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Abstract

This supplementary material presents (i) proofs for the identification, (ii) further de-

tails on estimation, (iii) large sample theories for the estimators proposed in the main

text of the paper, and (iv) additional estimation result in the application to the earnings

dynamics of U.S. men.

A Proofs for the Identification

A.1 Proof of Lemma 1

Proof. By (2.1), (2.2) and (2.3), we can write Vt+τ as

Vt+τ = Vt + Yt+τ − Yt −
τ∑

τ ′=1

ηt+τ ′ . (A.1)

Also, by (2.1), (2.2) and (2.3), we can write the first difference Yt+q+1 − Yt+q by

Yt+q+1−Yt+q = (ρt+q+1,1−1)Vt+q+

p∑
p′=2

ρt+q+1,p′Vt+q+1−p′+Gt+q+1 (εt+q+1, εt+q, · · · , εt+1)+ηt+q+1.

(A.2)
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Substituting (A.1) for each τ ∈ {1, · · · , q} in (A.2) and rearranging terms, we obtain

µYt+q+1(ρt+q+1) = κ(ρt+q+1)Vt + νη,εt+q+1(ρt+q+1). (A.3)

Therefore, (4.1) follows under Assumption 8.

A.2 Proof of Lemma 2

Proof. By Lemma 1, (4.1) holds and thus we have

E

[
µYt+q+1(ρt+q+1)

κ(ρt+q+1)
eisYt

]
= E

[
Vt e

isYt
]

+ E

[
νη,εt+q+1(ρt+q+1)

κ(ρt+q+1)
eisYt

]
,

where the expectation exists under Assumption 9 (i). The first term on the right-hand side is

rewritten as E
[
eisUt

]
E
[
Vt e

isVt
]

by Ut ⊥⊥ Vt. The second term on the right-hand side is zero

by (4.2) and (4.3) that hold under Assumption 7. Therefore, by Assumption 9 (ii), we obtain

d

ds
log φVt(s) =

i E
[
Vt e

isVt
]

E [eisVt ]
=
i E

[
µYt+q+1(ρt+q+1)

κ(ρt+q+1)
eisYt

]
E [eisYt ]

=
i E

[
µYt+q+1(ρt+q+1) eisYt

]
κ(ρt+q+1) E [eisYt ]

.

By Assumption 9 and Picard-Lindelöf theorem, we therefore obtain (4.4). Next, using (2.1)

and (4.4), we obtain (4.5) under Assumption 9 (ii). Finally, using (2.2) and (4.5), we obtain

(4.6) under Assumption 9 (ii).

A.3 Proof of Theorem 1

Proof. Lemma 2 shows that φηt is identified up to the finite-dimensional parameters ρt+q and

ρt+q+1 by (4.6) under the current assumptions. By Assumption 10 (i) and (ii), we identify the

density function fUt up to the finite-dimensional parameters ρt+q+1 by

fUt(η; ρt+q+1) =
1

2π

∫
e−isu φUt(s; ρt+q+1)ds. (A.4)

where φUt(s; ρt+q+1) is given by (4.5). Similarly, by Assumption 10 (iii) and (iv), we identify

the density function fηt up to the finite-dimensional parameters ρt+q and ρt+q+1 by

fηt(η; ρt+q, ρt+q+1) =
1

2π

∫
e−isη φηt(s; ρt+q, ρt+q+1)ds. (A.5)

where φηt(s; ρt+q, ρt+q+1) is given by (4.6). Since Ut is first-order Markov under (2.2) and (4.8)

that holds under Assumption 7 (i), the joint density of (Ut+τ , · · · , Ut) is written as

fUt,··· ,Ut+τ (ut, · · · , ut+τ ) = fUt(ut)
τ∏

τ ′=1

fηt+τ ′ (ut+τ ′ − ut+τ ′−1). (A.6)
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Combining (A.4), (A.5) and (A.6) together yields (4.9).

Furthermore, by using (A.6), we identify the joint characteristic function φUt,··· ,Ut+τ by

φUt,··· ,Ut+τ (st, · · · , st+τ ) =∫
· · ·
∫

exp

(
i

τ∑
τ ′=0

st+τ ′ut+τ ′

)
fUt(ut)

τ∏
τ ′=1

fηt+τ ′ (ut+τ ′ − ut+τ ′−1)dut · · · dut+τ . (A.7)

Thus, by (2.1) and (4.7) that holds under Assumption 7 (i), we in turn identify the joint

characteristic function φVt,··· ,Vt+τ by

φVt,··· ,Vt+τ (st, · · · , st+τ ) = φYt,··· ,Yt+τ (st, · · · , st+τ )/φUt,··· ,Ut+τ (st, · · · , st+τ ) =

E [exp (i
∑τ

τ ′=0 st+τ ′Yt+τ ′)]∫
· · ·
∫

exp (i
∑τ

τ ′=0 st+τ ′ut+τ ′) fUt(ut)
∏τ

τ ′=1 fηt+τ ′ (ut+τ ′ − ut+τ ′−1)dut · · · dut+τ
.

Under Assumption 10 (v), we can then recover the joint characteristic function φVt,··· ,Vt+τ by

fVt,··· ,Vt+τ (vt, · · · , vt+τ ) =
1

(2π)τ+1

∫
· · ·
∫

(A.8)

E [exp (i
∑τ

τ ′=0 st+τ ′(Yt+τ ′ − vt+τ ′))]∫
· · ·
∫

exp (i
∑τ

τ ′=0 st+τ ′ut+τ ′) fUt(ut)
∏τ

τ ′=1 fηt+τ ′ (ut+τ ′ − ut+τ ′−1)dut · · · dut+τ
dst · · · dst+τ .

Combining (A.4), (A.5) and (A.8) together yields (4.10).

A.4 Proof of Proposition 3

Proof. Substitute (2.1) and (2.2) in (A.3) with the time subscript reduced by q to get

µYt+1(ρt+1) = κ(ρt+1)(Vt−q−1 + Yt−q − Yt−q−1 − ηt−q) + νη,εt+1(ρt+1).

Further decrementing the time subscript in (A.3) yields

µYt (ρt) = κ(ρt)Vt−q−1 + νη,εt (ρt).

Using these two equations to eliminate Vt−q−1, we obtain the new restriction

κ(ρt)µ
Y
t+1(ρt+1)− κ(ρt+1)µYt (ρt) =

κ(ρt+1)κ(ρt) [Yt−q − Yt−q−1 − ηt−q] + κ(ρt)ν
η,ε
t+1(ρt+1)− κ(ρt+1)νη,εt (ρt)− κ(ρt+1)κ(ρt)ηt−q

By (4.2) and (4.3) that hold under Assumption 7, we have

E
[
κ(ρt)ν

η,ε
t+1(ρt+1)− κ(ρt+1)νη,εt (ρt)− κ(ρt+1)κ(ρt)ηt−q

∣∣ It−q−1

]
= 0.

