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Appendix A: Intermediate theoretical results

In this section, I detail intermediate and auxiliary theoretical results used in the proofs
of the main theorems stated in Section 5.

Following Douc, Moulines, and Ryden (2004), I first establish that the distribution of
Xt�M given a history of observations Y sr is itself a uniformly ergodic (inhomogeneous)
Markov chain with minorizing constant independent of the parameter θ ∈ Θ and the
number of discrete points M ∈ Z

+. This is the analogous result to Lemma 1 in their pa-
per. Note that a Markov chain with transition kernel Pθ is said to satisfy a uniform mi-
norization condition if there exist a probability measure μQ, a positive integer n, and
ε > 0 such that

P(n)θ (x�A)≥ εμQ(A)
for all x ∈ X andA ∈ B(X ), where P(n)θ is the n-step ahead transition kernel of the Markov
chain.

Define Q−
M ≡ infm�m′ Pθ�M(m�m′) and Q+

M ≡ supm�m′ Pθ�M(m�m′) for M ∈ Z
+. I now

state the first lemma.

Lemma 1. Assume (A1) and (B1). Let s� r ∈ Z, with r ≤ s, θ ∈ Θ, and M ∈ Z
+. Under Pθ,

conditionally on Y sr , {Xt�M}t≥r is an inhomogeneous Markov chain, and for all t > r there
exists a function μt�M(yst �A) such that:

(i) for anyA ∈ B(XM), yst �→ μt�M(y
s
t �A) is a Borel function;

(ii) for any yst , μt�M(y
s
t � ·) is a probability measure on B(XM). In addition, for all yst it

holds that μt�M(yst � ·)	 μc�M (where μc�M is counting measure on XM ) and for all
Y sr ,

inf
x∈XM

Pθ
(
Xt�M ∈A|Xt−1�M = x�Y sr

) ≥Q−+μt�M
(
Y st �A

)
�

The major difference between this lemma and the one established in Douc, Mouli-
nes, and Ryden (2004) is that for the following results, it will be crucial that the mi-
norizing constant be the same for allM , in order to establish uniform convergence over
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M ∈ Z
+ of the approximate likelihood function. Note that although the minorizing mea-

sure, μt�M(Y st � ·), does depend on both the number of points, M , and the observations
the chain is conditioned on, Y st , it does not affect the mixing rate. The previous lemma
leads to the following corollary, using standard results for uniformly minorized Markov
chains (see, e.g., Lindvall (1992) Sections III.9–11).

Corollary 1. Assume (A1) and (B1). Let r� s ∈ Z with r ≤ s, θ ∈Θ, and M ∈ Z
+. Then for

all t ≥ r, all probability measures μ1 and μ2 on B(XM), and all Y sr ,∥∥∥∥
∫
XM

Pθ
(
Xt�M ∈ ·|Xr�M = x�Y sr

)
μ1(dx)

−
∫
XM

Pθ
(
Xt�M ∈ ·|Xr�M = x�Y sr

)
μ2(dx)

∥∥∥∥
TV

≤ ρt−r�

where ρ≡ 1 −Q−+.

This corollary establishes that the Markov chain “uniformly forgets” its history at
an exponential rate. That is, no matter where the chain is started, it converges to its
ergodic distribution exponentially fast. The fact that the bound is deterministic will be
important for establishing strong consistency.

The next step consists of showing that the approximate likelihood function �T�M(θ�
x0�M) with an arbitrary initial condition x0�M stays within a deterministic bound of
�T�M(θ) where x0�M is drawn from its ergodic distribution.

Lemma 2. Assume (A1)–(A2) and (B1)–(B2). Then, for all x0�M ∈ XM andM ∈ Z
+,

sup
θ∈Θ

∣∣�T�M(θ�x0�M)− �T�M(θ)
∣∣ ≤ 1/(1 − ρ)2� Pθ∗-a.s.

