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This note contains some supplementary results. First, Section S1 gives Jewitt’s (1988)
original (unpublished) proof of his one-signal result, based on his condition (2.10a),
and Section S2 shows why it is hard to generalize this proof to the multisignal case.
Section S3 shows how to check for concavity of the signal technology in the agent’s
effort level. Section S4 gives an alternative derivation of the results in Section 8, which
avoids the vector calculus machinery from Section 7. Section S5 presents a candidate
canonical vector flow for a signal technology, but argues that this canonical flow is of
limited usefulness. Section S6 shows how to derive the state-space representation in
Proposition 3, using the vector flow in Lemma 3. Finally, Section S7 gives the details
for the generalization of Jewitt’s Theorem 2, mentioned in Section 9.

S1. JEWITT’S FULL ONE-SIGNAL CONDITIONS

THIS AND THE FOLLOWING SECTION show why it is difficult to generalize Je-
witt’s (1988) key one-signal condition (2.10a) to the multisignal case. The basic
framework, including Jewitt’s key condition and his original unpublished proof
of his one-signal result, are presented in this section. Section S2 then shows
why it is difficult to generalize this proof and condition to the multisignal case.
Thus, the main paper must use the stronger condition, that signals are concave
in the agent’s effort, in its multisignal generalization of Jewitt’s conditions.

Note that Jewitt also dropped his condition (2.10a) in his treatment of the
multisignal case. In his main multisignal result (his Theorem 3), he also re-
placed his (2.10a) with concavity of the signal technology, as do I (though Jewitt
also assumed independent signals). In his other multisignal result (his Theo-
rem 2) he replaced (2.10a) with the much stronger convexity of the distribution
function condition (CDFC).

Finally, it should be noted that these sections do not show that it is impossible
to generalize Jewitt’s condition (2.10a) to the multisignal case, but only argues
that the most obvious generalizations do not work. Thus, a definitive resolution
of this issue, either way, remains an interesting topic for future research.

There is one principal and one agent, with the agent choosing an effort level
a ≥ 0. Suppose initially that there is a one-dimensional signal x̃, with density
and cumulative distribution functions

f (x|a) and F(x|a)�(S1)

respectively. Assume as usual that the support of f (x|a) in (S1) is independent
of a and that the density is bounded between two positive constants on its
support.
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The principal is risk neutral, while the agent has a von Neumann–Morgen-
stern utility function u(s) − a, with s the agent’s income. Also, the principal
pays the agent using payment schedule s(x). Thus, the principal’s expected
payoff is

V (s(·)�a)=
∫

[x− s(x)]f (x|a)dx�(S2)

and the agent’s expected payoff is

U(s(·)�a)=
∫
u(s(x))f (x|a)dx− a�(S3)

The principal’s problem is to choose a payment schedule, s∗(·), and target ac-
tion, a∗, by the agent to maximize (S2) given two constraints:

for the agent, a∗ maximizes U(s∗(·)�a)(S4)

and

the resulting expected payoff to the agent, U(s∗(·)�a∗)≥U0�(S5)

where U0 is the agent’s reservation utility. Here (S4) and (S5) are the usual
incentive compatibility and participation constraints.

The first-order approach assumes that one can replace the constraint (S4)
with a “relaxed” constraint

Ua(s
∗(·)�a∗)= 0�(S6)

where subscripts denote partial derivatives. To ensure that (S6) implies (S4), it
is sufficient for the agent’s utility, U(s∗(·)�a), to be a concave function of her
effort a, when s∗(·) solves the relaxed problem involving (S6). To get this, we
first ensure that u(s∗(x)) is a concave function of x. For this, the following two
conditions are sufficient:

CONDITION (a): fa(x|a)/f (x|a) is nondecreasing concave in x for each a.

CONDITION (b): Jewitt’s (1988) function, ω(·), is increasing concave, where

ω(z)= u((u′)−1(1/z))�(S7)

These conditions ensure that, if s∗(·) is a solution to the relaxed problem,
then u(s∗(x)) is concave in x (see the main paper). Jewitt also makes one more
assumption:
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CONDITION (c)—Jewitt’s Condition (2.10a):

∫ b

−∞ F(x|a)dx is nonincreasing convex in a for every b�(S8)

Using integration by parts and letting h(x;b)= min(0�x− b), (S8) is equiv-
alent to

hT(a;b) = ∫
h(x;b)f (x|a)dx is nondecreasing concave in a for

every b.(S9)

Here h(·� b) is a kind of “test function,” since (S9) implies that

if ϕ(·) is nondecreasing concave, ϕT(a)= ∫
ϕ(x)f (x|a)dx is also�(S10)

Jewitt cited an unpublished working paper (Jewitt and Kanbur (1988)) which
shows that (S8) is equivalent to (S10). The equivalence of (S9) to (S10) is
shown in the following lemma:

LEMMA S1: Conditions (S9) and (S10) are equivalent.

PROOF: The following proof is essentially the unpublished proof in the
Jewitt–Kanbur paper (personal communication from Ian Jewitt), and it has
a structure similar to the proof of Lemma 1 in the main paper. The basic idea
is that any nondecreasing concave function ϕ(·) can clearly be approximated,
up to a constant, by a positive linear combination, over different values of b, of
the functions h(·;b), say

ϕ(x)≈ α0 +
n∑
i=1

αih(x;bi)� where αi > 0 for i≥ 1�(S11)

Thus, applying the transformation in (S10) gives

ϕT(a)≈ α0 +
n∑
i=1

αih
T (a;bi)�(S12)

with each term nondecreasing concave by (S9). Taking limits, ϕT(x) is also
nondecreasing concave. Q.E.D.

PROPOSITION S1: Assume (a) fa(x|a)/f (x|a) is nondecreasing concave in x,
(b) Jewitt’s function ω(·) is increasing concave, and (c) Jewitt’s condition (2.10a)
holds. Then any solution to the relaxed problem, maximizing (S2) subject to (S5)
and (S6), is also a solution to the full problem of maximizing (S2) subject to (S4)
and (S5).
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PROOF: Let u(s∗(x)) = ϕ(x). Then (a) and (b) show that ϕ(x) is nonde-
creasing concave, as in the main paper. Thus, since Jewitt’s condition (2.10a)
implies (S9), which implies (S10), it follows that U(s∗(·)�a) = ϕT(a) − a is
concave in a. Q.E.D.

Conditions (a) and (b) generalize easily to the multisignal case (see Jewitt
(1988) or the main paper). However, condition (2.10a) is difficult to generalize,
as shown next.

