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This note consists of five sections. In Section 1, we formally present a model of infor-
mation sharing over time among many agents where the econometrician is interested in
the estimation of local interactions in a particular decision problem. We explain how this
extended model maps to the static model of the main paper. Section 2 explains inference
based on the model with first order sophisticated agents. The secion also provides the
proof of the asymptotic validity of the proposed inference, and results from Monte Carlo
simulation studies. Section 3 provides details on the model selection procedure between
different games Γ0 and Γ1. Section 4 presents a proposal on testing for information shar-
ing on unobservables. Section 5 gives the results from the empirical application using the
game with first-order sophisticated agents.

1. Information Sharing Among Many Agents Over Time

Information sharing among people takes place over time, and the econometrician usu-
ally observes part of these people as a snapshot in the process. The process involves
information sharing, network formation and decision making. Agents can form a net-
work and share information for various purposes. There is no reason to believe that each
agent’s particular decision problem which is of interest to the econometrician is the sin-
gle ultimate concern of the agents when they form a network at an earlier time.1 In this
section, we provide an extended model of information sharing which fits the main set-up
of the paper. The main idea is that people receive signals, form networks, and share
information with their neighbors repeatedly. Then there is a decision making stage. The

Date: February 10, 2020.
1For example, it is highly implausible to assume that friendship formation among the students is done for
the sole purpose of achieving maximal performance in a math exam observed by the econometrician.
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network formation (of either a payoff graph or an information graph) can be made, if
not exclusively, in anticipation of the decision making later. However, as we will explain
later in detail, our model assumes that when the agents form an information and a payoff
graph, they do not observe other agents’ payoff relevant signals that are not observed by
the econometrician. This is the precise sense in which the information and the payoff
graph are exogenously formed.

Let us present a formal model of information sharing over time. Let N be the set of a
finite yet large number of players who share their type information over time recursively,
where at each stage, players go through three steps sequentially: information graph
formation, type realization and information sharing. Then at the final stage, players
make a decision, maximizing their expected utilities.

At Stage 0, each agent i ∈ N is endowed with signal Ci,0. The signals can be corre-
lated across agents in an arbitrary way. Then information sharing among agents happens
recursively over time as follows starting from Stage s = 1.

Stage s-1: (INFORMATION GRAPH FORMATION) Each player i ∈ N receives signal Ci,s−1.
Using these signals, the players in N form an information sharing network GI,s−1 =

(N,EI,s−1) among themselves, where GI,s−1 = (N,EI,s−1) is a directed graph on N .2

(TYPE REALIZATION) Each player i ∈ N is given his type vector (τ ′i,s−1, ηi,s−1)
′, where

ηi,s−1 is a private type which player i keeps to himself and τi,s−1 a sharable type which is
potentially observed by other agents.

(INFORMATION SHARING) Each player i observes the sharable type τj,s−1 of each player
j in his neighborhood in the information sharing network.

Stage s: (INFORMATION GRAPH FORMATION) Each player i ∈ N receives signal Ci,s
which contains part of Ci,s−1 and part of the information about GI,s−1 and τj,s−1 with
j ∈ NI,s−1(i). Using these signals, the players in N form an information sharing network
GI,s = (N,EI,s) among themselves, where GI,s = (N,EI,s) is a directed graph on N , and
receives signal Ci,s.

(TYPE REALIZATION) Each player i ∈ N is given his type vector (τ ′i,s, ηi,s)
′, where ηi,s is

a private type which player i keeps to himself and τi,s a sharable type which is potentially
observed by other agents.

(INFORMATION SHARING) Each player i observes the sharable type τj,s of each player j
in his neighborhood in the information sharing network GI,s.

2The formation of an information sharing network is tantamount to each agent making a (unilateral) binary
decision to share his type information with others. Details of this decision making process are not of focus
in the empirical model and hence are not elaborated further. What suffices for us is that the strategy of
each agent is measurable with respect to the information the agent has. This latter condition is satisfied
typically when the agent chooses a pure strategy given his information.
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The information sharing activities proceed up to Stage S − 1. Then each agent faces a
decision making problem.

Decision Stage: (PAYOFF GRAPH FORMATION) Each player i ∈ N receives signal Ci,S
which contains part of Ci,S−1 and part of information about GI,S−1 and τj,S−1 with j ∈
NI,S−1(i). Using these signals, the players in N form a payoff graph GP = (N,EP ) among
themselves, where GI,S = (N,EI,S) is a directed graph on N , and receives signal Ci,S.

(TYPE REALIZATION) Each player i ∈ N is given his type vector (τ ′i,S, ηi,S)′, where ηi,S is
a private type which player i keeps to himself and τi,S a sharable type which is potentially
observed by other agents.

(INFORMATION SHARING) Each player i observes the sharable type τj,S of each player j
in his neighborhood in the information sharing network GI,S.

(DECISION) Each player i makes a decision which maximizes his expected utility given
his beliefs about other agents’ strategies using the information accumulated so far.

Now let us consider how this model of information sharing over time maps to our
static local interactions model in our main paper. Our local interactions model captures
the state where each player in N faces the Decision Stage as follows. The information
graph GI corresponds to GI,S and the payoff graph GP as described in Decision Stage
above. The type vector τi and ηi for each player i ∈ N correspond to τi,S and ηi,S as
above. The signal Ci for each agent i is defined to be

Ci =
S∨
s=1

Ci,s,

where A1 ∨ A2 denotes the smallest σ-field that contains both A1 and A2. Therefore,
each agent i’s signal Ci contains the information that has been accumulated so far. This
information contains past information sharing experiences that have happened over time.

Observe that here we deliberately separate the information sharing stage and the deci-
sion stage. This is because people typically share information without necessarily antici-
pating the particular decision problem that the econometrician happens to later investi-
gate.

2. Inference for the Model with First Order Sophisticated Agents

2.1. Overview

Let us consider inference on payoff parameters using a model that assumes all the
agents to be of first-order sophisticated type. The network externality is more extensive
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than when the agents are of simple type, and best responses involve more extensive
network externality, and we require more data accordingly. In particular, we strengthen
Conditions B and C as follows:

Condition B1: For each i ∈ N∗, the econometrician observes NP,2(i) and (Yi, Xi) and
for any j ∈ NP (i) and any k ∈ NP,2(i)\NP (i), the econometrician observes nP (j), nP (k),
|NP (i) ∩NP (j)| and |NP (j) ∩NP (k)|, Xj and Xk.

Condition C1: Either of the following two conditions is satisfied.
(a) For any i, j ∈ N∗ such that i 6= j, NP,2(i) ∩NP,2(j) = ∅.
(b) For each agent i ∈ N∗, and for any agent j ∈ N∗ such that NP,2(i) ∩ NP,2(j) 6= ∅,

the econometrician observes Yj, |NP,2(j) ∩NP,2(k)|, nP (k) and Xk for all k ∈ NP (j).