Next, I show that T−1�T�M(θ) can be approximated by the sample mean of a Pθ∗ -
stationary ergodic sequence of bounded random variables which has a well- defined
limit. To this end, I first define the quantities:

	t�r�M�x(θ)≡ logpθ�M
(
Yt |Y t−1−r �X−r�M = x)�

	t�r�M(θ)≡ logpθ�M
(
Yt |Y t−1−r

)
=

∫
logpθ�M

(
Yt |Y t−1−r �X−r�M = x)Pθ(dx−r�M |Y t−1−r

)
�

Consider the thought experiment of fixing the number of points M , but letting T → ∞.
Define the limiting object as

�M(θ)≡ Eθ∗
[
	0�∞�M(θ)

]
�

I will show that such a limiting object is well-defined and that the sample analogue
converges to this limit almost surely. In particular, I will show that {	t�r�M}r≥0 and
{	t�r�M�x}r≥0 converge uniformly w.r.t. θ ∈Θ Pθ∗ -a.s. by showing they are uniform Cauchy
sequences.
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Lemma 3. Assume (A1)–(A3) and (B1)–(B3). Then for all t ≥ 1, r� r ′ ≥ 0, and M ∈ Z
+, Pθ∗ -

a.s.,

sup
θ∈Θ

sup
x�x′∈XM

∣∣	t�r�M�x(θ)−	t�r′�M�x′(θ)
∣∣ ≤ ρt+min(r�r′)−1/(1 − ρ)� (A.1)

sup
θ∈Θ

sup
x∈XM

∣∣	t�r�M�x(θ)−	t�r�M(θ)
∣∣ ≤ ρt+r−1/(1 − ρ)� (A.2)

sup
θ∈Θ

sup
r≥0

sup
x∈XM

∣∣	t�r�M�x(θ)∣∣ ≤ max
(| logb+|� ∣∣log c−(Yt)

∣∣)� (A.3)

Equation (A.1) of Lemma 3 shows that {	t�r�M�x}r≥0 is a uniform Cauchy sequence
w.r.t. θ ∈ Θ and thus converges Pθ∗ -a.s. to a limit which does not depend on the
initial value x. I label this limit 	t�∞�M and intuitively this can be thought of as
logpθ�M(Yt |Y t−1−∞), the marginal likelihood of an observation Yt given an infinite history
of data.

Equation (A.3) of Lemma 3 shows that {	t�r�M�x(θ)}r≥0 is uniformly bounded in
L1(Pθ∗), and thus its limit 	t�∞�M(θ) is also in L1(Pθ∗). Furthermore, note that
{	t�∞�M(θ)} is a Pθ∗ -stationary ergodic process.

By setting r = 0 and letting r′ → ∞ in equation (A.1), it follows that

sup
θ∈Θ

∣∣	t�0�M�x(θ)−	t�∞�M(θ)
∣∣ ≤ ρt−1/(1 − ρ)�

Furthermore, setting r = 0 in equation (A.2) implies that

sup
θ∈Θ

∣∣	t�0�M�x(θ)−	t�0�M(θ)
∣∣ ≤ ρt−1/(1 − ρ)�

By combining these two inequalities, applying the triangle inequality, and summing
from 1 to T , I obtain Corollary 2.

Corollary 2. Assume (A1)–(A2) and (B1)–(B2). Then

T∑
t=1

sup
M∈Z+

sup
θ∈Θ

∣∣	t�0�M(θ)−	t�∞�M(θ)
∣∣ ≤ 2/(1 − ρ)2� Pθ∗-a.s.

Corollary 2 shows that T−1�T�M(θ) can be approximated by the sample mean of a
stationary ergodic sequence, uniformly w.r.t. θ. Since 	0�∞�M ∈L1(Pθ∗), the ergodic the-
orem implies that T−1�T�M(θ)→ �M(θ) Pθ∗ -a.s. and in L1(Pθ∗) as T → ∞. Note that this
convergence is uniform over M ∈ Z

+. This will be important when I start considering
joint asymptotics in T andM .

Define �(θ)≡ Eθ∗ [logpθ(Y0|Y0−∞)]. The next step toward establishing consistency is
to show that �M(θ)→ �(θ) as M → ∞. The difference in these two quantities is related
to the difference in the approximate and true filtering distributions for infinite histories
of observations,Xt�M |Y t−∞ andXt |Y t−∞.