S2. THE DIFFICULTY IN GENERALIZING JEWITT’S CONDITION (2.10a)
TO THE MULTI-SIGNAL CASE

This section shows why it is difficult to generalize Jewitt’s condition (2.10a)
to the multisignal case. For the multisignal version of the problem, replace the
random signal x̃ by the random vector x̃, with density f (x|a) and cumulative
distribution function F(x|a). Again assume that the support of f (x|a) is inde-
pendent of a and that the density is bounded between two positive constants
on its support. As in Sinclair-Desgagné (1994), let the monetary payoff to the
principal as a function of x be π(x). Also, assume the principal pays the agent
using payment function s(x). Then, analogous to Section S1, the principal’s
expected payoff is

V (s(·)�a)=
∫

[π(x)− s(x)]f (x|a)dx�(S13)

the agent’s expected payoff is

U(s(·)�a)=
∫
u(s(x))f (x|a)dx − a�(S14)

and the principal’s problem is to choose a payment schedule, s∗(·), and tar-
get action, a∗, to maximize (S13), given the constraints (S4) and (S5), where
now U(s(·)�a) is defined by (S14), not (S3). Also, as before, the first-order
approach assumes that one can replace the constraint (S4) with a relaxed con-
straint, (S6) (i.e., Ua(s

∗(·)�a∗)= 0).
To generalize Jewitt’s condition (2.10a), we must determine conditions such

that, for any multivariable function ϕ(x),

if ϕ(·) is nondecreasing concave, then ϕT(a) = ∫
ϕ(x)f (x|a)dx is

also.(S15)

To see how difficult it is to generalize Jewitt’s condition (2.10a), we show that
the obvious multivariable analogues to the test functions h(x;b)= min(0�x−
b), used in (S9), are insufficient to approximate, or “span,” as positive linear
combinations, all multivariable nondecreasing concave functions, so the argu-
ment in (S11) and (S12) does not go through. For related results, see Johansen
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(1974) and Bronshtein (1978), who showed that, in the multivariable case, the
set of such generalized spanning test functions hmust, remarkably, be dense in
the set of all concave functions.

Focus for definiteness on the two variable case. One natural generalization
of the h(x;b) function is then

h(x1�x2;α1�α2�β)= min(0�α1x1 + α2x2 −β)(S16)

with α1, α2 ≥ 0, so h is nondecreasing in (x1�x2), and α1 + α2 = 1, say, as a
harmless normalization. One would hope that all nondecreasing concave func-
tions could be approximated as constants plus positive linear combinations of
these h functions. If this were possible, one could easily extend Lemma S1.
However, this approach does not work, as shown by the following lemma.

LEMMA S2: The nondecreasing concave function k(x1�x2)= min(x1�x2) can-
not be approximated by a constant plus a positive linear combination of functions
of the form h(x1�x2;α1�α2�β) from (S16), with α1, α2 ≥ 0 and α1 + α2 = 1.

For the proof, see Appendix A.
Thus, if one wants to use the functions in (S16) to extend Lemma S1 to the

multisignal case, then the method of proof from Lemma S1 does not work. Of
course, it could be possible for Lemma S1 to extend in this way to the multi-
variable case, even if the method of proof does not. That is, one might hope
that if the transformed functions, hT(a;α1�α2�β)= ∫

h(x;α1�α2�β)f (x|a)dx,
are concave in a for all α1, α2 ≥ 0 and all β, then (S15) holds. The next lemma
shows that this is not the case.

LEMMA S3: Consider the nondecreasing concave function given by ϕ(x1�x2)=
min(x1 − 1�x2). There is a distribution, f (x|a), such that hT(a;α1�α2�β) is non-
decreasing concave in a for all α1, α2, and β, with α1, α2 ≥ 0, but ϕT(a) is not
concave in a. Also, this distribution can be made to satisfy the monotone likeli-
hood ratio (MLR) property, fa(x|a)/f (x|a) nondecreasing in x.

For the proof, see Appendix B.
Thus, the most natural generalization of (S9) does not work. Of course, con-

cave functions can always be approximated by some type of piecewise linear
concave function, since the graph of a concave function forms the lower enve-
lope of its tangent planes. Thus, we could generalize Lemma S1 by replacing
the h(x;b) functions used in (S9) by arbitrary piecewise linear concave func-
tions. However, this class of functions is too flexible, since it would be just as
hard to check (S15) for all piecewise linear concave functions as to check it for
all concave functions.

A third possibility might be to replace the h(·;b) function in (S9) with some
sort of generalization of the h(·;b) function, which is not too flexible, but which
is more flexible than the h(·� ·;α1�α2�β) functions in (S16).
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The next most flexible generalization might be a nondecreasing flat-top pyra-
mid function. Define such a function to have a graph with a flat top (just as the
graph of h(x;b) is flat for x≥ b). Then require the faces surrounding this flat
top to be separated by edges which do not intersect. This is a reasonable re-
striction, since otherwise we would come close to allowing all piecewise linear
concave functions, which would be too broad a class to check, as argued above.
As an example of such a nondecreasing flat-top pyramid function, consider

min(0�2x1�2x2�x1 + x2 − 8)�(S17)

The flat top in (S17) is bounded by the lines x1 = 0, x1 + x2 = 8, and x2 = 0.
The surrounding faces are separated by the edges x2 = x1 + 8 and x2 = x1 − 8,
which do not intersect.

Of course, checking (S15) for all such pyramid functions would also be im-
practical, even if this gave sufficient conditions for (S15) in general. However,
it probably does not give such sufficient conditions. For example, positive lin-
ear combinations of such functions are not enough to approximate the nonde-
creasing concave function

G(x1�x2)= min(0�x1�x2�x1 + x2 + 1)�(S18)

LEMMA S4: G(x1�x2) in (S18) is nondecreasing concave, but it cannot be ap-
proximated by a positive linear combination of nondecreasing flat-top pyramid
functions.

See Appendix C for the proof.
Thus, the argument in (S11) and (S12) again does not go through. Also,

the proof of Lemma S4 could be adapted to the case of component pyramids
without flat tops.

It would be interesting to construct a counterexample, analogous to the one
in Lemma S3, to show definitively that even if (S15) holds for nondecreas-
ing flat-top pyramids, it does not necessarily hold for arbitrary nondecreas-
ing concave functions. However, the example in Appendix B is already quite
complicated, and this additional counterexample would presumably be even
more complicated. In any case, it seems to be extremely difficult to generalize
Lemma S1 to the multisignal case.

Thus, we have shown that it is difficult to generalize Jewitt’s condition
(2.10a) to the multisignal case. In the main paper, therefore, I simply assume
that x(a�ϑ) is concave in a. Note that Jewitt (1988) also made this simple
concavity assumption for his main multisignal result, his Theorem 3. It would
be interesting to see whether there are any classes of functions, perhaps more
flexible than those considered here, which could be used to obtain a multisignal
generalization of Jewitt’s condition (2.10a).
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S3. CHECKING CONCAVITY IN a OF THE COORDINATES OF THE STATE-SPACE
REPRESENTATION x(a�ϑ)

The state-space representation, x(a�ϑ), in Proposition 3 of the main paper
can be used to impose conditions for concavity of the x(a�ϑ) function. This
is a simple mechanical application of the following rather technical result. In
the following proposition, let F(x� a) = (F 1(x� a)�F 2(x� a))′ be a sufficiently
smooth 2 × 1 vector function, with primes denoting transposes and with x =
(x1�x2)

′. Define x1(a�θ1� θ2) and x2(a�θ1� θ2) implicitly by F(x� a)= (θ1� θ2)
′.