Therefore, the moment equality (4.11) follows.
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B Further Details on Estimation

B.1 Estimator of ρt under Example 4

In this section, we describe estimation of the AR parameters under the parametric life-cycle

specification of Example 4. For each j ∈ {1, · · · , N} and t ∈ {1 + p+ q, · · · , T − 1}, define

gj,t(θ) := (Yj,t−q−1, · · · , Yj,t−q−p)′
{
κ(h(t, θ))µYj,t+1(h(t+ 1, θ))− κ(h(t+ 1, θ))µYj,t(h(t, θ))

−κ(h(t, θ))κ(h(t+ 1, θ)) (Yj,t−q − Yj,t−q−1)}

The GMM estimator for θ0 ∈ Θ is defined by

θ̂ = arg min
θ∈Θ

[
1

N(T − p− q − 1)

N∑
j=1

T−1∑
t=1+p+q

gj,t(θ)

]′
W

[
1

N(T − p− q − 1)

N∑
j=1

T−1∑
t=1+p+q

gj,t(θ)

]

for a suitable weighting matrix W . The AR parameters may then be estimated by ρt = h(t, θ̂)

for each t. Since the asymptotic properties of GMM estimators is standard in the literature,

we refer readers to Newey and McFadden (1994; Theorems 2.6 and 3.4).

B.2 Estimation of the MA Structure under Linearity

As remarked at the end of Section 3.4, the MA structure can be explicitly identified under the

additional parametric linearity assumption. The MA parameter λt can be identified by imposing

a restriction on (3.18). Like Example 4, we may impose a parametric life-cycle restriction

λt = l(t, ϑ). By eliminating var(εt) and var(εt+1) from (3.18), we obtain the restriction

λt+2var (Vt+1 − ρt+1Vt)− λt+2λt+1cov (Vt − ρtVt−1, Vt+1 − ρt+1Vt)

= cov (Vt+1 − ρt+1Vt, Vt+2 − ρt+2Vt+1) .

Substituting λt = l(t, ϑ), we obtain a minimum distance estimator

ϑ̂ = arg min
ϑ
d(L̂( · , ϑ), L̂)

for some metric d, where L̂( · , θ) and L̂ are given by

L̂(t, ϑ) = l(t+ 2, ϑ)v̂ar (Vt+1 − ρ̂t+1Vt)− l(t+ 2, ϑ)l(t+ 1, ϑ)ĉov (Vt − ρ̂tVt−1, Vt+1 − ρ̂t+1Vt)

L̂(t) = ĉov (Vt+1 − ρ̂t+1Vt, Vt+2 − ρ̂t+2Vt+1)

for t ∈ {2, · · · , T−q−3}. The variance and covariance estimates, v̂ar and ĉov, can be computed

by integration with respect to the multivariate density estimates f̂Vt,Vt+1,Vt+2 , f̂Vt−1,Vt,Vt+1 , and

f̂Vt,Vt+1 obtained in the previous estimation step. The MA parameter estimates are then given

by λ̂t = l(t, ϑ̂) for each t.
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Once λt+1 is estimated, we can then use the analog estimator for (3.17), given by

f̂εt(x) =
1

2π

∫ ∞
−∞

e−isxφ̂εt(s)φK(hs)ds, where

φ̂εt(s) = exp

∫ s

0

iÊ
[(

Vt+1−ρt+1Vt

λ̂t+1

)
exp (is (Vt − ρtVt−1))

]
Ê [exp (Vt − ρ̂tVt−1)]

ds


The estimated expectations, Ê, can be computed by integration with respect to the multivariate

density estimates, f̂Vt−1,Vt and f̂Vt,Vt+1 , obtained in the earlier estimation step.

B.3 Closed-Form Moment Estimators

Following the discussion of Section 5, we provide the closed-form estimators for the first four

moments of Vt as follows.

φ̂
(1)
Vt

(0; ρ̂t+q+1)

i1
=

ÊN [µYj,t+q+1(ρ̂t+q+1)]

κ(ρ̂t+q+1)
,

φ̂
(2)
Vt

(0; ρ̂t+q+1)

i2
=

ÊN [µYj,t+q+1(ρ̂t+q+1)]2

κ(ρ̂t+q+1)2
+

ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]− ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [Yj,t]

κ(ρ̂t+q+1)
,

φ̂
(3)
Vt

(0; ρ̂t+q+1)

i3
=

ÊN [µYj,t+q+1(ρ̂t+q+1)]3

κ(ρ̂t+q+1)3

+
3ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]− 3ÊN [µYj,t+q+1(ρ̂t+q+1)]2ÊN [Yj,t]

κ(ρ̂t+q+1)2

+
ÊN [µYj,t+q+1(ρ̂t+q+1)Y 2

j,t] + 2ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [Yj,t]
2

κ(ρ̂t+q+1)

+
−ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [Y 2

j,t]− 2ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]ÊN [Yj,t]

κ(ρ̂t+q+1)
,
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and

φ̂
(4)
Vt

(0; ρ̂t+q+1)

i4
=

ÊN [µYj,t+q+1(ρ̂t+q+1)]4

κ(ρ̂t+q+1)4

+
6ÊN [µYj,t+q+1(ρ̂t+q+1)]2ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]− 6ÊN [µYj,t+q+1(ρ̂t+q+1)]3ÊN [Yj,t]

κ(ρ̂t+q+1)3

+
4ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [µYj,t+q+1(ρ̂t+q+1)Y 2

j,t]− 4ÊN [µYj,t+q+1(ρ̂t+q+1)]2ÊN [Y 2
j,t]

κ(ρ̂t+q+1)2

+
3ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]

2 + 11ÊN [µYj,t+q+1(ρ̂t+q+1)]2ÊN [Yj,t]
2

κ(ρ̂t+q+1)2

+
−14ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]ÊN [Yj,t]

κ(ρ̂t+q+1)2

+
ÊN [µYj,t+q+1(ρ̂t+q+1)Y 3

j,t]− ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [Y 3
j,t]

κ(ρ̂t+q+1)

+
−3ÊN [µYj,t+q+1(ρ̂t+q+1)Y 2

j,t]ÊN [Yj,t]− 3ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]ÊN [Y 2
j,t]

κ(ρ̂t+q+1)

+
6ÊN [µYj,t+q+1(ρ̂t+q+1)Yj,t]ÊN [Yj,t]

2 − 6ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [Yj,t]
3

κ(ρ̂t+q+1)

+
6ÊN [µYj,t+q+1(ρ̂t+q+1)]ÊN [Yj,t]ÊN [Y 2

j,t]

κ(ρ̂t+q+1)

where ÊN is a short-hand notation for the sample mean operator 1
N

∑N
j=1.

Furthermore, letting φ̂
(k)
Yt

= ikÊN [Y k
j,t], we provide the closed-form estimators for the first

four moments of Ut as follows.