Condition B1 requires that the data contain many agents such that NP,2(i) for each i

of such agents is available together with the number of common GP -neighbors between
each agent k ∈ NP,2(i) and agent i and between each agent j ∈ NP (i) and agent i. Condi-
tion C1 is again trivially satisfied if data contain many agents such that GP -neighbors of
GP -neighbors do not overlap. In this case, we can select N∗ to include only those agents.

The inference is similar as in the case with agents of simple type, except that we rede-
fine Zi and vi into ZFS

i , and vFSi as we explain below. Define

ZFS
i =

1 +
β0

nP (i)

∑
j∈NP (i)

w
[0]
ji

Xi(2.1)

+
∑

j∈NP,2(i)

 β0
nP (i)

∑
k∈NP (i)

w
[0]
kj1{j ∈ NP (k)}

Xj.

Then, by the previous results (see (2.10) of Canen, Schwartz, and Song (2019)), we can
write

Yi = ZFS′

i ρ0 + vFSi ,(2.2)

where

vFSi = RFS
i (ε) + ηi,
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with

RFS
i (ε) =

1 +
β0

nP (i)

∑
j∈NP (i)

w
[0]
ji

 εi

+
∑

j∈NP,2(i)

 β0
nP (i)

∑
k∈NP (i)

w
[0]
kj1{j ∈ NP (k)}

 εj.

Using this reformulation, we can develop inference similarly as before. More specifically,
let us define

ΛFS =
1

n∗

∑
i∈N∗

∑
j∈N∗

E[vFSi v
FS
j |F ]ϕ̃iϕ̃

′
j,(2.3)

and let Λ̂FS be a consistent estimator of ΛFS. (See the next subsection of the construction
of the estimator.) Define

ρ̂FS =
[
SFS
Zϕ̃(Λ̂FS)−1(SFS

Zϕ̃)′
]−1

SFS
Zϕ̃(Λ̂FS)−1SFS

ϕ̃y ,(2.4)

where SFS
Zϕ̃ and SFS

ϕ̃y are the same as SFS
Zϕ̃ and SFS

ϕ̃y except that we use ZFS in place of Z.
Using this, we construct the estimator

V̂ FS =
[
SFS
Zϕ̃(Λ̂FS)−1SFS

ϕ̃Z

]−1
.(2.5)

We construct a vector of residuals v̂FS = [v̂FSi ]i∈N∗, where

v̂FSi = Yi − ZFS′
i ρ̂FS.(2.6)

Finally, we form a profiled test statistic as follows:

T FS(β0) =
(v̂FS)′ϕ̃(Λ̂FS)−1ϕ̃′v̂FS

n∗
.(2.7)

Then, we construct confidence intervals

Cβ,FS
1−α ≡

{
β ∈ (−1, 1) : T FS(β) ≤ c1−α

}
,

where c1−α is the (1− α)-quantile of χ2
M−d.

The confidence intervals for a′ρ can be similarly constructed as in Section 3.1.4 of
Canen, Schwartz, and Song (2019). More specifically, let

V̂ FS =
[
SFS
Zϕ̃(Λ̂FS)−1SFS′

Zϕ̃

]−1
,

and define

σ̂FS(a) =
√
a′V̂ FSa.
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Then, the confidence interval for a′ρ is found as

Cρ,FS
1−α(a) =

⋃
β∈Cρ,FS

1−(α/2)

Cβ,FS
1−(α/2)(β, a),

where

Cρ,FS
1−(α/2)(β0, a) =

[
a′ρ̂FS −

z1−(α/4)σ̂
FS(a)√

n
, a′ρ̂FS +

z1−(α/4)σ̂
FS(a)√

n

]
.

and z1−(α/4) is the (1− (α/4))-percentile of N(0, 1).

2.2. Estimation of the Asymptotic Covariance Matrix

We first construct a consistent estimator Λ̂FS of Λ̂. Define for i, j ∈ N ,

eFSij = E[RFS
i (ε)RFS

j (ε)|F ]/σ2
ε .

If we let

w
[0]
ij =

1

nP (i)

∑
k∈NP (i)

w
[0]
kj1{j ∈ NP (k)},(2.8)

we can rewrite

eFSii =
(

1 + β0w
[0]
ii

)2
+ β2

0

∑
j∈NP,2(i)

(
w

[0]
ij

)2
,(2.9)

and for i 6= j, eFSij = β0q
FS
ε,ij, where

qFSε,ij = w
[0]
ji

(
1 + β0w

[0]
ii

)
1{i ∈ NP,2(j)}+ w

[0]
ij

(
1 + β0w

[0]
jj

)
1{j ∈ NP,2(i)}(2.10)

+β0
∑

s∈NP,2(i)∩NP,2(j)

w
[0]
is w

[0]
js ,

where the last term is zero if NP,2(i) ∩ NP,2(j) is empty. Similarly, sums over empty sets
in any of the terms above are zero. Let us now write

ΛFS = ΛFS
1 + ΛFS

2 ,

where

ΛFS
1 =

1

n∗

∑
i∈N∗

E[(vFSi )2|F ]ϕ̃iϕ̃
′
i, and

ΛFS
2 =

1

n∗

∑
i∈N∗

∑
j∈N∗−i

E[vFSi v
FS
j |F ]ϕ̃iϕ̃

′
j.
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To motivate estimation of ΛFS
2 , we rewrite

ΛFS
2 =

1

n∗

∑
i∈N∗

∑
j∈N∗−i

(eFSij )σ2
ε ϕ̃iϕ̃

′
j =

β0
n∗

∑
i∈N∗

∑
j∈N∗−i

qFSε,ijσ
2
ε ϕ̃iϕ̃

′
j.(2.11)

Let us find an expression for σ2
ε . Note that

1

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

E[vFSi v
FS
j |F ] = β0b

FS
ε σ

2
ε ,

where

bFSε =
1

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

qFSε,ij.

Hence if we let

sFSε =

∑
i∈N∗

∑
j∈NP (i)∩N∗

E[vFSi v
FS
j |F ]∑

i∈N∗

∑
j∈NP (i)∩N∗

qFSε,ij
,

we have

σ2
εβ0 = sFSε .

Plugging this in the last term in (2.11), we obtain that

ΛFS
2 =

sFSε
n∗

∑
i∈N∗

∑
j∈N∗−i

qFSε,ijϕ̃iϕ̃
′
j.