Let v be the 3 × 1 vector (x1�x2� a)
′, let ∂F/∂v be the 2 × 3 Jacobian matrix of

partial derivatives of F(x� a) = F(v) with respect to v, and let Hi be the 3 × 3
Hessian of Fi(x� a)= Fi(v) with respect to v.

PROPOSITION S2: Suppose F 1
x1
F 2
x2

−F 2
x1
F 1
x2
> 0. Then for each i� j = 1�2, i �= j,

the function xi(a�θ1� θ2) is concave in a if and only if

z′[HjF ixj − HiFjxj ]z ≤ 0 for all 3 × 1 vectors z satisfying (∂F/∂v)z = 0.(S19)

PROOF: Differentiating F(v) = (θ1� θ2)
′ implicitly, for fixed (θ1� θ2), shows

that

dv/da= (dx1/da�dx2/da�1)′ is determined by (∂F/∂v)(dv/da)= 0,(S20)

where dv/da is determined uniquely since F 1
x1
F 2
x2

− F 2
x1
F 1
x2

�= 0. Implicitly dif-
ferentiating both coordinates of (∂F/∂v)(dv/da)= 0 from (S20) gives

(dv/da)′H1(dv/da)+ (∂F 1/∂v)(d2v/da2)= 0�

(dv/da)′H2(dv/da)+ (∂F 2/∂v)(d2v/da2)= 0�

Solving these two equations for d2v/da2 = (d2x1/da
2� d2x2/da

2�0)′ gives

d2xi/da
2 = (dv/da)′

[
HjF ixj − HiFjxj

]
(dv/da)/

[
F 1
x1
F 2
x2

− F 2
x1
F 1
x2

]
�(S21)

where i� j = 1�2� i �= j. The result follows from (S20) and (S21). Q.E.D.

To apply Proposition S2 to our case, replace F 1(x1�x2� a) and F 2(x1�x2� a)
with F 1(x1|a) and F 2(x2|x1� a). Then F 1

x1
F 2
x2

−F 2
x1
F 1
x2
> 0 reduces to f 1(x1|a)×

f 2(x2|x1� a) > 0, with the f i’s the obvious densities. One can therefore use
(S19) to check concavity in a of x(a�ϑ), from (11) in the main paper, by using
the analogue to bordered Hessians, for example (see Debreu (1952)).

This may, however, be computationally messy. It might therefore be easier
to use a shortcut to check concavity of x(a�ϑ). For example, one might begin
with a state-space representation or solve (11) explicitly.
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Thus, to find conditions for the concavity of x(a�ϑ) in a, consider for exam-
ple x2(a�θ1� θ2) from Proposition 3. For simplicity represent this as

x2(a�θ1� θ2)= (F 2)−1
(
θ2|(F 1)−1(θ1|a)�a

)
= g(x1(a�θ1)�a)= g(h(a)�a)�

where

g(x1� a)= (F 2)−1(θ2|x1� a) and h(a)= (F 1)−1(θ1|a)= x1(a�θ1)�

Here the θi’s have been suppressed in g and h for brevity. Concavity now re-
quires

∂2x2/∂a
2 = g1(h(a)�a)h

′′(a)+ g11(h(a)�a)h
′(a)2

+ g22(h(a)�a)+ 2g12(h(a)�a)h
′(a)≤ 0�

Suppose x̃1 and x̃2 are positively related, so an increase in x̃1 increases x̃2 in
the sense of first-order stochastic dominance. Then g1(h(a)�a) will be non-
negative. Thus if h is concave (so x1 depends concavely on a), then the first
term will be nonpositive. Next, if g is concave in each of its arguments (so x2

depends concavely on x1 and a), then the next two terms will be nonpositive.
This leaves the last term. If the marginal distribution of x̃1 is increasing in a in
the sense of first-order stochastic dominance, then h′(a) is nonnegative. The
key issue therefore becomes whether g12(h(a)�a) is nonpositive. This requires
roughly that the correlation between x̃1 and x̃2 be nonincreasing in a.

A similar condition is important in the concave increasing-set probability
(CISP) approach (see Proposition 7, Equation (29), in the main paper). Note
also that if g is concave jointly in x1 and a, then its Hessian is negative semidef-
inite, so the sum of the last three terms is again nonpositive.

S4. ALTERNATIVE DERIVATION OF THE LOCAL CONDITIONS IN SECTION 8

This section presents alternative derivations of the results in Section 8 of
the main paper, which avoid the vector calculus machinery in Section 7 of that
paper. However, I believe that these alternative derivations are less illuminat-
ing than the derivations in the paper. Proposition S3 treats the nondecreasing
increasing-set probability (NISP) condition and is identical to Proposition 6 in
the paper, while Proposition S4 handles CISP and is identical to Proposition 7.
Proposition S5 below then presents conditions which are more general, but
also more complicated, than those in Propositions S3 and S4, and is identical
to Lemma 3 in the paper. Throughout we focus on two-dimensional signals,
x̃ = (x̃� ỹ), on the unit square S = [0�1] × [0�1]. The results generalize in a
straightforward manner to n signals.

Let g(x|a) and G(x|a) be the marginal density and cumulative distribution
functions of x̃, and let h(y|x�a) and H(y|x�a) be the conditional density and
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cumulative distribution functions of ỹ given x̃ = x. Thus the joint density of
(x̃� ỹ) is f (x� y|a)= g(x|a)h(y|x�a).

Let E be an increasing set and let y = b(x), for x ∈ [0�1], be the downward
sloping curve that describes the southwest boundary of E ∩ S, so b′(x) ≤ 0. If
this southwest boundary hits the upper boundary of S, then let b(x) = 1 on
the relevant interval [0�xa]; if it hits the lower boundary, let b(x) = 0 on the
relevant interval [xb�1]. Assume that b(·) is continuous and piecewise differ-
entiable (it can always be approximated by such a function). We start with the
following lemma.

LEMMA S5: Let P = Prob(x̃ ∈ E) be the probability that the signal x̃ is in E.
Then

dP/da=
∫ 1

0

[
Ga(x|a)Hx(b(x)|x�a)− g(x|a)Ha(b(x)|x�a)

]
dx(S22)

+
∫ 1

0
Ga(x|a)h(b(x)|x�a)b′(x)dx= IA + IB�

PROOF: First,

P =
∫ 1

x=0

∫ 1

y=b(x)
g(x|a)h(y|x�a)dy dx

=
∫ 1

0
g(x|a)[1 −H(b(x)|x�a)]dx�

Thus, assuming one can differentiate under the integral sign,

dP/da=
∫ 1

0
ga(x|a)[1 −H(b(x)|x�a)]dx

−
∫ 1

0
g(x|a)Ha(b(x)|x�a)dx= I1 − I2�

where I1 and I2 are the obvious integrals. Next, integrate I1 by parts, yielding

I1 =Ga(x|a)[1 −H(b(x)|x�a)]|1
x=0 +

∫ 1

0
Ga(x|a)Hx(b(x)|x�a)dx

+
∫ 1

0
Ga(x|a)h(b(x)|x�a)b′(x)dx= 0 + I1a + I1b�

where the first term is zero since Ga(0|a) =Ga(1|a) = 0. Here IA = I1a − I2

and IB = I1b. Thus, dP/da= IA + IB, as in (S22). Q.E.D.
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Note that the integration by parts on I1 is useful since it is more natural to
impose conditions on Ga(x|a) and Hx(y|x�a) than on ga(x|a). This is illus-
trated in the following proposition.