φ̂
(1)
Ut

(0; ρ̂t+q+1))

i1
=

φ̂
(1)
Yt

(0)− φ̂(1)
Vt

(0; ρ̂t+q+1)),

i1

φ̂
(2)
Ut

(0; ρ̂t+q+1))

i2
=

φ̂
(2)
Yt

(0)− 2φ̂
(1)
Yt

(0)φ̂
(1)
Vt

(0; ρ̂t+q+1))− φ̂(2)
Vt

(0; ρ̂t+q+1)) + 2φ̂
(1)
Vt

(0; ρ̂t+q+1))2,

i2

φ̂
(3)
Ut

(0; ρ̂t+q+1))

i3
=

φ̂
(3)
Yt

(0)− 3φ̂
(2)
Yt

(0)φ̂
(1)
Vt

(0; ρ̂t+q+1))− 3φ̂
(1)
Yt

(0)φ̂
(2)
Vt

(0; ρ̂t+q+1))

i3

+6φ̂
(1)
Yt

(0)φ̂
(1)
Vt

(0; ρ̂t+q+1))2 − φ̂(3)
Vt

(0; ρ̂t+q+1))

i3

+6φ̂
(1)
Vt

(0; ρ̂t+q+1))φ̂
(2)
Vt

(0; ρ̂t+q+1))− 6φ̂
(1)
Vt

(0; ρ̂t+q+1))3,

i3
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and

φ̂
(4)
Ut

(0; ρ̂t+q+1))

i4
=

φ̂
(4)
Yt

(0)− 4φ̂
(3)
Yt

(0)φ̂
(1)
Vt

(0; ρ̂t+q+1))− 6φ̂
(2)
Yt

(0)φ̂
(2)
Vt

(0; ρ̂t+q+1))

i4

+12φ̂
(2)
Yt

(0)φ̂
(1)
Vt

(0; ρ̂t+q+1))2 − 4φ̂
(1)
Yt

(0)φ̂
(3)
Vt

(0; ρ̂t+q+1))− φ̂(4)
Vt

(0; ρ̂t+q+1))

i4

+8φ̂
(1)
Vt

(0; ρ̂t+q+1))φ̂
(3)
Vt

(0; ρ̂t+q+1)) + 6φ̂
(2)
Vt

(0; ρ̂t+q+1))2

i4

−36φ̂
(1)
Vt

(0; ρ̂t+q+1))2φ̂
(2)
Vt

(0; ρ̂t+q+1)) + 24φ̂
(1)
Vt

(0; ρ̂t+q+1))4

i4
.

C Large Sample Properties

Asymptotic properties for nonparametric deconvolution estimators in repeated measurement

models have been studied in the literature (e.g., Li and Vuong, 1998). The uniform convergence

rates for the estimators f̂Ut and f̂Vt for the marginal density function can be obtained by ex-

tending their results with an additional accounting for the pre-estimation of the AR parameters

ρ. Our discussions are based on the ρt estimator under Example 1, but the same conclusions

will hold under Examples 2 and 3 that similarly yield the
√
N convergence rate for the para-

metric estimation of ρt. The following assumption ensures that we can ignore the effect of the

pre-estimation on the second-step nonparametric estimation of the marginal densities.

Assumption 1. (i) {Yj,t−q−p, · · · , Yj,t+q} is independently and identically distributed across j.

(ii) (Yj,t−q−1, · · · , Yj,t−q−p)′(∆j,t,1, · · · ,∆j,t,p) has a finite first moment that is non-singular. (iii)

(Yj,t−q−1, · · · , Yj,t−q−p)′∆j,t,0 has a finite (2 + δ)-th moment for some δ > 0. (iv) Yj,t+τ − Yj,t
has a finite first moment for each τ ∈ {1, · · · , q}.

Parts (i), (ii) and (iii) of Assumption 1 are used to guarantee the root-N convergence of

the estimator ρ̂ of the AR parameters ρ – see Lemma 1. Part (iv) in addition ensures that

substitutions of this parametric estimator ρ̂ in the nonparametric estimators, φ̂Vt , φ̂Ut and φ̂ηt ,

can be ignored in terms of the uniform convergence rates – see Lemma 2.

Following Li and Vuong (1998), we consider the following four cases of smoothness of the

distributions of Vt and Ut:

(1) d0
vt |s|

−βvt 6 |φVt(s)| 6 d1
vt |s|

−βvt and d0
ut |s|

−βut 6 |φUt(s)| 6 d1
ut |s|

−βut

(2) d0
vt |s|

−βvt 6 |φVt(s)| 6 d1
vt |s|

−βvt and

d0
ut |s|

−βut exp(− |s|β
∗
u /γu) 6 |φUt(s)| 6 d1

ut |s|
−βut exp(− |s|β

∗
u /γu)

(3) d0
vt |s|

−βvt exp(− |s|β
∗
v /γv) 6 |φVt(s)| 6 d1

vt |s|
−βvt exp(− |s|β

∗
v /γv) and

d0
ut |s|

−βut 6 |φUt(s)| 6 d1
ut |s|

−βut
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(4) d0
vt |s|

−βvt exp(− |s|β
∗
v /γv) 6 |φVt(s)| 6 d1

vt |s|
−βvt exp(− |s|β

∗
v /γv) and

d0
ut |s|

−βut exp(− |s|β
∗
u /γu) 6 |φUt(s)| 6 d1

ut |s|
−βut exp(− |s|β

∗
u /γu)

The marginal distribution of Vt is ordinary-smooth in Cases 1 and 2, while it is super-smooth

in Cases 3 and 4. The marginal distribution of Ut is ordinary-smooth in Cases 1 and 3, while

it is super-smooth in Cases 2 and 4. For each of these four cases, we derive the uniform

convergence rates of our characteristic function estimators, φ̂Vt( · ; ρ̂t+q+1), φ̂Ut( · ; ρ̂t+q+1), and

φ̂ηt( · ; ρ̂t+q, ρ̂t+q+1), by combining our auxiliary result (Lemma 2) with the results of Li and

Vuong (1998) – see Lemmas 3–6. To use the results by Li and Vuong, we also make the following

assumption in addition.

Assumption 2. Uj,t and Vj,t have bounded supports for each t.

In Li and Vuong, they use the uniform function for the regularizer φK , but it is known in

the statistical literature that we can replace it by a more general class of functions For our

purpose to analyze the convergence rates of the estimated density functions, fVt , fUt and fηt ,

we make the following assumptions on the kernel function K.

Assumption 3. (i) φK(s) = 1 for all s ∈ [−c, c] for some c ∈ (0,∞). (ii) φK(s) ∈ [0, 1] for

all s ∈ R. (iii) φK(s) = 0 for all s ∈ R\[−1, 1]. (iv)
∫
|φK(s)| ds <∞.

In our application, we specifically choose the kernel function

φK(u) =


1 if |u| 6 c

exp

[
−b exp

{
−b

(|u|−c)2

}
(|u|−c)2

]
if c < |u| < 1

0 if 1 6 |u|

(C.1)

with b = 0.10 and c = 0.10 (Politis and Romano, 1999). For uniform convergence rates of our

density estimators, parts (i) and (ii) of Assumption 3 helps to control the bias of our estimators,

whereas parts (iii) and (iv) of this assumption help to control the variance of our estimators

– see Lemma 7. Combining our previous auxiliary lemmas, (Lemmas 3–6 tailored to Cases

(1)–(4), respectively) on the convergence rates of the characteristic function estimators, with

this Lemma 7, we obtain the following uniform convergence results.

