X×X)
γ1−γ2�1μ

∫
X×X

‖x− y‖1 dγ ≥ sup
u∈U(X)∩L1(X)

∫
X

udμ

= sup
φ�ψ∈U(X)

φ(x)−ψ(y)≤‖x−y‖1

(∫
X

φdμ+ −
∫
X

ψdμ−

)

= inf
γ∈�+(X×X)
γ1�cvxμ+
γ2�cvxμ−

∫
X×X

‖x− y‖1 dγ(x� y)�

By Lemma 4, the last minimization problem above achieves its infimum for some γ∗. We
notice that γ∗ is also feasible for the first minimization problem above, and therefore the
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inequality is actually an equality and γ∗ is optimal for the first minimization problem.
In addition, since γ∗ is feasible for the last minimization problem, it satisfies γ∗

1(X) =
γ∗

2(X) = μ+(X). All that remains is to prove that the supremum to the maximization
problem is achieved for some u∗. A proof of this fact is in Appendix A.4.

A.4. Existence of Optimal Mechanism

We now prove that the supremum of the maximization problem of Theorem 2 is
achieved for some u∗. Consider a sequence of feasible functions u1�u2� � � � ∈ U(X) ∩
L1(X) such that

∫
X
ui dμ converges monotonically to the supremum value V , which we

have proven is finite.14 Since μ(X) = 0, we may without loss of generality assume that
ui(0n)= 0 for all ui. Since all of the functions are bounded by ‖xhigh‖1 and are 1-Lipschitz
(which implies equicontinuity), the Arzelà–Ascoli theorem implies that there exists a
uniformly converging subsequence. Let u∗ be the limit of that subsequence. Since the
convergence is uniform, the function u∗ is 1-Lipschitz, nondecreasing, and convex and
thus feasible for the mechanism design problem. Moreover, since the objective is linear,
the revenue of the mechanism with that utility is equal to V and thus the supremum is
achieved.

A.5. Omitted Proofs From Section 5—Example 2

It is straightforward to verify that the mechanism is IC and IR. All that remains is to
prove that the utility function u∗ induced by the mechanism is optimal.

The transformed measure μ of the type distribution is composed of:
• a point mass of +1 at (4�4).
• mass −3 distributed throughout the rectangle (Density − 1

12 ).
• mass + 7

3 distributed on upper edge of rectangle (Linear density + 7
36 ).

• mass − 4
3 distributed on lower edge of rectangle (Linear density − 1

9 ).
• mass + 4

3 distributed on right edge of rectangle (Linear density + 4
9 ).

• mass − 1
3 distributed on left edge of rectangle (Linear density − 1

9 ).
We claim that μ(Z)= μ(Y)= μ(W )= 0, which is straightforward to verify.

We will construct an optimal γ∗ for the dual program of Theorem 2, using the intuition
of Remark 1. Our γ∗ will be decomposed into γ∗ = γZ + γY + γW with γZ ∈ �+(Z ×Z),
γY ∈ �+(Y ×Y), and γW ∈ �+(W ×W ). To ensure that γ∗

1 − γ∗
2 �cvx μ, we will show that

γZ1 − γZ2 �cvx μ|Z; γY1 − γY2 �cvx μ|Y ; γW1 − γW2 �cvx μ|W �
We will also show that the conditions of Corollary 1 hold for each of the measures γZ ,
γY , and γW separately, namely,

∫
u∗ d(γA1 − γA2 )= ∫

A
u∗ dμ and u∗(x)− u∗(y)= ‖x− y‖1

hold γA-almost surely for A = Z, Y , and W .
Construction of γZ . Since μ+|Z is a point mass at (4�4) and μ−|Z is distributed through-

out a region which is coordinate-wise greater than (4�4), we notice that μ|Z �cvx 0. We
therefore set γZ to be the zero measure, and the relation γZ1 − γZ2 = 0 �cvx μ|Z , as well as
the two necessary equalities from Corollary 1, are trivially satisfied.

Construction of γW . We will construct γW ∈ �(μ+|W �μ−|W ) such that x≥ y component-
wise holds γW (x� y) almost surely. Geometrically, we view this as “transporting” μ+|W into
μ−|W by moving mass downwards and leftwards. Indeed, since both items are allocated

14Finiteness is also obvious because X is bounded and the infimum problem is feasible.
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with probability 1 in W , being able to transport both downwards and leftwards is in line
with our interpretation of the second condition of Corollary 1, as explained in Remark 1.15

We notice that μ+|W consists of mass distributed on the top and right edges ofW , while
μ−|W consists of mass on the interior and bottom of W . We first match the μ+ mass on
[8�16] × {7} with the μ− mass on [8�16] × [ 14

3 �7] by moving mass downwards, then we
match the μ+ mass on {16} × [4� 14

3 ] with the μ− mass on [ 32
3 �16] × (4� 14

3 ] by moving mass
to the left, and we finally match the μ+ mass on {16} × [ 14

3 �7] with the remaining negative
mass arbitrarily. Noticing that u∗(x) = ‖x‖1 − 12 for all x ∈ W , it is straightforward to
verify the desired properties from Corollary 1.

Construction of γY . This is the most involved step of the proof. Since item 2 is allocated
with 100% probability in region Y , by Remark 1 we would like to transport the positive
mass μ+|Y into μ−|Y by moving mass straight downwards. However, this is impossible
without first “shuffling” μ|Y , due to the negative mass on the left boundary of Y . There-
fore, we first “shuffle” the positive part of μ|Y (on the top boundary) to push positive mass
onto the point (4�7) (the top-left corner of Y ), and only then do we transport the positive
part of the shuffled measure into the negative part by sending mass downwards. Since the
positive and negative parts of μ|Y must be matchable by only sending mass downwards,
we know how the post-shuffling measure should look. In particular, on every vertical line
in region Y the net post-shuffling mass should be zero.

So rather than constructing γY with γY1 − γY2 equal to μ|Y , we will have γY1 − γY2 =
μ|Y + α, where the “shuffling” measure α= α+ − α− �cvx 0. As discussed above, we set α
to have density function

fα(z1� z2)= Iz2=7 ·
(

1
9
Iz1=4 + 1

24

(
z1 − 20

3

))
· Iz∈Y �

The measure α is supported on the line [4�8] × {7} and consists of a point mass of 1
9

at (4�7) followed by allocating mass along the one-dimensional upper boundary of Y
according to a density function which begins negative and increases linearly. It is straight-
forward to verify that α�cvx 0,16 which we need for feasibility, and that

∫
Y
u∗ dα= 0, which

we need to satisfy complementary slackness.
We are now ready to define γY ∈ �(μ+|Y + α+�μ−|Y + α−). We construct γY so that

x1 = y1 and x2 ≥ y2 hold γY(x� y) almost surely. Since μ+|Y + α+ only assigns mass to the
upper boundary of Y , to show that γY can be constructed so that all mass is transported
“vertically downwards” we need only verify that μ+|Y +α+ and μ−|Y +α− assign the same
density to any vertical “strip” in Y . Indeed,

(μ−|Y + α−)
({4} × [6�7]) = μ−|Y

({4} × [6�7])
= 1

9
= α+

({4} × [6�7]) = (μ+|Y + α+)
({4} × [6�7])

15To prove the existence of such a map, it is equivalent by Strassen’s theorem to prove that μ+|W stochasti-
cally dominates μ−|W in the first order, but in this example we will directly define such a map.

16Since α is supported on a one-dimensional line, this verification uses a property analogous to the standard
characterization of one-dimensional second-order stochastic dominance via the cumulative density function.
Informally, we can argue that α�cvx 0 by considering integrals of one-dimensional test functions (by restricting
our attention to the line z2 = 7) and noticing that, since α(Y)= 0, we need only consider test functions h which
have value 0 at z1 = 4. We then use the fact that all linear functions integrate to 0 under α and that (ignoring
the point mass at z1 = 4, since h is 0 at this point) the density of α is monotonically increasing.
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and, for all z1 ± ε ∈ (4�8], we compute the following, using the fact that the surface area
of Y ∩ ([z1 − ε�z1 + ε] × [4�7]) is 2ε · ( z1

2 − 1):
(
μ−|Y − α|Y

)([z1 − ε�z1 + ε] × [4�7])
= 1

12
·
(

2ε ·
(
z1

2
− 1

))
− 1

24

∫ z1+ε

z1−ε

(
z− 20

3

)
dz

= εz1

12
− ε

6
− 1

24

(
2εz1 − 40ε

3

)
= 7ε

18
= μ+|Y

([z1 − ε�z1 + ε] × [4�7])�
Since u∗ has the property that u∗(z1� a)−u∗(z1� b)= a−b for all (z1� a)� (z1� b) ∈ Y (as

the second good is received with probability 1), it follows that γY satisfies the necessary
conditions of Corollary 1.