Our estimator then uses the empirical analogues to find Λ̂FS.
First define

ρ̃FS =
[
(SFS

Zϕ̃)(SFS
Zϕ̃)′

]−1
SFS
Zϕ̃S

FS
ϕ̃y ,(2.12)

and let

ṽFSi = Yi − ZFS′
i ρ̃FS.(2.13)

We now present a consistent estimator Λ̂FS:

Λ̂FS = Λ̂FS
1 + Λ̂FS

2 ,
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where

Λ̂FS
1 =

1

n∗

∑
i∈N∗

(ṽFSi )2ϕ̃iϕ̃
′
i, and

Λ̂FS
2 =

ŝFSε
n∗

∑
i∈N∗

∑
j∈N∗−i:NP,2(i)∩NP,2(j)6=∅

qFSε,ijϕ̃iϕ̃
′
j,

and

ŝFSε =

∑
i∈N∗

∑
j∈NP (i)∩N∗

ṽFSi ṽ
FS
j∑

i∈N∗

∑
j∈NP (i)∩N∗

qFSε,ij
,

with qFSε,ij as defined in (2.10). For this, we construct ṽFSi as we constructed ṽi using ZFS

in place of Z.

2.3. Asymptotic Theory for Inference from the Model with First-Order So-
phisticated Agents

In this section, we develop asymptotic theory for the game with first-order sophis-
ticated agents. Recall that each player i’s best response s

[1]
i takes the following form:

(recall the definition of w[0]
ij in (2.8))

s
[1]
i (Ii,1) =

(
1 + β0w

[0]
ii

)
X ′iρ0 + β0

∑
j∈NP,2(i)

w
[0]
ij X

′
jρ0 +RFS

i (ε) + ηi,

where,

RFS
i (ε) =

(
1 + β0w

[0]
ii

)
εi + β0

∑
j∈NP,2(i)

w
[0]
ij εj.

We make the following assumptions.

Assumption 2.1. There exists c > 0 such that for all n∗ ≥ 1,

λmin(Sϕϕ) ≥ c, λmin(ΛFS) ≥ c,

λmin((SFS
Zϕ̃)(SFS

Zϕ̃)′) ≥ c, and

λmin((SFS
Zϕ̃)(ΛFS)−1(SFS

Zϕ̃)′) ≥ c.

Assumption 2.2. There exists a constant C > 0 such that for all n∗ ≥ 1,

max
i∈N◦2
||Xi||+ max

i∈N◦2
||ϕ̃i|| ≤ C
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and E[ε4i |F ] + E[η4i |F ] < C, where n◦2 = |N◦2 | and

N◦2 =
⋃
i∈N∗

NP,2(i).

Then the asymptotic results are summarized in the following theorem.

Theorem 2.1. Suppose that the conditions of Theorem 2.2 and Assumption 3.5 in Canen,
Schwartz, and Song (2019), and Assumptions 2.1 - 2.2 hold. Then,

T FS(β0)→d χ
2
M−d, and (V̂ FS)−1/2

√
n∗(ρ̂FS − ρ0)→d N(0, Id),

as n∗ →∞.

The proofs follow similar steps as in the proof of Theorem 3.2 of Canen, Schwartz, and
Song (2019). For the sake of transparency, we provide complete proofs here.

Lemma 2.1. Suppose that the conditions of Theorem 2.1 hold. Then, as n∗ →∞,

(ΛFS)−1/2
1√
n∗

∑
i∈N∗

ϕ̃iv
FS
i →d N(0, IM).

Proof: Choose any vector b ∈ RM such that ||b|| = 1 and let ϕ̃i,b = b′ϕ̃i. Define

aFSi =
(

1 + β0w
[0]
ii

)
ϕ̃i,b1{i ∈ N∗}+ β0

∑
j∈NP,2(i)∩N∗

ϕ̃j,bw
[0]
ji .

By (B.1) of Canen, Schwartz, and Song (2019), we have

0 ≤ w
[0]
ii ≤ 1 +

β2
0

1− β2
0

, and
∣∣∣w[0]

ij

∣∣∣ ≤ |β0|
nP (i)(1− |β0|)

(
1 +

β2
0

1− β2
0

)
.(2.14)

Then we can write
1√
n∗

∑
i∈N∗

ϕ̃i,bv
FS
i =

∑
i∈N◦2

ξFSi ,(2.15)

where ξFSi = (aFSi εi + ϕ̃i,bηi1{i ∈ N∗})/
√
n∗. By the Berry-Esseen Lemma (e.g., Shorack

(2000), p.259),

sup
t∈R

∣∣∣P
∑
i∈N◦2

ξFSi
σFS
ξ,i

≤ t|F

− Φ(t)
∣∣∣ ≤

9E

∑
i∈N◦2

|ξFSi |3|F


∑
i∈N◦2

(σFS
ξ,i)

2

3/2
,(2.16)
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where (σFS
ξ,i)

2 = Var(ξFSi |F). It suffices to show that the last bound vanishes in probability
as n∗ →∞. Again, since εi’s and ηi’s are independent,∑

i∈N◦2

σ2
ξ,i ≥ σ2

η > 0.

Observe that as in (D.20) of Canen, Schwartz, and Song (2019), for some constant C1 >

0,

E

∑
i∈N◦2

|ξFSi |3|F

 ≤ C1 maxi∈N E[|εi|3|F ]

(n∗)3/2

∑
i∈N◦2

|aFSi |3 +
C1n

◦
2 maxi∈N E[|ηi|3|F ]

(n∗)3/2
.

Now, as for the leading term, note that by (2.14), Assumption 2.2 of Canen, Schwartz,
and Song (2019) and the assumption that |ϕ̃i,b| < C for all i ∈ N∗ for some C > 0, we
have for some constant C4 > 0 that does not depend on n,

1

n∗

∑
i∈N◦2

|aFSi |3 ≤ C.

Hence, we find that for some C1 > 0,

E

[∑
i∈N∗
|ξFSi |3|F

]
≤ C1√

n∗
max
i∈N

E[|εi|3|F ] +
C1n

◦
2

(n∗)3/2
max
i∈N

E[|ηi|3|F ].

Since n◦2 ≤ Cn∗, we obtain the desired result. �

Lemma 2.2. Suppose that the conditions of Theorem 2.1 hold. Then,

||SFS
ϕ̃v ||2 ≤

C

n∗
,

for some constant C that does not depend on n.

Proof: Recall the definitions of eFSii and eFSij in (2.9) and below. Note that

||ΛFS|| ≤ σ2
ε

n∗

∑
i∈N∗

∑
j∈N∗−i:NP,2(i)∩NP,2(j) 6=∅

|eFSij |||ϕ̃i||||ϕ̃j||(2.17)

+
1

n∗

∑
i∈N∗

(|eFSii |σ2
ε + σ2

η)||ϕ̃i||2.

By (2.14), we have

max
i∈N∗
|eFSii | ≤ C, and max

i,j∈N∗:i 6=j
|eFSij | ≤ C,(2.18)

for constant C > 0. Thus, we find that |eFSij | ≤ C. Therefore, both terms on the right hand
side of (2.17) is bounded by C/n∗. �

Recall the definition of ṽFSi in (2.13).
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Lemma 2.3. Suppose that the conditions of Theorem 2.1 hold. Then the following holds.

