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Nonparametric estimation of triangular simultaneous
equations models under weak identification

Sukjin Han
Department of Economics, University of Texas at Austin

This paper analyzes the problem of weak instruments on identification, estima-
tion, and inference in a simple nonparametric model of a triangular system. The
paper derives a necessary and sufficient rank condition for identification, based
on which weak identification is established. Then nonparametric weak instru-
ments are defined as a sequence of reduced-form functions where the associated
rank shrinks to zero. The problem of weak instruments is characterized as con-
curvity, which motivates the introduction of a regularization scheme. The paper
proposes a penalized series estimation method to alleviate the effects of weak
instruments and shows that it achieves desirable asymptotic properties. A data-
driven procedure is proposed for the choice of the penalization parameter. The
findings of this paper provide useful implications for empirical work. To illustrate
them, Monte Carlo results are presented and an empirical example is given in
which the effect of class size on test scores is estimated nonparametrically.
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1. Introduction

Instrumental variables (IVs) are widely used in empirical research to identify and esti-
mate models with endogenous explanatory variables. In linear simultaneous equations
models, it is well known that standard asymptotic approximations break down when
instruments are weak in the sense that (partial) correlation between the instruments
and endogenous variables is weak. The consequences of and solutions for weak instru-
ments in linear settings have been extensively studied in the literature over the past two
decades; see, for example, Bound, Jaeger, and Baker (1995), Staiger and Stock (1997), Du-
four (1997), Kleibergen (2002, 2005), Moreira (2003), Stock and Yogo (2005), and Andrews
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and Stock (2007), among others. Weak instruments in nonlinear parametric models have
recently been studied in the literature in the context of weak identification by, for exam-
ple, Stock and Wright (2000), Kleibergen (2005), Andrews and Cheng (2012), Andrews
and Mikusheva (2016a,b), Andrews and Guggenberger (forthcoming), and Han and Mc-
Closkey (forthcoming).

One might expect that nonparametric models with endogenous explanatory vari-
ables will generally require strong identification power as there is an infinite number of
unknown parameters to identify, and hence, strong instruments may be crucial for a rea-
sonable performance of estimation.1 Despite the problem’s importance and the growing
popularity of nonparametric models, weak instruments in nonparametric settings have
not received much attention.2 Furthermore, surprisingly little attention has been paid
to the consequences of weak instruments in empirical research using nonparametric
models; see below for references. Part of the neglect is due to the existing complications
embedded in nonparametric models.

In a simple nonparametric framework, this paper analyzes the problem of weak
instruments on identification, estimation, and inference, and proposes an estimation
strategy to mitigate the effect. Identification results are obtained so that the concept
of weak identification can subsequently be introduced via localization. The problem
of weak instruments is characterized as concurvity. An estimation method is proposed
through regularization and the resulting estimators are shown to have desirable asymp-
totic properties even when instruments are possibly weak.

As a nonparametric framework, we consider a triangular simultaneous equations
model. The specification of weak instruments is intuitive in the triangular model be-
cause it has an explicit reduced-form relationship. Additionally, clear interpretation of
the effect of weak instruments can be made through a specific structure produced by the
control function approach. To make our analysis succinct, we specify additive errors in
the model. This particular model is considered in Newey, Powell, and Vella (1999) (NPV)
and Pinkse (2000) in a situation without weak instruments. Although relatively recent
developments in nonparametric triangular models contribute to models with nonsepa-
rable errors (e.g., Imbens and Newey (2009)), such flexibility complicates the exposition
of the main results of this paper.3 Also, having a form analogous to its popular para-
metric counterpart, the model with additive errors is broadly used in applied research
such as Blundell and Duncan (1998), Yatchew and No (2001), Lyssiotou, Pashardes, and
Stengos (2004), Dustmann and Meghir (2005), Skinner, Fisher, and Wennberg (2005),

1This conjecture is shown to be true in the setting considered in this paper; see Theorem 5.1 and Corol-
lary 5.2.

2Chesher (2003, 2007) mentioned the issue of weak instruments in applying his key identification con-
dition in the empirical example of Angrist and Keueger (1991). Blundell, Chen, and Kristensen (2007) de-
termined whether weak instruments are present in the Engel curve dataset of their empirical section. They
do this by applying the Stock and Yogo (2005) test developed in linear models to their reduced form, which
is linearized by sieve approximation. Darolles, Fan, Florens, and Renault (2011) briefly discussed weak in-
struments that are indirectly characterized within their source condition.

3For instance, the control function employed in Imbens and Newey (2009) requires large variation in
instruments, and hence discussing weak instruments (i.e., weak association between endogenous variables
and instruments or little variation in instruments) in such a context requires more care.
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Blundell, Browning, and Crawford (2008), Del Bono and Weber (2008), Frazer (2008),
Mazzocco (2012), Coe, von Gaudecker, Lindeboom, and Maurer (2012), Breza (2013),
Henderson, Papageorgiou, and Parmeter (2013), Chay and Munshi (2015), and Koster,
Ommeren, and Rietveld (2014).

One of the contributions of this paper is that it derives novel identification results in
nonparametric triangular models that complement the existing results in the literature.
With a mild support condition, we show that a particular rank condition is necessary
and sufficient for the identification of the structural relationship. This rank condition
is substantially weaker than what is established in NPV. Deriving such a rank condition
is key to establishing the notion of weak identification. Since the condition is minimal,
a “slight violation” of it has a binding effect on identification, hence resulting in weak
identification.

To characterize weak identification, we consider a drifting sequence of reduced-
form functions that converges to a nonidentification region, namely, a space of reduced-
form functions that violate the rank condition for identification. A particular rate is des-
ignated relative to the sample size, which effectively measures the strength of the instru-
ments, so that it appears in asymptotic results for the estimator of the structural func-
tion. The concept of nonparametric weak instruments generalizes the concept of weak
instruments in linear models such as in Staiger and Stock (1997).

In the nonparametric control function framework, the problem of weak instruments
becomes a nonparametric analogue of a multicollinearity problem known as concurvity
(Hastie and Tibshirani (1986)). Once the endogeneity is controlled by a control function,
the model can be rewritten as an additive nonparametric regression, where the endoge-
nous variables and reduced-form errors comprise two regressors, and weak instruments
result in the variation of the former regressor being mainly driven by the variation of the
latter. Therefore, the regularization methods used in the literature to solve inverse prob-
lems can be introduced to our problem. Among the regularization methods, only pe-
nalization (i.e., Tikhonov-type regularization) alleviates the effect of weak instruments,
while truncation does not.

This paper proposes a penalized series estimator for the structural function and es-
tablishes its asymptotic properties. We use L2-type penalization to control the penalty
bias. Our results on the rate of convergence of the estimator suggest that, without pe-
nalization, weak instruments characterized as concurvity slow down the overall conver-
gence rate, exacerbating bias, and variance “symmetrically.” We show that a faster con-
vergence rate can be achieved with penalization than without, while the penalty bias can
be dominated by the standard approximation bias. We propose a data-driven procedure
of choosing the penalization parameter, and derive the adaptive convergence rate. We
also derive consistency and asymptotic normality with mildly weak instruments.

The problem of concurvity in additive nonparametric models is also recognized in
the literature where different estimation methods are proposed to address the problem,
for example, the backfitting methods (Linton (1997), Nielsen and Sperlich (2005)) and
the integration method (Jiang, Fan, and Fan (2010)); also see Sperlich, Linton, and Här-
dle (1999). In particular, as closely related work to the asymptotic results of this pa-
per, Jiang, Fan, and Fan (2010) established pointwise asymptotic normality for local
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linear and integral estimators in an additive nonparametric model with highly corre-
lated covariates. In the present paper, where an additive model results from a triangular
model accompanied with the control function approach, the problem of concurvity is
addressed in a more direct manner via penalization. Although the main conclusions of
this paper do not depend on the choice of the nonparametric estimation method, using
series estimation is justified in our triangular model setup, where the joint density of the
endogenous variable and control variable is singular near the boundary of the support
(Imbens and Newey (2009)).

Another possible nonparametric framework in which to examine the problem of
weak instruments is a nonparametric IV (NPIV) model (Newey and Powell (2003), Hall
and Horowitz (2005), and Blundell, Chen, and Kristensen (2007), among others). Unlike
in a triangular model, the absence of an explicit reduced-form relationship forces weak
instruments in this setting to be characterized as a part of the ill-posed inverse problem.
Therefore, in this model, the performance of the estimator can be severely deteriorated
as the problem is “doubly ill-posed.”4 Further, it may also be hard to separate the effects
of the two in asymptotic theory. As a related recent work, Freyberger (2017) provided a
framework by which the size of the identification can be learned even though the com-
pleteness condition is not testable in a NPIV model (Canay, Santos, and Shaikh (2013)).
Instead of using a drifting sequence of distributions, he indirectly defines weak instru-
ments as a failure of a restricted version of the completeness condition. While he applies
his framework to test weak instruments, our focus is on estimation and inference of the
function of interest in a different nonparametric model with a more explicit definition
of weak instruments.

The findings of this paper provide useful implications for empirical work. First, when
estimating a nonparametric structural function, the results of IV estimation and subse-
quent inference can be misleading even when the instruments are strong in terms of
conventional criteria for linear models.5 Second, the symmetric effect of weak instru-
ments on bias and variance implies that the bias–variance trade-off is the same across
different strengths of instruments, and hence, weak instruments cannot be alleviated by
exploiting the trade-off. Third, penalization on the other hand can alleviate weak instru-
ments by significantly reducing variance and sometimes bias as well. Fourth, there is a
trade-off between the smoothness of the structural function (or the dimensionality of its
argument) and the requirement of strong instruments. Fifth, if a triangular model along
with its assumptions is considered to be reasonable, it provides an estimator that is more
precise than that with a NPIV model, which is an attractive feature especially in the pres-
ence of weak instruments. Sixth, although a linear first-stage reduced form is commonly
used in applied research (e.g., in NPV, Blundell and Duncan (1998), Blundell, Duncan,
and Pendakur (1998), Dustmann and Meghir (2005), Coe et al. (2012), and Henderson,
Papageorgiou, and Parmeter (2013)), the strength of instruments can be improved by

4In Section 8, we illustrate this point in an empirical application by comparing estimates calculated from
the triangular and NPIV models.

5For instance, in Coe et al. (2012), the first-stage F-statistic value that is reported is (sometimes barely)
in favor of strong instruments, but the judgement is based on the criterion for linear models. The majority
of empirical works referenced above do not report first-stage results.
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having a nonparametric reduced form so that the nonlinear relationship between the
endogenous variable and instruments can be fully exploited. The last point is related to
the identification results of this paper. In Section 8, we apply the findings of this paper
to an empirical example, where we nonparametrically estimate the effect of class size on
students’ test scores.

The rest of the paper is organized as follows. Section 2 introduces the model and
obtains new identification results. Section 3 discusses weak identification and Section 4
relates the weak instrument problem to the concurvity problem and defines our penal-
ized series estimator. Section 5 establishes the rate of convergence and consistency of
the penalized series estimator. It also provides the adaptive rate with the data-driven
choice of the penalization parameter. Section 6 establishes the asymptotic normality of
some functionals of the estimator. Section 7 presents the Monte Carlo simulation results.
Section 8 discusses the empirical application. Finally, Section 9 concludes.

2. Identification

We consider a nonparametric triangular simultaneous equations model

y = g0(x� z1)+ ε� x=Π0(z)+ v� (2.1a)

E[ε|v� z] = E[ε|v] a.s.� E[v|z] = 0 a.s.� (2.1b)

where g0(·� ·) is an unknown structural function of interest, Π0(·) is an unknown
reduced-form function, x is a dx-vector of endogenous variables, z = (z1� z2) is a
(dz1 + dz2)-vector of exogenous variables, and z2 is a vector of excluded instruments.
The stochastic assumptions (2.1b) are more general than the assumption of full inde-
pendence between (ε� v) and z and E[v] = 0. Following the control function approach,

E[y|x�z] = g0(x� z1)+E[
ε|Π0(z)+ v� z] = g0(x� z1)+E[ε|v] = g0(x� z1)+ λ0(v)� (2.2)

where λ0(v) = E[ε|v] and the second equality is from the first part of (2.1b). In effect,
we capture endogeneity (E[ε|x�z] �= 0) by an unknown function λ0(v), which serves as a
control function. Once v is controlled for, the only variation of x comes from the exoge-
nous variation of z. Based on equation (2.2), we establish identification, weak identifi-
cation, and estimation results.

First, we obtain identification results that complement the results of NPV. Given
(2.2), the identification of g0(x� z1) is achieved if one can separately vary (x� z1) and v
in g(x� z1)+ λ(v). Since x=Π0(z)+ v, a suitable condition on Π0(·) will guarantee this
via the separate variation of z and v. In light of this intuition, NPV proposes the following
identification condition, and show that g0(x� z1) is identified up to an additive constant:

Pr
[

rank
(
∂Π0(z)

∂z′
2

)
= dx

]
= 1� (2.3)

Note that this condition is only a sufficient condition, which suggests that the model
can possibly be identified with a relaxed rank condition. This observation motivates our



166 Sukjin Han Quantitative Economics 11 (2020)

identification analysis. The identification analysis of this section is also important for
our later purpose of defining the notion of weak identification. Henceforth, in order to
keep our presentation succinct, we drop z1 from model (2.1) and let z = z2. With z1 in-
cluded, all the results of this paper follow conditional on z1.

Assumption ID1. The functions g0(·), λ0(·), and Π0(·) are continuously differentiable
in their arguments.

This condition is also assumed in NPV. Let X ⊂ R
dx and Z ⊂ R

dz be the marginal
supports of x and z, respectively. Also, let Xz be the conditional support of x given z ∈ Z .
We partition Z into two regions where the rank condition is satisfied, that is, where z is
relevant, and otherwise.