PROPOSITION S3: Suppose G(x|a) is nonincreasing in a, and H(y|x�a) is
nonincreasing in x and a. Then NISP holds.

PROOF: First, since Ga(x|a) ≤ 0, Hx(y|x�a) ≤ 0, and Ha(y|x�a) ≤ 0, the
first integral in (S22), IA ≥ 0. Next, sinceGa(x|a)≤ 0 and b′(x)≤ 0, the second
integral IB ≥ 0 as well. Thus, dP/da≥ 0, so NISP holds. Q.E.D.

Note that Proposition S3 is Proposition 6 of the main paper, where its mean-
ing is discussed in greater detail.

PROPOSITION S4: Suppose Ga(x|a) and Ha(y|x�a) are negative (this follows
from strict versions of the corresponding MLR properties for x̃ and ỹ). Assume
also that g(x|a) and h(y|x�a) are strictly positive for x� y ∈ [0�1]. Finally assume
Hx(y|x�a) < 0 (so x̃ and ỹ are positively related). Then the conditions

ha(y|x�a)/h(y|x�a)≤ −Gaa(x|a)/Ga(x|a)�(S23)

ga(x|a)/g(x|a)≤ −Haa(y|x�a)/Ha(y|x�a)�(S24)

Hax(y|x�a)/Hx(y|x�a)≤ −Gaa(x|a)/Ga(x|a)(S25)

are sufficient to ensure CISP.

PROOF: First, differentiate the integrand of IB in (S22) with respect to a,
yielding [Gaa(x|a)h(y|x�a) + Ga(x|a)ha(y|x�a)]b′(x). Now, (S23) plus
Ga(x|a) < 0 and b′(x) ≤ 0 ensure that this is less than or equal to zero, so
IB is nonincreasing in a. Similarly, (S25) plus Hx(y|x�a) < 0 and Ga(x|a) < 0
ensure that the first term in the integrand of IA is nonincreasing in a. Finally,
(S24) and Ha(y|x�a) < 0 ensure that the second term in IA, after the minus
sign, is nondecreasing in a. Thus, IA is nonincreasing in a, so dP/da is nonin-
creasing in a, and CISP holds. Q.E.D.

Again, Proposition S4 is Proposition 7 of the main paper, where its meaning
is discussed in greater detail.

Next, (S23) can be weakened if we are willing to strengthen (S24) and visa
versa, as explained in the main paper. We show how to do this in Proposition S5
below, which replicates Lemma 3. This proposition will build on the following
lemma.

LEMMA S6: Let φ(x� y�a) and ψ(x� y�a) satisfy

φx(x� y�a)+ψy(x� y�a)= 0(S26)
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and

φ(0� y�a)=φ(1� y�a)=ψ(x�0� a)=ψ(x�1� a)= 0�(S27)

Then ∫ 1

0
ψ(x�b(x)�a)dx−

∫ 1

0
φ(x�b(x)�a)b′(x)dx= Iψ − Iφ = 0�(S28)

PROOF: First, since ψ(x�1� a) = 0,

Iψ = −
∫ 1

0

[
ψ(x�1� a)−ψ(x�b(x)�a)]dx(S29)

= −
∫ 1

x=0

∫ 1

y=b(x)
ψy(x� y�a)dy dx�

where the second step uses the fundamental theorem of calculus.
Next, suppose b(x) is strictly decreasing, and so invertible, and represent

the southwest boundary of E by x= c(y). This inverts b(x) on the downward
sloping part of the curve. Also let c(y) equal 0 for y ≥ b(0) and equal 1 for
y ≤ b(1) if the curve hits the left or right boundary of the square S. Then,
letting b(x)= y , so x= c(y), gives

Iφ =
∫ b(1)

b(0)
φ(c(y)� y�a)dy = −

∫ b(0)

b(1)
φ(c(y)� y�a)dy(S30)

= −
∫ 1

0
φ(c(y)� y�a)dy�

Here the last step uses b(0) > b(1); it also uses, for y ≤ b(1), that φ(c(y)�
y�a) = φ(1� y�a) = 0, and similarly for y ≥ b(0). Next, since φ(1� y�a) = 0,
(S30) equals

Iφ =
∫ 1

0

[
φ(1� y�a)−φ(c(y)� y�a)]dy(S31)

=
∫ 1

y=0

∫ 1

x=c(y)
φx(x� y�a)dxdy�

Also, an approximation argument can be used if b(x) is not strictly decreasing.
Now, both (S29) and (S31) are simply integrals over E ∩ S, so using Fubini’s
theorem,

Iψ − Iφ = −
∫ ∫

E∩S
[φx(x� y�a)+ψy(x� y�a)]dxdy = 0�

by (S26). Q.E.D.
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PROPOSITION S5: Suppose there are functions φ(x� y�a) and ψ(x� y�a) that
satisfy (S26) and (S27), and such that

Ga(x|a)h(y|x�a)+φ(x� y�a)(S32)

and

g(x|a)Ha(y|x�a)−Ga(x|a)Hx(y|x�a)+ψ(x� y�a)(S33)

are less than or equal to zero for all (x� y) ∈ S. Then f (x� y|a) satisfies NISP. If
there are φ(x� y�a) and ψ(x� y�a) that satisfy (S26) and (S27), and such that
(S32) and (S33) are nondecreasing in a, then f (x� y|a) satisfies CISP.

PROOF: Subtract (S28) from (S22) and use b′(x)≤ 0. Q.E.D.

Proposition S5, which is Lemma 3 in the main paper, now allows us to choose
the φ and ψ functions to weaken (S23) if we are willing to strengthen (S24)
and visa versa. For example it can be used to show that the generalized CDFC
(GCDFC) implies CISP, as in the main paper.

S5. IS THERE A CANONICAL VECTOR FLOW FOR SIGNAL TECHNOLOGIES f (x|a)
IN PRINCIPAL–AGENT MODELS?

Sections 7 and 8 of the main paper show that it is possible to represent any
principal–agent technology f (x|a) by a vector flow v(x� a), such that fa(x|a)=
−div v(x� a). This lets us confirm the global NISP and CISP conditions in that
paper by checking certain easy-to-verify local conditions on the vector field
v(x� a).

Thus assume, for specificity, that the signal x̃ = (x̃� ỹ) is two dimensional and
that x̃ is distributed in the unit square, S = [0�1] × [0�1], as in the paper. Say
that a set E is an increasing set if x ∈ E and y ≥ x implies y ∈ E. Then NISP is the
condition that Prob(x̃ ∈ E|a) is nondecreasing in a, and CISP is the condition
that Prob(x̃ ∈ E|a) is concave in a, for all increasing sets E.