(i) 1
n∗

∑
i∈N∗((ṽ

FS
i )2 − (vFSi )2)ϕ̃iϕ̃

′
i = OP (1/

√
n∗).

(ii) 1
n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗(ṽ

FS
i ṽ

FS
j − vFSi vFSj )ϕ̃iϕ̃

′
j = OP (1/n∗).

(iii) 1
n∗

∑
i∈N∗((v

FS
i )2 − E[(vFSi )2|F ])ϕ̃iϕ̃

′
i = OP (1/

√
n∗).

(iv) 1
n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗(v

FS
i v

FS
j − E[vFSi v

FS
j |F ])ϕ̃iϕ̃

′
j = OP (1/

√
n∗).

Proof: (i) Note that∥∥∥∥∥ 1

n∗

∑
i∈N∗

(ṽFSi − vFSi )2ϕ̃iϕ̃
′
i

∥∥∥∥∥ ≤ C

n∗

∑
i∈N∗

(ṽFSi − vFSi )2,

for some constant C > 0. As for the last term, note that for some constant C > 0,

1

n∗

∑
i∈N∗

E
[
(ṽFSi − vFSi )2|F

]
≤ C

n∗
tr(ΛFS) = OP

(
1

n∗

)
,(2.19)

by Assumption 2.1 and by Lemma 2.2. However, we need to deal with∣∣∣ 1

n∗

∑
i∈N∗

((ṽFSi )2 − (vFSi )2)
∣∣∣ ≤√ 1

n∗

∑
i∈N∗

(ṽFSi − vFSi )2

√
1

n∗

∑
i∈N∗

(ṽFSi + vFSi )2.

Note that
1

n∗

∑
i∈N∗

(ṽFSi + vFSi )2 ≤ 2

n∗

∑
i∈N∗

(ṽFSi − vFSi )2 +
8

n∗

∑
i∈N∗

(vFSi )2

= OP

(
1

n∗

)
+

8

n∗

∑
i∈N∗

(vFSi )2.

As for the last term,

1

n∗

∑
i∈N∗

E[(vFSi )2|F ] ≤ 2

n∗

∑
i∈N∗

E[RFS
i (ε)2|F ] +

2

n∗

∑
i∈N∗

E[η2i |F ].

The last term is bounded by σ2
η, and the first term on the right hand side is bounded by

2σ2
ε

n∗

∑
i∈N∗

eFSii ≤ C,

for some constant C > 0, by (2.18). Combining this with (2.19), we obtain the desired
result.
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(ii) Define

An,1 =
1

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

(ṽFSi − vFSi )(ṽFSj − vFSj )

An,2 =
1

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

(ṽFSi − vFSi )vFSj , and

An,3 =
1

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

vFSi (ṽFSj − vFSj ),

and write
1

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

(ṽFSi ṽ
FS
j − vFSi vFSj ) = An,1 + An,2 + An,3.

As for the leading term, by Cauchy-Schwarz inequality,

|An,1| =
√

1

n∗

∑
i∈N∗

(ṽFSi − vFSi )2

√√√√√ 1

n∗

∑
i∈N∗

 ∑
j∈NP (i)∩N∗

(ṽFSj − vFSj )

2

.

Note that

1

n∗

∑
i∈N∗

E

 ∑
j∈NP (i)∩N∗

(ṽFSj − vFSj )

2

|F


≤ 1

n∗

∑
i∈N∗
|NP (i) ∩N∗|

∑
j∈NP (i)∩N∗

E
[(
ṽFSj − vFSj

)2 |F]

=
1

n∗

∑
i∈N∗

 ∑
j∈NP (i)∩N∗

|NP (j) ∩N∗|

E
[(
ṽFSi − vFSi

)2 |F] .
Hence the last term is bounded by

maxi∈N∗ |NP (i) ∩N∗|2

n∗

∑
i∈N∗

E
[(
ṽFSi − vFSi

)2 |F] ≤ OP

(
1

n∗

)
,

by (2.19). Thus we conclude that |An,1| = OP (1/n∗).
Similarly, using Cauchy-Schwarz inequality and applying the same arguments, we have

|An,2| = OP

(
1

n∗

)
and |An,3| = OP

(
1

n∗

)
,

obtaining the desired result.
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(iii) Note that

Var

(
1

n∗

∑
i∈N∗

RFS
i (ε)|F

)
≤ 1

(n∗)2

∑
i∈N∗

E[(RFS
i (ε))2|F ] = OP ((n∗)−1),

from the proof of (i).

(iv) The proof is similar to (iii). Hence we omit the details. �

Lemma 2.4. Suppose that the conditions of Theorem 2.1 hold. Then,

Λ̂FS − ΛFS = OP

(
1√
n∗

)
.

Proof: We write

Λ̂FS
1 − ΛFS

1 =
1

n∗

∑
i∈N∗

((ṽFSi )2 − E[(vFSi )2|F ])ϕ̃iϕ̃
′
i and

Λ̂FS
2 − ΛFS

2 =
ŝFSε − sFSε

n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗

qFSε,ijϕ̃iϕ̃
′
j.

Thus the desired result follows from Lemma 2.3. �

Lemma 2.5. Suppose that the conditions of Theorem 2.1 hold. Then the following holds.

(i) 1
n∗

∑
i∈N∗((v̂

FS
i )2 − (vFSi )2)ϕ̃iϕ̃

′
i = OP (1/n∗).

(ii) 1
n∗

∑
i∈N∗

∑
j∈NP (i)∩N∗(v̂

FS
i v̂

FS
j − vFSi vFSj )ϕ̃iϕ̃

′
j = OP (1/

√
n∗).

Proof: The proof is the same as that of Lemma D.8 of Canen, Schwartz, and Song
(2019). �

Proof of Theorem 2.1: The proof is precisely the same as that of Theorem 3.2 of Ca-
nen, Schwartz, and Song (2019) except that we use the above auxiliary lemmas instead.
Details are omitted. �

2.4. Monte Carlo Simulations for Games with the First Order Sophisti-
cated Players

2.4.1. Simulation Design. In this section, we investigate the finite sample properties
of the inference for first-order sophisticated types across various configurations of the
payoff graphs GP . We generate graphs for the two specifications models and check our
inference under different parameters, described in the following paragraph. Specification
1 uses an Erdös-Rényi (random graph formation) payoff graph and Specification 2 uses
Barabási-Albert (preferential attachment) graphs seeded with an Erdös-Rényi graph of
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the smallest integer larger than 5
√
n. Some summary statistics of the graphs used for the

Monte Carlo study is given in Table 1.
For the simulations, we also set the following:

τi = X ′iρ0 + εi,

where ρ0 = (2, 4, 1, 3, 4)′ and Xi = (Xi,1, X i,2)
′, and

X i,2 =
1

nP (i)

∑
j∈NP (i)

Xj,2.