I first prove that the ergodic distribution of the approximate discrete Markov chain

converges weakly to that of the original continuous Markov chain, that is, that Xt�M
d−→
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Xt as M → ∞. Proposition 2 establishes this convergence and provides a bound on the
difference between the two distributions as a function of the number of points M .

Define A as the collection of all continuity sets ofXt . I make one further assumption
regarding the approximation quality of the sequence of transition kernels {Pθ�M}.

(BT) The sequence of approximations Pθ�M satisfy

sup
θ∈Θ

sup
x∈X

∥∥Pθ�M(x� ·)− Pθ(x� ·)
∥∥

TV =O(
h(M)

)
� (A.4)

where h(M) satisfies limM→∞ h(M)= 0.

This assumption allows the practitioner to use all of the discretization methods outlined
in Section 4.3 to construct Pθ�M . I have chosen to illustrate the case where the Farmer
and Toda (2017) method with trapezoidal quadrature rule is used. In this case, assump-
tion (BT) is satisfied with h(M) = M−2/d , where d is the dimension of the state space
X .24

Proposition 2. Assume (A1)–(A3), (B1)–(B3), and (BT). Then it follows that

sup
θ∈Θ

∥∥πXθ�M −πXθ
∥∥

TV = o(h∗(M)
)
�

where h∗(M) satisfies limM→∞ h∗(M)= 0. If the transition kernel is approximated as pro-
posed in Farmer and Toda (2017) with a trapezoidal quadrature rule,

h∗(M)=M−(2−δ)/d

for any δ > 0.

Note that even faster rates can be achieved through clever choice of the quadrature
formula and the assumptions one is willing to make about the smoothness of the like-
lihood function. By combining Proposition 2 with uniform ergodicity of Xt�M and Xt , it
can be shown that this approximation error directly translates to probabilities computed
under the filtering distributionsXt�M |Y tr andXt |Y tr .

Lemma 4. Assume (A1)–(A3), (B1)–(B3), and (BT). Then

sup
θ∈Θ

∣∣�M(θ)− �(θ)∣∣ = o(h∗(M)
)
�

Combining Corollary 2, Lemma 2, and Lemma 4 leads to the following pointwise
convergence result.

Corollary 3. Assume (A1)–(A3), (B1)–(B3), and (BT). Then for all sequences of initial
points {x0�M} and θ ∈Θ,

lim
M�T→∞

T−1�T�M(θ�x0�M)= �(θ)� Pθ∗-a.s. and in L1(Pθ∗)�

24For a discussion of error convergence properties, see Tanaka and Toda (2015).
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The final step before I can state the strong consistency result involves showing that
�M(θ) is continuous w.r.t. θ for all M ∈ Z

+. This will allow me to strengthen Corollary 3
from pointwise convergence to uniform convergence in θ. Note that by (A.3) and the
dominated convergence theorem,

�M(θ)= Eθ∗
[

lim
r→∞	0�r�M�x(θ)

]
= lim
r→∞Eθ∗

[
	0�r�M�x(θ)

]
It suffices to show that	0�r�M�x(θ) is continuous w.r.t θ, since {	0�r�M�x(θ)}r≥0 is a uniform
Cauchy sequence Pθ∗ -a.s. which is uniformly bounded in L1(Pθ∗).

The following additional assumptions are needed to establish continuity:

(A4) For all x�x′ ∈ X and all y ′ ∈ Y , θ �→ qθ(x�x
′) and θ �→ gθ(y

′|x) are continuous.

(B4) For allM ∈ Z
+, x ∈ XM , andA ∈ B(XM), θ �→ Pθ�M(x�A) is continuous.

Lemma 5. Assume (A1)–(A4), (B1)–(B4), and (BT), then

lim
δ→0

Eθ∗
[

sup
M∈Z+

sup
|θ′−θ|≤δ

∣∣	t�∞�M

(
θ′) −	t�∞�M(θ)

∣∣] = 0�

A direct consequence of Lemma 5 is that the convergence established in Corollary 3
can be strengthened to uniform convergence in θ ∈Θ.