Theorem 1. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions

under Case (1), then

(i) sup
v∈R

∣∣∣f̂Vt(v)− fVt(v)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α+ α
2(1+βvt+βut )

)
+O

( N

log logN

) α(1−βvt )
2(1+βvt+βut )


(ii) sup

u∈R

∣∣∣f̂Ut(u)− fUt(u)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
α(1+βvt )

2(1+βvt+βut )

+O

( N

log logN

) α(1−βut )
2(1+βvt+βut )


8



holds with h−1
N = O

((
N

log logN

) α
2(1+βvt+βut )

)
for 0 < α < (1 + βvt + βut)/(2 + 3βvt + 2βut).

Furthermore,

(iii) sup
η∈R

∣∣∣f̂ηt(η)− fηt(η)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
α(1+max{βvt ,βvt−1}+βut−1)

2(1+max{βvt+βut ,βvt−1+βut−1})


+ O

( N

log logN

)− 1
2

+α+
α(1−(βut−βut−1))

2(1+max{βvt+βut ,βvt−1+βut−1})


holds with h−1

N = O

((
N

log logN

) α

2(1+max{βvt+βut ,βvt−1+βut−1})
)

for 0 < α < (1 + max{βvt +

βut , βvt−1 + βut−1})/(2 + 2 max{βvt + βut , βvt−1 + βut−1}+ βvt−1 + βut−1).

Theorem 2. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions

under Case (2), then

(i) sup
v∈R

∣∣∣f̂Vt(v)− fVt(v)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 3+2βvt+2βut
β∗u

+

(
logO

(
N

log logN

)) 1−βvt
β∗u

(ii) sup
u∈R

∣∣∣f̂Ut(u)− fUt(u)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 3+3βvt+2βut
β∗u

+ O

((
N

log logN

)−α
2

)(
logO

(
N

log logN

)) 1−βut−β
∗
u

β∗u

holds with h−1
N =

[
αγu

2
logO

(
N

log logN

)] 1
β∗u for 0 < α < 1/2. Furthermore,

(iii) sup
η∈R

∣∣∣f̂ηt(η)− fηt(η)
∣∣∣

= Op

(
N

log logN

)− 1
2

+ 3α
2
(

logOp

(
N

log logN

)) 3+max{3βvt+2βut ,3βvt−1+2βut−1}+βut−1

β∗u

+

(
logO

(
N

log logN

)) 1−(βut−βut−1)
β∗u

holds with h−1
N =

[
αγu

2
logO

(
N

log logN

)] 1
β∗u for 0 < α < 1/3.

9



Theorem 3. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions

under Case (3), then

(i) sup
v∈R

∣∣∣f̂Vt(v)− fVt(v)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 3+2βvt+2βut
β∗v

+ O

((
N

log logN

)−α
2

)(
logO

(
N

log logN

)) 1−βvt−β
∗
v

β∗v

(ii) sup
u∈R

∣∣∣f̂Ut(u)− fUt(u)
∣∣∣ = Op

((
N

log logN

)− 1
2

+ 3α
2

)(
logOp

(
N

log logN

)) 3+3βvt+2βut
β∗v

+

(
logO

(
N

log logN

)) 1−βut
β∗v

(iii) sup
η∈R

∣∣∣f̂ηt(η)− fηt(η)
∣∣∣ = Op

((
N

log logN

)− 1
2

+ 3α
2

)

×
(

logOp

(
N

log logN

)) 3+max{3βvt+2βut ,3βvt−1+2βut−1}+βut−1
β∗v

+

(
logO

(
N

log logN

)) 1−(βut−βut−1)
β∗v

holds with h−1
N =

[
αγv

2
logO

(
N

log logN

)] 1
β∗v for 0 < α < 1/3.

Theorem 4. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions

under Case (4), then

(i) sup
v∈R

∣∣∣f̂Vt(v)− fVt(v)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 3+2βvt+2βut
β

+ exp

− 1

γv

(
αγ

2
logO

(
N

log logN

))β∗v
β

(logO

(
N

log logN

)) 1−βvt−β
∗
v

β

(ii) sup
u∈R

∣∣∣f̂Ut(u)− fUt(u)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α+ αγ
2γv

)(
logOp

(
N

log logN

)) 3+3βvt+2βut
β

+ exp

− 1

γu

(
αγ

2
logO

(
N

log logN

))β∗u
β

(logO

(
N

log logN

)) 1−βut−β
∗
u

β

(iii) sup
η∈R

∣∣∣f̂ηt(η)− fηt(η)
∣∣∣ =

Op

((
N

log logN

)− 1
2

+α+ αγ
2γv

+ αγ
2γu

)(
logOp

(
N

log logN

)) 3+max{3βvt+2βut ,3βvt−1+2βut−1}+βut−1
β

+

(
logO

(
N

log logN

)) 1−(βut−βut−1)
β

10



holds with h−1
N =

[
αγ
2

logO
(

N
log logN

)] 1
β

for 0 < α < min{1/2, γv/(2γv + γ), 2γvγu/(2γvγu +

γγv + γγu)}, where β = max{β∗v , β∗u} and

γ =


γu if β∗v < β∗u
γuγv
γu+γv

if β∗v = β∗u

γv if β∗v > β∗u

.

Theorem 1 follows from Lemmas 3 and 7. Likewise, Theorem 2 (respectively, 3 and 4) follows

from Lemmas 4 (respectively, 5 and 6) and 7, together with Lemma 4.2 of Li and Vuong (1998).

The convergence rates are decomposed into two parts, namely the stochastic part indicated by

Op and the bias part indicated by O. While other papers (e.g., Li and Vuong, 1998; Theorems

3.1–3.4) obtain deterministic rates for the variance part, we only obtain stochastic rates because

of the pre-estimation of ρ by ρ̂.

From the uniform consistency results for f̂Ut and f̂ηt in Theorems 1–4, it follows that the

estimator f̂UtUt+1 of the joint density function of (Ut, Ut+1) is also uniformly consistent – see

Corollaries 1–4. Furthermore, these results in turn imply the uniform consistency of the esti-

mator f̂VtVt+1 of the joint density function of (Vt, Vt+1) – see Corollary 5.

C.1 Lemma 1: First Step Parametric Estimation

Lemma 1. If Assumption 1 (i), (ii) and (iii) are satisfied in addition to the identifying as-

sumptions, then ‖ρ̂− ρ‖ = Op(N
−1/2) holds.

Proof. The conclusion follows from Khintchin’s weak law of large numbers under Assumption

1 (i), (ii), Lyapunov’s central limit theorem under Assumption 1 (i), (iii), and the continuous

mapping theorem under Assumption 1 (ii).

C.2 Lemma 2: Effect of First Step Estimation

Lemma 2. If Assumption 1 is satisfied in addition to the identifying assumptions, then

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φ̂Vt(s; ρt+q+1)
∣∣∣ 6 SN ÃN[

inf |s|6SN |φYt(s)|
] [

inf |s|6SN |φYt(s)|+ B̃N

]
holds for ÃN = Op(N

−1/2) and B̃N = Op

(√
log logN

N

)
as N →∞.
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Proof. We introduce the following short-hand notations.