We set and a to be a column of ones so that a′0ρ = 14. The variables ε and η are drawn i.i.d.
from N(0, 1). The first column of Xi,1 is a column of ones, while remaining columns of
Xi,1 are drawn independently fromN(1, 1). The columns ofXi,2 are drawn independently
from N(3, 1).

For instruments, we consider the following nonlinear transformations of X1 and X2:

ϕi = [Z̃i,1, X
2
i,1, X

2

i,2, X
3

i,2]
′,

where we define
Z̃i,1 ≡

1

nP (i)

∑
j∈NP,2(i)

λijXj,1.

We generate Yi from the best response function as in (2.2). We used the Monte Carlo
simulation number equal to 5000.

2.4.2. Results. The results are found in Tables 2-5. In Tables 2 and 3 we report the finite
sample coverage probabilities of the confidence intervals for β0 and for a′ρ0 respectively.
For β0, the coverage probabilities perform very well, whereas for a′ρ0, they are conserva-
tive. Overall, for the range of the sample sizes 500− 1000, the finite sample properties of
the inference procedure seem reasonable.

In Tables 4-5, we report the average length of the confidence intervals. Clearly, as
we increase the sample size from 500 to 1000, the length of the confidence intervals
tends to shrink substantially. This suggests that accummulation of data leads to increased
information and improved accuracy in inference.
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TABLE 1. The Average and Maximum Degrees of Graphs in the Simulations

Specification 1 Specification 2
n m = 1 m = 2 m = 3 λ = 1 λ = 2 λ = 3

500 dmx 17 21 30 5 8 11
dav 1.7600 3.2980 4.8340 0.9520 1.9360 2.9600

1000 dmx 18 29 34 6 7 9
dav 1.8460 3.5240 5.2050 0.9960 1.9620 3.0020

Notes: dav and dmx represent the average and maximum degrees of the networks respectively; that is,
dav ≡ 1

n

∑
i∈N nP (i) and dmx ≡ maxi∈N nP (i).

TABLE 2. The Empirical Coverage Probability of Confidence Intervals for β0 from
First-Order Sophisticated Types

Specification 1 Specification 2
β0 m = 1 m = 2 m = 3 λ = 1 λ = 2 λ = 3
−0.5 n = 500 0.9634 0.9566 0.9562 0.9576 0.9528 0.9586

n = 1000 0.9542 0.9552 0.9566 0.9566 0.9526 0.9558
−0.3 n = 500 0.9586 0.9542 0.9536 0.9526 0.9534 0.9570

n = 1000 0.9490 0.9518 0.9546 0.9508 0.9506 0.9542
0 n = 500 0.9576 0.9532 0.9548 0.9478 0.9530 0.9552

n = 1000 0.9502 0.9522 0.9530 0.9462 0.9474 0.9516
0.3 n = 500 0.9652 0.9606 0.9582 0.9470 0.9514 0.9554

n = 1000 0.9548 0.9520 0.9548 0.9454 0.9494 0.9530
0.5 n = 500 0.9710 0.9658 0.9614 0.9502 0.9528 0.9584

n = 1000 0.9600 0.9570 0.9578 0.9474 0.9494 0.9566

Notes: This table shows the empirical coverage probabilities R = 5000 of the confidence intervals for
β0 under two models of graph formation. The nominal size is α = 0.05. As expected, the coverage
probabilities are close to the nominal size.

3. Model Selection between Games Γ0 and Γ1

It is a matter of econometric model specification to choose between Γ0 with simple-type
agents or Γ1 with the first-order sophisticated type agents as an empirical model. Both
models are distinct and nonnested. Here we provide an empirical procedure to select
among the two models.3

First, we write vi(β0), vFSi (β0), and ϕ̃i(β0) in place of vi, vFSi , and ϕ̃i to make their
dependence on β0 explicit. Let B be a set contained in (−1, 1) and assumed to contain

3Note that the two models Γ0 and Γ1 may not be exclusive of each other because there can be a data
generating process such that the payoff graph GP is a cluster structure where each cluster is a complete
graph (so that NP,2(i) = NP (i)), or β0 = 0.
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TABLE 3. The Empirical Coverage Probability of Confidence Interval for a′ρ0 for
First-Order Sophisticated Types

Specification 1 Specification 2
β0 m = 1 m = 2 m = 3 λ = 1 λ = 2 λ = 3
−0.5 n = 500 0.9906 0.9928 0.9900 0.9896 0.9896 0.9910

n = 1000 0.9856 0.9872 0.9872 0.9836 0.9846 0.9896
−0.3 n = 500 0.9874 0.9878 0.9880 0.9830 0.9862 0.9874

n = 1000 0.9802 0.9816 0.9862 0.9740 0.9786 0.9852
0 n = 500 0.9814 0.9848 0.9854 0.9760 0.9808 0.9848

n = 1000 0.9714 0.9806 0.9812 0.9568 0.9720 0.9772
0.3 n = 500 0.9840 0.9856 0.9872 0.9644 0.9796 0.9828

n = 1000 0.9710 0.9810 0.9796 0.9488 0.9616 0.9766
0.5 n = 500 0.9842 0.9880 0.9886 0.9496 0.9750 0.9836

n = 1000 0.9650 0.9784 0.9820 0.9456 0.9526 0.9750

Notes: This table shows the empirical coverage probabilities R = 5000 of the confidence intervals for
a′ρ0 under two models of graph formation. The nominal size is α = 0.05. The procedure is conservative,
as expected from the Bonferroni procedure.

TABLE 4. The Average Length of Confidence Intervals for β0 for First-Order So-
phisticated Types

Specification 1 Specification 2
β0 m = 1 m = 2 m = 3 λ = 1 λ = 2 λ = 3
−0.5 n = 500 0.1171 0.2867 0.3663 0.0627 0.1040 0.2124

n = 1000 0.0829 0.2271 0.3321 0.0366 0.0614 0.1333
−0.3 n = 500 0.0924 0.1442 0.1980 0.0658 0.0860 0.1409

n = 1000 0.0653 0.0965 0.1299 0.0384 0.0513 0.0831
0 n = 500 0.0810 0.1041 0.1277 0.0662 0.0726 0.1040

n = 1000 0.0545 0.0653 0.0781 0.0386 0.0420 0.0587
0.3 n = 500 0.0761 0.0972 0.1165 0.0696 0.0767 0.1030

n = 1000 0.0504 0.0599 0.0704 0.0415 0.0456 0.0603
0.5 n = 500 0.0698 0.0773 0.1008 0.0223 0.0386 0.0728

n = 1000 0.0198 0.0479 0.0643 0.0068 0.0168 0.0468

Notes: This table shows the average length of confidence intervals for β0 for two models of graph
formation R = 5000. The nominal size is α = 0.05. As expected the average length of the confidence
interval falls with n.