Next assume that, as a increases, the density f (x|a) follows the density
flux v(x� a)= (u(x� y�a)� v(x� y�a)), with u(0� y�a)= u(1� y�a)= v(x�0� a)=
v(x�1� a) = 0, so no density flows out of S. Thus fa(x|a)= −div v(x� a), as in
the main paper. The divergence theorem then shows that

d

da
Prob(x̃ ∈ E|a)= −

∫ 1

0
v(x(t)� a) · n(t)dt�(S34)

where x(t)= (x(t)� y(t)) traces the boundary of E∩S counterclockwise, n(t)=
(y ′(t)�−x′(t)) is the outward-pointing normal (perpendicular) to the boundary
of E ∩ S, and v(x(t)� a) · n(t) is the dot product of v(x(t)� a) and n(t), that is,

v(x(t)� a) · n(t)= u(x(t)� a)y ′(t)− v(x(t)� a)x′(t);
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see the main paper for details. Lemma 2 in that paper uses (S34) to show that, if
the coordinates of v(x� a) are everywhere nonnegative, then NISP holds, while
if the coordinates of v(x� a) are everywhere nonincreasing in a, then CISP
holds.

It is reasonable to conjecture that Lemma 2 in the paper has a converse.
That is, if f (x|a) satisfies NISP, then there should exist a vector field v(x� a),
as above, with coordinates everywhere nonnegative, while if f (x|a) satisfies
CISP, then there should be a vector field v(x� a) as above with coordinates
nonincreasing in a. However, while these conjectures seem intuitively obvious,
I have not been able to prove them.

In addition, the vector field, v(x� a), constructed in Section 8 of the main
paper, is rather ad hoc. This section therefore considers a possible canonical
vector flow corresponding to f (x|a), and argues that this canonical flow is not
obviously superior to the ad hoc flow constructed in the main paper. Thus, at
this point there seems to be no obvious alternative superior to the ad hoc flow
in the main paper. On the other hand, if the conditions in the main paper turn
out to be inadequate for some future applications, then these future applica-
tions may themselves suggest new vector flows.

In any case, the difficulty with representing f (x|a) by a vector flow is pre-
cisely that there are too many vector flows capable of representing any tech-
nology f (x|a). This suggests representing f (x|a) using a vector flow which
is in some sense minimal. Specifically, we look for a vector flow v(x� a) =
(u(x� a)� v(x� a)) which solves

min
v(·�·)

∫ 1

0

∫ 1

0
‖v(x� a)‖2 dx subject to fa(x|a)= −div v(x� a)

and

u(0� y�a)= u(1� y�a)= v(x�0� a)= v(x�1� a)= 0�(S35)

where ‖v‖2 = u2 + v2 for v = (u� v). We can write the Lagrangian for this prob-
lem as

L=
∫ 1

0

∫ 1

0
‖v(x� a)‖2 dx +

∫ 1

0

∫ 1

0
Φ(x� a)[fa(x|a)+ div v(x� a)]dx

+
(

boundary
terms

)
�

where Φ(x� a) is the Lagrange multiplier for the constraint fa(x|a) =
−div v(x� a), and the “boundary terms” are the terms that correspond to the
boundary constraints in (S35).

Performing an integration by parts on the div v(x� a) term shows that

L=
∫ 1

0

∫ 1

0
‖v(x� a)‖2 dx
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+
∫ 1

0

∫ 1

0

[
Φ(x� a)fa(x|a)− v(x� a) · gradΦ(x� a)

]
dx

+
(

boundary
terms

)
�

Thus, following the usual variational argument, we consider a small change,
or variation, δv(x� a), in the vector field v(x� a), leaving the boundary condi-
tions fixed. If we consider only first-order terms in δv, then, at a minimum
point, this should leave the Lagrangian L unchanged, so

0 = δL=
∫ 1

0

∫ 1

0
[2v(x� a)− gradΦ(x� a)] · δv(x� a)dx�

Now, this must hold for all variations, δv(x� a), in the vector flow, satisfying
the boundary conditions. In particular, it must hold for a “blip” around an
arbitrary point x0, which equals zero outside of a neighborhood around x0.
Choosing δv(x� a) judiciously inside this small neighborhood, in the usual way,
then shows that 2v(x� a)− gradΦ(x� a) = 0 for all x ∈ S, or

v(x� a)= (1/2)gradΦ(x� a)�

That is, the minimal flow is a “potential flow” (Chorin and Marsden (1990,
pp. 47–68)), with the potential given by the Lagrange multiplier. Next let � be
the “Laplacian”operator, so

�Φ(x� a)=Φxx(x� a)+Φyy(x� a)

= div gradΦ(x� a)= 2 div v(x� a)= −2fa(x|a)�
Then this Lagrange multiplier potential solves the “Neumann problem” (Berg
and McGregor (1966), Folland (1976))

�Φ(x� a)= −2fa(x|a)�(S36)

subject to Φx(0� y)=Φx(1� y)=Φy(x�0)=Φy(x�1)= 0�

The fact that a minimal flow solves (S36) is essentially Dirichlet’s principle
(Folland (1976, pp. 112–117)). Thus, if one can find such a potential function
Φ(x� a), it becomes easy to check NISP and CISP. For example, NISP simply
follows fromΦ(x� a) nondecreasing in x, while CISP follows from gradΦ(x� a)
nonincreasing in a.

However, while there are various methods for solving Neumann problems
(see, e.g., Folland (1976)), none seems easy to implement in practice. For ex-
ample, one method uses a Green’s function, G(x� z), which gives

Φ(x� a)= −2
∫ 1

0

∫ 1

0
G(x� z)fa(z|a)dz�
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The problem then becomes to find an appropriate Green’s function. For a Neu-
mann problem on a square, it does not seem to be possible to write this Green’s
function in closed form, though it can be represented as a double Fourier se-
ries,

G(x�y;z�w)= 4
∞∑
m=0

∞∑
n=0

γmn
cosπmx cosπmz cosπny cosπnw

π2(m2 + n2)
�

where γ00 = 0, γm0 = γ0n = 1/2, and γmn = 1 otherwise (Roach (1982, p. 268)).
It is not clear how to use such solutions to derive useful conditions for NISP or
CISP.

In addition, while the solution above seems to be canonical in the sense that
it minimizes the total flow necessary to represent the signal technology, it is not
canonical in the sense of providing necessary as well as sufficient conditions for
NISP and CISP. Thus, while Φ(x� a) nondecreasing in x is sufficient to assure
NISP, it is not necessary. For example, consider a function Φ(x� a) which is in-
creasing in x outside of some small neighborhood around the point (0�5�0�5),
say, but decreasing slightly inside of that neighborhood. Thus the vector field
v(x� a)= (1/2)gradΦ(x� a) has positive coordinates except in that small neigh-
borhood. Clearly this can be done so that the integral (S34) will always be pos-
itive (recall that the normal vector n(t) in (S34) is pointing southwest along
the southwest border). Thus NISP will hold, even though Φ(x� a) is not always
nondecreasing in x.