ÂN(s) = N−1

N∑
j=1

µYj,t+q+1(ρ̂t+q+1)eisYj,t B̂N(s) = κ(ρ̂t+q+1)N−1

N∑
j=1

eisYj,t

AN(s) = N−1

N∑
j=1

µYj,t+q+1(ρt+q+1)eisYj,t BN(s) = κ(ρt+q+1)N−1

N∑
j=1

eisYj,t .

First, note that

N−1

N∑
j=1

|Yj,t+q+1−p′ − Yj,t| = Op(1) (C.2)

by Assumption 1 (i) and (iv) and Khintchin’s week law of large numbers. Because we can write

ÂN(s)− AN(s) =

p∑
p′=1

(ρ̂t+q+1,p′ − ρt+q+1,p′) N−1

N∑
j=1

(Yj,t+q+1−p′ − Yj,t) eisYj,t ,

it follows that

sup
s

∣∣∣ÂN(s)− AN(s)
∣∣∣ 6 p∑

p′=1

|ρ̂t+q+1,p′ − ρt+q+1,p′ | N−1

N∑
j=1

|Yj,t+q+1−p′ − Yj,t| = Op(N
−1/2)(C.3)

by Lemma 1 and (C.2).

Second, because we can write

B̂N(s)−BN(s) =

p∑
p′=1

(ρ̂t+q+1,p′ − ρt+q+1,p′)N
−1

N∑
j=1

eisYj,t ,

it follows that

sup
s

∣∣∣B̂N(s)−BN(s)
∣∣∣ 6 p∑

p′=1

|ρ̂t+q+1,p′ − ρt+q+1,p′ | = Op(N
−1/2) (C.4)

by Lemma 1. Furthermore, we also have

sup
s
|BN(s)− EBN(s)| = O

(√
log logN

N

)
(C.5)

by the law of iterated logarithm under Assumption 1 (i).

Third, note that we can write

log φ̂Vt(s; ρ̂t+q+1)− log φVt(s; ρt+q+1) = i

∫ s

0

{
ÂN(s′)

B̂N(s′)
− AN(s′)

BN(s′)

}
ds′ =

i

∫ s

0

ÂN(s)− AN(s)

EBN(s) + (BN(s)− EBN(s))− (B̂N(s)−BN(s))
ds′

− i

∫ s

0

AN(s)

EBN(s) + (BN(s)− EBN(s))
· B̂N(s)−BN(s)

EBN(s) + (BN(s) EBN(s))− (B̂N(s)−BN(s))
ds′.
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Therefore, for ÃN = Op(N
−1/2) and B̃N = Op

(√
log logN

N

)
, we have by Taylor expansion for

N large enough

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φ̂Vt(s; ρt+q+1)
∣∣∣ 6 SN ÃN[

inf |s|6SN |EBN(s)|
] [

inf |s|6SN |EBN(s)|+ B̃N

]
by (C.3), (C.4) and (C.5). The conclusion follows by noting that |EBN(s)| = |κ(ρt+q+1)| ·
|φYt(s)|.

C.3 Lemma 3: Characteristic Function under Case 1

Lemma 3. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under Case (1), then

(i) sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)

(ii) sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
αβvt

2(1+βvt+βut )


holds with SN = O

((
N

log logN

) α
2(1+βvt+βut )

)
for 0 < α < (1 + βvt + βut)/(2 + 3βvt + 2βut).

Furthermore,

(iii) sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

= Op

( N

log logN

)− 1
2

+α+
α(max{βvt ,βvt−1}+βut−1 )

2(1+max{βvt+βut ,βvt−1+βut−1})


holds with SN = O

((
N

log logN

) α

2(1+max{βvt+βut ,βvt−1+βut−1})
)

for 0 < α < (1+max{βvt+βut , βvt−1+

βut−1})/(2 + 2 max{βvt + βut , βvt−1 + βut−1}+ βvt−1 + βut−1).

Remark 1. For parts (i) and (ii), one can use the same rate of SN as in (iii). In this case,
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we instead obtain the following convergence rates.

(i) sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)

(i) sup
|s|6SN

∣∣∣φ̂Vt−1(s; ρ̂t+q)− φVt−1(s; ρt+q)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)

(ii) sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
αβvt

2(1+max{βvt+βut ,βvt−1+βut−1})


(ii) sup
|s|6SN

∣∣∣φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
αβvt−1

2(1+max{βvt+βut ,βvt−1+βut−1})


holds with SN = O

((
N

log logN

) α

2(1+max{βvt+βut ,βvt−1+βut−1})
)

for 0 < α < (1+max{βvt+βut , βvt−1+

βut−1})/(2 + 2 max{βvt + βut , βvt−1 + βut−1}+ max
{
βvt , βvt−1

}
).

Proof. Applying Lemma 2 to Case (1) with SN = O

((
N

log logN

) α
2(1+βvt+βut )

)
, we obtain

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φ̂Vt(s; ρt+q+1)
∣∣∣ = Op

( N

log logN

)− 1
2

+α
1+2βvt+2βut
2(1+βvt+βut )


On the other hand, Li and Vuong (1998; Lemma 3.1) shows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρt+q+1)− φVt(s; ρt+q+1)
∣∣∣ = O

((
N

log logN

)− 1
2

+α
)

holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)
. (C.6)

This proves the first part of the lemma. Now, we note that

φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1) =
φ̂Yt(s)

φ̂Vt(s; ρ̂t+q+1)
− φYt(s)

φVt(s; ρt+q+1)

=
φ̂Yt(s)− φYt(s)

φVt(s; ρt+q+1) +
(
φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)

)
−
φUt(s; ρt+q+1) ·

(
φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)

)
φVt(s; ρt+q+1) +

(
φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)

) .
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Since
sup|s|6SN |φ̂Vt (s;ρ̂t+q+1)−φVt (s;ρt+q+1)|

inf|s|6SN |φVt (s;ρt+q+1)|
p→ 0 as N →∞ under α < (1+βvt+βut)/(2+3βvt+2βut),

we have

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Yt(s)− φYt(s)∣∣∣
inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

+
sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

with probability approaching one as N → ∞. It follows from SN = O

((
N

log logN

) α
2(1+βvt+βut )

)
and (C.6) that

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

(
N

log logN

)− 1
2

+α+
αβvt

2(1+βvt+βut )

.