the true parameter β0, and define

TST = inf
β∈B

T (β), and TFS = inf
β∈B

T FS(β),

where T (β0) is as defined in (3.8) of Canen, Schwartz, and Song (2019) and T FS(β0) is
similarly defined after (2.3). Then, we consider the set

Ŝ = {s ∈ {ST,FS} : Ts ≤ c1−α/2},
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TABLE 5. Average Length of of Confidence Intervals for a′ρ0 for First-Order So-
phisticated Types

Specification 1 Specification 2
β0 m = 1 m = 2 m = 3 λ = 1 λ = 2 λ = 3
−0.5 n = 500 1.5489 1.4912 1.6440 0.6448 1.0615 2.1044

n = 1000 1.2581 1.1732 1.2974 0.4196 0.6760 1.2460
−0.3 n = 500 1.9736 2.3093 2.6460 0.8698 1.4064 2.9878

n = 1000 1.5288 1.6772 1.8918 0.5571 0.8749 1.6194
0 n = 500 2.3591 2.7335 3.1419 1.1100 1.6186 3.2359

n = 1000 1.6733 1.8155 2.0145 0.6959 0.9779 1.6898
0.3 n = 500 2.2385 2.6666 3.1282 1.3922 1.8623 3.2965

n = 1000 1.6314 1.8048 2.0041 0.8720 1.1455 1.8393
0.5 n = 500 3.1651 2.1409 2.5747 0.7793 1.2397 2.3673

n = 1000 1.0193 1.5059 1.7956 0.3911 0.7031 1.5259

Notes: The true a′ρ0 is equal to 14. The length of confidence intervals tends to be small and substantially
shortened as the size of the network increases.

where c1−α/2 denotes the (1−α/2)-percentile of the distribution of χ2
M−d. Among the two

models based on games Γ0 and Γ1, the set Ŝ is the set of the models that are not rejected
at 100(1− α)% in the sense to be explained below.

Define

mST = inf
β∈B

∣∣∣∣∣ 1

n∗

∑
i∈N∗

E [vi(β)|F ] ϕ̃i(β)

∣∣∣∣∣ , and

mFS = inf
β∈B

∣∣∣∣∣ 1

n∗

∑
i∈N∗

E
[
vFSi (β)|F

]
ϕ̃i(β)

∣∣∣∣∣ .
Let S0 = {s ∈ {ST,FS} : ms = 0}. Hence S0 denotes the collection of true models (as
distinguished by the moment condition ms = 0, s ∈ {ST,FS}.) Let Pn be the collection of
the joint distributions of all the observables in the data. For each δ > 0, let us define

Pn,1(δ) = {P ∈ Pn : mST = 0,mFS > δ}

Pn,2(δ) = {P ∈ Pn : mST > δ,mFS = 0}

Pn,3(δ) = {P ∈ Pn : mST = 0,mFS = 0}, and

Pn,4(δ) = {P ∈ Pn : mST > δ,mFS > δ},

and define

Pn(δ) =
4⋃

k=1

Pn,k(δ).
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Then, the selection rule Ŝ can be justified as follows: for each δ > 0,

lim inf
n→∞

inf
P∈Pn(δ)

P{S0 = Ŝ} ≥ 1− α.

We can also make the selection rule a consistent selection rule, by choosing α = αn to be
a sequence so that c1−αn/2 →∞ but slowly at a proper rate.

The procedure can be modified to perform model selection with other combinations
of the models as long as a testing procedure for moment conditions from each model
is available. For example, suppose that mEQ = 0 is a moment condition for a complete
information game model with equilibrium strategies and a consistent testing procedure
(at level α) for this moment condition is given by 1{TEQ > cEQ1−α} for some test statistic
TEQ and critical value cEQ1−α. Then, one can replace TFS and c1−α/2 by TEQ and cEQ1−α/2 in
the previous procedure to select a set of models from {ST,EQ} that are not rejected at
100(1− α)%.

Let us provide conditions and a brief proof for the asymptotic justification of the model
selection procedure. For brevity, we will provide high level conditions and discussions on
how they can be verified using low level conditions.

Let us first define for each δ > 0:

pn,1(δ) = inf
P∈Pn,1(δ)

P
{
TST ≤ c1−α/2, TFS > c1−α/2

}
pn,2(δ) = inf

P∈Pn,2(δ)
P
{
TST > c1−α/2, TFS ≤ c1−α/2

}
pn,3(δ) = inf

P∈Pn,3(δ)
P
{
TST ≤ c1−α/2, TFS ≤ c1−α/2

}
, and

pn,4(δ) = inf
P∈Pn,4(δ)

P
{
TST > c1−α/2, TFS > c1−α/2

}
.

Then, we make the following assumption:

min
{

lim inf
n→∞

pn,1(δ), lim inf
n→∞

pn,2(δ)
}
≥ 1− α/2,(3.1)

lim inf
n→∞

pn,2(δ) ≥ 1− α,

pn,2(δ)→ 1, as n→∞.

The assumptions in (3.1) follow if the tests 1{T ST(β0) > c1−α/2} and 1{T FS(β0) > c1−α/2}
are asymptotically valid uniformly over the probabilities that satisfy the respective mo-
ment conditions ms = 0, and if the tests are consistent under fixed alternatives (i.e.,
ms > δ). The uniform validity of the tests can be proved by invoking the uniform bound-
edness of certain moments and eigenvalues of the variance matrices, and by using Berry-
Esseen Lemma. As such arguments are standard, details are omitted here.
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Under the assumptions in (3.1), it is not hard to see that

lim inf
n→∞

inf
P∈Pn(δ)

P{S0 = Ŝ} ≥ 1− α.

Indeed, noting that Pn(δ) is partitioned into Pn,k(δ), k = 1, ..., 4, we can write

lim inf
n→∞

inf
P∈Pn(δ)

P{S0 = Ŝ} = lim inf
n→∞

min
1≤k≤4

inf
P∈Pn,k(δ)

P{S0 = Ŝ}

= min
1≤k≤4

lim inf
n→∞

inf
P∈Pn,k(δ)

P{S0 = Ŝ}.

The assumptions in (3.1) tell us that the last term is bounded from below by 1− α.

4. Testing for Information Sharing on Unobservables

4.1. The Model with Simple Type Players

One may want to see how much empirical relevance there is for incorporating infor-
mation sharing on unobservables. Here we explain how one can performa a formal test
of information sharing for the case of β0 6= 0. Observe that when β0 = 0, presence of
information sharing on unobservables is not testable. When β0 = 0, it follows that

s
[0]
i (Ii,0) = X ′iρ0 + vi,

where vi = εi + ηi. In this case, it is not possible to distinguish between contributions
from εi and ηi.