APPENDIX B: PROOF OF STOCHASTIC CONDITIONS OF SECTION 6

Our goal in this section is to prove Theorem 3. We begin by presenting some useful
probabilistic tools that will be essential for the proof.

B.1. Probabilistic Lemmas

We first present a useful result about convex dominance of random variables. For more
information about this result, see Theorem 7.A.2 of Shaked and Shanthikumar (2010).

LEMMA 6—Strassen’s Theorem: Let A and B be random vectors. Then A�cvx B if and
only if there exist random vectors Â and B̂, defined on the same probability space, such that
Â =st A, B̂ =st B, and E[B̂|Â] ≥ Â almost surely, where the final inequality is component-
wise and where =st denotes equality in distribution.

It is easy to extend the above result to convex dominance with respect to a vector �v as
defined in Definition 8.

LEMMA 7—Extended Strassen’s Theorem: Let A and B be random vectors. Then
A �cvx(�v) B if and only if there exist random vectors Â and B̂, defined on the same proba-
bility space, with Â=st A, B̂=st B, such that (almost surely):

• if vi = +1, then E[B̂i|Â] ≥ Âi.
• if vi = 0, then E[B̂i|Â] = Âi.
• if vi = −1, then E[B̂i|Â] ≤ Âi.

We now state a multivariate variant of Jensen’s inequality along with the necessary
condition for equality to hold. The proof of this result is standard and straightforward,
and thus is omitted.

LEMMA 8—Jensen’s Inequality: Let V be a vector-valued random variable with values
in [0�M]n and let u be a convex Lipschitz-continuous function mapping [0�M]n → R. Then
E[u(V )] ≥ u(E[V ]). Furthermore, equality holds if and only if, for every a in the subdifferen-
tial of u at E[V ], the equality u(V )= a · (V −E[V ])+ u(E[V ]) holds almost surely.



STRONG DUALITY FOR MULTIPLE-GOOD MONOPOLIST 9

The following lemma is a conditional variant of Lemma 8, based on the multivariate
conditional Jensen’s inequality, as in Theorem 10.2.7 of Dudley (2002). This lemma is
used as a tool for Lemma 10, the main result of this subsection.

LEMMA 9: Let (Ω�A�P) be a probability space, V be a random variable onΩ with values
in X where X = ∏n

i=1[xlow
i � x

high
i ], and u :X → R be convex and Lipschitz continuous. Let

C be any sub-σ-algebra of A and suppose that E[u(V )|C] = u(E[V |C]) almost surely. Then,
for almost all x ∈Ω, the equality u(y)= ayx · (y−yx)+u(yx) holds almost surely with respect
to the law 17 PV |C(·�x), where yx is the expectation of the random variable with law PV |C(·�x)
and ayx is any subgradient of u at yx.

PROOF: The proof is based on the proof of the multivariate conditional Jensen’s in-
equality, as in Theorem 10.2.7 of Dudley (2002). This theorem requires |V | and u◦V to be
integrable, which is true in our setting. We note that the theorem applies when u is defined
in an open convex set, but because u is Lipschitz continuous, we can extend it to a function
with domain an open set containing X . The multivariate conditional Jensen’s inequality
states that, almost surely, E[V |C] ∈ C and E[u(V )|C] ≥ u(E[V |C]). The proof of Theo-
rem 10.2.7 in Dudley (2002) furthermore shows that the following two equalities hold:

E[V |C](x)=
∫
X

yPV |C(dy�x); E
[
u(V )|C]

(x)=
∫
X

u(y)PV |C(dy�x)�

Since E[u(V )|C](x)= u(E[V |C])(x) for almost all x, we apply the unconditional Jensen
inequality (Lemma 8) to the laws PV |C(·�x) to prove the lemma. Q.E.D.

We now present Lemma 10. This lemma states that for random variables A and B with
A �cvx B, if it holds that u(A) = u(B) for some convex function u, then there exists a
coupling between A and B with several desirable properties, including that points are
only matched if u shares a subgradient at these points.

LEMMA 10: Let A and B be vector random variables with values in X , where X =∏n

i=1[xlow
i � x

high
i ], such that A �cvx B. Let u : X → R be 1-Lipschitz with respect to the �1

norm, convex, and monotonically nondecreasing. Suppose that E[u(A)] = E[u(B)] and that
g :X → [0�1]n is a measurable function such that, for all z ∈X , g(z) is a subgradient of u
at z.

Then there exist random variables Â=st A and B̂=st B such that, almost surely:
• u(B̂)= u(Â)+ g(Â) · (B̂− Â).
• g(Â) is a subgradient of u at B̂.
• E[B̂|Â] is component-wise greater than or equal to Â.
• u(E[B̂|Â])= u(Â).

PROOF: By Lemma 6, there exist random variables Â =st A and B̂ =st B such that
E[B̂|Â] is component-wise greater than or equal to Â almost surely. We have

0 = E
[
u(B̂)− u(Â)] ≥ E

[
u(B̂)− u(E[B̂|Â])] = E

[
E
[
u(B̂)|Â] − u(E[B̂|Â])] ≥ 0

and therefore E[E[u(B̂)|Â]] = E[u(E[B̂|Â])] = E[u(B̂)] = E[u(Â)].
17The law PV |C(·�x) allows us to express the conditional distribution of V given C.
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Since u is monotonic, u(Â)≤ u(E[B̂|Â]) almost surely. Since E[u(Â)] = E[u(E[B̂|Â])],
it follows that u(Â)= u(E[B̂|Â]) almost surely.

Select any collection of random variables {B̂|Â=x} corresponding to the laws PB̂|Â(·�x).
For almost all values x of Â, E[B̂|Â=x] is component-wise greater than x and u(x) =
u(E[B̂|Â=x]). We claim now that any subgradient ax of u at x is also a subgradient of u at
E[B̂|Â=x]. Indeed, choose such a subgradient ax. We compute

u
(
E[B̂|Â=x]

) ≥ u(x)+ ax · (E[B̂|Â=x] − x) = u(E[B̂|Â=x]
) + ax · (E[B̂|Â=x] − x)

and therefore ax ·E[B̂|Â=x] = ax ·x, by nonnegativity of the subgradient. Furthermore, for
any point z ∈X ,

u(z)≥ u(x)+ ax · (z− x)
= u(E[B̂|Â=x]

) + ax · (z− x)
= u(E[B̂|Â=x]

) + ax · (z−E[B̂|Â=x]
)

and thus ax is a subgradient of u at E[B̂|Â=x].
Since E[E[u(B̂)|Â]] = E[u(E[B̂|Â])], by Jensen’s inequality it follows that E[u(B̂)|Â] =

u(E[B̂|Â]) almost surely. By Lemma 9, it therefore holds for almost all values x of Â that
the equality

u(y)= ax · (y −E[B̂|Â=x]
) + u(E[B̂|Â=x]

)
= ax · (y − x)+ u(E[B̂|Â=x]

)
= ax · (y − x)+ u(x)

holds B̂|Â=x almost surely.
Last, we will show that, almost surely, ax is a subgradient of u at B̂|Â=x. Indeed, for any

p ∈X , and almost all values of x, we have

u(p)≥ u(x)+ ax · (p− x)
= u(x)+ ax · (B̂|Â=x − x)+ ax · (p− B̂|Â=x)

= u(B̂|Â=x)+ ax · (p− B̂|Â=x)� Q.E.D.

B.2. Proof of the Optimal Menu Theorem (Theorem 3)

To prove the equivalence, we prove both implications of the theorem separately.