This underscores the difficulty of finding easy-to-check local conditions to
verify hard-to-check global conditions like NISP or CISP. Thus, it seems the
best we can reasonably do at this point is to use ad hoc vector flows like those
in Section 8 of the main paper. Also, those ad hoc vector flows yield quite useful
conditions, as argued in that paper. Nevertheless, in the process of considering
different applications, even more useful conditions may be discovered.

S6. DERIVING STATE-SPACE REPRESENTATIONS FROM VECTOR FLOWS

If we begin with the basic vector flow in Equation (26) of the main paper,
the state-space representation it implies is the representation in Proposition 3,
as mentioned in footnote 10 of the main paper. This basic vector flow is

vb(x� y�a)= (−Ga(x|a)h(y|x�a)�
− g(x|a)Ha(y|x�a)+Ga(x|a)Hx(y|x�a)

)
�

We want to show that, for this vector flow, the solution, x(a�x0), to the differ-
ential system

xa(a�x0)= 1
f (x(a�x0)|a)vb(x(a�x0)�a)�
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subject to the initial condition, x(0�x0)= x0, is essentially the state-space rep-
resentation in Proposition 3. Consider one coordinate at a time. The first co-
ordinate of the above equation becomes

xa(a�x0)= −Ga(x(a�x0)|a)h
(
y(a�x0)|x(a�x0)�a

)
g(x(a�x0)|a)h

(
y(a�x0)|x(a�x0)�a

)(S37)

= −Ga(x(a�x0)|a)
g(x(a�x0)|a)

or

g(x(a�x0)|a)xa(a�x0)+Ga(x(a�x0)|a)= 0�

Integrating this with respect to a gives

G(x(a�x0)|a)= constant in a=G(x0|a= 0)�

Letting G(x0|a= 0)= θ1 and noting that the marginal cumulative distribu-
tion function G, here, is the marginal cumulative distribution function F 1 in
Proposition 3 of the paper, yields the first half of (11) in that proposition.

Similarly, the second coordinate of the above vector-differential equation
gives

ya(a�x0)

= −[
g(x(a�x0)|a)Ha(y(a�x0)|x(a�x0)�a)

−Ga(x(a�x0)|a)Hx(y(a�x0)|x(a�x0)�a)
]

/g(x(a�x0)|a)h(y(a�x0)|x(a�x0)�a)�

Simplifying and using (S37) gives

ya(a�x0)= −Ha(y(a�x0)|x(a�x0)�a)

h(y(a�x0)|x(a�x0)�a)

− Hx(y(a�x0)|x(a�x0)�a)

h(y(a�x0)|x(a�x0)�a)
xa(a�x0)

or

h(y(a�x0)|x(a�x0)�a)ya(a�x0)

+Ha(y(a�x0)|x(a�x0)�a)+Hx(y(a�x0)|x(a�x0)�a)xa(a�x0)= 0�

Again, integrating with respect to a gives

H(y(a�x0)|x(a�x0)�a)= constant in a=H(y0|x0� a= 0)�
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Finally, again letting H(y0|x0� a = 0) = θ2 gives the second half of (11) in the
paper and we are done.

S7. GENERALIZING JEWITT’S THEOREM 2

The main paper provides generalizations of two of the three major sets of
conditions that justify the first-order approach to multisignal principal–agent
problems: the Sinclair-Desgagné (1994) conditions and Jewitt’s (1988) Theo-
rem 3. It also briefly describes a generalization of the third major set of condi-
tions, that in Jewitt’s Theorem 2 (see Section 9 of the main paper). This note
presents that generalization in detail. I would like to thank Ian Jewitt for sug-
gesting this generalization to me.

Notation is as in the main paper. Suppose the principal is risk neutral and
observes a two-signal random vector (x̃� ỹ) (note that this result does not gen-
eralize easily beyond the two-signal case). Jewitt, Theorem 2, assumes that the
signals are independent. Let their cumulative distribution functions be F 1(x|a)
and F 2(y|a), with sufficiently smooth densities f 1(x|a) and f 2(y|a). Also, re-
call Jewitt’s function ω(z)= u((u′)−1(1/z)) from (S7). In the two-signal case,
the principal’s first-order condition for the cost minimizing schedule s∗(·) to
induce action a, given the agent’s first-order condition Ua(s(·)�a) = 0, yields

u(s∗(x� y))=ω
(
λ+μ

[
f 1
a (x|a)
f 1(x|a) + f 2

a (x|a)
f 2(x|a)

])
�(S38)

with λ and μ Lagrange multipliers, and μ≥ 0, as argued in Jewitt (1988). With
this setup, Jewitt’s Theorem 2 is the following:

THEOREM—Jewitt’s Theorem 2: The first-order approach is valid if ω(z) is
concave in z, and F 1(x|a) and F 2(y|a) satisfy the MLR property and the CDFC.

To extend this theorem to the nonindependence case, consider the general
density and cumulative distribution functions, f (x� y|a) and F(x� y|a), and im-
pose the conditions in the following two definitions:

DEFINITION S1: The distribution F(x� y|a) satisfies the lower quadrant con-
vexity condition (LQCC) if, for every fixed (x� y), the probability, Prob(x̃ ≥
x or ỹ ≥ y|a), is concave in a, so the probability of the corresponding lower
quadrant, Prob(x̃≤ x and ỹ ≤ y|a), is convex.

DEFINITION S2: The distribution F(x� y|a) satisfies the submodular likeli-
hood ratio (SLR) property if the likelihood ratio, fa(x� y|a)/f (x� y|a), is sub-
modular, so ∂2[fa(x� y|a)/f (x� y|a)]/∂x∂y ≤ 0 for all x, y , and a.

With these conditions, we can now state the generalization of Jewitt’s Theo-
rem 2.
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PROPOSITION S6: The first-order approach is valid if ω(z) is concave in z and
F(x� y|a) satisfies MLR, SLR, and LQCC.

Note that LQCC follows if x̃ and ỹ are independent and each satisfies the
CDFC and MLR, since Prob(x̃ ≤ x|a)Prob(ỹ ≤ y|a) is convex in a if x̃ and
ỹ satisfy CDFC and MLR. Also, if x̃ and ỹ are independent, then the SLR
property is met, since in this case,

fa(x� y|a)
f (x� y|a) = f 1

a (x|a)
f 1(x|a) + f 2

a (y|a)
f 2(y|a)�(S39)

so the cross-partial of the likelihood ratio in (S39) is zero. Thus, Proposition S6
does generalize Jewitt’s Theorem 2. To prove Proposition S6, we need a lemma.
This lemma is similar to the n= 2 case of Theorem 3.3.15 in Müller and Stoyan
(2002).