Consider the following hypotheses:

H0 : σ2
ε = 0, and H1 : σ2

ε > 0,

where we recall the definition σ2
ε = Var(ε2i |F). The null hypothesis tells us that there is

no information sharing on unobservables. Let v̂i(β), aε(β) and bε(β) be the same as v̂i, aε
and bε (defined in Appendix C of the Supplemental Note at the end of Canen, Schwartz,
and Song (2019)) only with β0 replaced by generic β. From here on we assume that
β0 6= 0.

The main idea for testing the hypothesis is that when σ2
ε > 0, this implies cross-

sectional dependence of residuals vi. For testing, we need to compute the sample version
of the covariance between vi and vj for GP -neighbors i and j. However, Condition C
alone does not guarantee that for each i ∈ N∗, we will be able to compute v̂j for some
j ∈ NP (i), because there may not exist such j for some i ∈ N∗ at all. Thus let us introduce
an additional data requirement as follows:
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Condition D: For each i ∈ N∗, the econometrician observes a nonempty subset Ñ(i) ⊂
NP (i) (possibly a singleton) of agents where for each j ∈ Ñ(i), the econometrician ob-
serves Yj, |NP (j) ∩NP (k)|, nP (k) and Xk for all k ∈ NP (j).

Condition D is satisfied if there are many agents in the data set where each agent
has at least one GP -neighbor j for which the econometrician observes the outcome Yj,
the number of their GP -neighbors, the observed characteristics of their GP -neighbors,
and the number of the agents who are both their GP -neighbors and the neighbors of
their GP -neighbors. The asymptotic validity of inference is not affected if the researcher
chooses a nonempty subset Ñ(i) in Condition D as a singleton subset, say, j(i) ⊂ NP (i),
j(i) ∈ N , such that we observe Yj(i), |NP (j(i))∩NP (k)|, nP (k) and Xk for all k ∈ NP (j(i))

are available in the data, so far as the choice is not based on Yi’s but on X only. While
this data requirement can still be restrictive in some cases where one obtains a partial
observation of GP , it is still weaker than the usual assumption that the econometrician
observes GP fully together with (Yi, X

′
i)i∈N .

Now let us reformulate the null and the alternative hypotheses as follows:

H0 :
1

n∗

∑
i∈N∗

∑
j∈Ñ(i)

E[vivj|F ] = 0, and(4.1)

H1 :
1

n∗

∑
i∈N∗

∑
j∈Ñ(i)

E[vivj|F ] 6= 0.(4.2)

For testing, we propose the following method. Let Cβ
1−(α/2) be the (1 − (α/2))-level

confidence interval for β. We consider the following test statistics:

ÎU = inf
β∈Cβ

1−(α/2)

1

2Ŝ4(β)n∗

∑
i∈N∗

∑
j∈Ñ(i)

v̂i(β)v̂j(β)

2

,

where

Ŝ2(β) =
d̃
1/2
av

n∗

∑
i∈N∗

v̂2i (β), and d̃av =
1

n∗

∑
i∈N∗
|Ñ(i)|.

When the confidence set includes zero, the power of the test becomes asymptotically
trivial, as expected from the previous remark that information sharing on unobservables
is not testable when β0 = 0.

As for the critical value, we take the (1−(α/2))-percentile from the χ2 distribution with
degree of freedom 1, which we denote by c1−(α/2). Then the level α-test based on the test
statistic ÎU rejects the null hypothesis if and only if ÎU > c1−(α/2).
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Theorem 4.1. Suppose that the conditions of Theorem 2.1 and Assumptions 3.1-3.5 of
Canen, Schwartz, and Song (2019) hold. Then, under the null hypothesis in (4.1),

lim
n∗→∞

P
{
ÎU > c1−α/2

}
≤ α,

as n∗ →∞.

Proof: First, note that

1√
n∗

∑
i∈N∗

∑
j∈Ñ(i)

(v̂iv̂j − vivj) = OP (1/
√
n∗),

by following precisely the same proof as that of Lemma D.6(ii) in Canen, Schwartz, and
Song (2019). (Recall that Ñ(i) is defined in Condition D above.) Now, we let

σ2 = Var

 1√
n∗

∑
i∈N∗

∑
j∈Ñ(i)

ηiηj|F


and write

1

σ
√
n∗

∑
i∈N∗

∑
j∈Ñ(i)

vivj =
1√
n∗

∑
i∈N∗

ri,

where

ri =
1

σ

∑
j∈Ñ(i)

ηiηj,

because vi = ηi under the null hypothesis. Note that E[ri|F ] = 0. Let G∗P be a graph on
N∗ such that i and j are adjacent if and only if j ∈ Ñ(i) or i ∈ Ñ(j). Then {ri}i∈N∗ has
G∗P as a dependency graph conditional on F . Now we show the following:

(n∗)−1/4
√
µ3
3 + (n∗)−1/2µ2

4 →P 0,(4.3)

where for p ≥ 1,

µp = max
i∈N∗

(E[|ri|p|F ])1/p .

Then by Theorem 2.3 of Penrose (2003), we obtain that

1

σ
√
n∗

∑
i∈N∗

∑
j∈Ñ(i)

vivj →d N(0, 1),
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as n∗ →∞. First, note that

σ2 = E

 1√
n∗

∑
i∈N∗

∑
j∈Ñ(i)

ηiηj

2

|F


=

1√
n∗

∑
i1∈N∗

∑
j1∈Ñ(i1)

∑
i2∈N∗

∑
j2∈Ñ(i2)

E [ηi1ηj1ηi2ηj2 |F ] .

Note that in the quadruple sum, i1 6= j1 and i2 6= j2. There are only two ways the last
conditional expectation is not zero: either i1 = i2 and j1 = j2 or j1 = i2 and i1 = j2,
because ηi’s are independent across i’s and its conditional expectation given F is zero.
Hence the last term is equal to

2σ4
η

n∗

∑
i∈N∗
|Ñ(i)| = 2σ4

ηd̃av(4.4)

Hence for any p ≥ 2,

µpp =
1

σp
max
i∈N∗

E

∣∣∣∣∣∣
∑
j∈Ñ(i)

ηiηj

∣∣∣∣∣∣
p

|F

 ≤ maxi,j∈N∗ E[|ηiηj|p|F ]

σp

≤ maxi,j∈N∗ E[|ηiηj|p|F ]

2pσ2p
η d̃

p
av

.

Note that d̃av ≥ 1 because Ñ(i) 6= ∅ for all i ∈ N∗. Thus (4.3) follows. Now, by Lemma
D.6 of Canen, Schwartz, and Song (2019), and in the light of the expression (4.4), it is
not hard to see that

2Ŝ4(β0) = σ2 + oP (1).