Proposition 3. Assume (A1)–(A4), (B1)–(B4), and (BT). Then

lim
M�T→∞

sup
θ∈Θ

sup
x0�M∈XM

∣∣T−1�T�M(θ�x0�M)− �(θ)∣∣ = 0� Pθ∗-a.s.

The last assumption needed to establish consistency is an identification assumption
guaranteeing that θ∗ is a unique maximizer of the likelihood function

(A5) θ= θ∗ if and only if

Eθ∗
[

log
pθ∗

(
Y t1

)
pθ

(
Y t1

) ]
= 0 for all t ≥ 1. (A.5)

This is a high level assumption about the identification of the model. In general, this
is a difficult condition to verify because it relies on the ergodic distribution of the joint
Markov chain {Zt}. For a more thorough discussion on when this assumption is satisfied
in the context of HMM, see Douc et al. (2011).

Appendix B: Discretizing nonlinear, non-Gaussian Markov processes with

exact conditional moments

This Appendix briefly summarizes the method for discretizting stochastic processes pro-
posed in Farmer and Toda (2017).

Consider the time-homogeneous first-order Markov process

P
(
Xt ≤ x′|Xt−1 = x) = F(

x′|x)�
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where Xt is the random vector of state variables and F(·|x) is a cumulative distribution
function (CDF) that determines the distribution of Xt = x′ given Xt−1 = x. The dynam-
ics of any Markov process are completely characterized by its Markov transition kernel.
In the case of a discrete state space, this transition kernel is simply a matrix of transi-
tion probabilities, where each row corresponds to a conditional distribution. One can
discretize the continuous processXt by applying the Tanaka and Toda (2013) method to
each conditional distribution separately.

More concretely, suppose that one has a set of grid points DM = {xm}Mm=1 and an
initial coarse approximation Q= (qmm′), which is an M ×M probability transition ma-
trix. Additionally, suppose one wants to match some conditional moments of Xt , rep-
resented by the moment defining function T(x). The exact conditional moments when
the current state isXt−1 = xm are

Tm = E
[
T(Xt)|Xt−1 = xm

] =
∫
T(x)dF(x|xm)�

where the integral is over x, fixingXt−1 = xm. (If these moments do not have explicit ex-
pressions, highly accurate quadrature formulas can be used to compute them.) By The-
orem 2.1 in Farmer and Toda (2017), these moments can be matched exactly by solving
the optimization problem

min
{pmm′ }M

m′=1

M∑
m′=1

pmm′ log
pmm′

qmm′
�

subject to
M∑
m′=1

pmm′T(xm′)= Tm�
M∑
m′=1

pmm′ = 1� pmm′ ≥ 0 (B.1)

for eachm= 1�2� � � � �M , or equivalently the dual problem

min
λ∈RL

M∑
m′=1

qmm′eλ
′(T(xm′ )−Tm)� (B.2)

(B.2) has a unique solution if and only if the regularity condition

T̄m ∈ int co T(DM) (B.3)

holds. Furthermore, if the dual problem has a unique solution λm, then the solution to
the primal problem (B.1) is given by

pmm′ = qmm′eλ
′
m(T(xm′ )−Tm)

M∑
m′=1

qmm′eλ
′
m(T(xm′ )−Tm)

� (B.4)

Lastly, define the errors associated with the moment matching as

εm ≡
M∑
m′=1

pmm′T(xm′)− Tm� (B.5)



Supplementary Material The discretization filter 7

Algorithm 2: Discretization of Markov processes.

1 Select a discrete set of pointsDM = {xm}Mm=1 and an initial approximation
Q= (qmm′).

2 Select a moment defining function T(x) and corresponding exact conditional
moments {Tm}Mm=1. If necessary, approximate the exact conditional moments
with highly accurate numerical integrals. Setm� 1 and define an error tolerance
κ > 0.

3 Solve minimization problem (B.2) and store the resulting solution λm.
4 Compute εm using (B.5). If ‖εm‖∞ < κ, move to step 5. If not, select a smaller set of

moments to match and return to step 3.
5 Compute the conditional probabilities corresponding to rowm of P = (pmm′)

using (B.4). Setm�m+ 1. Ifm≤M , move to step 3, otherwise move to step 6.
6 Collect the computed conditional probability measures in the matrix P = (pmm′).