LEMMA S7: Define the function h(x� y;x0� y0) = 1, if x ≥ x0 or y ≥ y0�
= 0 otherwise. Suppose that g(x� y) is nondecreasing in x and y and that
gxy(x� y)≤ 0. Then g(·� ·) can be approximated as a constant plus a positive linear
combination of the h(·� ·;x0� y0) functions:

g(x� y)≈ α0 +
n∑
i=1

αih(x� y;xi� yi)� with αi > 0 for i≥ 1�(S40)

PROOF: In point of fact we represent g(·� ·) as an integral of the h(·� ·;x0� y0)
functions. For simplicity suppose that all functions are defined on the square
S = [0�1] × [0�1] (a limiting argument can extend the result to functions on
any domain). Then

g(x� y)= g(0�0)+
∫ 1

0
gx(u�1)h(x� y;u�1)du(S41)

+
∫ 1

0
gy(1� v)h(x� y;1� v)dv

−
∫ 1

0

∫ 1

0
gxy(u� v)h(x� y;u�v)dudv�

To see this, note that, using the definition of h(x� y;u�v), the integrals in (S41)
can be rewritten, giving

right-hand side of (S41)

= g(0�0)+
∫ x

0
gx(u�1)du+

∫ y

0
gy(1� v)dv
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−
∫ x

u=0

∫ 1

v=0
gxy(u� v)dvdu−

∫ 1

u=x

∫ y

v=0
gxy(u� v)dvdu�

Using the fundamental theorem of calculus, this equals

g(0�0)+ g(x�1)− g(0�1)+ g(1� y)− g(1�0)

−
∫ x

0
[gx(u�1)− gx(u�0)]du−

∫ 1

x

[gx(u� y)− gx(u�0)]du
= g(0�0)+ g(x�1)− g(0�1)+ g(1� y)− g(1�0)

− [g(x�1)− g(x�0)− g(0�1)+ g(0�0)]
− [g(1� y)− g(1�0)− g(x� y)+ g(x�0)] = g(x� y)�

Now the coefficients gx(u�1) and gy(1� v) in the first two integrals in (S41) are
nonnegative since g(x� y) is nondecreasing in x and y . Also, the coefficient
gxy(u� v) in the last integral in (S41) is nonpositive, since gxy(x� y) ≤ 0. Since
this last integral is being subtracted, it is clear that (S41) expresses g(x� y) as
a constant plus a sum of integrals of functions of the form h(x� y;u�v), as
u and v vary, with positive coefficients. Hence it can be approximated as a
constant plus a linear combination of such functions with positive coefficients,
as in (S40). Q.E.D.

PROOF OF PROPOSITION S6: First, the generalization of (S38) to the nonin-
dependence case is u(s∗(x� y))=ω(λ+μ[fa(x� y|a)/f (x� y|a)]). Using MLR,
SLR, and concavity of ω(z) in this proves that u(s∗(x� y)) is nondecreasing
and submodular in x and y . The lemma then shows that u(s∗(x� y)) can be
approximated as in (S40). Thus U(s∗(·)�a) can be approximated by a linear
combination, with positive coefficients, of the functions hT(a;xi� yi), and these
are concave in a by the LQCC. Any solution to the relaxed problem there-
fore yields U(s∗(·)�a) concave in a, so this solution satisfies the unrelaxed con-
straints and so is a solution to the unrelaxed problem. The first-order approach
is therefore valid. Q.E.D.

APPENDIX A: PROOF OF LEMMA S2

Intuitively, if the positive linear combination yielding k(x1�x2)= min(x1�x2)
includes the function h(x1�x2;α0

1�α
0
2�β

0), then k(x1�x2) should have a kink
along the negatively sloped line α0

1x1 + α0
2x2 = β0. However, the only points

where the k(x1�x2) function is not perfectly flat are contained in the positively
sloped line

K = {(x1�x2) :x1 = x2}�
This yields a contradiction.



20 J. R. CONLON

To make this argument precise, one must show that, if k(x1�x2) can
be approximated by a constant plus a positive linear combination of the
h(x1�x2;α1�α2�β) functions, then it can be expressed exactly as a constant
plus an integral of these functions, where the integral is over (α1�α2�β). This
requires a compactness argument.

To facilitate this argument, consider approximations of k(x1�x2) on the
square

(x1�x2) ∈ S = [−1�1] × [−1�1]�
It is enough to prove that there are no such approximations on S. However,
for approximations on S, it is enough to consider values of β ∈ [−1�1]. This
is because the expression α1x1 + α2x2 is in [−1�1] for (x1�x2) ∈ S, since α1,
α2 ≥ 0 and α1 +α2 = 1. Thus, for β<−1, h(x1�x2;α1�α2�β)= 0 on S, and for
β> 1, h(x1�x2;α1�α2�β)= α1x1 +α2x2 −β= h(x1�x2;α1�α2�1)+1−β on S.
It is therefore enough to use the h(x1�x2;α1�α2�β) functions with (α1�α2�β)
in the compact set

T = {(α1�α2�β) :α1�α2 ≥ 0�α1 + α2 = 1�−1 ≤ β≤ 1}�
Thus, consider a sequence of approximations to k(x1�x2) given by

kAn (x1�x2)=A0
n +B0

n

∫
T
h(x1�x2;α1�α2�β)dμ

0
n(α1�α2�β)�(SA1)

where μ0
n is a measure in the compact set, �T, of probability measures on T un-

der weak convergence. Assume kAn converges uniformly to k on S. Of course,
if the approximations in (SA1) are ordinary sums with finite numbers of terms,
then each μ0

n has support which is a finite set of points.
Unfortunately, the sequence {B0

n} might be unbounded if the support of
μ0
n becomes increasingly concentrated near β = −1. The following somewhat

complicated argument, through equation (SA3) below, shows that this is not a
problem.

First let T∗ = {(α1�α2�β) ∈ T :−0�5 ≤ β ≤ 1}. Then B0
nμ

0
n(T

∗) is a bounded
sequence. This can be seen since

B0
nμ

0
n(T

∗)= 2B0
n

∫
T∗

[(−0�5 −β)− (−1 −β)]dμ0
n(α1�α2�β)

= 2B0
n

∫
T∗

[h(−0�5�−0�5;α1�α2�β)

− h(−1�−1;α1�α2�β)]dμ0
n(α1�α2�β)

≤ 2B0
n

∫
T
[h(−0�5�−0�5;α1�α2�β)
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− h(−1�−1;α1�α2�β)]dμ0
n(α1�α2�β)

= 2[kAn (−0�5�−0�5)− kAn (−1�−1)]�
Here the second step follows by α1 +α2 = 1, β≥ −0�5 and the definition of the
h function in (S16), while the third step follows since the integrand is nonneg-
ative and T∗ ⊆ T. Finally, the last sequence above is bounded, since kAn (x1�x2)
converges uniformly to k(x1�x2) on S. Thus B0

nμ
0
n(T

∗) is a bounded sequence,
as desired.