Definition 2.1 (Relevant Set). Let Zr be the subset of Z defined by

Zr = Zr
(
Π0(·)

) =
{
z ∈ Z : rank

(
∂Π0(z)

∂z′
)

= dx
}
�

Let Z0 = Z\Zr be the complement of the relevant set. Let X r be the subset of X de-
fined by X r = {x ∈ Xz : z ∈ Zr}. Given the definitions, we introduce an additional support
condition.

Assumption ID2. The supports X and X r differ only on a set of probability zero, that is,
Pr[x ∈ X \X r] = 0.

Intuitively, when z is in the relevant set, x=Π0(z)+ v varies as z varies and, there-
fore, the support of x corresponding to the relevant set is large. Assumption ID2 assures
that the corresponding support is large enough to almost surely cover the entire support
of x. ID2 is not as strong as it may appear to be. Below, we show this by providing mild
sufficient conditions for ID2.

If we identify g0(x) for any x ∈ X r , then we achieve identification of g0(x) by Assump-
tion ID2. Now, in order to identify g0(x) for x ∈ X r , we need a rank condition, which will
be minimal. The following is the identification result.

Theorem 2.2. In model (2.1), suppose Assumptions ID1 and ID2 hold. Then g0(x) is
identified on X up to an additive constant if and only if

Pr
[
z ∈ Zr

]
> 0� (2.4)

The proof of this theorem and all subsequent proofs can be found in Appendix A and
in Appendix B in the Online Supplemental Material (Han (2020)).

The rank condition (2.4) is necessary and sufficient. The condition is substantially
weaker than (2.3), which is Pr[z ∈ Zr] = 1 (with z = z2). That is, Theorem 2.2 extends
the result of NPV in the sense that when Zr = Z , ID2 is trivially satisfied with X = X r .
Theorem 2.2 shows that it is enough for identification of g0(x) to have any fixed positive
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probability with which the rank condition is satisfied.6 This condition can be seen as the
local rank condition as in Chesher (2003). We achieve global identification with a local
rank condition. Although this gain comes from having the additional support condition,
the trade-off is appealing given the later purpose of building a weak identification no-
tion. Even without Assumption ID2, maintaining the assumptions of Theorem 2.2, we
still achieve identification of g0(x), but on the set {x ∈ X r}.

Lastly, in order to identify the level of g0(x), we need to introduce some normaliza-
tion as in NPV. Either E[ε] = 0 or λ0(v̄) = λ̄ suffices to pin down g0(x). With the latter
normalization, it follows that g0(x)= E[y|x�v= v̄] − λ̄, which we apply in estimation as
it is convenient to implement.

The following is a set of sufficient conditions for Assumption ID2. Let Vz be the con-
ditional support of v given z ∈ Z .

Assumption ID2′ . Either (a) or (b) holds. (a) (i) x is univariate and x and v are continu-
ously distributed, (ii) Z is a cartesian product of connected intervals, and (iii) Vz = Vz̃ for
all z� z̃ ∈Z0; (b) Vz =R

dx for all z ∈ Z .

Lemma 2.1. Under Assumption ID1, Assumption ID2′ implies Assumption ID2.

In Assumption ID2′, the continuity of the r.v. is implied by the support condition
imposed in NPV that the boundary of support of (z� v) has probability zero. Assump-
tion ID2′(a)(i) assumes that the endogenous variable is univariate, which is most em-
pirically relevant in nonparametric models.7 Still, the exogenous covariate z1 in g(x� z1),
which is omitted in the discussion, can be a vector. ID2′(a)(ii) and (iii) are rather mild.
ID2′(a)(ii) assumes that z has a connected support, that is, z varies smoothly.8 The as-
sumptions on the continuity of the r.v. and the connectedness of Z are also useful in de-
riving the asymptotic theory of the series estimator; see Assumption B below. ID2′(a)(iii)
means that the conditional support of v given z is invariant when z is in Z0. This support
invariance condition is the key to obtaining a rank condition that is considerably weaker
than that of NPV. Our support invariance condition imposes no extra restriction on the
support of z, and thus is different from the support invariance condition introduced
in Imbens and Newey (2009), which typically requires large support. Also, the condi-
tional support does not have to equal the marginal support of v here. ID2′(a)(iii), along
with the control function assumptions (2.1b), is a weaker orthogonality condition for z
than the full independence condition z⊥v. Note that Vz = {x−Π0(z) : x ∈ Xz}. Therefore,
ID2′(a)(iii) equivalently means that Xz is invariant for those z satisfying ∂Π0(z)/∂z = 0.
Moreover, one can introduce a condition that is weaker than ID2′(a)(iii): Xz ⊂ X r for
those z satisfying ∂Π0(z)/∂z = 0.9 These conditions in terms of Xz can be checked from

6A similar condition appears in the identification analysis of Hoderlein (2009), where endogenous semi-
parametric binary choice models are considered in the presence of heteroskedasticity.

7An additional condition is required with multivariate x, which is omitted in this paper.
8This is in contrast to, for example, Torgovitsky (2015) and D’Haultfœuille and Février (2015), which al-

low discrete instruments for identification in nonseparable models. The trade-off is that they require full
independence for instruments, which is stronger than our mean independence of (2.1b).

9Therefore, heteroskedasticity of v may in general violate ID2, and thus ID2′(a)(iii), although some types
of heteroskedasticity can still be allowed (e.g., heteroskedasticity only when z is relevant).
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Figure 1. Identification under Assumption ID2′(a), univariate z and no z1.

the data. Given ID2′(b) that v (and thus x) has a full conditional support, ID2 is triv-
ially satisfied without additional restrictions. This assumption on Vz is satisfied with, for
example, a normally distributed error term (conditional on regressors).

Figure 1 illustrates the intuition of the identification proof under ID2′(a) in a simple
case where z is univariate. First, by ∂E[y|v� z]/∂z = (∂g0(x)/∂x) ·(∂Π0(z)/∂z) and the rank
condition, g0(x) is locally identified on x corresponding to a point of z in the relevant set
Zr . As such a point of z varies within Zr , the x corresponding to it also varies enough to
cover almost the entire support of x. At the same time, for any x corresponding to an
irrelevant z (i.e., z outside of Zr ), one can always find z inside of Zr that gives the same
value of such an x. The probability Pr[z ∈ Zr] being small is related to the weak identi-
fication concept discussed later. Note that g0(x) is overidentified on a subset of X that
corresponds to multiple subsets of Z where Π0(·) has a nonzero slope, since each asso-
ciation of x and z contributes to identification. This discussion implies that the shape of
Π0(·) provides useful information on the strength of identification in different parts of
the domain of g0(x).

3. Weak identification

The previous section discusses the structure of the joint distribution of x and z that con-
tributes to the identification of g0(·). Specifically, (2.4) imposes a minimal restriction on
the shape of the conditional mean function E[x|z] = Π0(z). This necessity result sug-
gests that “slight violation” of (2.4) will result in weak identification of g0(·). Note that
this approach will not be successful with (2.3) of NPV, since violating the condition, that
is, Pr[rank(∂Π0(z)/∂z

′)= dx]< 1, can still result in identification.
In this section, we formally construct the notion of weak identification via localiza-

tion. We define nonparametric weak instruments as a drifting sequence of reduced-form
functions that are localized around a function with no identification power. Such a se-
quence of models or drifting data-generating process (Davidson and MacKinnon (1993))
is introduced to define weak instruments relative to the sample size n. As a result, the
strength of instruments is represented in terms of the rate of localization, and hence, it
can eventually be reflected in the local asymptotics of the estimator of g0(·).
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Let C(Z) be the class of conditional mean functions Π(·) on Z that are bounded
and continuously differentiable. Define a nonidentification region C0(Z) as a class of
functions that satisfy the lack-of-identification condition motivated by (2.4):10 C0(Z)=
{Π(·) ∈ C(Z) : Pr[rank(∂Π(z)/∂z′) < dx] = 1}. Define an identification region as C1(Z) =
C(Z)\C0(Z). We consider a sequence of triangular models y = g0(x)+ε and x=Πn(z)+
v with corresponding stochastic assumptions. Although g(x) is identified with Πn(·) ∈
C1(Z) for any fixed n by Theorem 2.2, g(x) is only weakly identified asΠn(·) drifts toward
a function Π̄(·) in C0(Z). Namely, the noise (i.e., v) contributes more than the signal
(i.e., Πn(z)) to the total variation of x ∈ {Πn(z) + v : z ∈ Z� v ∈ V} as n → ∞. In order
to facilitate a meaningful asymptotic theory in which the effect of weak instruments is
reflected, we further proceed by considering a specific sequence ofΠn(·).

Assumption L (Localization). For some δ > 0, the true reduced-form function Πn(·)
satisfies the following. For some Π̃(·) ∈ C1(Z) that does not depend on n and for z ∈ Z ,

∂Πn(z)

∂z′ = n−δ · ∂Π̃(z)
∂z′ + o(n−δ)�

Assumption L is equivalent to

Πn(z)= n−δ · Π̃(z)+ c+ o(n−δ) (3.1)

for some constant vector c. This specification of a uniform convergent sequence over Z
can be justified by our identification analysis. The “local nesting” device in (3.1) is also
used in Stock and Wright (2000) and Jun and Pinkse (2012) among others. In contrast
to these papers, the value of δ measures the strength of identification here and is not
specified to be 1/2.11 Unlike a linear reduced form, to characterize weak instruments in
a more general nonparametric reduced form, we need to control the complete behav-
ior of the reduced-form function, and the derivation of local asymptotic theory seems
to be more demanding. Nevertheless, the particular sequence considered in Assump-
tion L makes the weak instrument asymptotic theory straightforward while embracing
the most interesting local alternatives against nonidentification.12

4. Estimation

Once the endogeneity is controlled by the control function in (2.2), the problem be-
comes one of estimating the additive nonparametric regression function E[y|x�z] =

10The lack of identification condition is satisfied either when the order condition fails (dz < dx), or when
z are jointly irrelevant for one or more of x, almost everywhere in their support.

11It would be interesting to have different rates across columns or rows of ∂Πn(·)∂z′ . One can also consider
different rates for different elements of the matrix. The analyses in these cases can analogously be done by
slight modifications of the arguments.

12In defining weak instruments in Assumption L, one can consider an intermediate case where ∂Πn(·)
∂z′

converges to a matrix with reduced-rank rather than that with zero rank. Extending the analysis in this case
can follow analogously but omitted in the paper for succinctness.
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g0(x)+λ0(v). In a weak instrument environment, however, we face a nonstandard prob-
lem called concurvity: x = Πn(z) + v → v as n→ ∞ under the weak instrument spec-
ification (3.1) of Assumption L (with c = 0 for simplicity). With a series representation
g0(x)+λ0(v)= ∑∞

j=1{β1jpj(x)+β2jpj(v)}, where thepj(·)’s are the approximating func-
tions, it becomes a familiar problem of multicollinearity as pj(x)→ pj(v) for all j. More
precisely, pj(x)− pj(v) = O(n−δ) by mean value expansion pj(v)= pj(x− n−δΠ̃(z)) =
pj(x)− n−δΠ̃(z)∂pj(x̃)/∂x with an intermediate value x̃. Alternatively, by plugging this
expression of pj(v) back into the series, we can see that the variation of the regressor
shrinks as n→ ∞.

Given the connection between the weak instruments and concurvity, the regulariza-
tion methods used in the realm of research concerning inverse problems are suitable
for use with weak instruments. There are two types of regularization methods used in
the literature: the truncation method and the penalization method.13 In this paper, we
introduce the penalization scheme. The nature of our problem is such that the trunca-
tion method does not work properly, since pj(x)→ pj(v) even for j ≤ J <∞ as n→ ∞,
where J is a truncation point. On the other hand, the penalization directly controls the
behavior of the β1j ’s and β2j ’s, and hence, it successfully regularizes the weak instru-
ment problem.

We propose a penalized series estimation procedure for h0(w)= g0(x)+λ0(v)where
w = (x� v). We choose to use series estimation rather than other nonparametric meth-
ods as it is more suitable in our particular framework. Because x→ v the joint density
of w becomes concentrated along a lower dimensional manifold as n tends to infinity.
With series estimation, it is easy to impose the additivity of h0(·) and to characterize the
problem of weak instruments as the concurvity problem.

The estimation procedure takes two steps. In the first stage, we estimate the reduced
form Πn(·) using a standard series estimation method and obtain the residual v̂. In the
second stage, we estimate the structural function h0(·) using a penalized series esti-
mation method with ŵ = (x� v̂) as the regressors. The theory that follows uses orthog-
onal wavelets or B-splines as approximating functions; see Chen (2007, Section 2.3.1)
for the formal definitions. Let {(yi� xi� zi)}ni=1 be the data with n observations, and let
rL(zi) = (r1L(zi)� � � � � rLL(zi))

′ be a vector of approximating functions of order L for
the first stage. Define a matrix R

n×L
= (rL(z1)� � � � � r

L(zn))
′. Then, regressing xi on rL(zi)

gives Π̂(·)= rL(·)′γ̂ where γ̂ = (R′R)−1R′(x1� � � � � xn)
′, and we obtain v̂i = xi− Π̂(zi). De-

fine a vector of approximating functions of order K for the second stage as pK(w) =
(p1K(w)� � � � �pKK(w))

′. To reflect the additive structure of h0(·), there are no interaction
terms between the approximating functions for g0(·) and those for λ0(·) in this vector;
see Appendix A for the explicit expression. Denote a matrix of approximating functions
as P̂

n×K
= (pK(ŵ1)� � � � �p

K(ŵn))
′ where ŵi = (xi� v̂i). Note that L = L(n) and K = K(n)

grow with n.