B.2.1. Sufficiency Conditions

We will show that the Optimal Menu Conditions of Definition 9 imply that a mechanism
M is optimal. To show the theorem, we construct a measure γ such that the conditions of
Corollary 1 are satisfied. We will construct this measure separately for every region that
corresponds to a menu choice of mechanism M.
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Consider a menu choice (p� t) ∈ MenuM, the corresponding region R and the corre-
sponding vector �v as in Definition 9. LetA and B be random vectors distributed according
to the (normalized) measures μ+|R and μ−|R. From the Optimal Menu Conditions, we
have that A|R �cvx(�v) B|R (almost surely). By the extended version of Strassen’s theorem
(Lemma 7), it holds that there exist random vectors Â� B̂ with Â=st A|R and B̂ =st B|R,
such that (almost surely):

• if vi = +1, then E[B̂i|Â] ≥ Âi.
• if vi = 0, then E[B̂i|Â] = Âi.
• if vi = −1, then E[B̂i|Â] ≤ Âi.

Now define the random variable Ĉ = min(E[B̂|Â]� Â), where we take the coordinate-
wise minimum. We now have that (almost surely):

• if vi = +1, then E[B̂i|Â] ≥ Âi = Ĉi.
• if vi = 0, then E[B̂i|Â] = Âi = Ĉi.
• if vi = −1, then Ĉi =E[B̂i|Â] ≤ Âi.

Let γR be the measure according to which the vector (Â� Ĉ) is distributed. By construc-
tion, γR1 = μ+|R and γR2 �cvx μ−|R, and thus γR1 − γR2 �cvx μ|R. Moreover, the conditions
of Corollary 1 are satisfied:

• u(x)− u(y)= ‖x− y‖1 is satisfied γR(x� y)-almost surely since Â is larger than Ĉ
only in coordinates for which vi = −1 and thus pi = 1.

• ∫
ud(γR1 − γR2) = ∫

ud(μ+|R − μ−|R) is satisfied: By definition, we have that∫
udγR1 = ∫

udμ+|R. Moreover, we can also show that
∫
udγR2 = ∫

udμ−|R by noting
that

∫
udμ−|R = μ−(R)E[u(B̂)] = μ−(R)E[p · B̂− t] = μ−(R)E[p ·E[B̂|Â] − t] and that

μ−(R)E[p ·E[B̂|Â]− t] is equal to μ−(R)E[p · Ĉ− t] = ∫
udγR2 since Ĉi �=E[B̂i|Â] only

when E[B̂i|Â] is strictly larger than Âi, which only happens in coordinates i where vi = +1
and thus pi = 0.

This completes the proof that the Optimal Menu Conditions imply optimality of the
mechanism since we can construct a feasible measure γ satisfying the conditions of Corol-
lary 1 by considering the sum of the constructed measures for each region.

B.2.2. Optimality Implies Stochastic Conditions

We will now prove the other direction of the result. Consider an optimal mechanism
M = (P�T ) with a finite menu size over type space X = ∏n

i=1[xlow
i � x

high
i ]. Since M is

given in essential form, in the menu of M there is no dominated option. So for all options
on the menu, there is a set of buyer types that strictly prefer it from any other option, and
that set of types occurs with positive probability.

Now, define the set Z = {x ∈X : p · x− t = P(x) · x− T (x) for (p� t) ∈ MenuM with
(p� t) �= (P(x)�T (x))}. This is the set of types where there is no single option that is the
best and it is where the utility function of the mechanism is not differentiable. We show
the following lemma.

LEMMA 11: μ−(Z)= 0.

PROOF: Note that, by its construction, μ− assigns zero mass to any k-dimensional sur-
face for k≤ n− 2. Moreover, it only assigns mass to (n− 1)-dimensional surfaces which
lie along the boundary of X .

Every pair of distinct choices (p� t)� (p′� t ′) ∈ MenuM defines a hyperplane p · x− t =
p′ · x − t ′ containing the types who derive the same utility from these two choices. As
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the menu is finite, there exist a finite number of such pairs, hence a finite number of
hyperplanes. The set Z contains a subset of types in the finite union of these hyperplanes,
so μ− assigns no mass to the subset of Z which lies on the interior of X .

Regarding the μ−-measure of Z on the boundaries, notice that the intersection of each
of the aforementioned hyperplanes p · x − t = p′ · x − t ′ with each boundary xi = xlow

i

is (n − 2)-dimensional, unless the hyperplane coincides with xi = xlow
i . If it is (n − 2)-

dimensional, then its measure under μ− is 0. Otherwise, it must be that pj = p′
j , for all

j �= i, and pi �= p′
i; say pi > p′

i without loss of generality. This implies that (p� t) must
dominate (p′� t ′), for all types x ∈ X . This contradicts our assumption that no menu
choices are dominated. Q.E.D.

Let u be the utility function of the optimal mechanism M= (P�T ) and γ be the opti-
mal measure of Theorem 2. Then, γ satisfies the properties of Corollary 1. In particular,
it holds that:

1. ∫
ud(γ1 +μ−)=

∫
ud(μ+ + γ2)� (6)

2. u(x)− u(y) = ‖x− y‖1, γ(x� y) almost surely. Since this can happen only if x is
coordinate-wise greater than y , it holds (almost surely with respect to γ) that ‖x− y‖1 =∑

i xi −
∑

i yi, which implies that (almost surely) u(x)− ∑
i xi = u(y)− ∑

i yi and thus∫ (
u(x)−

∑
i

xi

)
dγ1 =

∫ (
u(y)−

∑
i

yi

)
dγ2� (7)

Moreover, again since x is coordinate-wise greater than y almost surely with respect to γ,
it follows that γ2 �cvx(−�1) γ1.

We are now ready to use Lemma 10, which follows from Jensen’s inequality. We will
apply it in two different steps, which we will then combine to show that μ+|R �cvx(�v) μ−|R.

Step (ia): We will first apply Lemma 10 to random variables A�B distributed according
to the measures γ2 + μ+ and γ1 + μ−, respectively. Since μ+ − μ− �cvx γ1 − γ2, by the
feasibility of γ, we have that A�cvx B. Moreover, E[u(A)] = E[u(B)], from Equation (6)
above, and u is convex and nondecreasing, from the feasibility of u.

To apply Lemma 10, we choose the function g(x), which is a subgradient function of u,
as follows:

• For all x ∈X \Z, the best choice from the menu of M is unique, hence the sub-
gradient of u is uniquely defined. For all such x, we set g(x)=P(x).

• For all other x, u has a continuum of different subgradients at x. In particular, any
vector in the convex hull of {p : p · x− t = u(x)� (p� t) ∈ MenuM} is a valid subgradient.
Thus, we can always choose g(x) to equal a vector of probabilities that does not appear
as an allocation of any choice in menu M.

Step (ib): It follows from Lemma 10 that there exist random variables Â =st A and
B̂ =st B such that, almost surely, g(Â) is a subgradient of u at B̂. Fixing some (p� t) ∈
MenuM and its corresponding region R= {x : p = P(x)}, we denote by cl(R)= R ∪ ∂R
the closure of R and by int(R)= cl(R) \Z the set of types which strictly prefer (p� t) to
any other option in the menu. Note in particular that int(R) may contain points on the
boundary of X . With this notation, we have that, almost surely,

B̂ ∈ int(R) =⇒ Â ∈ int(R); (8)

Â ∈ int(R) =⇒ B̂ ∈ cl(R)� (9)
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This is because, from Lemma 10, we know that g(Â) is a subgradient of u at B̂ al-
most surely, and we know by definition of int(R) that the subgradient is unique whenever
B̂ ∈ int(R). Thus, it holds almost surely that whenever B̂ ∈ int(R), we have g(Â)= g(B̂).
Since g is chosen to have differing values on int(R) and on Z, it follows that whenever
B̂ ∈ int(R), Â ∈ int(R) almost surely. The implication Â ∈ int(R) =⇒ B̂ ∈ cl(R) follows
from the fact that the subgradient at any point x ∈ int(R) can only serve as a subgradient
for points y ∈ cl(R).

From Lemma 10, we also have that u(E[B̂|Â]) = u(Â) almost surely. It follows that,
almost surely,

u
(
E[B̂|Â]) · IÂ∈int(R) = u(Â) · IÂ∈int(R)�

Given (9) and since u is linear restricted to cl(R), it follows that the left-hand side equals

E
[
u(B̂)|Â] · IÂ∈int(R)�

We also have from Lemma 10 that, almost surely, it holds component-wise

E[B̂|Â] ≥ Â� (10)

The above imply that, almost surely,

pi > 0 =⇒ E[B̂i|Â] · IÂ∈int(R) = Âi · IÂ∈int(R)� (11)

as otherwise we cannot have E[u(B̂)|Â] · IÂ∈int(R) = u(Â) · IÂ∈int(R), given that u is linear
and nondecreasing in cl(R).