The procedure for constructing the finite-state Markov chain approximation to Xt is
summarized in Algorithm 2.

The resulting finite-state Markov chain approximation to Xt takes values in the set
DM and has associated transition matrix P . Since the dual problem (B.2) is an uncon-
strained convex minimization problem with a typically small number of variables, stan-
dard Newton type algorithms can be applied. Furthermore, since the probabilities (B.4)
are strictly positive by construction, the transition probability matrix P = (pmm′) is a
strictly positive matrix, so the resulting Markov chain is stationary and uniformly er-
godic by construction.

Appendix C: Monte Carlo example details

In this Appendix, I provide additional details and discussion of the Monte Carlo results
from Section 6.

C.1 Stochastic volatility: Verifying theoretical assumptions

In this section, I verify the theoretical assumptions needed to establish consistency of
the MLE in a version of the stochastic volatility model with bounded support. Namely, I
consider the following modification to the model;

Xt |Xt−1 ∼ TN(
μ(1 − ρ)+ ρXt−1�σ

2�x�x
)
�

Yt |Xt ∼N
(
0� eXt

)
�

where x and x are the lower and upper bounds for Xt (the log variance), respectively,
with x >−∞ and x <∞. If these bounds are sufficiently below and above the uncondi-
tional mean μ, the model will generate data that is numerically indistinguishable from
the model with unbounded support for Xt . The transition and measurement densities
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are given by

qθ
(
x′|x) =

φ

(
x′ −μ(1 − ρ)− ρx

σ

)

σ

(
�

(
x−μ(1 − ρ)− ρx

σ

)
−�

(
x−μ(1 − ρ)− ρx

σ

)) �

gθ(y|x)= 1

ex/2
φ

(
y

ex/2

)
�

Assumption (A1): (a) For all x ∈ [x�x] and θ ∈Θ (for Θ compact), the truncated nor-
mal density is strictly bounded away from zero and from infinity. (b) gθ does not depend
on Θ in this example, only on x, and thus on the bounds of x. gθ is a Normal distribu-
tion with different variances corresponding to different values of x. Since the variance is
bounded away from zero and infinity by the bounds on x, g has a well-defined infimum
and supremum which are both strictly positive and less than infinity.

Assumption (A2): Yt is independent over time conditional on Xt and has a condi-
tional density which is absolutely continuous with respect to Lesbesgue measure. Since
Xt is uniformly ergodic, and thus trivially positive Harris recurrent, the joint process Zt
is also positive Harris recurrent by example 5.8.2 in Durrett (2019).

Assumption (A3): The quantity b+ is given by

b+ = sup
θ∈Θ

sup
y1�x

gθ(y1|x)= sup
θ∈Θ

gθ(0|x) <∞�

The quantity b−(y1) is bounded below by the observation density evaluated at the lowest
variance x

b−(y1)= inf
θ∈Θ

∫
X
gθ(y1|x)μ(dx)≥ inf

θ∈Θ
inf
x∈X

gθ(y1|x)= gθ(y1|x)�

and thus it follows that

Eθ∗
[∣∣logb−(y1)

∣∣] = Eθ∗
[∣∣∣∣log

1

ex/2
φ

(
y1

ex/2

)∣∣∣∣
]

= Eθ∗
[∣∣∣∣−x2 − 1

2
log(2π)− y2

1
2x

∣∣∣∣
]

≤ x

2
+ 1

2
log(2π)+ 1

2x
Eθ∗

[
y2

1
]

<∞�

Assumption (B1): All (B) assumptions will hold for any of the discussed methods
for discretization. As a specific example, consider choosing probabilities proportional
to the transition density (corresponding to the point mass filter), then the ratio of any
two transition probabilities will always be the ratio of the transition density at some two
points. By assumption (A1), this ratio will always be strictly positive since the transition
density is bounded away from zero below and from infinity above.
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Assumption (B3): Since every row of Pθ�M is a valid probability mass function and
thus sums to 1, the same argument used to verify the second half of assumption (A3)
can be used.