13In Chen and Pouzo (2012), closely related concepts are used in different terminologies: minimizing a
criterion over finite sieve space and minimizing a criterion over infinite sieve space with a Tikhonov-type
penalty.
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We define a penalized series estimator:

ĥτ(w)= pK(w)′β̂τ� (4.1)

where the “interim” estimator β̂τ optimizes a penalizing criterion function

β̂τ = arg min
β̃∈RK

(y − P̂β̃)′(y − P̂β̃)/n+ τnβ̃′Dnβ̃� (4.2)

where y = (y1� � � � � yn)
′, Dn is some diagonal matrix (that may depend on n), and τn ≥ 0

the penalization parameter. Note that the penalty term τnβ̃
′Dnβ̃ penalizes the coeffi-

cients of the series, which effectively imposes smoothness restrictions on h0(·).14 In or-
der to control the bias, τn is assumed to converge to zero. The optimization problem
(4.2) yields a closed-form solution:

β̂τ = (
P̂ ′P̂ + nτnDn

)−1
P̂ ′y�

The concurvity feature discussed above is manifested here by the fact that the matrix
P̂ ′P̂ is nearly singular under Assumption L, since the two columns of P̂ become nearly
identical. In terms of the population second moment matrixQ=E[pK(wi)pK(wi)′], the
challenge is that the minimum eigenvalue of Q is not bounded away from zero, which
is manifested as λmax(Q

−1) = O(n2δ) (shown in Lemma A.1 in Appendix A) where λmax

denotes the maximum eigenvalue. The term nτnDn mitigates such singularity, without
which the performance of the estimator of h0(·) would deteriorate severely.15 The rela-
tive effects of weak instruments (n2δ) and penalization (τn) will determine the asymp-
totic performance of ĥτ(·). Given ĥτ(·), with the normalization that λ0(v̄) = λ̄, we have
ĝτ(x)= ĥτ(x� v̄)− λ̄.

5. Consistency and rate of convergence

First, we state the regularity conditions and key preliminary results under which we find
the rate of convergence of the penalized series estimator introduced in the previous sec-
tion. Let x̃= (x� z).

Assumption A. {(yi� xi� zi) : i= 1�2� � � �} are i.i.d. and var(x|z) and var(y|x̃) are bounded
functions of z and x̃, respectively.

Assumption B. (z� v) is continuously distributed with density that is bounded away
from zero on Z × V , and Z × V is a cartesian product of compact, connected intervals.

14Our main theory may still follow with a more general form of penalization, but we use this L2-type as

it is one of the penalty specifications that ensure a closed-form solution for β̂τ . Within the L2-type penalty,
we flexibly allow Dn to depend on n to help control the penalty bias; for example, we can penalize higher
order terms or equally-spaced terms.

15In linear settings, the introduction of a regularization method is less appealing as it creates the well-

known biased estimator of ridge regression. In contrast, we do not directly interpret β̂τ in the current non-
parametric setting, since it is only an interim estimator calculated to obtain ĥτ(·). More importantly, the
overall bias of ĥτ(·) is unlikely to be worsened in the sense that the additional bias introduced by penaliza-
tion can be dominated by the existing series estimation bias.
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Assumption B is useful to bound below and above the eigenvalues of the “trans-
formed” second moment matrix of approximating functions. This condition is worthy of
discussion in the context of identification and weak identification. Let fu and fw denote
the density functions of u = (z� v) and w = (x� v), respectively. An identification condi-
tion like Assumption ID2′ in Section 2 is embodied in Assumption B. To see this, note
that fu being bounded away from zero means that there is no functional relationship
between z and v, which in turn implies Assumption ID2′(a)(iii).16 On the other hand, an
assumption written in terms of fw like Assumption 2 in NPV (p. 574) cannot be imposed
here. Observe that w = (Πn(z) + v� v) depends on the behavior of Πn(·), and hence fw
is not bounded away from zero uniformly over n under Assumption L and approaches
a singular density. Technically, making use of a transformation matrix (see Appendix A),
an assumption is made in terms of fu, which is not affected by weak instruments, and
the effect of weak instruments can be handled separately in the asymptotics proof. Note
that the assumption for the Cartesian products of supports, namely Z × V and its com-
pactness can be replaced by introducing a trimming function as in NPV, that ensures
bounded rectangular supports.17 Assumption B can be weakened to hold only for some
component of the distribution of z; some components of z can be allowed to be discrete
as long as they have finite supports.

Next, Assumption C is a smoothness assumption on the structural and reduced-form
functions. Let W be the support of w= (x� v).

Assumption C. g0(·) and λ0(·) are Lipschitz and continuously differentiable of order s
on W .Πn(·) is bounded and continuously differentiable of order sπ on Z .

This assumption ensures that the series approximation error shrinks as the number
of approximating functions increases.

Assumption D. (i) nδK2(
√
L/n + L−sπ/dz ) → 0 and n−δK3 → 0. (ii) Also, τn → 0 and

β′Dnβ=O(λ2
n)=O(1).

Assumption D(i) restricts the rate of growth of the numbers K and L of the approxi-
mating functions. The conditions on K and L are more restrictive than the correspond-
ing assumption for splines in NPV (Assumption 4, p. 575) where weak instruments are
not considered. Assumption D(ii) ensures the bias from the penalization shrinks to zero.
The assumption that λn = O(1) is naturally satisfied when the series has decaying co-
efficients (e.g., Trefethen (2008, Theorem 4.2)) provided that the diagonal elements of
Dn are bounded by a fixed constant. Now, we provide the upper bounds of the rates of
convergence in probability of the penalized series estimator ĥτ(w) in terms of L2 and

uniform distance.18 Let ‖h‖L2 = {∫ [h(w)]2 dF(w)} 1
2 and ‖h‖∞ = supw∈W |h(w)|.

16The definition of a functional relationship can be found, for example, in NPV (p. 568).
17Assumption ID2′(b) is then viewed to hold for h(w)multiplied by a trimming function, thus identifica-

tion is still achieved over the trimmed support.
18In the Appendix, we also provide the rate results for the structural estimator ĝτ(·) after subtracting the

constant term which is not identified; see Theorem A.1.
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Theorem 5.1. Suppose Assumptions A–D and L are satisfied. Let Rn = min{nδ�τ−1/2
n }.

Then

‖ĥτ − h0‖L2 =Op
(
Rn

(√
K/n+K− s

dx + τnRnλn + √
L/n+L− sπ

dz
))
�

Also,

‖ĥτ − h0‖∞ =Op
(
Rn

√
K

(√
K/n+K− s

dx + τnRnλn + √
L/n+L− sπ

dz
))
�

Suppose there is no penalization (τn = 0). Then with Rn =Op(nδ), Theorem 5.1 pro-

vides the rates of convergence of the unpenalized series estimator ĥ(·). For example,
with ‖ · ‖L2 ,

‖ĥ− h0‖L2 =Op
(
nδ

(√
K/n+K− s

dx + √
L/n+L− sπ

dz
))
� (5.1)

Compared to the strong instrument case of NPV (Lemma 4.1, p. 575), the rate deterio-
rates by the leading nδ rate, the weak instrument rate. Note that the terms

√
K/n and

K−s/dx correspond to the variance and bias of the second stage estimator, respectively,19

and
√
L/n and L−sπ/dz are those of the first stage estimator. The latter rates appear here

due to the fact that the residuals v̂i are generated regressors obtained from the first-stage
nonparametric estimation. The way that nδ enters into the rate implies that the effect
of weak instruments (hence concurvity) not only exacerbates the variance but also the
bias.20 Moreover, the symmetric effect of weak instruments on bias and variance implies
that the effect of weak instruments cannot be alleviated by the choice of the number of
terms in the series estimator. This is also related to the discussion in Section 4 that the
truncation method does not work as a regularization method for weak instruments.

More importantly, in the case where penalization is in operation (τn > 0), the way
thatRn enters into the convergence rates implies that penalization can reduce both bias
and variance by the same mechanism working in an opposite direction to the effect of
weak instruments. Penalization introduces additional bias τn, but it can possibly be con-
trolled in the context of the current nonparametric estimation, for example, by assuming
that τnRnλn ≤ CK−s/dx for some C > 0. Then the rate becomes

‖ĥτ − h0‖L2 =Op
(
τ

− 1
2

n

(√
K/n+K− s

dx + √
L/n+L− sπ

dz
))
� (5.2)

Here, the overall rate is improved since the multiplying rate τ−1/2
n is of smaller order than

the multiplying rate nδ of the previous case. The faster convergence rate is achieved in
this upper bound at the expense of introducing a tuning parameter τn. Assumption D
implicitly assumes that δ > 0. Using penalization when instruments are rather strong
(δ= 0) may cause a substantial bias problem. This motivates a data-driven choice of τn
that is adaptive to the strength of instruments; see Theorem 5.4 below.

19The dimension of w is reduced to the dimension of x as the additive structure of h0(w) is exploited;
see, for example, Andrews and Whang (1990).

20This is different from a linear case where multicollinearity only results in imprecise estimates but
does not introduce bias. This is also different from the ill-posed inverse problem where the degree of ill-
posedness only affects variance.
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Next, we find the balanced L2 convergence rate. For a more concrete comparison
between the rates nδ and τ−1/2

n , let τn = n−2δτ for some δτ > 0. For example, the larger δτ
is, the faster the penalization parameter converges to zero, and hence, the smaller the
effect of penalization is.

Corollary 5.2. Suppose the Assumptions of Theorem 5.1 are satisfied and suppose
τnRnλn = λnmin{nδ−2δτ � n−δτ } ≤ CK−s/dx for some C > 0. Let K = O(n1/(1+2s/dx)) and
L=O(n1/(1+2sπ/dz)). Then ‖ĥτ−h0‖L2 =Op(n−q)= op(1), where q= min{ s

dx+2s �
sπ

dz+2sπ
}−

min{δ�δτ}.

In order to facilitate discussions on the balanced convergence rate, suppose the re-
duced form Πn(·) is known. Then q = s

dx+2s − min{δ�δτ}. Corollary 5.2 has several im-
plications. First, consider a weak instruments-prevailing case of δ < δτ . When the struc-
tural function is less smooth or has a high dimensional argument (i.e., small s or large
dx, and hence, small s

dx+2s ), instruments should not be too weak (i.e., small δ) to achieve

the same rate (i.e., holding q fixed).21 This implies a trade-off between the smoothness
of the structural function (or the dimensionality) and the required strength of instru-
ments. This, in turn, implies that the weak instrument problem can be mitigated with
some smoothness restrictions, which is in fact one of our justifications for introducing
the penalization method.22 When the effect of weak instruments is prevailing, the bal-
anced convergence rate of the unpenalized estimator ĥ becomes

‖ĥ− h0‖L2 =Op
(
n

− s
dx+2s+δ)� (5.3)

Even in the best scenario of s → ∞, it requires that 0 < δ < 1/2 for consistency, which
implies that instruments need to be mildly weak compared to the n−1/2 rate typically
introduced in parametric settings.

Once the penalization effect is prevailing (δτ < δ), Corollary 5.2 suggests that q in-
creases and the penalized estimator ĥτ can achieve a faster rate. As mentioned earlier,
however, this rate is only an upper bound. To complete the argument that ĥτ can outper-
form ĥ in terms of the convergence rate, we show the rate of ĥ in (5.3) is the best achiev-
able rate in the sense that the minimax lower bound rate of ĥ coincides its upper bound
n

− s
dx+2s+δ in (5.3). Then, when the penalization effect is prevailing, the best possible rate

of ĥ is no faster than the upper bound of the rate of ĥτ , namely Op(n
− s
dx+2s+δτ). This in

turn implies that the minimax risk of the penalized estimator cannot be larger than that
of the unpenalized estimator. The following theorem states the result under the setting
considered in the preceding discussion. Let B(s�L) be a Sobolev ball with smoothness s
and radius L; see the proof of the theorem in the Appendix for the detailed definition.

21This relationship between the “degree of weak instruments” and the smoothness is analogous to the
relationship between the measure of ill-posedness and the smoothness of functions in the NPIV literature
(Blundell, Chen, and Kristensen (2007), Chen and Christensen (2018b)).

22With weak instruments, optimal rates in the sense of Stone (1982) (which is the rate achieved in NPV
when the first stage is known) are not attainable. Also the uniform convergence rate does not attain Stone’s
(1982) bound even without the weak instrument factor (Newey (1997, p. 151)), and hence is not discussed
here and in the minimax bound below.
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Theorem 5.3 (Lower Bound Without Penalization). Suppose Assumptions A, B, and L
hold in model (2.1a)–(2.1b), andE[(yi−h0(wi))

2|wi] ≥ σ2 > 0 uniformly forwi. Also, sup-
pose h0(·) ∈ B(s�L) andΠn(·) is known. Then

inf
ĥ

sup
h∈B(s�L)

Pr h
(‖ĥ− h‖L2 ≥ Cn− s

dx+2s+δ) ≥ C ′ > 0�

where inf
ĥ

denotes the infimum over all estimators of hwith the sample size n, and C and
C ′ are constants that do not depend on n.

The same minimax rate is achieved for g0(x) as well, which can be found within the
proof of this theorem.