Equations (10), (11) and Lemma 7 imply that

Â · IÂ∈int(R) �cvx(�v) B̂ · IÂ∈int(R) (12)

for the �v defined in Definition 9 for the menu choice (p� t). Note that

B̂ · IÂ∈int(R) = B̂ · IÂ�B̂∈int(R) + B̂ · IÂ∈int(R)∧B̂ /∈int(R)

= B̂ · IB̂∈int(R) + B̂ · IÂ∈int(R)∧B̂ /∈int(R)�

where, for the second equality, we used (8). Hence, (12) implies

γ2|int(R) +μ+|int(R) �cvx(�v) μ−|int(R) + γ1|int(R) + ξR� (13)

where ξR is the nonnegative measure corresponding to B̂ · IÂ∈int(R)∧B̂ /∈int(R) (scaled back
appropriately by μ+(X)= μ−(X)).

Step (iia): We will now apply a flipped version of Lemma 10, for convex non-increasing
functions,18 to the convex function u(x) − ∑

i xi.
19 We set random variables A′�B′

distributed according to the measures γ1 and γ2. Since γ2 �cvx(−�1) γ1, we have that
B′ �cvx(−�1) A

′. Moreover, E[u(A′)− ∑
i A

′
i] = E[u(B′)− ∑

i B
′
i] from Equation (7) shown

above.

18It is easy to verify that the guarantees of the lemma remain the same except the third guarantee changes
to “component-wise smaller than.”

19Notice that the partial derivatives are non-positive.
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We choose the function g(x)− �1 as the subgradient of u(x)− ∑
i xi.

Step (iib): Fixing any region R and the corresponding int(R), cl(R), and �v as above, we
mirror the arguments of Step (i). Now, the version of Lemma 10 for non-increasing func-
tions implies that there exist random variables Â′ =st A

′ and B̂′ =st B
′ such that, almost

surely,

E
[
B̂′|Â′] ≤ Â′; (14)

pi < 1 =⇒ E
[
B̂′
i|Â′] · IÂ′∈int(R) = Â′

i · IÂ′∈int(R)� (15)

Equations (14), (15) and Lemma 7 imply that

Â′ · IÂ′∈int(R) �cvx(�v) B̂′ · IÂ′∈int(R) (16)

and, hence,

γ1|int(R) �cvx(�v) γ2|int(R) + ξ′
R� (17)

where, similarly to our derivation above, ξ′
R is the nonnegative measure corresponding to

B̂′ · IÂ′∈int(R)∧B̂′ /∈int(R).
We now combine the results of Steps (i) and (ii) to finish the proof. Combining (13)

and (17), we get that

μ+|int(R) �cvx(�v) μ−|int(R) + ξR + ξ′
R� (18)

From Proposition 1, it must hold that

μ+|int(R)(X)= μ−|int(R)(X)+ ξR(X)+ ξ′
R(X)�

Summing over all regions and noticing that
∑

R μ−|int(R)(X) = μ−(X), from Lemma 11,
we get that

μ+(X)−μ+(Z)= μ−(X)+
∑
R

(
ξR(X)+ ξ′

R(X)
)
�

But μ+(X)= μ−(X), hence μ+(Z)= ∑
R(ξR(X)+ ξ′

R(X))= 0, as all of μ+, ξR, and ξ′
R

are nonnegative. Therefore, we can rewrite the property (18) as

μ+|R �cvx(�v) μ−|R�

APPENDIX C: MISSING PROOFS OF SECTION 6—THEOREM 5

In this appendix, we complete the proof of Theorem 5.

PROOF: We define the mapping ϕ :A→ B by ϕ(x)= y , where

y1 = [
1 − ρ(1 − (1 − xn)n−1

)]1/(n−1); yi = xi − xn
1 − xn · y1 for i > 1�

We first claim that ϕ is a bijection. As xn ranges from 0 to 1 − (ρ−1
ρ
)1/(n−1), we see that

y1 ranges from 1 to 0, and thus there is a bijection between valid y1 values and valid xn
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values. Furthermore, for any fixed y1 and xn, there is a bijection between xi and yi for
i= 2� � � � � n− 1. (By varying xi between xn and 1, we can achieve all values of yi between
0 and y1.) Furthermore, for any fixed y1 and xn, the mapping from xi to yi is an increasing
function of xi, and therefore, for all x ∈A, we have y1 ∈ [0�1] and y1 ≥ y2 ≥ · · · ≥ yn = 0.
Thus, ϕ is a bijection between A and B. Next, we claim that for any x ∈A, it holds that x
is component-wise at least as large as ϕ(x). Since x1 = 1, it trivially holds that x1 ≥ ϕ1(x).
Fix a value of xn (and hence of y1), and consider the bijection g : [xn�1] → [0� y1] given
by g(z) = y1(z − xn)/(1 − xn). We must show that z − g(z) ≥ 0 for all z ∈ [xn�1]. This
follows from noticing that z− g(z) is a linear function of z and both xn − g(xn)= xn and
1 − g(1)= 1 − y1 are nonnegative.

We now show that ϕ scales surface measure of every measurable S ⊂ A by a factor
of 1/ρ. Instead of directly analyzing surface measures, it suffices to prove that the func-
tion ϕ′ : W → W scales volumes by ρ, where W ⊂ Rn−1 is the set {w : 1 ≥ w1 ≥ · · · ≥
wn−1 ≥ 0} and ϕ′(w) drops the last (constant) coordinate of ϕ(1�w1� � � � �wn−1) and then
(for notational convenience) permutes the first coordinate to the end. That is,

ϕ′(w1� � � � �wn−1)=
(
w1 −wn−1

1 −wn−1
z(wn−1)� � � � �

wn−2 −wn−1

1 −wn−1
z(wn−1)� z(wn−1)

)
�

where z(wn−1)= [1 − ρ(1 − (1 −wn−1)
n−1)]1/(n−1).

We now analyze the determinant of the Jacobian matrix J of ϕ′. We notice that the
only nonzero entries of J are the diagonals and the rightmost column. In particular, J is
upper triangular, and therefore its determinant is the product of its diagonal entries. We
therefore compute

det(J)=
(
z(wn−1)

1 −wn−1

)n−2

· ∂

∂wn−1

[
1 − ρ(1 − (1 −wn−1)

n−1
)]1/(n−1)

=
(
z(wn−1)

1 −wn−1

)n−2

· −1
n− 1

(
z(wn−1)

−(n−2) · ρ · (n− 1)(1 −wn−1)
n−2

) = −ρ�

as desired.
Last, suppose y1 ≤ ε. Then [1 − ρ(1 − (1 − xn)

n−1)]1/(n−1) ≤ ε and thus xn ≥ 1 −
( ε

n−1+ρ−1
ρ

)1/(n−1). Q.E.D.

PROOF: We now complete the proof of Theorem 5. Fix the dimension n. For any value
of c, the transformed measure on the hypercube (c� c+ 1)n we obtain is as follows:

• a point mass of +1 at (c� c� � � � � c);
• mass of −(n+ 1) uniformly distributed throughout the interior;
• mass of −c distributed on each surface xi = c of the hypercube;
• mass of c+ 1 distributed on each surface xi = c+ 1 of the hypercube.

For notational convenience when checking the stochastic dominance properties of The-
orem 3, we will shift the hypercube to the origin. That is, we will consider instead the
measure μc on [0�1]n which has mass +1 at the origin, mass of −c on each surface xi = 0,
et cetera. It is important to notice that the mass that μ assigns to the interior of [0�1]n
and to the origin does not depend on c, while the mass on each surface is a function of c.