The desired result follows from this and the Bonferroni procedure. �

4.2. The Model with First Order Sophisticated Players

Let us develop a test for information sharing on unobservables when the game is pop-
ulated by the first order sophicated players. When β0 = 0, it follows that

s
[1]
i (Ii,1) = X ′iρ0 + vFSi ,

where vFSi = εi+ηi. Therefore, just as in the case of a simple type model, it is not possible
to distinguish between contributions from εi and ηi. Thus let us assume that β0 6= 0. The
presence of cross-sectional correlation of residuals vFSi serves as a testable implications
from information sharing on unobservables. As in the case of a model with agents of
simple type, we need to strengthen Condition D as follows:
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Condition D1: For each i ∈ N∗, the econometrician observes a nonempty subset Ñ(i) ⊂
NP (i) (possibly a singleton) of agents where for each j ∈ Ñ(i), the econometrician ob-
serves Yj, |NP (j) ∩NP (k)|, nP (k) and Xk for all k ∈ NP,2(j).

Similarly as before, we consider the following test statistics:

ÎU
FS

= inf
β∈Cβ

1−(α/2)

1

2(ŜFS(β))4n∗

∑
i∈N∗

∑
j∈Ñ(i)

v̂FSi (β)v̂FSj (β)

2

,

where

(ŜFS(β))2 =
d̃
1/2
av

n∗

∑
i∈N∗

v̂2i (β).

As before, we reject the null hypothesis of no information sharing on unobservables if

and only if ÎU
FS
> c1−(α/2), where c1−(α/2) is the (1− (α/2))-percentile of χ2

1. Asymptotic
validity of this procedure can be shown in a similar manner as for the case of simple
types.

5. Empirical Results Based on a Game with the First Order
Sophisticated Players

In this section, we report the empirical results based on the game Γ1 populated by the
first order sophisticated players. The results are found in Table 6.

Compared to the results with simple types, the confidence sets for β in the game with
first order sophisticated types are wider. For all specifications, the confidence sets for β
for the FOS types includes (most or all of) the confidence set for β for the simple type. In
general, the average marginal effects are similar across both models.4 We note that the
instruments used below are the same as those for simple players: polynomials of Xi,1 and
a set of instruments that captures the cross-sectional dependence along the payoff graph
(Z̃i = nP (i)−1

∑
j∈NP (i) λijXj,1).

4A caveat is that the numerical implementation for the specifications in Columns (3) and (4) in Table 6
appear more sensitive than the others for β close to -1, relying on how the grid is set for those values.
Throughout the empirical results in the paper, we present results for a grid of β ∈ [−0.75, 0.75]. As can be
seen in Table 6, Columns (3)-(4) include a disjoint subset at the smallest values of the grid. This interval
does not show up in any of the other specifications (simple type or first order sophisticated), disappears
in other specifications similar to Columns (3)-(4) (e.g. when we restrict the set of covariates for land and
river quality) and is not present when we consider a smaller grid. We attribute this to (i) lack of variation
as β → −1 due to more extensive cross-sectional dependence (recall that we need |β| away from 1 by
Assumption 2.1) (ii) less variation coming from the instruments Z̃i when β is smaller. The positive subset
in the confidence interval for β is stable across specifications, and we focus on it for the discussion of our
results.
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TABLE 6. State Presence and Networks Effects across Colombian Municipalities,
First Order Sophisticated Types

Outcome: The Number of State Employees
Baseline Distance to Highway Land Quality Rivers

(1) (2) (3) (4)

β0 [0.17, 0.35] [0.17, 0.35] [−0.75,−0.69] ∪ [0.17, 0.45] [−0.75,−0.56] ∪ [0.08, 0.46]

dyi/d(colonial state [−0.055, 0.004] [−0.046, 0.001] [−0.045, 0.005] [−0.032, 0.001]
officials)

Average
dyi/d(colonial state [−1.222, 3.667] [−1.118, 2.611] [−0.926, 3.047] [−3.953, 2.564]

agencies)

Average
dyi/d(distance to [−0.010, 0.009] [−0.008, 0.010] [−0.015, 0.021] [−0.013, 0.022]

Royal Roads)
n 1018 1018 1003 1003

Notes: Confidence sets for β are presented in the table, obtained from inverting the test statis-
tic T FS(β) in (2.7), with confidence level of 95%. The critical values in the first row come from
the asymptotic statistic. Downweighting is used. The average marginal effects for historical vari-
ables upon state capacity are also shown. The marginal effect of Colonial State Officials is equal
to its γ coefficient. The marginal effect for Distance to Royal Roads for municipality i equals
γRoyal Roads + 2γRoyal Roads2(Royal Roads)i, where γRoyal Roads is the γ coefficient of its linear term,
and γRoyal Roads2 is the coefficient of its quadratic term, as this variable enters X1 as a quadratic form.
The analogous expression holds for the variable Colonial State Agencies. We show the average marginal
effect for these two variables. We then present the confidence set for these marginal effects, computed
by the inference procedure on a′γ developed in Section 3. All specifications include controls of latitude,
longitude, surface area, elevation, rainfall, as well as Department and Department capital dummies.
Instruments are constructed from payoff neighbors’ sum of the GP neighbors values of the historical
variables Total Crown Employees, Colonial State Agencies, Colonial State Agencies squared, population
in 1843, distance to Royal Roads, distance to Royal Roads squared, together with the non-linear func-
tion Z̃i = nP (i)−1

∑
j∈NP (i) λijXj,1. Column (2) includes distance to current highway in X1, Column

(3) expands the specification of Column (2) by also including controls for land quality (share in each
quality level). Column (4) controls for rivers in the municipality and land quality, in addition to those
controls from Column (1). One can see that the results are very stable across specifications.

Given the results for the empirical model based on the game Γ1, we then conduct the
model selection procedure developed previously. This selects among the simple type and
first order sophisticated type models. Table 7 presents the results. As the results show,
the data did not reject either of the models ST and FS at 5%.
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TABLE 7. Model Selection, Simple Type or First Order Sophisticated

Specification
(1) (2) (3) (4)

Test Statistics and p-values (in parentheses)
TST 3.361 (0.762) 4.705 (0.582) 0.495 (0.998) 4.756 (0.575)

TFS 4.260 (0.642) 4.897 (0.557) 1.018 (0.985) 5.010 (0.543)

Models Not Rejected

Ŝ {ST,FS} {ST,FS} {ST,FS} {ST,FS}

Notes: The table shows the results of the Model Selection test, developed in Section 3. Here ST refers
to the simple type model, FS to the First Order Sophisticated. The critical value for the test (c1−α/2),
with 6 degrees of freedom (M − d) and level α = 0.05, is 14.449. The specifications in each column
are the same as those in Table 6. The first panel shows the values of the statistics, with the p-values in
parentheses. The bottom panel shows the set Ŝ of models that are not rejected by the test.
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