When implementing the penalized series estimator in practice, there remains the is-
sue of choosing tuning parameters, namely, the penalization parameter τ = τn and the
orders K and L of the series.23 In particular, the choice of τ is important in the con-
text of this paper, since we want τ to be adaptive to the strength of instruments, among
other things. For the choice of τ, we propose the following data-driven method.24 Recall
that β̂τ = Q̂−1

τ P̂
′y/n where Q̂τ = Q̂+ τDn with Q̂= P̂ ′P̂/n. We motivate our data-driven

method by the balancing principle in the decomposition of ‖β̂τ −β‖:

‖β̂τ −β‖ ≤ ∥∥β̂τ − Q̂−1
τ Q̂β

∥∥ + ∥∥Q̂−1
τ Q̂β−β∥∥�

where, on the right-hand side, the first term is the stability bound that is decreasing in τ
and the second term is the approximation error that is increasing in τ. This decomposi-
tion is motivated by the proof of Theorem 5.1. To apply a Lepskii (1991)-type method, we
discretize the support of τ and define T = {τj : 0< τ0 < τ1 < · · ·< τN}. The data-driven τ
would be

τ† = maxT0 = max
{
τ ∈ T : ∥∥Q̂−1

τ Q̂β−β∥∥ ≤ ∥∥β̂τ − Q̂−1
τ Q̂β

∥∥}
�

Based on T0, we can introduce a feasible choice τ̂ by defining a set T̂ :

τ̂ = max T̂ = max
{
τj ∈ T : ‖β̂τj − β̂τk‖ ≤ 2

{∥∥(
I − Q̂−1

τj
Q̂

)
β̂τj

∥∥ + ∥∥(
I − Q̂−1

τk
Q̂

)
β̂τk

∥∥}
�

k= 0�1� � � � � j
}
�

This approach is related to Pereverzev and Schock (2005), who develop a Lepskii-type
procedure of choosing a Tikhonov regularization parameter in ill-posed inverse prob-
lems.25 Given τ̂, we can show that the data-driven penalized estimator ĥτ̂ achieves the
following adaptive rate.

23In the simulations, we present results with a few chosen values of τ, K, and L. The cross-validation
method (Arlot and Celisse (2010)) may also work here.

24For the data-driven choice ofK andL, a similar approach can be used. Since such a problem is studied
in the literature (e.g., Chen and Christensen (2018a)) in a related setting, we only focus on the choice of τ in
the current paper.

25For references for similar approaches that use the balancing principle, see also Chen and Christensen
(2018a), Breunig and Johannes (2016), Pouzo (2016), and Jansson and Pouzo (2019), among others.
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Theorem 5.4 (Rate-Adaptivity). Suppose Assumptions A–D and L are satisfied. Let R†
n =

min{nδ� (τ†)−1/2}. Then

‖ĥτ̂ − h0‖L2 =Op
(
R†
n

(√
K/n+K− s

dx + √
L/n+L− sπ

dz
))
�

By the construction of τ†, the penalty bias (τ†R†
nλn) is dominated by the variance

term (
√
K/n), which is shown within the proof of this theorem, and thus the former

is omitted in the rate expression. When instruments are strong (i.e., δ = 0, violating
Assumption D), τ† is chosen to be a negligible value by construction, since the upper
bound in T0 satisfies ‖β̂τj − Q̂−1

τj
Q̂β‖ =Op(

√
K/n+K−s/dx +�π) for any τj in this case.

Before closing this section, we discuss one of the practical implications of the iden-
tification and asymptotic results thus far. In applied research that uses nonparamet-
ric triangular models, a linear specification of the reduced form is largely prevalent;
see, for example, NPV, Blundell and Duncan (1998), Blundell, Duncan, and Pendakur
(1998), Yatchew and No (2001), Lyssiotou, Pashardes, and Stengos (2004), Dustmann
and Meghir (2005), and Del Bono and Weber (2008). While a linear reduced-form re-
lationship is rarely justified by economic theory, linear specification is introduced to
avoid the curse of dimensionality with many covariates, or for an ad hoc reason that it is
easy to implement and that the nonparametric structural equation is of primary interest.
When the reduced form is linearly specified, however, any true nonlinear relationship
is “flattened out,” and the situation is more likely to have the problem of weak instru-
ments, let alone the problem of misspecification. On the other hand, one can achieve
a significant gain in the performance of the estimator by nonparametrically estimating
the relationship of x and z. According to (2.4), identification power can be enhanced by
exploiting the entire nonlinear relationship between x and z. This phenomenon may
be interpreted in terms of the “optimal instruments” in the GMM settings of Amemiya
(1977); see also Newey (1990) and Jun and Pinkse (2012). The nonparametric first stage
estimation is not likely to worsen the overall convergence rate of the estimator, since the
nonparametric rate from the second stage is already present.

6. Asymptotic distributions

We establish the asymptotic normality of the functionals of the penalized series esti-
mator ĥτ(·). We consider linear functionals of h0(·) that include h0(·) at a certain value
(i.e., h0(w̄)) and the weighted average derivative of h0(·) (i.e.,

∫
ϑ(w)[∂h0(w)/∂x]dw).

The linear functionals of h = h0(·) are denoted as a(h). Then the estimator θ̂τ = a(ĥτ)

of θ0 = a(h) is the natural “plug-in” estimator. Let A = (a(p1K)�a(p2K)� � � � � a(pKK)),
where pjK(·) is an element of pK(·). Then

θ̂τ = a(ĥτ)= a(pK(x)′β̂τ) =Aβ̂τ�

Then the following variance estimator of θ̂τ can naturally be defined:

V̂τ =AQ̂−1
τ

(
Σ̂τ + ĤτQ̂−1

1 Σ̂1Q̂
−1
1 Ĥ ′

τ

)
Q̂−1
τ A

′�



Quantitative Economics 11 (2020) Triangular models under weak identification 177

Σ̂τ =
n∑
i=1

pK(ŵi)p
K(ŵi)

′[yi − ĥτ(ŵi)]2
/n� Σ̂1 =

n∑
i=1

v̂2
i r
L(zi)r

L(zi)
′/n�

Ĥτ =
n∑
i=1

pK(ŵi)
{[
∂ĥτ(ŵi)/∂w

]′
∂ω

(
x̃i� Π̂(zi)

)
/∂π

}
rL(zi)

′/n� Q̂1 =R′R/n�

where x̃ is a vector of variables that includes x and z andω(x̃�π) is a vector of functions
of x̃ and π where π is a possible value of Π(z). The following are additional regularity
conditions for the asymptotic normality of θ̂τ . Let η= y − h.

Assumption E. σ2(x̃) = var(y|x̃) is bounded away from zero, E[η4|x̃] is bounded, and
E[‖v‖4|x̃] is bounded. Also, h0(w) is twice continuously differentiable in v with bounded
first and second derivatives.

This assumption strengthens the boundedness of conditional second moments in
Assumption A. For the next assumption, let |h|r = max|μ|≤r supw∈W |∂μh(w)|. Also let
p̃K(w) be a generic vector of approximating functions and let p̃∗K(z� v) be a “transfor-
mation” of p̃K(w) purged of the weak instruments effect (see Appendix A).

Assumption F. Either (a) or (b) hold: (a) a(h) is a scalar and is continuous under |h|r̃
for some r̃ ≥ 0, and there exists βK such that as K→ ∞, a(pK′βK) is bounded away from
zero while E[(p̃K(w)′βK)2] → 0; (b) There exists ν(w) and αK such that E[‖ν(w)‖2]<∞,
a(h)=E[ν(w)h0(w)], a(pj)=E[ν(w)pj(w)], andE[‖ν(Πn(z)+v� v)− p̃∗K(z� v)′αK‖2] →
0 asK→ ∞.

Assumption F(a) includes the case of h at a certain value and F(b) includes the case
of the weighted average derivative of h, in which case ν(w) = −fw(w)−1∂ϑ(w)/∂w. The
next condition restricts the rate of growth of K and L and the rate of convergence of τn.

Assumption G. The following terms converge to zero as n→ ∞:
√
nK−s/dx ,

√
nL−sπ/dz ,√

L log(L)/n, Rn
√
K3L3/n, R3

nK
1/2(K3L/n + K2

√
L/n + √

K log(K)/n), RnK2L/
√
n,

R2
n(K +L)/√n. Also, τnRnλn ≤ CK−s/dx for some C > 0.

Assumption G imposes more restrictions on the behavior of weak instruments and
τn (and ofK andL) than Assumption D. The conditions

√
nK−s/dx → 0 and

√
nL−sπ/dz →

0 introduce overfitting in that the bias (K−s/dx ) shrinks faster than 1/
√
n, the usual rate

of standard deviation of the estimator. The same feature is found in the corresponding
assumption in NPV (Assumption 8, p. 582). While the overall rate conditions on K and
L in Assumption G may be stronger than that in NPV due to weak instruments, we relax
the rate required to approximate the sample second moment matrices to their popula-
tion counterparts, by applying recent development in Chen and Christensen (2015) and
Belloni, Chernozhukov, Chetverikov, and Kato (2015). As before, the last part of Assump-
tion G assumes that the penalty bias is no larger than the approximation bias.
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Theorem 6.1. If Assumptions A–G and L are satisfied, then

√
nV̂ −1/2

τ (θ̂τ − θ0)→d N(0�1)�

There still remain issues when the result of Theorem 6.1 is used for inference, for
example, for constructing pointwise asymptotic confidence intervals. As nuisance pa-
rameters are present (i.e., δ or τ), an inferential procedure may depend on the strength
of instruments or on the choice of the penalization parameter. The data-driven method
developed in the previous section for the choice of τ may not be applicable to Theo-
rem 6.1. Developing a procedure robust to the strength of instruments in nonparametric
models or a data-driven method of choosing τ for inference is beyond the scope of our
paper, and we leave it to future research.

7. Monte Carlo simulations

In this section, we document the problems of weak instruments in nonparametric es-
timation and investigate the finite sample performance of the penalized estimator. We
are particularly interested in the finite sample gain in terms of the bias, variance, and
mean squared errors (MSE) of the penalized series estimators defined in Section 4 (“pe-
nalized IV (PIV) estimators”) relative to those of the unpenalized series estimators (“IV
estimators”) for a wide range of strength of instruments.

We consider the following data generating process:

y =�
(
x−μx
σx

)
+ ε� x= π1 + zπ + v�

where y, x, and z are univariate, z ∼ N(μz�σ
2
z ) with μz = 0 and σ2

z = 1, and (ε� v)′ ∼
N(0�Σ) with Σ = [ 1 ρ

ρ 1

]
. Note that |ρ| measures the degree of endogeneity, and we con-

sider ρ ∈ {0�2�0�5�0�95}. The sample {zi� εi� vi} is i.i.d. with size n= 1000. The number of
simulation repetitions is s ∈ {500�1000}. We consider different strengths of the instru-
ment by considering different values of π. Let the intercept π1 = μx − πμz with μx = 2
so that E[x] = μx does not depend on the choice of π. Note that σ2

x = π2σ2
z + 1 still

depends on π, which is reasonable since the signal contributed to the total variation
of x is a function of π. More specifically, to measure the strength of the instrument,
we define the concentration parameter (Stock and Yogo (2005)): μ2 = π2 ∑n

i=1 z
2
i /σ

2
v .

Note that since the dimension of z is one, the concentration parameter value and the
first-stage F-statistic are similar to each other. For example, in Staiger and Stock (1997),
for F = 30�53 (strong instrument), a 97�5% confidence interval for μ2 is [17�3�45�8],
and for F = 4�747 (weak instrument), a confidence interval for μ2 is [2�26�5�64]. The
candidate values of μ2 are {4�8�16�32�64�128�256}, which range from a weak to a
strong instrument in the conventional sense.26 Also, with π = n−δπ̃ under Assump-
tion L and σ2

z = 1, the concentration parameter is related to δ by μ2 ≈ n1−2δπ̃. Suppose
π̃ = 1, then the range of δ that corresponds to the chosen range of μ2 is approximately

26The simulation results seem to be unstable when μ2 = 4 (presumably because instruments in this
range are severely weak in nonparametric settings), and hence need caution when interpreting them.
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{0�4�0�35�0�3�0�25�0�2�0�15�0�1}. As for the penalization parameter τ, we consider can-
didate values of {0�001�0�005�0�01�0�05�0�1}. As a benchmark in relation to Theorem 5.4,
τ̂ ≈ 0�0126 for μ2 = 64 in one instance of our simulation.

The approximating functions used for g0(x) and λ0(v) are polynomials with different
choices of (K1�K2), where K1 is the number of terms for g0(·), K2 for λ0(·), and K =
K1 + K2. We introduce the normalization λ0(1) = ρ, where ρ is chosen because of the
joint normality of (ε� v). Then g0(x)= h0(x�1)− ρ, where h(x�v)= g(x)+ λ(v).

In the first part of the simulation, we calculate ĝτ(·) and ĝ0(·), the penalized and
unpenalized IV estimates, respectively, and compare their performances. For different
strengths of the instrument, we compute estimates with different values of the penaliza-
tion parameter. We choose K1 =K2 = 6, and ρ= 0�5.27 As one might expect, the choice
of orders of the series is not significant as long as we are only interested in comparing
ĝτ(·) and ĝ(·).

Figures 2 and 3 present some representative results. Results with different values
of μ2 and τ are similar, and hence are omitted to save space. In Figure 2, we plot the
mean of ĝτ(·) and ĝ(·) with concentration parameter μ2 = 16 and penalization parame-
ter τ= 0�001. In Figure 2(a), the plot for the unpenalized estimate indicates that with the
given strength of the instrument, the variance is very large, which implies that functions
with any trends can fit within the 0.025–0.975 quantile ranges; it indicates that the bias
is also large. The graph for the penalized estimate shows that the penalization signifi-
cantly reduces the variance so that the quantile range implies the upward trend of the
true g0(·). Note that the bias of ĝτ(·) is no larger than that of ĝ(·). Although μ2 = 16 is
considered to be strong according to the conventional criterion, this range of the con-
centration parameter value can be seen as the case where the instrument is “nonpara-
metrically” weak in the sense that the penalization induces a significant difference be-
tween ĝτ(·) and ĝ(·). Figure 2(b) is drawn with μ2 = 256, while all else remains the same.