For any h ∈ (0�1), define the region Z(h)= {x ∈ [0�1]n : ‖x‖1 ≤ h}. For any fixed c0, it
holds that μc0+ (Z(h)) = 1 for all h ∈ (0�1) and there exists a small enough h′ > 0 such
that μc0− (Z(h′)) < 1. Since, for this fixed h′, it holds that μc−(Z(h

′)) increases with c
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(and becomes arbitrarily large as c becomes large), there must exist a c′ > c0 such that
μc

′
−(Z(h

′)) = 1, and thus μc′(Z(h′)) = 0. We can therefore pick a decreasing function
p∗ : R≥0 → (0�1) such that, for all sufficiently large c, μc(Z(p∗(c))) = 0.20 As argued
above, for any small enough h′ > 0, there exists a c′ such that μc′−(Z(h

′)) = 1 and thus
p∗(c′)= h′. It follows that p∗(c)→ 0 as c→ ∞.

For all c, define the following subsets of [0�1]n:
Zc = {

x : ‖x‖1 ≤ p∗(c)
}; Wc = {

x : ‖x‖1 ≥ p∗(c)
}
�

We notice that μc+(Zc ∩ Wc) = μc−(Zc ∩ Wc) = 0. By construction, for large enough c,
we have μc(Zc) = 0. In addition, the only positive mass in Zc is at the origin, and thus
μc−|Zc �cvx μ

c
+|Zc .

To apply Theorem 3, it remains to show that, for sufficiently large c, μc+|Wc �cvx(−�1) μ
c
−|Wc .

To prove this, we partition Wc into 2(n! + 1) disjoint21 regions, P0�Pσ1� � � � �Pσn! and
N0�Nσ1� � � � �Nσn! , where σj is a permutation of 1� � � � � n. This partition will be such that⋃

j Pj contains the entire support of μc+|Wc and
⋃

j Nj contains the entire support of μc−|Wc .
We will show that μc+|Pj �cvx(−�1) μ

c
−|Nj for all j, thereby proving μc+|Wc �cvx(−�1) μ

c
−|Wc .

For every permutation σ of 1� � � � � n, define

P ′
σ =

{
x : 1 = xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n) ≥ 0 and xσ(n) ≤ 1 −

(
1

c+ 1

)1/(n−1)}
�

N ′
σ = {y : 1 ≥ yσ(1) ≥ · · · ≥ yσ(n−1) ≥ yσ(n) = 0}�

Denote by ρ� (c + 1)/c the ratio between the surface densities of μc+ and μc− on P ′
σ and

N ′
σ , respectively, and let ϕσ : P ′

σ →N ′
σ be the bijection given by Lemma 2. By construc-

tion, μc+(S)= μc−(ϕσ(S)) for all measurable S ⊆ P ′
σ .

Denote Nσ �N ′
σ \Zc and Pσ � ϕ−1(Nσ). By construction, ϕ is a bijection between Pσ

and Nσ , preserving the respective measures μc+ and μc−, such that, for all x ∈ Pσ , x is
component-wise at least as large as ϕ(x). Therefore, by Strassen’s theorem, μc+|Pσ �cvx(−�1)
μc−|Nσ . Last, we define

P0 = {
x ∈ [0�1]n : xi = 1 for some i

} ∖ (⋃
σ

Pσ

)
; N0 = (0�1)n \Zc�

P0 consists of all points on the outer surface of the hypercube which have not yet been
matched to any Nσ , and N0 consists of all points on which μc− is nontrivial which have not
yet been matched.22 It therefore remains only to show that μc+|P0 �cvx(−�1) μ

c
−|N0 .

We claim that, for large enough c, P0 only contains points with all coordinates greater
than 3/4. Indeed:

• Every x with xi = 1 but some xj < 1 − ( 1
c+1)

1/(n−1) is in some P ′
σ .

• For large c, every x with xi = 1 but some xj ≤ 3/4 is in some P ′
σ .

20Our intention is to argue that for c large enough, the optimal mechanism will be grand bundling for a price
of p∗(c)+ c, where the additive +c term comes from our shift of the hypercube to the origin.

21For notational simplicity, our regions overlap slightly, although the overlap always has zero mass under
both μc+ and μc−.

22All other points on which μc− is nontrivial have been matched either to the origin (if the point lies in Zc),
or to some point in Pσ (if the point lies in N ′

σ \Zc).
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• We claim that for large c, every x ∈ P ′
σ \Pσ has all coordinates at least 3/4. Indeed,

for every x ∈ P ′
σ \ Pσ , it must be that ϕ(x) ∈Zc , and thus ‖ϕ(x)‖1 ≤ p∗(c). By Lemma 2,

we have xσ(n) ≥ 1 − (p
∗(c)n−1+ρ−1

ρ
)1/(n−1). As c gets large, ρ→ 1 and p∗(c)→ 0. Thus, for

sufficiently large c, we have x ∈ P ′
σ \ Pσ implies xσ(n) ≥ 3/4. Since xσ(n) is the smallest

coordinate of x, it follows that all coordinates of any x ∈ P ′
σ \ Pσ are greater than 3/4.

• Thus, for sufficiently large c, every x with xi = 1 but some xj < 3/4 lies in some
Pσ , and hence does not lie in P0.
By construction, μc−|N0 and μc+|P0 have the same total mass. Consider independent random
variables X and Y corresponding to μc−|N0 and μc+|P0 , respectively, where we scale both
measures so that they are probability distributions. By Lemma 6, it suffices to show that
for sufficiently large c, Y ≥ E[X] almost surely.23 Since μc+|P0 is supported on P0, we need
only show that all coordinates of E[X] are less than 3/4. We recall that μc− assigns a total
mass of n + 1, distributed uniformly, to the interior of the hypercube. As c gets large,
p∗(c) approaches 0, and thus

μc−
(
Zc ∩ (0�1)n

)
μc−

(
(0�1)n

) → 0�

For large c, therefore, E[X] becomes arbitrarily close to the center of the hypercube,
which is the point with all coordinates equal to 1/2. Therefore, we have

μc+|P0 �cvx(−�1) μ
c
−|N0 � Q.E.D.

APPENDIX D: SUPPLEMENTARY MATERIAL FOR SECTION 7

PROOF: It is obvious that uZ is nonnegative. To show that uZ is nondecreasing, it suf-
fices to prove that uZ(x)≥ uZ(y) for x� y ∈X \Z with x component-wise greater than or
equal to y . Let zx ∈Z be the closest point to x. Denote by zy the point with each coordi-
nate being the component-wise minimum of zx and y . Since Z is decreasing, zy ∈ Z. We
now compute

uZ(x)= ‖zx − x‖1 =
∑
i

∣∣(zx)i − xi∣∣ ≥
∑
i

∣∣min
{
(zx)i� yi

} − yi
∣∣ = ‖zy − y‖1 ≥ uZ(y)

and thus uZ is nondecreasing.
We will now show that uZ is convex. Pick arbitrary x� y ∈X . Denote by zx and zy points

in Z such that uZ(x) = ‖x − zx‖1 and uZ(y) = ‖y − zy‖1. Since Z is convex, the point
(zx + zy)/2 is in Z. Thus

uZ

(
x+ y

2

)
≤

∥∥∥∥x+ y
2

− zx + zy
2

∥∥∥∥
1

≤ ‖x− zx‖1 + ‖y − zy‖1

2
= uZ(x)+ uZ(y)

2

and therefore uZ is convex.
Last, we verify that uZ has Lipschitz constant at most 1. Indeed,

uZ(x)− uZ(y)≤ ‖x− zy‖1 − uZ(y)= ‖x− zy‖1 − ‖y − zy‖1 ≤ ‖x− y‖1� Q.E.D.

23In general, to prove second-order dominance, we might need to nontrivially couple X and Y . In this case,
however, choosing independent random variables suffices.
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APPENDIX E: SUPPLEMENTARY MATERIAL FOR SECTIONS 7 AND 8

E.1. Verifying Stochastic Dominance—Proof of Lemma 3

We begin with the standard result that a sufficient condition for first-order stochastic
dominance is that one measure assigns more mass than the other to all increasing sets.

CLAIM 5: Let α�β be positive finite Radon measures on Rn
≥0 with α(Rn

≥0) = β(Rn
≥0).

A necessary and sufficient condition for α �1 β is that, for all increasing24 measurable sets
A, α(A)≥ β(A).