This proves the second part of the lemma. Note the proof of the above two parts follows

similarly with SN = O

((
N

log logN

) α

2(1+max{βvt+βut ,βvt−1+βut−1})
)

by applying Lemma 4.1 (i) of

Li and Vuong (1998) with β := max
{
βvt + βut , βvt−1 + βut−1

}
to yield the convergence rates

displayed in Remark 1. We thus use SN = O

((
N

log logN

) α

2(1+max{βvt+βut ,βvt−1+βut−1})
)

now to

prove the third part of the lemma. Note that

φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1) =
φ̂Ut(s; ρ̂t+q+1)

φ̂Ut−1(s; ρ̂t+q)
− φUt(s; ρt+q+1)

φUt−1(s; ρt+q)

=
φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)

φUt−1(s; ρt+q) +
(
φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)

)
−

φηt−1 ·
(
φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)

)
φUt−1(s; ρt+q) +

(
φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)

) .
Since

sup|s|6SN |(φ̂Ut−1
(s;ρ̂t+q)−φUt−1

(s;ρt+q))|
inf|s|6SN |φUt−1

(s;ρt+q)|
p→ 0 as N →∞ under α < (1 + max{βvt + βut , βvt−1 +

βut−1})/(1 + 2 max{βvt + βut , βvt−1 + βut−1}+ βvt−1 + βut−1), we have

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣

−
sup|s|6SN

∣∣∣φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣
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with probability approaching one as N →∞. It follows from

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
αβvt

2(1+max{βvt+βut ,βvt−1+βut−1})


sup
|s|6SN

∣∣∣φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
∣∣∣ = Op

( N

log logN

)− 1
2

+α+
αβvt−1

2(1+max{βvt+βut ,βvt−1+βut−1})


and SN = O

((
N

log logN

) α

2(1+max{βvt+βut ,βvt−1+βut−1})
)

that

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣ = Op

(
N

log logN

)− 1
2

+α+
α(βvt+βut−1 )

2(1+max{βvt+βut ,βvt−1+βut−1})

+Op

(
N

log logN

)− 1
2

+α+
α(βvt−1+βut−1 )

2(1+max{βvt+βut ,βvt−1+βut−1})

This proves the third part of the lemma.

C.4 Lemma 4: Characteristic Function under Case 2

Lemma 4. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under Case (2), then

(i) sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

= Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 2+2βvt+2βut
β∗u

(ii) sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

= Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 2+3βvt+2βut
β∗u

holds with SN =
[
αγu

2
logO

(
N

log logN

)] 1
β∗u for 0 < α < 1/2. Furthermore,

(iii) sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

= Op

(
N

log logN

)− 1
2

+ 3α
2
(

logOp

(
N

log logN

)) 2+max{3βvt+2βut ,3βvt−1+2βut−1}+βut−1

β∗u

holds with SN =
[
αγu

2
logO

(
N

log logN

)] 1
β∗u for 0 < α < 1/3.
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Proof. Applying Lemma 2 to Case (2) with SN =
[
αγu

2
logO

(
N

log logN

)] 1
β∗u , we obtain

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φ̂Vt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 1+2βvt+2βut
β∗u

On the other hand, Li and Vuong (1998; Lemma 3.2) shows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρt+q+1)− φVt(s; ρt+q+1)
∣∣∣ = O

((
N

log logN

)− 1
2

+α
)(

logO

(
N

log logN

)) 2+2βvt+2βut
β∗u

holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 2+2βvt+2βut
β∗u

.

(C.7)

This proves the first part of the lemma. Since
sup|s|6SN |φ̂Vt (s;ρ̂t+q+1)−φVt (s;ρt+q+1)|

inf|s|6SN |φVt (s;ρt+q+1)|
p→ 0 as N →∞

under α < 1/2, we have

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Yt(s)− φYt(s)∣∣∣
inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

+
sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

with probability approaching one as N → ∞. It follows from SN =
[
αγu

2
logO

(
N

log logN

)] 1
β∗u

and (C.7) that

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

(
N

log logN

)− 1
2

+α(
logOp

(
N

log logN

)) 2+2βut+3βvt
β∗u

.

(C.8)

This proves the second part of the lemma. Since
sup|s|6SN |(φ̂Ut−1

(s;ρ̂t+q)−φUt−1
(s;ρt+q))|

inf|s|6SN |φUt−1
(s;ρt+q)|

p→ 0 as

N →∞ under α < 1/3, we have

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣

−
sup|s|6SN

∣∣∣φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣
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with probability approaching one as N → ∞. It follows from (C.8) and our choice of SN =[
αγu

2
logO

(
N

log logN

)] 1
β∗u that

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

= Op

(
N

log logN

)− 1
2

+ 3α
2
(

logOp

(
N

log logN

)) 2+3βvt+2βut+βut−1
β∗u

+

Op

(
N

log logN

)− 1
2

+ 3α
2
(

logOp

(
N

log logN

)) 2+3βvt−1+3βut−1
β∗u

.

This proves the third part of the lemma.

C.5 Lemma 5: Characteristic Function under Case 3

Lemma 5. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under Case (3), then

(i) sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

= Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 2+2βvt+2βut
β∗v

(ii) sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

= Op

((
N

log logN

)− 1
2

+ 3α
2

)(
logOp

(
N

log logN

)) 2+3βvt+2βut
β∗v

(iii) sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+ 3α
2

)

×
(

logOp

(
N

log logN

)) 2+max{3βvt+2βut ,3βvt−1+2βut−1}+βut−1
β∗v

holds with SN =
[
αγv

2
logO

(
N

log logN

)] 1
β∗v for 0 < α < 1/3.

Proof. Applying Lemma 2 to Case (3) with SN =
[
αγv

2
logO

(
N

log logN

)] 1
β∗v , we obtain

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φ̂Vt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 1+2βvt+2βut
β∗v

On the other hand, Li and Vuong (1998; Lemma 3.3) shows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρt+q+1)− φVt(s; ρt+q+1)
∣∣∣ = O

((
N

log logN

)− 1
2

+α
)(

logO

(
N

log logN

)) 2+2βvt+2βut
β∗v
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holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 2+2βvt+2βut
β∗v

.

(C.9)

This proves the first part of the lemma. Since
sup|s|6SN |φ̂Vt (s;ρ̂t+q+1)−φVt (s;ρt+q+1)|

inf|s|6SN |φVt (s;ρt+q+1)|
p→ 0 as N →∞

under α < 1/3, we have

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Yt(s)− φYt(s)∣∣∣
inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

+
sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

with probability approaching one as N → ∞. It follows from SN =
[
αγv

2
logO

(
N

log logN

)] 1
β∗v

and (C.9) that

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

(
N

log logN

)− 1
2

+ 3α
2
(

logOp

(
N

log logN

)) 2+3βvt+2βut
β∗v

.

(C.10)

This proves the second part of the lemma. Since
sup|s|6SN |(φ̂Ut−1

(s;ρ̂t+q)−φUt−1
(s;ρt+q))|

inf|s|6SN |φUt−1
(s;ρt+q)|

p→ 0 as

N →∞, we have

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣

−
sup|s|6SN

∣∣∣φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣

with probability approaching one as N → ∞. It follows from (C.10) and our choice of SN =[
αγv

2
logO

(
N

log logN

)] 1
β∗v that

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

= Op

((
N

log logN

)− 1
2

+ 3α
2

)(
logOp

(
N

log logN

)) 2+3βvt+2βut+βut−1
β∗v

+Op

((
N

log logN

)− 1
2

+ 3α
2

)(
logOp

(
N

log logN

)) 2+3βvt−1+3βut−1
β∗v
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This proves the third part of the lemma.