Figure 2. Penalized versus unpenalized estimators (ĝτ(·) versus ĝ(·)), τ = 0�001.

27Because of the bivariate normal assumption for (ε� v)′, we implicitly impose linearity in the function
E[ε|v] = λ(v). Although K2 being smaller than K1 would better reflect the fact that λ0(·) is smoother than
g0(·), we assume that we are agnostic about such knowledge.
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Figure 3. Penalized versus unpenalized estimators (ĝτ(·) versus ĝ(·)), τ = 0�005.

In this case, the penalization induces no significant difference between ĝτ(·) and ĝ(·).
This can be seen as the case where the instrument is “nonparametrically” strong. It is
noteworthy that the bias of the penalized estimate is no larger than the unpenalized one
even in this case.

Figure 3 presents similar plots but with penalization parameter τ = 0�005. Figure 3(a)
shows that with a larger value of τ than the previous case, the variance is significantly
reduced, while the biases of the two estimates are comparable to each other. The change
in the patterns of the graphs from Figure 3(a) to 3(b) is similar to those in the previous
case. Furthermore, the comparison between Figure 2 and Figure 3 shows that the results
are more sensitive to the change of τ in the weak instrument case than in the strong
instrument case.

The fact that the penalized and unpenalized estimates differ significantly when the
instrument is weak has a practical implication: Practitioners can be informed about
whether the instrument they are using is worryingly weak by comparing penalized se-
ries estimates with unpenalized estimates. A similar approach can be found in the linear
weak instruments literature; for example, the biased TSLS estimates and the approxi-
mately median-unbiased LIML estimates of Staiger and Stock (1997) can be compared
to detect weak instruments.

Table 1 reports the integrated squared bias, integrated variance, and integrated MSE
of the penalized and unpenalized IV estimators and least squares (LS) estimators of
g0(·). The LS estimates are calculated by series estimation of the outcome equation (with
order K1), ignoring the endogeneity. We also calculate the relative integrated MSE for
comparisons. We useK1 =K2 = 6, and ρ= 0�5 as before. Results with different choices of
ordersK1 andK2 between 3 and 10 and a different degree of endogeneity ρ in {0�2�0�95}
show similar patterns. Note that the usual bias and variance trade-offs are present as
the order of the series changes. In the table, as the instrument becomes weaker, the bias
and variance of the unpenalized IV (τ = 0) increase with a greater proportion in vari-
ance. The integrated MSE ratios between the IV and LS estimators (MSE IV/MSELS) indi-
cate the relative performance of the IV estimator compared to the LS estimator. A ratio
larger than unity implies that IV performs worse than LS. In the table, the IV estimator
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Table 1. Integrated squared bias, integrated variance, and integrated MSE of the penalized and
unpenalized IV estimators ĝτ(·) and ĝ(·).

μ2

4 8 16 32 64 128 256

τ= 0 Bias2 0�0377 0�0335 0�0054 0�0008 0�0000 0�0003 0�0000
Var 99�0147 3�8019 0�9395 0�1419 0�0711 0�0310 0�0186
MSE 99�0524 3�8354 0�9449 0�1426 0�0711 0�0313 0�0186
MSE IV/MSELS 374�7291 15�9165 3�3232 0�5875 0�2790 0�1472 0�0901

τ= 0�001 Bias2 0�0328 0�0131 0�0030 0�0010 0�0002 0�0000 0�0000
Var 0�3727 0�2557 0�1497 0�0829 0�0427 0�0349 0�0174
MSE 0�4055 0�2688 0�1527 0�0839 0�0429 0�0349 0�0174
MSE PIV/MSE IV 0�0035 0�1203 0�5365 0�6888 0�8297 0�9074 0�9452

τ= 0�005 Bias2 0�1145 0�0682 0�0305 0�0150 0�0042 0�0017 0�0010
Var 0�4727 0�1332 0�0732 0�0894 0�0345 0�0248 0�0354
MSE 0�5872 0�2014 0�1037 0�1045 0�0387 0�0265 0�0364
MSE PIV/MSE IV 0�0024 0�0894 0�3501 0�5594 0�6462 0�7795 0�7464

τ= 0�01 Bias2 0�1566 0�1068 0�0685 0�0346 0�0158 0�0047 0�0022
Var 0�2117 0�1981 0�2965 0�0318 0�0265 0�0183 0�0132
MSE 0�3684 0�3049 0�3649 0�0664 0�0423 0�0230 0�0154
MSE PIV/MSE IV 0�0037 0�0795 0�3862 0�4655 0�5942 0�7345 0�8238

does poorly in terms of MSE even when μ2 = 16, which is in the range of conventionally
strong instruments; therefore, this can be considered as the case where the instrument
is nonparametrically weak.

The rest of the results in Table 1 are for the penalized IV (PIV) estimator ĝτ(·). Over-
all the variance is reduced significantly compared to that of IV without sacrificing much
bias. In the case of τ = 0�001, the variance is reduced for the entire range of instrument
strength (compared to the unpenalized estimator). Remarkably, the bias is no larger
even though penalization is in operation and is reduced when the instrument is weak.
This provides evidence for the theoretical discussion in Section 5 that the penalty bias
can be dominated by the existing series estimation bias. This feature diminishes as the
increased value of τ introduces more bias. The integrated MSE ratios between PIV and
IV (MSEPIV/MSE IV) in Table 1 suggest that PIV outperforms IV in terms of MSE for all the
values of τ considered here. For example, when μ2 = 8, the MSE of PIV with τ = 0�001 is
only about 12% of that of IV, while the bias (squared) of PIV is only about 39% of that of
IV. These results imply that PIV performs substantially better than LS unlike the previous
case of IV.

The simulation results can be summarized as follows. Even with a strong instrument
in a conventional sense, unpenalized IV estimators do poorly in terms of mean squared
errors compared to LS estimators. Variance seems to be a bigger problem, but bias is
also worrisome. Penalization alleviates much of the variance problem induced by the
weak instrument, and it also works well in terms of bias for relatively weak instruments
and for some values of the penalization parameter.
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8. Application: Effect of class size

To illustrate our approach and apply the theoretical findings, we nonparametrically esti-
mate the effect of class size on students’ test scores. Estimating the effect of class size has
been an interesting topic in the schooling literature, since among school inputs that af-
fect students’ performance, class size is thought to be easier to manipulate. Angrist and
Lavy (1999) analyzed the effect of class size on students’ reading and math scores in Is-
raeli primary schools. With linear models, they find that the estimated effect is negative
in most of the specifications they consider. This specific empirical application is chosen
for the following reasons: (i) Although Angrist and Lavy (1999) used an instrument that
is considered to be strong for their parametric model, it may not be sufficiently strong
when applied in a nonparametric specification of the relationship; see below for details.
(ii) The instrument is continuous in this example and presents a nonlinear relationship
with the endogenous variable; see Figure 1 in Angrist and Lavy (1999). (iii) We also com-
pare estimates calculated from our triangular model and the NPIV model in Horowitz
(2011), where the same example is considered.

In this section, we investigate whether the results of Angrist and Lavy (1999) are
driven by their parametric assumptions. It is also more reasonable to allow a nonlinear
effect of class size, since it is unlikely that the marginal effect is constant across class-size
levels. We nonparametrically extend their linear model by considering

scoresc = g(classizesc�disadvsc)+ αs + εsc
for school s and class c, where scoresc is the average test score within class, classizesc the
class size, disadvsc the fraction of disadvantaged students, and αs an unobserved school-
specific effect. Note that this model allows for different patterns for different subgroups
of school/class characteristics (here, disadvsc).

Class size is endogenous because it results from choices made by parents, schooling
providers or legislatures, and hence is correlated with other determinants of student
achievement. Angrist and Lavy (1999) used Maimonides’ rule on maximum class size
in Israeli schools to construct an IV. According to the rule, class size increases one-for-
one with enrollment until 40 students are enrolled, but when 41 students are enrolled,
the class size is dropped to an average of 20.5 students. Similarly, classes are split when
enrollment reaches 80, 120, 160, and so on, so that each class does not exceed 40. With
es being the beginning-of-the-year enrollment count, this rule can be expressed as fsc =
es/{int((es − 1)/40)+ 1}, which produces the IV. This rule generates discontinuity in the
enrollment/class-size relationship, which serves as exogenous variation. Note that with
the sample around the discontinuity points, IV exogeneity is more credible in addressing
the endogeneity issue.

The dataset we use is the 1991 Israel Central Bureau of Statistics survey of Israeli pub-
lic schools from Angrist and Lavy (1999). We only consider fourth graders. The sample
size is n= 2019 for the full sample and 650 for the discontinuity sample. Given a linear re-
duced form, first stage tests have F = 191�66 with the discontinuity sample (±7 students
around the discontinuity points) and F = 2150�4 with the full sample. Lessons from the
theoretical analyses of the present paper suggest that an instrument that is strong in a
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conventional sense (F = 191�66) can still be weak in nonparametric estimation of the
class-size effect, and a nonparametric reduced form can enhance identification power.
We consider the following nonparametric reduced form:

classizesc =Π(fsc�disadvsc)+ vsc�

The sample is clustered, an aspect which is reflected in αs of the outcome equation.
Hence, we use the block bootstrap when computing standard errors and take schools
as bootstrap sampling units to preserve within-cluster (school) correlation.28 This pro-
duces cluster-robust standard errors. We use b= 100 bootstrap repetitions.

With the same example and dataset (only the full sample), Horowitz (2011, Sec-
tion 5.2) uses the model and assumptions of the NPIV approach to nonparametrically
estimate the effect of class size. To address the ill-posed inverse problem, he conducts
regularization by replacing the operator with a finite-dimensional approximation. First,
we compare the NPIV estimate of Horowitz (2011) with the IV estimate obtained by the
control function approach of this paper. Figure 3 in Horowitz (2011) is the NPIV estimate
of the function of class size (g(·� ·)) for disadv = 1�5(%) with the full sample. The solid
line is the estimate of g and the dots show the cluster-robust 95% confidence band. As
noted in his paper (p. 374), “the result suggests that the data and the instrumental vari-
able assumption, by themselves, are uninformative about the form of any dependence
of test scores on class size.” Using the same scales in the axes for comparison, Figure 4 in
the present paper depicts the (unpenalized) IV estimate calculated with the full sample
using the triangular model (2.1) and the control function approach. Although not en-
tirely flexible, the nonparametric reduced form above is justified for use in the compari-
son with the NPIV estimate, since the NPIV approach does not specify any reduced-form

Figure 4. Unpenalized IV estimates with nonparametric first-stage equations, the full sample
(n= 2019), 95% confidence band.

28It is worth caution that the validity of the bootstrap has not been established here. Nonetheless, the
confidence bands provide a measure of the variability of the estimates.
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relationship. The sample, the orders of the series, and the value of disadv are identical
to those for the NPIV estimate. The dashed lines in the figure indicate the cluster-robust
95% confidence band. The result suggests a nonlinear shape of the effect of class size
and that the marginal effect diminishes as class size increases. The overall trend seems
to be negative, which is consistent with the results of Angrist and Lavy (1999).

It is important to note that the control function and NPIV approaches maintain dif-
ferent sets of assumptions. For example in terms of orthogonality conditions for IV, as-
sumptions (2.1b) are not stronger or weaker than E[ε|z] = 0, the orthogonality condi-
tion introduced in the NPIV model; only if v⊥z is assumed, then E[ε|v� z] = E[ε|v] with
E[ε] = 0 impliesE[ε|z] = 0. Therefore, this comparison does not imply that one estimate
performs better than the other. It does, however, imply that if the triangular model and
control function assumptions are considered to be reasonable, they make the data to be
informative about the relationship of interest. Moreover, since the NPIV approach suf-
fers from the ill-posed inverse problem even without the problem of weak instruments,
the control function approach may be a more appealing framework than the NPIV ap-
proach in the possible presence of weak instruments.

We proceed by calculating the penalized IV estimates from the proposed estima-
tion method of this paper. For all cases below, we find estimates for disadv = 1�5(%) as
before. To better justify the usage of our method in this part, we use the discontinuity
sample and a linear reduced-form where the instrument is possibly weak in this non-
parametric setting. For the penalization parameter τ, we use the data-driven method
suggested in Section 5, which yields τ̂ = 2�2. Figure 5 depicts the penalized and unpe-
nalized IV estimates. There is a certain difference in the estimates, and the trend in the
penalized estimate is relatively less negative. Still, note that the penalized estimate is
within the 95% band of the unpenalized estimate and vice versa. Overall, the results
suggest a nonlinear effect of class size with the negative trend.

Figure 5. Penalized IV estimates, the discontinuity sample (n = 650, F = 191�66), 95% confi-
dence band.
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9. Conclusions

This paper analyzes identification, estimation, and inference in a nonparametric trian-
gular model in the presence of weak instruments and proposes an estimation strategy
to mitigate the effect. The findings and implications of this paper can be adapted to
other nonparametric models, such as nonparametric limited dependent variable mod-
els of Das, Newey, and Vella (2003) and Blundell and Powell (2004), IV quantile regression
models of Chernozhukov and Hansen (2005) and Lee (2007), and the marginal treatment
effect (MTE) framework by Heckman and Vytlacil (2005).29 The results can also directly
be applicable in semiparametric versions of the model of this paper. As more structure
is imposed on the model, the identification condition of Section 2 and the regularity
conditions of Sections 5 and 6 can be weakened.