PROOF: Without loss of generality, assume that α(Rn
≥0)= β(Rn

≥0)= 1.
It is obvious that the condition is necessary by considering the indicator function of any

increasing set A. To prove sufficiency, suppose that the condition holds and that on the
contrary, α does not stochastically dominate β. Then there exists an increasing, bounded,
measurable function f such that∫

f dβ−
∫
f dα > 2−k+1

for some positive integer k. Without loss of generality, we may assume that f is nonneg-
ative, by adding the constant of −f (0) to all values. We now define the function f̃ by
point-wise rounding f upwards to the nearest multiple of 2−k. Clearly, f̃ is increasing,
measurable, and bounded. Furthermore, we have∫

f̃ dβ−
∫
f̃ dα≥

∫
f dβ−

∫
f dα− 2−k > 2−k+1 − 2−k > 0�

We notice, however, that f̃ can be decomposed into the weighted sum of indicator
functions of increasing sets. Indeed, let {r1� � � � � rm} be the set of all values taken by f̃ ,
where r1 > r2 > · · ·> rm. We notice that, for any s ∈ {1� � � � �m}, the setAs = {z : f̃ (z)≥ rs}
is increasing and measurable. Therefore, we may write

f̃ =
m∑
s=1

(rs − rs−1)Is�

where Is is the indicator function for As and where we set r0 = 0. We now compute∫
f̃ dβ=

m∑
s=1

(rs − rs−1)β(As)≤
m∑
s=1

(rs − rs−1)α(As)=
∫
f̃ dα�

contradicting the fact that
∫
f̃ dβ >

∫
f̃ dα. Q.E.D.

Due to Claim 5, to verify that a measure α stochastically dominates β in the first order,
we must ensure that α(A)≥ β(A) for all increasing measurable sets A. This verification
might still be difficult, since an increasing set can have fairly unconstrained structure. In
Lemma 13, we simplify this task by showing that we need not verify the inequality for all
increasing A, but rather only for a special class of increasing subsets.

24An increasing set A ⊂ Rn
≥0 satisfies the property that, for all a�b ∈ Rn

≥0 such that a is component-wise
greater than or equal to b, if b ∈A, then a ∈A as well.
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DEFINITION 16: For any z ∈Rn
≥0, we define the base rooted at z to be

Bz �
{
z′ : z � z′}�

the minimal increasing set containing z, where the notation z � z′ denotes that every
component of z is at most the corresponding component of z′.

We denote Qk to be the set of points in Rn
≥0 with all coordinates multiples of 2−k.

DEFINITION 17: An increasing set S is k-discretized if S = ⋃
z∈S∩Qk Bz . A corner c of a

k-discretized set S is a point c ∈ S∩Qk such that there does not exist z ∈ S \{c} with z � c.
LEMMA 12: Every k-discretized set S has only finitely many corners. Furthermore, S =⋃
c∈C Bc , where C is the collection of corners of S.

PROOF: We prove that there are finitely many corners by induction on the dimen-
sion, n. In the case n = 1, the result is obvious, since if S is nonempty it has exactly one
corner. Now suppose S has dimension n. Pick some corner ĉ = (c1� � � � � cn) ∈ S. We know
that any other corner must be strictly less than ĉ in some coordinate. Therefore,

|C| ≤ 1+
n∑
i=1

∣∣{c ∈ C s.t. ci < ĉi}
∣∣ = 1+

n∑
i=1

2kĉi∑
j=1

∣∣c ∈ C s.t. ci = ĉi − 2−kj
∣∣�

By the inductive hypothesis, we know that each set {c ∈ C s.t. ci = ĉi − 2−kj} is finite, since
it is contained in the set of corners of the (n− 1)-dimensional subset of S whose points
have ith coordinate ĉi − 2−kj. Therefore, |C| is finite.

To show that S = ⋃
c∈C Bc , pick any z ∈ S. Since S is k-discretized, there exists a b ∈

S ∩Qk such that z ∈ Bb. If b is a corner, then z is clearly contained in
⋃

c∈C Bc . If b is not
a corner, then there is some other point b′ ∈ S ∩Qk with b′ � b. If b′ is a corner, we are
done. Otherwise, we repeat this process at most 2k

∑
j bj times, after which time we will

have reached a corner c of S. By construction, we have z ∈ Bc , as desired. Q.E.D.

We now show that, to verify that one measure dominates another on all increasing sets,
it suffices to verify that this holds for all sets that are the union of finitely many bases.

LEMMA 13: Let g�h : Rn
≥0 → R≥0 be bounded integrable functions such that

∫
R
n
≥0
g(x)dx

and
∫
R
n
≥0
h(x)dx are finite. Suppose that, for all finite collections Z of points in Rn

≥0, we have

∫
⋃
z∈Z Bz

g(x)dx≥
∫

⋃
z∈Z Bz

h(x)dx�

Then for all increasing sets A⊆Rn
≥0,∫
A

g(x)dx≥
∫
A

h(x)dx�

PROOF: Let A be an increasing set. We clearly have A = ⋃
z∈A Bz . For any point

z ∈ Rn
≥0, denote by zn�k the point in Rn

≥0 such that, for each component i, the ith com-
ponent of zn�k is the maximum of 0 and zi − 2−k.
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We define the following two sets, which we think of as approximations of A:

Al
k �

⋃
z∈A∩Qk

Bz; Au
k �

⋃
z∈A∩Qk

Bzn�k �

It is clear that bothAl
k and Au

k are k-discretized. Furthermore, for any z ∈A, there exists
a z′ ∈A∩Qk such that each component of z′ is at most 2−k more than the corresponding
component of z. Therefore, Al

k ⊆A⊆Au
k.

We now will bound ∫
Au
k

g(x)dx−
∫
Al
k

g(x)dx�

Let

Wk = {
z ∈ Rn

≥0 : zi > k for some i
}; W c

k = {
z ∈Rn

≥0 : zi ≤ k for all i
}
�

The set W c
k contains all points which lie inside a box of side length k rooted at the origin,

and Wk contains all points outside of this box. We have the immediate (loose) bound that∫
Au
k
∩Wk

g dx−
∫
Al
k
∩Wk

g dx≤
∫
Wk

g dx�

Furthermore, since limk→∞
∫
W c
k
g dx= ∫

R
n
≥0
gdx, we know that limk→∞

∫
Wk
g dx= 0. There-

fore,

lim
k→∞

(∫
Au
k
∩Wk

g dx−
∫
Al
k
∩Wk
g dx

)
= 0�

Next, we bound∫
Au
k
∩W c

k

g dx−
∫
Al
k
∩W c

k

g dx≤ |g|sup

(
V

(
Au
k ∩W c

k

) − V (
Al
k ∩W c

k

))
�

where |g|sup <∞ is the supremum of g, and V (·) denotes the Lebesgue measure.
For each m ∈ {1� � � � � n+ 1} and z ∈ Rn

≥0, we define the point zm�k by

zm�ki =
{

max
{
0� zi − 2−k}� if i < m�

zi� otherwise�

and set

Am
k �

⋃
z∈A∩Qk

Bzm�k �

We have, by construction, Al
k =A1

k and Au
k =An+1

k . Therefore,

V
(
Au
k ∩W c

k

) − V (
Al
k ∩W c

k

) =
n∑

m=1

(
V

(
Am+1
k ∩W c

k

) − V (
Am
k ∩W c

k

))
�

We notice that, for any point (z1� z2� � � � � zm−1� zm+1� � � � � zn) ∈ [0�k]n−1, there is an interval
I of length at most 2−k such that

(z1� z2� � � � � zm−1�w�zm−2� � � � � zn) ∈ (
Am+1
k \Am

k

) ∩W c
k
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if and only if w ∈ I. Therefore,

V
(
Am+1
k ∩W c

k

) − V (
Am
k ∩W c

k

)
≤

∫ k

0
· · ·

∫ k

0

∫ k

0
· · ·

∫ k

0
2−k dz1 · · · dzm−1 dzm+1 · · · dzn = 2−kkn−1�

We thus have the bound

|g|sup

(
V

(
Au
k ∩W c

k

) − V (
Al
k ∩W c

k

)) ≤ |g|sup

n∑
m=1

2−kkn−1 = n|g|sup2−kkn−1

and therefore∫
Au
k

g dx−
∫
Al
k

g dx=
∫
Au
k
∩Wk

g dx−
∫
Al
k
∩Wk

g dx+
∫
Au
k
∩W c

k

g dx−
∫
Al
k
∩W c

k

g dx

≤
(∫

Au
k
∩Wk

g dx−
∫
Al
k
∩Wk

g dx

)
+ n|g|sup2−kkn−1�

In particular, we have

lim
k→∞

(∫
Au
k

g dx−
∫
Al
k

g dx

)
= 0�

Since
∫
Au
k
g dx≥ ∫

A
gdx≥ ∫

Al
k
g dx, we have

lim
k→∞

∫
Au
k

g dx=
∫
A

gdx= lim
k→∞

∫
Al
k

g dx�

Similarly, we have ∫
A

hdx= lim
k→∞

∫
Al
k

hdx

and thus ∫
A

(g− h)dx= lim
k→∞

(∫
Al
k

g dx−
∫
Al
k

hdx

)
�

Since Al
k is k-discretized, it has finitely many corners. Letting Zk denote the corners of

Al
k, we have Al

k = ⋃
z∈Zk Bz , and thus, by our assumption,

∫
Al
k
g dx− ∫

Al
k
hdx ≥ 0 for all

k. Therefore,
∫
A
(g− h)dx≥ 0, as desired. Q.E.D.