C.6 Lemma 6: Characteristic Function under Case 4

Lemma 6. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under Case (4), then

(i) sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)
×

(
logOp

(
N

log logN

)) 2+2βvt+2βut
β

(ii) sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α+ αγ
2γv

)
×

(
logOp

(
N

log logN

)) 2+3βvt+2βut
β

(iii) sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α+ αγ
2γv

+ αγ
2γu

)
×

(
logOp

(
N

log logN

)) 2+max{3βvt+2βut ,3βvt−1+2βut−1}+βut−1
β

holds with SN =
[
αγ
2

logO
(

N
log logN

)] 1
β

for 0 < α < min{1/2, γv/(2γv+γ), 2γvγu/(2γvγu+γγv+

γγu)}, where β = max{β∗v , β∗u} and

γ =


γu if β∗v < β∗u
γuγv
γu+γv

if β∗v = β∗u

γv if β∗v > β∗u

.

Proof. Applying Lemma 2 to Case (4) with SN =
[
αγ
2

logO
(

N
log logN

)] 1
β
, we obtain

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φ̂Vt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 1+2βvt+2βut
β

On the other hand, Li and Vuong (1998; Lemma 3.4) shows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρt+q+1)− φVt(s; ρt+q+1)
∣∣∣ = O

((
N

log logN

)− 1
2

+α
)(

logO

(
N

log logN

)) 2+2βvt+2βut
β

holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

sup
|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣ = Op

((
N

log logN

)− 1
2

+α
)(

logOp

(
N

log logN

)) 2+2βvt+2βut
β

.

(C.11)

20



This proves the first part of the lemma. Since
sup|s|6SN |φ̂Vt (s;ρ̂t+q+1)−φVt (s;ρt+q+1)|

inf|s|6SN |φVt (s;ρt+q+1)|
p→ 0 as N →∞

under α < min{1/2, γv/(2γv + γ)}, we have

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Yt(s)− φYt(s)∣∣∣
inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

+
sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

inf |s|6SN |φVt(s; ρt+q+1)| − sup|s|6SN

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

with probability approaching one as N →∞. It follows from SN =
[
αγ
2

logO
(

N
log logN

)] 1
β

and

(C.11) that

sup
|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣ = Op

(
N

log logN

)− 1
2

+α+ αγ
2γv
(

logOp

(
N

log logN

)) 2+3βvt+2βut
β

.

(C.12)

This proves the second part of the lemma. Since
sup|s|6SN |(φ̂Ut−1

(s;ρ̂t+q)−φUt−1
(s;ρt+q))|

inf|s|6SN |φUt−1
(s;ρt+q)|

p→ 0 as

N →∞ under α < 2γvγu/(2γvγu + γγv + γγu), we have

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

6
sup|s|6SN

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣

−
sup|s|6SN

∣∣∣φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
∣∣∣

inf |s|6SN
∣∣φUt−1(s; ρt+q)

∣∣− sup|s|6SN

∣∣∣(φ̂Ut−1(s; ρ̂t+q)− φUt−1(s; ρt+q)
)∣∣∣

with probability approaching one as N → ∞. It follows from (C.12) and our choice of SN =[
αγ
2

logO
(

N
log logN

)] 1
β

that

sup
|s|6SN

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

= Op

(
N

log logN

)− 1
2

+α+ αγ
2γv

+ αγ
2γu
(

logOp

(
N

log logN

)) 2+3βvt+2βut+βut−1
β

+ Op

(
N

log logN

)− 1
2

+α+ αγ
2γv

+ αγ
2γu
(

logOp

(
N

log logN

)) 2+3βvt−1+3βut−1
β

.

This proves the third part of the lemma.
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C.7 Lemma 7: Marginal Density Functions

Lemma 7. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions,

then

sup
v∈R

∣∣∣f̂Vt(v)− fVt(v)
∣∣∣ 6 C

(
h−1
N sup
|s|6h−1

N

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣+

∫ ∞
ch−1
N

|φVt(s; ρt+q+1)| ds

)

sup
u∈R

∣∣∣f̂Ut(u)− fUt(u)
∣∣∣ 6 C

(
h−1
N sup
|s|6h−1

N

∣∣∣φ̂Ut(s; ρ̂t+q+1)− φUt(s; ρt+q+1)
∣∣∣+

∫ ∞
ch−1
N

|φUt(s; ρt+q+1)| ds

)

and

sup
η∈R

∣∣∣f̂ηt(η)− fηt(η)
∣∣∣ 6 C

(
h−1
N sup
|s|6h−1

N

∣∣∣φ̂ηt(s; ρ̂t+q, ρ̂t+q+1)− φηt(s; ρt+q, ρt+q+1)
∣∣∣

+

∫ ∞
ch−1
N

|φηt(s; ρt+q, ρt+q+1)| ds

)

hold for some C ∈ (0,∞).

Proof. We can write f̂Vt(v)− fVt(v) as

f̂Vt(v)− fVt(v) =
1

2π

∫ h−1
N

−h−1
N

e−isvφ̂Vt(s; ρ̂t+q+1)φK(hs)ds− 1

2π

∫ h−1
N

−h−1
N

e−isvφVt(s; ρt+q+1)φK(hs)ds

+
1

2π

∫
e−isvφVt(s; ρt+q+1)φK(hs)ds− 1

2π

∫
e−isvφVt(s; ρt+q+1)ds

under Assumption 3 (iii). The first line on the right hand side is uniformly bounded in absolute

value as

sup
v∈R

∣∣∣∣∣ 1

2π

∫ h−1
N

−h−1
N

e−isvφ̂Vt(s; ρ̂t+q+1)φK(hs)ds− 1

2π

∫ h−1
N

−h−1
N

e−isvφVt(s; ρt+q+1)φK(hs)ds

∣∣∣∣∣
6 Ch−1

N sup
|s|6h−1

N

∣∣∣φ̂Vt(s; ρ̂t+q+1)− φVt(s; ρt+q+1)
∣∣∣

for some C ∈ (0,∞) under Assumption 3 (iv). On the other hand, the second line is uniformly

bounded in absolute value as

sup
v∈R

∣∣∣∣ 1

2π

∫
e−isvφVt(s; ρt+q+1)φK(hs)ds− 1

2π

∫
e−isvφVt(s; ρt+q+1)ds

∣∣∣∣
6

1

π

∫ ∞
ch−1
N

|φVt(s; ρt+q+1)| ds

under Assumption 3 (i) and (ii). This proves the first part of the lemma. The second and third

parts follow by analogous arguments replacing Vt by Ut and ηt, respectively.
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C.8 Uniform Consistency of f̂UtUt+1

As corollaries, it follows from Theorems 1–4 and the equality fUtUt+1(ut, ut+1) = fUt(ut) ·
fηt+1(ut+1 − ut) the following uniform convergence rates for our estimator f̂UtUt+1 of the joint

density function of (Ut, Ut+1).

Assumption 4. The density functions fUt and fηt+1 are uniformly bounded.