Subsequent research can consider two specification tests: a test for the relevance of
the instruments and a test for endogeneity. These tests can be conducted by adapting
the existing literature on specification tests where the test statistics can be constructed
using the series estimators of this paper; see, for example, Hong and White (1995).
Testing whether instruments are relevant can be conducted with the nonparametric
reduced-form estimate Π̂(·). A possible null hypothesis is H0 : Pr{Π0(z) = const �} = 1,
which is motivated by our rank condition for identification. Constructing a test for in-
strument weakness would be more demanding. Developing inference procedures that
are robust to identification of arbitrary strength is also an important research question.

Appendix A

A.1 Key technical steps for asymptotic theory (Section 5)

For asymptotic theory, we require a key preliminary step to separate out the weak instru-
ment factor from the second moment matrices of interest. Define a vector of approxi-
mating functions of ordersK =K1 +K2 + 1 for the second stage,

pK(w)= (
1�p1K1(x)� � � � �pK1K1(x)�p1K2(v)� � � � �pK2K2(v)

)′ = [
1
��� pK1(x)′

��� pK2(v)′
]′
�

where pK1(x) and pK2(v) are vectors of approximating functions for g0(·) and λ0(·) of
orders K1 and K2, respectively. Note that this rewrites pK(w) = (p1K(w)� � � � �pKK(w))

′
of the main body for expositional convenience. Since g0(·) and λ0(·) can only be sepa-
rately identified up to a constant, when estimating h0(·), we include only one constant

29For example, the MTE framework may present a similar inverse problem when instruments are weak.
Suppose Pr[d = 1|z] = P(z) is the propensity score with the endogenous treatment d and a scalar instru-
ment z. Under index sufficiency, we have E[y|z] =E[y|P(z)] where y is the outcome variable. Then

∂E[y|z]
∂z

= ∂E
[
y|P(z)]
∂z

= ∂E
[
y|P(z)]
∂p

∂P(z)

∂z
= MTE

(
P(z)

)∂P(z)
∂z

and, therefore, in recovering the MTE, the function P(z) being close to a constant function (as in Assump-
tion L) results in an inverse problem. Analogous to the approach in the current paper, a regularization
method may be used to address this problem.
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function. Define aK ×K sample second moment matrix:

Q̂= P̂ ′P̂
n

=

n∑
i=1

pK(ŵi)p
K(ŵi)

′

n
� (A.1)

Then β̂τ = (Q̂+ τnD)−1P̂ ′y/n.
For the rest of this section, we consider univariate x for simplicity. This corresponds

to Assumption ID2′(a). The analysis can also be generalized to the case of a vector x
by using multivariate mean value expansion, but omitted for succinctness. Note that z
is still a vector. Under Assumption L, Πn(·) = n−δΠ̃(·) after applying a normalization
c = 0 and suppressing o(n−δ) for simplicity in (3.1). Omitting o(n−δ) does not affect
the asymptotic results developed in the paper. For r ∈ {1�2}, define its rth derivative as
∂rpj(x)= drpj(x)/dxr . By mean value expanding each element of pK1(xi) around vi, we
have, for j ≤K1 (with the second subscript suppressed),

pj(xi)= pj
(
n−δΠ̃(zi)+ vi

) = pj(vi)+ n−δΠ̃(zi)∂pj(ṽi)� (A.2)

where ṽi is a value between xi and vi. Define ∂rpK1(x) = [∂rp1K1(x)� ∂
rp3K1(x)� � � � �

∂rpK1K1(x)]′. Then, by (A.2) the vector of regressors pK(wi) for estimating h(·) can be
written as

pK(wi)
′ = [

1
��� pK1(xi)

′ ��� pK2(vi)
′] = [

1
��� pK1(vi)

′ + n−δΠ̃(zi)∂pK1(ṽi)
′ ��� pK2(vi)

′]� (A.3)

Let κ=K1 =K2 = (K − 1)/2. Again, K1, K2, L, K, and κ all depends on n. Note that K �
K1 �K2 � κ, where an � bn denote that an/bn is bounded below and above by constants
that are independent of n. This setting can be justified by g0(·) and λ0(·) with the same
smoothness, which is imposed in Assumption C. Extending the analysis to a general case
of K1 �= K2 can follow by a slight modification of the argument with κ = min{K1�K2},
which we omit for succinctness. Now we choose a transformation matrix Tn to be

Tn =
⎡
⎢⎣ 1 01×κ 01×κ

0κ×1 nδIκ 0κ×κ
0κ×1 −nδIκ Iκ

⎤
⎥⎦ �

After multiplying Tn on both sides of (A.3), the weak instrument factor is separated from
pK(wi)

′: with ui = (zi� vi),

pK(wi)
′Tn = [

1
��� pκ(vi)

′ + n−δΠ̃(zi)∂pκ(ṽi)′
��� pκ(vi)

′] · Tn

= [
1
��� Π̃(zi)∂p

κ(ṽi)
′ ��� pκ(vi)′

] = p∗K(ui)′ +mK′
i � (A.4)

where p∗K(ui)′ = [1 ��� Π̃(zi)∂pκ(vi)′
��� pκ(vi)

′] and mK′
i = [0 ��� Π̃(zi)(∂pκ(ṽi)′ − ∂pκ(vi)

′)
���

(0κ×1)
′]. To illustrate the role of this linear transformation, rewrite the original vector of

regressors in (A.3) as

pK(wi)
′ = pK(wi)′TnT−1

n = {
p∗K(ui)+mKi

}′
T−1
n � (A.5)
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Ignoring the remainder vectormKi which is shown to be asymptotically negligible below,
the original vector pK(wi) is separated into p∗K(ui) and T−1

n . Note that p∗K(ui) is not
affected by the weak instruments and can be seen as a new set of regressors.30

Now, consider

Q=E[
pK(wi)p

K(wi)
′]� (A.6)

By equations (A.6) and (A.4), it follows

T ′
nQTn =Q∗ +E[

mKi p
∗K(ui)′

] +E[
p∗K(ui)mK′

i

] +E[
mKi m

K′
i

]
� (A.7)

where the newly defined Q∗ = E[p∗K(ui)p∗K(ui)′] is the population second moment
matrix with the new regressors. Furthermore, since Π̃(·) ∈ C1(Z) can have nonempty
Z0 as a subset of its domain, we define Qr∗ = E[p∗K(ui)p∗K(ui)′|zi ∈ Zr] and Q0∗ =
E[p∗K(ui)p∗K(ui)′|zi ∈ Z0]. Also define the second moment matrix for the first-stage es-
timation asQ1 =E[rL(zi)rL(zi)′].

Assumptions B, C, D, and L of the main text serve as sufficient conditions for high-
level assumptions stated here. Section B.1.1 in Appendix B in the Online Supplemental
Material proves that the latter are implied by the former. For a symmetric matrix B, let
λmin(B) and λmax(B) denote the minimum and maximum eigenvalues of B, respectively,
and det(B) the determinant of B.

Assumption B† . (i) λmin(Q
r∗) is bounded away from zero for all K(n) and λmin(Q1) is

bounded away from zero for all L(n); (ii) λmax(Q) is bounded by a fixed constant, for all
K(n), and λmax(Q1) bounded by a fixed constant, for all L(n).

Assumption C† . There exist β = (β1� � � � �βK̃) and γ = (γ1� � � � � γL̃) such that

supw∈W |h0(w) − pK̃(w)′β| ≤ CK̃−s/dx as K̃ → ∞ and supz∈Z ‖Π0(z) − pL̃(z)′γ‖ ≤
CL̃−sπ/dz as L̃→ ∞.

For a generic dimension d and a d-vector μ of nonnegative integers, let |μ| =∑d
l=1μl. Define the derivative ∂μg(x) = ∂|μ|g(x)/∂xμ1

1 ∂x
μ2
2 · · ·∂xμdxdx

of order |μ|. For the
next assumption, let ζvr (κ) and ξvr (L) satisfy

max|μ|≤r sup
v∈V

∥∥∂μpκ(v)∥∥ ≤ ζvr (κ)� max|μ|≤r sup
z∈Z

∥∥∂μrL(z)∥∥ ≤ ξr(L)�

which impose nonstochastic uniform bounds on the vectors of approximating func-
tions. Let �π = √

L/n+L−sπ/dz .

Assumption D† . (i) nδκ1/2ζv1(κ)�π → 0; (ii) n−δκ1/2ζv2(κ)→ 0; (iii) τn → 0 and β′Dβ=
O(λ2

n)=O(1).
30For justification that p∗K(ui) can be regarded as regressors, see Assumption B in Section 5 and As-

sumption B† below.
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Under these assumptions, Lemma A.1 below obtains the orders of magnitudes of
eigenvalues of the second moment matrices in term of the weak instrument. In prov-
ing this lemma, we frequently apply two useful mathematical lemmas (Lemmas B.1
and B.2 in Appendix B in the Online Supplemental Material) that are stated and proved
in Section B.1.2. For any matrix A, let the matrix norm be the Euclidean norm ‖A‖ =√

tr(A′A).

Lemma A.1. Suppose Assumptions A, B†, D†, and L are satisfied. Then (a) λmax(Q
−1) =

O(n2δ) and (b) λmax(Q̂
−1)=Op(n2δ).

In all proofs, let C denote a generic positive constant that may be different in differ-
ent use. TR, CS, MK, LIE are the triangular inequality, Cauchy–Schwarz inequality and
Markov inequality, the law of iterated expectation, respectively.

Proof of Lemma A.1. Consider (a) first. Let p∗
i = p∗K(ui) and mi =mKi for brevity. Re-

call (A.7) that T ′
nQTn =Q∗ +E[mip∗′

i ] +E[p∗
i m

′
i] +E[mim′

i]. Then

∥∥T ′
nQTn −Q∗∥∥ ≤ 2E‖mi‖

∥∥p∗
i

∥∥ +E‖mi‖2 ≤ 2
(
E‖mi‖2)1/2(

E
∥∥p∗

i

∥∥2)1/2 +E‖mi‖2

by CS. Butmi =mKi = [0 ��� Π̃(zi)(∂pκ(ṽi)′ −∂pκ(vi)′)
��� (0κ×1)

′]′ where ṽ is the intermediate
value between x and v. Then, by mean value expanding ∂pκ(ṽi) around vi and |ṽi − vi| ≤
|xi − vi|, we have

‖mi‖2 = ∥∥Π̃(zi)∂2pκ(v̄i)(ṽi − vi)
∥∥2 ≤ ∣∣Π̃(zi)∣∣2

ζv2(κ)
2|xi − vi|2

= n−2δ∣∣Π̃(zi)∣∣4
ζv2(κ)

2 ≤ Cn−2δζv2(κ)
2� (A.8)

where v̄ is the intermediate value between v and ṽ, and by Assumption L that
supz |Π̃(zi)|<∞. Therefore,

E‖mi‖2 ≤ Cn−2δζv2(κ)
2� (A.9)

Then

E
[
p∗′
i p

∗
i

] = tr
(
Q∗) ≤ tr(IK)λmax

(
Q∗) ≤ C ·K =Op(κ)� (A.10)

where λmax(Q
∗)≤ C is by the fact that the polynomials are defined on bounded sets and

by Assumption L that Π̃(·) ∈ C1(Z). Therefore, by combining (A.9) and (A.10) it follows∥∥T ′
nQTn −Q∗∥∥ ≤O(

κ1/2n−δζv2(κ)
) +O(

n−2δζv2(κ)
2) = o(1) (A.11)

by Assumption D†(ii), which shows that all the remainder terms are negligible.
Now, by Lemma B.2, we have∣∣λmin

(
T ′
nQTn

) − λmin
(
Q∗)∣∣ ≤ ∥∥T ′

nQTn −Q∗∥∥� (A.12)

Combine the results (A.11) and (A.12) to have λmin(T
′
nQTn)= λmin(Q

∗)+ o(1). But note
that, with simpler notation p1 = Pr[z ∈ Zr] and p0 = Pr[z ∈ Z0], we have Q∗ = p1Q

r∗ +
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p0Q
0∗. Then, by a variant of Lemma B.2 (with the fact that λ1(−B)= −λk(B) for any sym-

metric matrixB), it follows that λmin(Q
∗)≥ p1 ·λmin(Q

r∗)+p0 ·λmin(Q
0∗)= p1 ·λmin(Q

r∗),
because λmin(Q

0∗)= 0. Since p1 > 0, it holds that λmin(Q
∗)≥ p1 ·λmin(Q

r∗)≥ c > 0 for all
K(n) by Assumption B†(i). Therefore,

1
λmin

(
T ′
nQTn

) = 1
λmin

(
Q∗) + o(1) ≤ 1

c+ o(1) =O(1)� (A.13)

Let

T0n =
[
nδ 0

−nδ 1

]
⊗ Iκ� so that Tn =

[
1 01×2κ

02κ×1 T0n

]
�

Then, by solving | nδ−λ̃ 0
−nδ 1−λ̃ | = 0, we have λ̃ = nδ or 1 for eigenvalues of T0n, and since

λmax(Iκ)= 1, it follows

λmax(Tn)= λmax(T0n)= nδ� (A.14)

Note that λmax(TnT
′
n)≤ n2δ by Lemma B.3. Since (A.13) implies λmax((T

′
nQTn)

−1)=O(1),
it follows

λmax
(
Q−1) = λmax

(
Tn

(
T ′
nQTn

)−1
T ′
n

) ≤O(1)λmax
(
TnT

′
n

) =O(
n2δ)

by applying Lemma B.3 again.