We are now ready to prove Lemma 3.

PROOF: We begin by defining, for any a and b with p1 ≤ a ≤ b ≤ q1, the function ζba :
[p2� q2] → R by

ζba(w2)�
∫ b

a

(
g(z1�w2)− h(z1�w2)

)
dz1�

This function ζba(w2) represents the integral of g− h along the vertical line from (a�w2)
to (b�w2).
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CLAIM 6: If (a�w2) ∈R, then ζba(w2)≤ 0.

PROOF: The inequality trivially holds unless there exists a z1 ∈ [a�b] such that
g(z1�w2) > h(z1�w2), so suppose such a z1 exists. It must be that (z1�w2) /∈R, since both
g and h are 0 in R. Indeed, because R is a decreasing set, it is also true that (z̃1�w2) /∈R
for all z̃1 ≥ z1. This implies by our assumption that

g(z̃1�w2)− h(z̃1�w2)= α(z̃1) ·β(w2) ·η(z̃1�w2)�

for all z̃1 ≥ z1. Given that g(z1�w2) > h(z1�w2) and that η(·�w2) is an increasing function,
we know that g(z̃1�w2)≥ h(z̃1�w2) for all z̃1 ≥ z1. Therefore, we have

ζz1
a (w2)≤ ζba(w2)≤ ζq1

a (w2)�

We notice, however, that ζq1
a (w2)≤ 0 by assumption, and thus the claim is proven. Q.E.D.

We now claim the following:

CLAIM 7: Suppose that ζba(w
∗
2) > 0 for some w∗

2 ∈ [c2� q2). Then ζba(w2) ≥ 0 for all w2 ∈
[w∗

2� q2).

PROOF: Given that ζba(w
∗
2) > 0, our previous claim implies that (a�w∗

2) /∈ R. Further-
more, since R is a decreasing set and w2 ≥w∗

2 , it follows that (a�w2) /∈R, and furthermore
that (c�w2) /∈R for any c ≥ a in [c1� q1). Therefore, we may write

ζba(w2)=
∫ b

a

(
g(z1�w2)− h(z1�w2)

)
dz1 =

∫ b

a

(
α(z1) ·β(w2) ·η(z1�w2)

)
dz1�

Similarly, (c�w∗
2) /∈R for any c ≥ a, so

ζba
(
w∗

2

) =
∫ b

a

(
α(z1) ·β(

w∗
2

) ·η(
z1�w

∗
2

))
dz1�

Note that, since ζba(w
∗
2) > 0, we have β(w∗

2) > 0. Thus, since η is increasing,

ζba(w2)≥
∫ b

a

(
α(z1) ·β(w2) ·η(

z1�w
∗
2

))
dz1 = β(w2)

β
(
w∗

2

)ζba(w∗
2

) ≥ 0�

as desired. Q.E.D.

We extend g and h to all of R2
≥0 by setting them to be 0 outside of C. By Claim 13, to

prove that g �1 h, it suffices to prove that
∫
A
gdxdy ≥ ∫

A
hdxdy for all sets A which are

the union of finitely many bases. Since g and h are 0 outside of C, it suffices to consider
only bases Bz′ where z′ ∈ C, since otherwise we can either remove the base (if it is disjoint
from C) or can increase the coordinates of z′ moving it to C without affecting the value of
either integral.

We now complete the proof of Lemma 3 by induction on the number of bases in the
union.
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Base Case. We aim to show
∫
Br
(g− h)dxdy ≥ 0 for any r = (r1� r2) ∈ C. We have∫

Br

(g− h)dxdy =
∫ q2

r2

∫ q1

r1

(g− h)dz1 dz2

=
∫ q2

r2

ζq1
r1
(z2)dz2�

By Claim 7, we know that either ζq1
r1
(z2)≥ 0 for all z2 ≥ r2, or ζq1

r1
(z2)≤ 0 for all z2 between

p2 and r2. In the first case, the integral is clearly nonnegative, so we may assume that we
are in the second case. We then have∫ q2

r2

ζq1
r1
(z2)dz2 ≥

∫ q2

p2

ζq1
r1
(z2)dz2

=
∫ q2

p2

∫ q1

r1

(g− h)dz1 dz2

=
∫ q1

r1

∫ q2

p2

(g− h)dz2 dz1�

By an analogous argument to that above, we know that either
∫ q2
p2
(g − h)(z1� z2)dz2 is

nonnegative for all z1 ≥ r1 (in which case the desired inequality holds trivially) or is non-
positive for all z1 between p1 and r1. We assume therefore that we are in the second case,
and thus ∫ q1

r1

∫ q2

p2

(g− h)dz2 dz1 ≥
∫ q1

p1

∫ q2

p2

(g− h)dz2 dz1

=
∫
C
(g− h)dxdy�

which is nonnegative by assumption.
Inductive Step. Suppose that we have proven the result for all sets which are finite unions

of at most k bases. Consider now a set

A=
k+1⋃
i=1

Bz(i) �

We may assume that all z(i) are distinct and that there do not exist distinct z(i), z(j) with
z(i) component-wise less than z(j), since otherwise we could remove one such Bz(i) from
the union without affecting the set A and the desired inequality would follow from the
inductive hypothesis.

We may therefore order the z(i) such that

p1 ≤ z(k+1)
1 < z(k)1 < z(k−1)

1 < · · ·< z(1)1 �

p2 ≤ z(1)2 < z(2)2 < z(3)2 < · · ·< z(k+1)
2 �

We can now use Claim 7 to transform the set A that consists of a union of k+ 1 bases
into a set consisting of k bases. See Figure 9 for an illustration. By Claim 7, we know that
one of the two following cases must hold:
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FIGURE 9.—We show that either decreasing z(k+1)
2 to z(k)2 or removing z(k+1) entirely decreases the value of∫

A
(f − g). In either case, we can apply our inductive hypothesis.

CASE 1: ζ
z
(k)
1

z
(k+1)
1

(w2)≤ 0 for all p2 ≤w2 ≤ z(k+1)
2 .

In this case, we see that

∫ z
(k+1)
2

z
(k)
2

∫ z
(k)
1

z
(k+1)
1

(f − g)dz1 dz2 =
∫ z

(k+1)
2

z
(k)
2

ζ
z
(k)
1

z
(k+1)
1

(w)dw≤ 0�

For notational purposes, we denote here by (f − g)(S) the integral
∫
S
(f − g)dz1 dz2 for any

set S. We compute

(f − g)(A) ≥ (f − g)(A)
+ (f − g)({z : z(k+1)

1 ≤ z1 ≤ z(k)1 and z(k)2 ≤ z2 ≤ z(k+1)
2

})
= (f − g)

(
k⋃
i=1

Bz(i) ∪B(z(k+1)
1 �z

(k)
2 )

)

= (f − g)
(
k−1⋃
i=1

Bz(i) ∪B(z(k+1)
1 �z

(k)
2 )

)
�

where the last equality follows from (z(k)1 � z(k)2 ) being component-wise greater than or equal to
(z(k+1)

1 � z(k)2 ). The inductive hypothesis implies that the quantity in the last line of the above
derivation is ≥ 0.