Next, k(x1�x2)= 2k(0�5x1�0�5x2), so k(x1�x2) can be approximated on S by

2kAn (0�5x1�0�5x2)(SA2)

= 2A0
n + 2B0

n

∫
T
h(0�5x1�0�5x2;α1�α2�β)dμ

0
n(α1�α2�β)

= 2A0
n +B0

n

∫
T
h(x1�x2;α1�α2�2β)dμ0

n(α1�α2�β)�

where the last step follows since h(x1�x2;α1�α2�β) is homogeneous of de-
gree 1 in (x1�x2�β). Now, for (x1�x2) ∈ S, the range of integration in (SA2)
can be restricted to T∗, since h(x1�x2;α1�α2�2β) = 0 for β ∈ [−1�−0�5). Let
μ1
n ∈ �T∗ be the measure μ0

n, restricted to T∗ and divided by μ0
n(T

∗) to obtain
another probability measure. Also, let A1

n = 2A0
n and B1

n = B0
nμ

0
n(T

∗). Then
k(x1�x2) is uniformly approximated on S by the sequence

A1
n +B1

n

∫
T∗
h(x1�x2;α1�α2�2β)dμ1

n(α1�α2�β)�(SA3)

Also B1
n = B0

nμ
0
n(T

∗) is bounded, as shown above. In addition, since (SA3) and
B1
n are bounded, A1

n must be bounded as well.
Now, (A1

n�B
1
n�μ

1
n) is a sequence in a compact set (since �T∗, like �T, is com-

pact). Thus it has a convergent subsequence. Let the limit of this subsequence
be (A1

∞�B
1
∞�μ

1
∞). Then

k(x1�x2)=A1
∞ +B1

∞

∫
T∗
h(x1�x2;α1�α2�2β)dμ1

∞(α1�α2�β) on S�(SA4)

by continuity of the integral with respect to weak convergence of measures.
Now, the support of μ1

∞ must contain a point (α0
1�α

0
2�β

0) such that the line
α0

1x1 + α0
2x2 = β0 passes through the interior of S, since otherwise the integral

in (SA4) would be linear (or more precisely, affine) in (x1�x2) on S. There
is then a small neighborhood around (α0

1�α
0
2�β

0) with positive measure under
μ1

∞.
However, the negatively sloped line α0

1x1 + α0
2x2 = β0 is not contained in

the set K = {(x1�x2) :x1 = x2} of edges of the graph of the function k(x1�x2)=
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min(x1�x2). Thus, there must be a point, (x0
1�x

0
2) ∈ S, on the line α0

1x1 +α0
2x2 =

β0, but not in K. But k(x1�x2) should then have some curvature at (x0
1�x

0
2),

which is impossible since (x0
1�x

0
2) /∈ K.

APPENDIX B: PROOF OF LEMMA S3

Let the density f (x1�x2|a), on the rectangle [0�3] × [0�1], be given by

f (x1�x2|a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1/3)+ (2x1 − 3)aε0 + (1 − x1)(2x2 − 1)(2a− a2)ε1�

for 0 ≤ x1 ≤ 1�

(1/3)+ (2x1 − 3)aε0�

for 1 ≤ x1 ≤ 2�
(1/3)+ (2x1 − 3)aε0 + (x1 − 2)(2x2 − 1)a2ε2�

for 2 ≤ x1 ≤ 3�

Note that this breaks up the rectangle [0�3] × [0�1] into three regions: Re-
gion I, the square [0�1] × [0�1], Region II, the square [1�2] × [0�1], and Re-
gion III, the square [2�3] × [0�1]. As a rises, the mass of the density tends to
move in a concave manner in Region I, linearly in Region II, and in a convex
manner in Region III.

Now, ϕ(x1�x2)= min(x1 −1�x2). This equals x1 −1 in Region I and it equals
x2 in Region III. In Region II, it equals x1 − 1 above the diagonal x2 = x1 − 1
(i.e., for x2 ≥ x1 − 1), and it equals x2 below this diagonal. Call the part of
Region II above the diagonal Region IIa, and the part below the diagonal,
Region IIb. Then

ϕT(a)= E[ϕ(x̃)|a] = II + IIIa + IIIb + IIII�

where II = ∫
Region Iϕ(x)f (x|a)dx and so forth. Now, the first three of these in-

tegrals are linear in a, while the fourth is strictly convex in a. As an illustration,

II =
∫ 1

0

∫ 1

0
(x1 − 1)

[
(1/3)+ (2x1 − 3)aε0

+ (1 − x1)(2x2 − 1)(2a− a2)ε1

]
dx1 dx2�

and it is easy to check that the coefficient of a2 in this expression integrates out
to zero (since

∫ 1
0 (2x2 − 1)dx2 = 0), so only terms linear in a survive. Similarly,

IIIb =
∫ 2

1

∫ x1−1

0
x2[(1/3)+ (2x1 − 3)aε0]dx2 dx1�
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which is also clearly linear in a. Since the first three integrals are linear and the
fourth is strictly convex, it follows that ϕT(a) is strictly convex, and so is not
concave.

Next, suppose ε2 is smaller than ε1. Then we will show that
∫ 3

0

∫ 1

0
h(x1�x2;α1�α2�β)f (x1�x2|a)dx2 dx1

is concave in a for all α1, α2, and β with α1, α2 ≥ 0 and α1 +α2 = 1. To see this,
note that the line α1x1 + α2x2 = β, or x2 = (β− α1x1)/α2, divides Regions I,
II, and III into at most two subregions each, for a total of six subregions. Of
these six subregions, only the three below the line x2 = (β− α1x1)/α2 matter,
since the integrand is zero above the line. Also, the only terms that ultimately
matter are those that involve a2, since the other terms are either constant or
linear in a.

The terms that involve a2 come from the parts of Regions I and III that are
below the line x2 = (β− α1x1)/α2. Suppose (β− α1x1)/α2 ∈ [0�1] for all x1 ∈
[0�3] (the other cases can be handled similarly). Then the resulting coefficients
of a2 are

−
∫ 1

0

∫ (β−α1x1)/α2

0
(α1x1 + α2x2 −β)(1 − x1)(2x2 − 1)ε1 dx2 dx1

from Region I, and
∫ 3

2

∫ (β−α1x1)/α2

0
(α1x1 + α2x2 −β)(x1 − 2)(2x2 − 1)ε2 dx2 dx1

from Region III. Now, it is easily checked that the first expression is negative
and the second is positive. Also, if ε1 > ε2, then the first expression is bigger
in absolute value than the second. Thus, the total coefficient on a2 is negative
and hT(a;α1�α2�β) is indeed concave.

It is also easy to check that, if ε0 is sufficiently large compared to ε1 and ε2,
then the distribution function satisfies the MLR property as well.

APPENDIX C: PROOF OF LEMMA S4

As was the case for Lemma S2, if the function can be approximated as a
positive linear combination of nondecreasing flat-top pyramids, it can be rep-
resented exactly as a positive integral of flat-top pyramids.

Now, the edges of the graph of G(x1�x2) = min(0�x1�x2�x1 + x2 + 1) are
given by (a) the ray x1 = 0, x2 ≥ 0, (b) the ray x2 = 0, x1 ≥ 0, (c) the ray x1 = −1,
x2 ≤ −1, (d) the ray x2 = −1, x1 ≤ −1, and (e) the finite line segment from the
point (−1�−1) to the point (0�0). Key among these is the positively sloped
finite line segment (e). Since the graphs of nondecreasing flat-top pyramids
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have no edges which are positively sloped finite line segments, it is impossible
to get a function with such an edge from a positive linear combination of such
flat-top pyramids.
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