The proof of part (b) proceeds similarly as above. Using (A.3),pK(ŵi)′ = [1 ��� pK1(xi)
′ ���

pK2(v̂i)
′] = [1 ��� pK1(vi)

′ + n−δΠ̃(zi)∂pK1(ṽi)
′ ��� pK2(v̂i)

′] and

pK(ŵi)
′Tn = [

1
��� pκ(vi)

′ + n−δΠ̃(zi)∂pκ(ṽi)′
��� pκ(v̂i)

′] · Tn

= [
1
��� nδ

(
pκ(vi)

′ −pκ(v̂i)′
) + Π̃(zi)∂pκ(ṽi)′

��� pκ(v̂i)
′] = p∗K(ûi)′ + r̂ ′i�

where p∗K(ûi)′ = [1 ��� Π̃(zi)∂pκ(vi)′
��� pκ(v̂i)

′] with ûi = (zi� vi� v̂i) and r̂′i = [0 ��� nδ(pκ(vi)′ −
pκ(v̂i)

′)
��� (0κ×1)

′]. Let p̂∗
i = p∗K(ûi). For a random matrixXi, denote

∑
i Xi/n as EnXi for

simplicity. Then by (A.5),

T ′
nQ̂Tn = Q̂∗ +En

[
r̂ip̂

∗′
i

] +En
[
p̂∗
i r̂

′
i

] +En
[
r̂ir̂

′
i

]
�

and thus∥∥T ′
nQ̂Tn − Q̂∗∥∥ ≤ 2En‖r̂i‖

∥∥p̂∗
i

∥∥ +En‖r̂i‖2 ≤ 2
(
En‖r̂i‖2)1/2(

En
∥∥p̂∗

i

∥∥2)1/2 +En‖r̂i‖2�

Similarly as (A.10), the bound on En‖p̂∗
i ‖2 can be derived as

En
[
p̂∗′
i p̂

∗
i

] = tr
(
En

[
p̂∗
i p̂

∗′
i

]) ≤ tr(IK)λmax
(
En

[
p̂∗
i p̂

∗′
i

]) ≤Op(K)=Op(κ)� (A.15)

where λmax(En[p̂∗
i p̂

∗′
i ]) ≤ Op(1) is by the fact that the polynomials are defined on

bounded sets and by Assumption L that Π̃(·) ∈ C1(Z). For En‖r̂i‖2, note that

‖r̂i‖2 = ∥∥nδ(pκ(vi)′ −pκ(v̂i)′)∥∥2 ≤ n2δζv1(κ)
2|vi − v̂i|2 =Op

(
n2δζv1(κ)

2�2
π

)
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and, therefore, En‖r̂i‖2 =Op(n2δζv1(κ)
2�2
π). Combining this with (A.15) and (A.9) yields

∥∥T ′
nQ̂Tn − Q̂∗∥∥ ≤Op

(
nδκ1/2ζv1(κ)�π

) +Op
(
n2δζv1(κ)

2�2
π

) = op(1)

by Assumption D†(i). Also, by Lemma B.2, we have |λmin(T
′
nQ̂Tn)−λmin(Q

∗)| ≤ ‖T ′
nQ̂Tn−

Q∗‖. Combining the two results yields λmin(T
′
nQ̂Tn)= λmin(Q

∗)+op(1). Similar as before

1

λmin
(
T ′
nQ̂Tn

) = 1
λmin

(
Q∗) + op(1)

≤ 1
c+ op(1) =Op(1)� (A.16)

Therefore, we have λmax(Q̂
−1) = λmax(Tn(T

′
nQ̂Tn)

−1T ′
n) ≤ Op(1)λmax(TnT

′
n) = Op(n

2δ).

A.2 Proofs of rate of convergence (Section 5)

We first derive the rate of convergence of the unpenalized series estimator ĥ(·) defined
as ĥ(w) = pK(w)′β̂ where β̂ = (P̂ ′P̂)−1P̂ ′y. Then we prove Theorem 5.1 with the penal-
ized estimator ĥτ(·) defined in Section 4. Next to the proof, we provide a theorem for the
rate of ĝτ(·) and prove it.

Lemma A.2. Suppose Assumptions A–D and L are satisfied. Then

‖ĥ− h0‖L2 =Op
(
nδ

(√
K/n+K−s/dx + √

L/n+L−sπ/dz))�
Proof of Lemma A.2. Let β= (β1� � � � �βK). By TR of L2 norm (first inequality),

‖ĥ− h0‖L2 =
{∫ [

ĥ(w)− h0(w)
]2
dF(w)

}1/2

≤
{∫ [

pK(w)′(β̂−β)]2
dF(w)

}1/2
+

{∫ [
pK(w)′β− h0(w)

]2
dF(w)

}1/2

= {
(β̂−β)′EpK(w)pK(w)′(β̂−β)}1/2 +O(

K−s/dx)
≤ C‖β̂−β‖ +O(

K−s/dx)
by Assumption B†(ii) and using Lemma B.3 (last equation). As β̂ − β = (P̂ ′P̂)−1P̂ ′(y −
P̂β), it follows that

‖β̂−β‖2 = (y − P̂β)′P̂(
P̂ ′P̂

)−1(
P̂ ′P̂

)−1
P̂ ′(y − P̂β)

= (y − P̂β)′P̂Q̂−1/2Q̂−1Q̂−1/2P̂ ′(y − P̂β)/n2

≤Op
(
n2δ)(y − P̂β)′P̂(

P̂ ′P̂
)−1
P̂ ′(y − P̂β)/n

by Lemma B.3 and Lemma A.1(b) (last inequality).
Let h= (h(w1)� � � � �h(wn))

′ and h̃= (h(ŵ1)� � � � �h(ŵn))
′. Also let ηi = yi −h0(wi) and

η= (η1� � � � �ηn)
′. LetW = (w1� � � � �wn)

′, thenE[yi|W ] = h0(wi)which impliesE[ηi|W ] =
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0. Also similar to the proof of Lemma A1 in NPV (p. 594), by Assumption A, we have
E[η2

i |W ] being bounded and E[ηiηj|W ] = 0 for i �= j, where the expectation is taken

for y. Then, given that y − P̂β= (y − h)+ (h− h̃)+ (h̃− P̂β), we have, by TR,

‖β̂−β‖ =Op
(
nδ

)∥∥Q̂−1/2P̂ ′(y − P̂β)/n∥∥
≤Op

(
nδ

){∥∥Q̂−1/2P̂ ′η/n
∥∥ + ∥∥Q̂−1/2P̂ ′(h− h̃)/n∥∥

+ ∥∥Q̂−1/2P̂ ′(h̃− P̂β)/n∥∥}
� (A.17)

For the first term of equation (A.17), consider

E
[∥∥(
PTn − P∗)′

η/n
∥∥2|W ] =E[∥∥M ′η/n

∥∥2|W ] ≤C 1

n2

∑
i

‖mi‖2

=Op
(
n−2δ−1ζv2(κ)

2) = op(1)
by (A.8) and op(1) is implied by Assumption D†(ii). Therefore, by MK,∥∥(

PTn − P∗)′
η/n

∥∥ = op(1)� (A.18)

Also,

E
[∥∥(P̂Tn − PTn)′η/n

∥∥2|W ] ≤ C 1

n2

∑
i

∥∥(p̂i −pi)′Tn∥∥2 ≤ C 1

n2

∑
i

λmax(Tn)
2‖p̂i −pi‖2

≤ 1
n
O

(
n2δ)Op(

ζv1(κ)
2�2
π

) =Op
(
n2δζv1(κ)

2�2
π/n

)
(A.19)

by (A.14) and

‖p̂i −pi‖2 = ∥∥pκ(xi)−pκ(xi)
∥∥2 + ∥∥∂pκ(v̄i)(v̂i − vi)∥∥2

≤ Cζv1(κ)2
1
n

∑
i

|v̂i − vi|2 ≤Op
(
ζv1(κ)

2�2
π

)
� (A.20)

Therefore, ∥∥(P̂Tn − PTn)′η/n
∥∥ = op(1) (A.21)

by Assumption D†(i) and MK. Also

E
∥∥P∗′η/n

∥∥2 =E[
E

[∥∥P∗′η/n
∥∥2|W ]] =E

[∑
i

p∗′
i p

∗
i E

[
η2
i |W

]
/n2

]

≤ C 1

n2

∑
i

E
[
p∗′
i p

∗
i

] = C tr
(
Q∗)/n=O(κ/n)

by Assumption A (first inequality) and equation (A.10) (last equation). By MK, this im-
plies ∥∥P∗′η/n

∥∥ ≤Op(
√
κ/n)� (A.22)
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Hence by TR with (A.18), (A.21), and (A.22),∥∥T ′
nP̂

′η/n
∥∥ ≤ ∥∥(P̂Tn − PTn)′η/n

∥∥ + ∥∥(
PTn − P∗)′

η/n
∥∥ + ∥∥P∗′η/n

∥∥ ≤Op(
√
κ/n)�

Therefore, the first term of (A.17) becomes

∥∥Q̂−1/2P̂ ′η/n
∥∥2 =

(
η′P̂Tn
n

)(
T ′
nQ̂Tn

)−1
(
T ′
nP̂

′η
n

)
≤Op(1)

∥∥T ′
nP̂

′η/n
∥∥2 =Op(κ/n) (A.23)

by Lemma B.3 and (A.16).
Because I − P̂(P̂ ′P̂)−1P̂ ′ is a projection matrix, hence is p.s.d., the second term of

(A.17) becomes∥∥Q̂−1/2P̂ ′(h− h̃)/n∥∥2 = (h− h̃)′P̂(
P̂ ′P̂

)−1
P̂ ′(h− h̃)/n≤ (h− h̃)′(h− h̃)/n

=
∑
i

(
h(wi)− h(ŵi)

)2
/n=

∑
i

(
λ(vi)− λ(v̂i)

)2
/n

≤ C
∑
i

|vi − v̂i|2/n=
∑
i

∣∣Πn(zi)− Π̂(zi)
∣∣2
/n

= Op
(
�2
π

)
(A.24)

by Assumption C (Lipschitz continuity of λ(v)) (last inequality). Similarly, the last term
is ∥∥Q̂−1/2P̂ ′(h̃− P̂β)/n∥∥2 = (h̃− P̂β)′P̂(

P̂ ′P̂
)−1
P̂ ′(h̃− P̂β)/n

≤ (h̃− P̂β)′(h̃− P̂β)/n
=

∑
i

(
h(ŵi)−pK(ŵi)′β

)2
/n=Op

(
K−2s/dx

)
(A.25)

by Assumption C†. Therefore, by combining (A.23), (A.24), and (A.25),

‖β̂−β‖ ≤Op
(
nδ

)[
Op(

√
κ/n)+Op(�π)+Op

(
K−s/dx)]�

Consequently, since κ�K,

‖ĥ− h0‖L2 ≤Op
(
nδ

)[
Op(

√
K/n)+Op

(
K−s/dx) +Op(�π)

] +O(
K−s/dx)

and we have the conclusion of the lemma.

Proof of Theorem 5.1. Let Cn = nτnD for simplicity, and consider

‖β̂τ −β‖ ≤ ∥∥(
P̂ ′P̂ +Cn

)−1
P̂ ′(y − P̂β)∥∥ + ∥∥(

P̂ ′P̂ +Cn
)−1
P̂ ′P̂β−β∥∥�

Recalling that Q̂τ = (P̂ ′P̂ +Cn)/n, we have

∥∥(
P̂ ′P̂ +Cn

)−1
P̂ ′(y − P̂β)∥∥2

= (y − P̂β)′P̂(
P̂ ′P̂ +Cn

)−1(
P̂ ′P̂ +Cn

)−1
P̂ ′(y − P̂β)
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= (y − P̂β)′P̂(
P̂ ′P̂ +Cn

)−1/2(
P̂ ′P̂ +Cn

)−1(
P̂ ′P̂ +Cn

)−1/2
P̂ ′(y − P̂β)

= (y − P̂β)′P̂Q̂−1/2
τ Q̂−1

τ Q̂
−1/2
τ P̂ ′(y − P̂β)/n2

≤ λmax
(
Q̂−1
τ

)∥∥Q̂−1/2
τ P̂ ′(y − P̂β)/n∥∥2

�

First, note that

λmax
(
Q̂−1
τ

) = 1

λmin(Q̂+ τnI)
≤ 1

λmin(Q̂)+ λmin(τnI)
= 1

λmin(Q̂)+ τn
≤ min

{
1

λmin(Q̂)
�

1
τn

}
= min

{
Op

(
n2δ)� τ−1

n

}
� (A.26)

where the last equation is by Lemma A.1(b). Also, note that c′P̂ ′Q̂−1
τ P̂c ≤ c′P̂ ′Q̂−1P̂c

for any vector c, since (Q̂−1 − Q̂−1
τ ) is p.s.d. Therefore, by (A.23), (A.24), and (A.25) in

Lemma A.2, we have

∥∥Q̂−1/2
τ P̂ ′(y − P̂β)/n∥∥ ≤ ∥∥Q̂−1/2

τ P̂ ′(y − h)/n∥∥ + ∥∥Q̂−1/2
τ P̂ ′(h− P̂β)/n∥∥

=Op(
√
K/n)+Op

(
K−s/dx +�π

)
� (A.27)

Now, consider

∥∥(
P̂ ′P̂ +Cn

)−1
P̂ ′P̂β−β∥∥2 = ∥∥(

P̂ ′P̂ +Cn
)−1{

P̂ ′P̂ − (
P̂ ′P̂ +Cn

)}
β

∥∥2

≤ λmax
(
Q̂−1
τ

)∥∥Q̂−1/2
τ {−τnD}β∥∥2

= λmax
(
Q̂−1
τ

)∥∥τnQ̂−1/2
τ Dβ

∥∥2
�

but we have ‖τnQ̂−1/2
τ Dβ‖ = O(τnRnλn) by Assumption D that

√
β′Dβ = O(λn). Conse-

quently, analogous to the proof of Lemma A.2, and by letting Rn = min{nδ�τ−1/2
n },

‖ĥτ − h0‖L2 =Op
(
Rn

(√
K/n+K−s/dx + τnRnλn + √

L/n+L−sπ/dz))�
This proves the first part of the theorem. The conclusion of the second part follows from

∥∥ĥ(w)− h0(w)
∥∥∞ ≤ ∥∥pK(w)′β− h0(w)

∥∥∞ + ∥∥pK(w)′(β̂τ −β)∥∥∞
≤O(

K−s/dx) + ζv0(K)‖β̂τ −β‖�

Theorem 5.1 leads to the following theorem, which focuses on the rate of conver-
gence of the structural estimator ĝτ(·).