CASE 2: ζ
z
(k)
1

z
(k+1)
1

(w2)≥ 0 for all w2 ≥ z(k+1)
2 .
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In this case, we have

∫ q2

z
(k+1)
2

∫ z
(k)
1

z
(k+1)
1

(f − g)dz1 dz2 =
∫ q2

z
(k+1)
2

ζ
z
(k)
1

z
(k+1)
1

(w)dw≥ 0�

Therefore, it follows that

(f − g)(A)= (f − g)
(

k⋃
i=1

Bz(i)

)

+ (f − g)({z : z(k+1)
1 ≤ z1 ≤ z(k)1 and z(k+1)

2 ≤ z2

})
≥ (f − g)

(
k⋃
i=1

Bz(i)

)
≥ 0�

where the final inequality follows from the inductive hypothesis. Q.E.D.

E.2. Verifying Stochastic Dominance in Example 3

We sketch the application of Lemma 3 for verifying that μ+|W �1 μ−|W in Example 3.
We set C = [xcrit�1] × [ycrit�1] and R = Z ∩ C, so that W = C \R. We let g and h be the
positive and negative parts of the density function of μ|W , respectively, so that the density
of μ|W is given by g− h. Since Z lies below both curves Stop and Sright, we know that inte-
grating the density of μ along any horizontal or vertical line outwards starting anywhere
on the boundary of Z yields a non-positive quantity, verifying the second condition of
Lemma 3. In addition, on W = C \R, we have

g(z1� z2)− h(z1� z2)= f1(z1)f2(z2)

(
1

1 − z1
+ 1

1 − z2
− 5

)
�

which satisfies the third condition of Lemma 3, as 1/(1−z1)+1/(1−z2)−5 is increasing.
Finally, we verify the first condition of Lemma 3 by integrating g−h over C. This integral
is equal to μ(W)= 0 and thus all conditions of Lemma 3 are satisfied.

E.3. Uniqueness of Mechanism in Example 3

To argue that the utility u(x) is shared by all optimal mechanisms, we start by construct-
ing an optimal solution γ∗ to the RHS of (5). γ∗ needs to satisfy the complementary slack-
ness conditions of Corollary 1 against any optimal solution u∗ to the LHS of (5). We will
choose our solution γ∗ so that the complementary slackness conditions will imply u∗ = u.
Let us proceed with the choice of γ∗. Recall the canonical partition Z ∪ A ∪ B ∪ W of
the type space, identified above, and illustrated in Figure 6. We define a solution γ∗ to the
RHS of (5) that separates into the four regions as follows (the optimality of this γ∗ follows
easily by checking that it satisfies the complementary slackness conditions of Corollary 1
against u):

Region Z

Recall that, in region Z, we have μ|Z �cvx 0. Our solution γ∗ matches the +1 unit of
mass sitting at the origin to the negative mass spread throughout region Z, by moving
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positive mass to coordinate-wise larger points and performing mean-preserving spreads.
By the complementary slackness conditions of Corollary 1 (see Remark 1 for intuition),
it follows that u∗(x)= 0, for any optimal solution u∗ to the LHS of (5).

Regions A and B
In regions A and B, our solution γ∗ transports mass vertically and, respectively, hor-

izontally. The complementary slackness conditions imply then that any optimal solution
u∗ to the LHS of (5) u∗ must change linearly in the second coordinate in region A and
linearly in the first coordinate in region B.

Region W
Finally, in region W , we want to show that any optimal u satisfies |u(�x) − u(�y)| =

‖�x− �y‖1 if �x≥ �y coordinate-wise. This is not as straightforward as the previous two cases,
as we do not have an explicit description of the optimal dual solution. However, we can
use Lemma 3 to show that there exists a measure γ∗ which is optimal for the dual and
matches types on the top right corner (with values ≈ (1�1)) to types close to the bundling
line (with values x1 + x2 ≈ p∗), which implies that any optimal function u must be linear
in W .

By continuity, any optimal u must be equal to z1 + z2 − p∗ = 0 when z1 + z2 = p∗.
Moreover, it holds that u(z) ≤ z1 + z2 − p∗, because u is 1-Lipschitz. We will now show
the reverse inequality by showing that u(1�1)= 2−p∗. Recall that the density of measure
μ in region W is equal to

μ(z1� z2)= f1(z1)f2(z2)

(
1

1 − z1
+ 1

1 − z2
− 5

)
�

where f1(x) = f2(x) = (1 − x). Lemma 3 implied that μ+|W �1 μ−|W but did not give a
transport map γ constructively. To partially specify a transport map γ that is optimal for
the dual, we define, for sufficiently small ε > 0, the measure μ′ which has density

μ′(z1� z2)= f1(z1)f2(z2)

(
1
ε

+ max
(

1
1 − z2

�
1

1 − z1

)
− 5

)

when (z1� z2) ∈ [1−ε�1]2 and μ′(z1� z2)= μ(z1� z2) otherwise. In particular, μ′ is obtained
by removing some positive mass from μ in [1−ε�1]2 and thus μ′(W) < μ(W)= 0. More-
over, notice that we defined μ′ so that μ′(z1�z2)

f1(z1)f2(z2)
is still an increasing function. Now, let R′

be the region enclosed within the curves s1(x), s2(y), x+y = p∗ and x+y = p′ for p′ >p∗

so that μ′(W \R′)= 0. This defines a decomposition of measure μ|W into two measures
μ′|W\R′ and μ|W −μ′|W\R′ of zero total mass (Figure 10).

We apply Lemma 3 for μ′ in region W \R′ to get that μ′|W\R′ �1 0. We also have that
(μ− μ′)|W �1 μ|R′ since (μ− μ′)|W contains only positive mass supported on [1 − ε�1]2

and every point in the support point-wise dominates every point in the support of μ|R′ .
Thus, there exists an optimal transport map γ∗ in region W such that γ∗ = γ(i) + γ(ii) and
γ(i) transports the mass μ′|W\R′ while γ(ii) transports mass arbitrarily from (μ − μ′)|W
to μ|R′ . Given such an optimal γ∗, the complementary slackness conditions of Corol-
lary 1 imply that any feasible u must satisfy |u(�z) − u(�z′)| = ‖�z − �z′‖1 whenever mass
is transfered from �z to �z′. This can only happen if u(1�1) = 2 − p∗ and implies that
u(�z)= z1 + z2 −p∗ everywhere on W .
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FIGURE 10.—Decomposition of measure μ|W into measures μ′|W\R′ and μ|W −μ′|W\R′ . The dark shaded
regions R′ and H = [1 − ε�1]2 show the support of μ|W −μ′|W\R′ .

APPENDIX F: EXTENDING TO UNBOUNDED DISTRIBUTIONS

Several results of this paper extend to unbounded type spaces, although such extensions
impose additional technical difficulties. Here we briefly discuss how some of our results
generalize.

We can often obtain a “transformed measure” (analogous to Theorem 1 even when type
spaces are unbounded) using integration by parts. We wish to ensure, however, that the
density function f decays sufficiently quickly so that there is no “surface term at infinity.”
For example, we may require that limzi→∞ fi(zi)z2

i → 0, as in Daskalakis, Deckelbaum,
and Tzamos (2013). We note that without some conditions on the decay rate of f , it is
possible that the supremum revenue achievable is infinite and thus no optimal mechanism
exists.

Similar issues arise when integrating with respect to an unbounded measure μ. It is
helpful, therefore, to consider only measures μ such that

∫ ‖x‖1 d|μ|<∞, to ensure that∫
udμ is finite for any utility function u. The measures in our examples satisfy this prop-

erty. We can (informally speaking) attempt to extend this definition to unbounded mea-
sures (with regularity conditions such as

∫ ‖x‖1 d|μ|<∞) by ensuring that whenever the
“smaller” side has infinite value, so does the larger side.

Importantly, the calculations of Lemma 1 (weak duality) hold for unbounded μ, pro-
vided

∫ ‖x‖1 d|μ| < ∞. Thus, tight certificates still certify optimality, even in the un-
bounded case. However, our strong duality proof relies on technical tools which re-
quire compact spaces, and thus these proofs do not immediately apply when μ is un-
bounded.

To summarize our discussion so far, we can often transform measures and obtain an
analogue of Theorem 1 for unbounded distributions (provided the distributions decay
sufficiently quickly), and can easily obtain a weak duality result for such unbounded mea-
sures, but additional work is required to prove whether strong duality holds.
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