Assumption (BT): The point mass filter’s conditional probabilities are a type of Rie-
mann sum integration rule approximation to the exact transition probabilities, which
have integration errors of the orderM−2 whereM is the number of points being used in
the Riemann sum.

C.2 Stochastic volatility: Filtered states

Another important dimension for comparison is the accuracy of the filtered states,
{x̂t|t}Tt=1. I provide results on the root mean square error (RMSE) and the mean abso-
lute error (MAE) of all the methods. For a given model specification and method, these
are defined as

RMSE =
(

1
T

T∑
t=1

(x̂t|t − xt)2
)1/2

� (C.1)

MAE = 1
T

T∑
t=1

|x̂t|t − xt |� (C.2)

I define the average RMSE (ARMSE) and average MAE (AMAE) to be the average of the
RMSE and the MAE across simulations for a given method. Table C.1 displays the ARMSE
and AMAE of each method, where the filtering is done using the corresponding maxi-
mum likelihood estimates of the parameters for a given sample.

The DF and BPF perform roughly the same for all sample sizes, with the APF per-
forming slightly worse. However, keep in mind that this is for dramatically different es-
timation times for the parameters as discussed in Section 6.2. The misspecification of
the measurement error distribution using the EKF translates into poor estimates of the
unobserved state.

Table C.1. Accuracy of filtered state estimates.

Discretization Filter BPF APF EKF

ROT constant c 1/2 1 3 5 7 10 – – –

Average Root Mean Squared Error
T = 100 0�365 0�361 0�359 0�358 0�358 0�358 0�356 0�360 0�481
T = 500 0�373 0�372 0�372 0�372 0�372 0�372 0�375 0�390 0�458
T = 1000 0�376 0�376 0�375 0�375 0�376 0�375 0�377 0�393 0�453

Average Mean Absolute Error
T = 100 0�296 0�294 0�293 0�292 0�292 0�292 0�290 0�294 0�377
T = 500 0�299 0�298 0�298 0�298 0�298 0�298 0�300 0�312 0�366
T = 1000 0�300 0�300 0�300 0�300 0�300 0�300 0�301 0�314 0�362
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Table D.1. Parameters fixed during estimation.

Parameter Value

400 ln(r∗) 0�86
400 ln(π∗) 2�35
100 ln(γ) 0�38
g 1�54
ν 0�1
η 0�72
α 0�9
R0 1 + 10−20

Appendix D: DSGE model estimation

This Appendix provides some additional details for the estimation of the New-Keynesian
model in Section 7. Table D.1 lists the parameters that are fixed during the estimation.
Most of the parameters are calibrated exactly the same as in Aruoba, Cuba-Borda, and
Schorfheide (2018). The only differences are that r∗ and π∗ are chosen to reflect the long
term averages of real interest rates and inflation incorporating the last 10 years of data.
R0, which controls the curvature of the smooth approximation to the kink in the Taylor
rule, is set to 1+10−20, which results in a function which is incredibly close to a kink, but
still differentiable.

Table D.2 lists the prior distributions for each of the estimated parameters and their
corresponding parameters. These are chosen to be exactly the same as in Aruoba, Cuba-
Borda, and Schorfheide (2018).

Table D.2. Priors for estimation.

Parameter Description Density P(1) P(2)

τ Inverse IES G 2�0 0�25
κ Slope (linearized) Phillips curve G 0�3 0�1
ψ1 Taylor rule: weight on inflation G 1�5 0�3
ψ2 Taylor rule: weight on output G 0�5 0�25
ρR Interest rate smoothing B 0�5 0�2
ρz Persistence: technology shock B 0�2 0�1
ρd Persistence: discount factor shock B 0�8 0�1
ρg Persistence: demand shock B 0�8 0�1
100σR Std dev: monetary policy shock IG 0�3 4�0
100σz Std dev: technology shock IG 0�4 4�0
100σd Std dev: discount factor shock IG 0�4 4�0
100σd Std dev: demand shock IG 0�4 4�0
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