Theorem A.1. Suppose Assumptions A–D and L are satisfied. Let Rn = min{nδ�τ−1/2
n }.

For �̂(x)= ĝτ(x)− g0(x),∥∥∥∥�̂(x)−
∫
�̂(x)dFw

∥∥∥∥
L2

=Op
(
Rn

(√
K/n+K− s

dx + τnRnλn + √
L/n+L− sπ

dz
))
�
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Also, if ĝτ(x)= ĥτ(x� v̄)− λ̄ and λ̄= λ0(v̄), then

sup
x∈X

∣∣ĝτ(x)− g0(x)
∣∣ =Op

(
Rn

√
K

(√
K/n+K− s

dx + τnRnλn + √
L/n+L− sπ

dz
))
�

The balanced rate results for ĝτ(·) and the related analyses can be followed analo-
gously, and we omit them here. The convergence rate is net of the constant term which
is not identified. We can further assume E[ε] = 0 to identify the constant.

Proof of Theorem A.1. The proof follows directly from the proofs of Theorems 4.2
and 4.3 of NPV. As for notation, we use v instead of u of NPV and the other notation
are identical.

Proof of Theorem 5.3. By (2.2), we have

E[y|x�z] = h0(x� v)= g0(x)+ λ0(v)= g0(v)+Πn(z)′∇g0(x̃)+ λ0(v)�

where the second equation is by the elementwise mean value expansion around x with
x̃ between x and v, and ∇g0 is the dx × 1 gradient of g0. Since Πn(z) is assumed to be
known, x̃ is also known as a function of x and z. Consider a nonparametric additive
regression with k0(v)= g0(v)+ λ0(v):

y =Πn(z)′∇g0(x̃)+ k0(v)+η� (A.28)

By Horowitz et al. (2006, p. 272) with different normalization, there exists an estimator
for g0(x̃) in (A.28) that achieves the same asymptotic minimax risk as for a nonparamet-
ric regression model where k0 is known. Therefore, we alternatively consider a model
with k0(x) being known. To this end, let ỹ = y − k0(v). Consider a Gaussian model

ỹ =Πn(z)′∇g0(x̃)+η� (A.29)

where η|x�z ∼N(0�σ2(x� z)). By Chen and Reiss (2011, Lemma 1), the risk for the origi-
nal model (A.28) with known k0(x) is at least as large as the risk for this Gaussian model.
Therefore, we calculate the lower bound for the Gaussian model (A.29). Let P0 be the
joint distribution of (yi� xi� zi) in this model.

Since h0(x� v) = g0(x) + λ0(v), it suffices to prove the minimax rate for g0. As be-
fore, C is a generic positive constant. Consider the wavelets as defined in Daubechies
(1992), Chen (2007), and Chen and Christensen (2018b). We define a family of sub-
models where the function g0 is perturbed by using elements of the wavelet space Wj
where j is a function of n. For given j, Wj consists of 2j functions {ψj�k}0≤k≤2j−1, such
that {ψj�k}r≤k≤2j−N−1 are interior univariate wavelets for whichψj�k(·)= 2j/2ψ(2j(·)−k).
Then ψ̃j�m�G is an orthonormal tensor-product of dx interior univariate wavelets at res-
olution j with G= (wψ)dx ; see, for example, Chen and Christensen (2018b, Appendix E)
for details of these definitions. Since the support of each univariate wavelet is an interval
of length 2−j(2r − 1), we may choose a set M ⊂ {r� � � � �2j −N − 1}dx of interior wavelets
with #(M)� 2jdx such that the supports of ψj�m and ψj�m′ do not overlap for m�m′ ∈M
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andm �=m′. Let g0 ∈ B(s�L) where B(s�L) is a Sobolev ball of smoothness s > 0 with the
norm ‖ · ‖Bs2�2 and radius 0< L <∞ (Triebel (2006, Chapter 4)). For each m ∈M , define

θ= {θm}m∈M where θm ∈ {0�1}, and let

gθ = g0 +C02−j(s+dx/2) ∑
m∈M

θmψ̃j�m�G� (A.30)

with C0 > 0 subsequently chosen. We first prove the closedness:

‖gθ‖Bs2�2 ≤L/2 +
∥∥∥∥C02−j(s+dx/2) ∑

m∈M
θmψ̃j�m�G

∥∥∥∥
Bs2�2

≤L/2 +C ·C02−j(s+dx/2)
( ∑
m∈M

θ2
m22js

)1/2
≤L/2 +C ·C0�

and thus gθ ∈ B(s�L) for sufficiently small C0. We now prove the well-separatedness:

∥∥∂μgθ − ∂μgθ′
∥∥
L2 = C02−j(s−|μ|+dx/2)

( ∑
m∈M

(
θm − θ′

m

)∥∥{
2j/2ψ(|μ|)(2j(·)−m)}dx∥∥2

L2

)1/2

≥ C ·C02−j(s−|μ|+dx/2)
√
ρ
(
θ�θ′)�

where ‖{2j/2ψ(|μ|)(2j(·)−m)}dx‖2
L2 � 1 since ψj�m ∈ Cγ with γ > |μ| has compact support

and the density of xi is bounded away from zero and ∞, and ρ(θ�θ′) is the Hamming
distance. By Tsybakov (2009, Chapter 2.6), choose a subset θ(0)� θ(1)� � � � � θ(M

∗) such that
θ0 is a zero vector, ρ(θ(a)� θ(b)) ≥ #(M)/8 ≥ C2jdx (for large j that #(M) ≥ 8) for all 0 ≤
a < b ≤M∗ and M∗ ≥ 2#(M)/8. For each m ∈ {0�1� � � � �m∗} let hm = hθ(m) . Consequently,
we have ∥∥∂μgm − ∂μgm′

∥∥
L2 ≥ C ·C02−j(s−|μ|)

for each 0 ≤m<m′ ≤M∗.
Next, for 0 ≤ m ≤ M∗, let Pm be the joint distribution of {(yi� xi� zi)}ni=1 with ỹi =

Πn(z)
′∇g0(x̃) + ηi where ηi|xi� zi ∼ N(0�σ2(xi� zi)). Given (A.30), the Kullbeck–Leibler

divergenceK(Pm�P0) satisfies

K(Pm�P0)≤ 1
2

n∑
i=1

(
C02−j(s+dx/2))2

E

⎡
⎢⎢⎢⎢⎢⎣

(∑
k∈M

θ(m)k Πn(zi)
′∇ψ̃j�k�G(x̃i)

)2

σ2(xi� zi)

⎤
⎥⎥⎥⎥⎥⎦

≤ 1
2
n
(
C02−j(s+dx/2))2

E

⎡
⎢⎢⎢⎢⎢⎣
n−2δ

(∑
k∈M

θ(m)k Π̃(zi)
′∇ψ̃j�k�G(x̃i)

)2

σ2

⎤
⎥⎥⎥⎥⎥⎦
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≤ C ·C2
0n

1−2δ2−2j(s+dx/2)∥∥Π̃k(zi)∥∥2
L2

∥∥∂1ψj�k
∥∥2
L2 ≤ C̃ ·C2

0n
1−2δ2−2j(s+dx/2)

by the assumption that E[η2
i |xi� zi] ≥ σ2 > 0 uniformly for (xi� zi) (the second inequal-

ity),
∑
k∈M(θ

(m)
k )2 ≤ #(M)� 2jdx (the third inequality), and the assumption thatΠn (and

thus each element Π̃k of Π̃) is bounded (the last inequality).

Now, we choose 2j � n
1

dx+2s−δ/s. Then K(Pm�P0) ≤ C̃ · C2
0n

dxδ
s and logM∗ ≥ C2jdx �

n
dx

dx+2s− dxδ
s . But since s

2(1+2s) ≥ δ, we have dx
dx+2s − dxδ

s − dxδ
s ≥ 0 and, therefore,

K(Pm�P0)≤ a logM∗

for 0< a< 1/8 by choosing C0 sufficiently small. Therefore, by Theorem 2.5 of Tsybakov
(2009), we obtain the lower bound for g0:

inf
ĝ

sup
g∈B(s�L)

Pr g
(‖ĝ− g‖L2 ≥ Cn− s

dx+2s+δ) ≥ C ′ > 0�

which proves the lower bound for h0 of the theorem.

Proof of Theorem 5.4. We focus on ‖β̂τ̂ − β‖, which suffices to derive the adaptive
rate for ‖ĥτ̂ − h0‖. Note that

‖β̂τ̂ −β‖ ≤ ‖β̂τ† −β‖ + ‖β̂τ̂ − β̂τ†‖ ≤Op
(
�†
h

) +Op
(√
K/n+K−s/dx +�π

)
� (A.31)

where ‖β̂τ† − β‖ ≤ Op(�†
h) is by Theorem 5.1 with �†

h = R†
n(

√
K/n+K−s/dx + τ†Rnλn +√

L/n+L−sπ/dz ). We show ‖β̂τ̂ − β̂τ†‖ ≤ Op(
√
K/n+K−s/dx + �π) below. Therefore, by

(A.31),

‖β̂τ̂ −β‖ =Op
(
�†
h

) +Op
(√
K/n+K−s/dx +�π

) =Op
(
�†
h

)
�

which proves the theorem. Note that with the choice τ†, the penalty bias ‖Q̂−1
τ† Q̂β−β‖ =

Op(R
†
n · τ†R†

nλn) is dominated by the variance term in ‖β̂τ − Q̂−1
τ Q̂β‖ =Op(R†

n(
√
K/n+

K−s/dx +�π)) (this equation is by (A.34) below) by the definition of T0.
The remaining part proves ‖β̂τ̂ − β̂τ†‖ ≤Op(

√
K/n+K−s/dx + �π). To show this, we

first show that ‖β̂τ̂ − β̂τ†‖ ≤ Op{‖(I − Q̂−1
τj
Q̂)β̂τj )‖ + ‖(I − Q̂−1

τk
Q̂)β̂τk)‖}, for which we

need to show that τ† ∈ T̂ with probability approaching 1, so that the result follows by the
definition of T̂ . First, choose any τj ∈ T0 ⊂ T̂ with τj ≥ τ†. Then

‖β̂τj − β̂τ†‖ ≤ ‖β̂τj −β‖ + ‖β̂τ† −β‖
≤ ∥∥β̂τj − Q̂−1

τj
Q̂β

∥∥ + ∥∥Q̂−1
τj
Q̂β−β∥∥ + ∥∥β̂τ† − Q̂−1

τ† Q̂β
∥∥ + ∥∥Q̂−1

τ† Q̂β−β∥∥
≤ 2

∥∥β̂τj − Q̂−1
τj
Q̂β

∥∥ + 2
∥∥β̂τ† − Q̂−1

τ† Q̂β
∥∥� (A.32)

For each τ ∈ {τj� τ†},∥∥β̂τ − Q̂−1
τ Q̂β

∥∥ ≤ ∥∥β̂τ − Q̂−1
τ Q̂β̂τ

∥∥ + ∥∥Q̂−1
τ Q̂(β̂τ −β)∥∥�
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But, for small 0<η< 1/2,∥∥Q̂−1
τ Q̂(β̂τ −β)∥∥ ≤ η∥∥(

I − Q̂−1
τ Q̂

)
β̂τ

∥∥
≤ η{∥∥β̂τ − Q̂−1

τ Q̂β
∥∥ + ∥∥Q̂−1

τ Q̂(β̂τ −β)∥∥}
� (A.33)

where the first inequality is by the convergence of ‖β̂τ−β‖ as in the proof of Theorem 5.1
and the fact that I − Q̂−1

τ Q̂ is p.d. for τ ∈ T , and thus ‖Q̂−1
τ Q̂(β̂τ −β)‖< ‖β̂τ −β‖. Then,

(A.33) can be rearranged to have

∥∥Q̂−1
τ Q̂(β̂τ −β)∥∥ ≤ η

1 −η
∥∥β̂τ − Q̂−1

τ Q̂β
∥∥�

Therefore, ∥∥β̂τ − Q̂−1
τ Q̂β

∥∥ ≤ ∥∥β̂τ − Q̂−1
τ Q̂β̂τ

∥∥ + η

1 −η
∥∥β̂τ − Q̂−1

τ Q̂β
∥∥

or

∥∥β̂τ − Q̂−1
τ Q̂β

∥∥ ≤ 1 −η
1 − 2η

∥∥β̂τ − Q̂−1
τ Q̂β̂τ

∥∥�
Consequently,

‖β̂τj − β̂τ†‖ ≤ 2Cη
{∥∥(
I − Q̂−1

τj
Q̂

)
β̂τj )

∥∥ + ∥∥(
I − Q̂−1

τk
Q̂

)
β̂τk)

∥∥}
�

whereCη = 1−η
1−2η = 1+o(1) and, therefore, τ† ∈ T̂ with probability approaching 1. Lastly,

note that ∥∥β̂τj − Q̂−1
τj
Q̂β

∥∥ ≤Op
(√
K/n+K−s/dx +�π

)
(A.34)

by (A.27). Therefore, using (A.32), we have

‖β̂τj − β̂τ†‖ ≤Op
(√
K/n+K−s/dx +�π

)
�

which completes the proof of the theorem.
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