Corollary 1. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-

tions under Case (1), then

sup
(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣ = O

( N

log logN

) α(1−βut )
2(1+βvt+βut )


+ Op

( N

log logN

)− 1
2

+α+
α(1+max{βvt+1 ,βvt}+βut)

2(1+max{βvt+1+βut+1 ,βvt+βut})


+ O

( N

log logN

)− 1
2

+α+
α(1−(βut+1−βut))

2(1+max{βvt+1+βut+1 ,βvt+βut})


holds with h−1

N = O

((
N

log logN

) α

2(1+max{βvt+1+βut+1 ,βvt+βut})
)

for 0 < α < (1 + max{βvt+1 +

βut+1 , βvt + βut})/(2 + 2 max{βvt+1 + βut+1 , βvt + βut}+ βvt + βut).

Corollary 2. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-

tions under Case (2), then

sup
(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣ = O

((
N

log logN

)−α
2

)(
logO

(
N

log logN

)) 1−βut−β
∗
u

β∗u

Op

(
N

log logN

)− 1
2

+ 3α
2
(

logOp

(
N

log logN

)) 3+max{3βvt+1+2βut+1 ,3βvt+2βut}+βut
β∗u

+

(
logO

(
N

log logN

)) 1−(βut+1−βut)
β∗u

holds with h−1
N =

[
αγu

2
logO

(
N

log logN

)] 1
β∗u for 0 < α < 1/3.

Corollary 3. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-
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tions under Case (3), then

sup
(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣ =

(
logO

(
N

log logN

)) 1−βut
β∗v

+

Op

((
N

log logN

)− 1
2

+ 3α
2

)(
logOp

(
N

log logN

)) 3+max{3βvt+1+2βut+1 ,3βvt+2βut}+βut
β∗v

+

(
logO

(
N

log logN

)) 1−(βut+1−βut)
β∗v

holds with h−1
N =

[
αγv

2
logO

(
N

log logN

)] 1
β∗v for 0 < α < 1/3.

Corollary 4. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-

tions under Case (4), then

sup
(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣ =

exp

− 1

γu

(
αγ

2
logO

(
N

log logN

))β∗u
β

(logO

(
N

log logN

)) 1−βut−β
∗
u

β

+Op

((
N

log logN

)− 1
2

+α+ αγ
2γv

+ αγ
2γu

)(
logOp

(
N

log logN

)) 3+max{3βvt+1+2βut+1 ,3βvt+2βut}+βut
β

+

(
logO

(
N

log logN

)) 1−(βut+1−βut)
β

holds with h−1
N =

[
αγ
2

logO
(

N
log logN

)] 1
β

for 0 < α < min{1/2, γv/(2γv + γ), 2γvγu/(2γvγu +

γγv + γγu)}, where β = max{β∗v , β∗u} and

γ =


γu if β∗v < β∗u
γuγv
γu+γv

if β∗v = β∗u

γv if β∗v > β∗u

.

C.9 Uniform Consistency of f̂VtVt+1

With Assumption 2, we can estimate the joint characteristic function φUtUt+1 by

φ̂UtUt+1(st, st+1) =

∫
U

∫
U
eistut+ist+1ut+1 f̂UtUt+1(ut, ut+1)dutdut+1

integrated over a bounded set U containing the bounded supports of Ut and Ut+1. In addition,

we can estimate the joint characteristic function φYtYt+1 by

φ̂YtYt+1(st, st+1) =
1

N

N∑
j=1

eist(Yj,t−vt)+ist+1(Yj,t+1−vt+1)
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which is uniformly root-N consistent under Assumption 1. With these short-hand notations,

φ̂UtUt+1(st, st+1) and φ̂YtYt+1(st, st+1), we obtain the estimator

f̂VtVt+1(vt, vt+1) =
1

(2π)2

∫ ∫
φ̂VtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

for the joint density function fVtVt+1(vt, vt+1), where

φ̂VtVt+1(st, st+1) =
φ̂YtYt+1(st, st+1)

φ̂UtUt+1(st, st+1)

The symbol HN denotes the bandwidth parameter, who rate of convergence will be discussed

later. We use the upper case notation HN to distinguish it from the previous bandwidth

parameter hN . The asymptotic behavior of the estimator f̂VtVt+1(vt, vt+1) relies on the shape of

the joint characteristic function φUtUt+1 , which can be further decomposed as

φUtUt+1(st, st+1) = φUt(st + st+1) · φηt+1(st+1).

Specifically, the uniform convergence rates of f̂UtUt+1 obtained in Corollaries 1–4 translate into

the uniform convergence rates of φ̂VtVt+1 through its shape in the following manner.

Lemma 8. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under any of Cases (1)–(4), then

sup
|st+st+1|6SN ,|st+1|6SN

∣∣∣φ̂VtVt+1(st, st+1)− φVtVt+1(st, st+1)
∣∣∣ 6

S
βUt+1

N

(
Op

(
1√
N

)
+B sup

(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣)

holds.

Proof. First, by the definition of our estimator φ̂UtUt+1(st, st+1), we have

sup
(st,st+1)

∣∣∣φ̂UtUt+1(st, st+1)− φUtUt+1(st, st+1)
∣∣∣

6 B sup
(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣

where B = m(U × U) is the area of U × U . Under each of the four smoothness cases, the

characteristic function φUtUt+1 is bounded in absolute value as

d0
Ut
d0
Ut+1

d1
Ut

|st + st+1|−βUt |st+1|−(βUt+1
−βUt ) 6

∣∣φUtUt+1(st, st+1)
∣∣

6
d1
Ut
d1
Ut+1

d0
Ut

|st + st+1|−βUt |st+1|−(βUt+1
−βUt )
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Note that we can write

φ̂VtVt+1(st, st+1)− φVtVt+1(st, st+1) =

φUtUt+1(st, st+1)
[
φ̂YtYt+1(st, st+1)− φYtYt+1(st, st+1)

]
φUtUt+1(st, st+1)

[
φUtUt+1(st, st+1) +

(
φ̂UtUt+1(st, st+1)− φUtUt+1(st, st+1)

)] −
φYtYt+1(st, st+1)

[
φ̂UtUt+1(st, st+1)− φUtUt+1(st, st+1)

]
φUtUt+1(st, st+1)

[
φUtUt+1(st, st+1) +

(
φ̂UtUt+1(st, st+1)− φUtUt+1(st, st+1)

)]
Therefore, we have

sup
|st+st+1|6SN ,|st+1|6SN

∣∣∣φ̂VtVt+1(st, st+1)− φVtVt+1(st, st+1)
∣∣∣ 6

S
βUt
N S

βUt+1
−βUt

N

(
Op

(
1√
N

)
+B sup

(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣)

as claimed.

The following lemma provides the asymptotic rate of uniform convergence for the stochastic

and bias parts of f̂VtVt+1 , where the stochastic part depends on the uniform convergence rate of

φ̂VtVt+1 provided in the previous lemma.

Lemma 9. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions,

then

sup
(vt,vt+1)

∣∣∣f̂VtVt+1(vt, vt+1)− fVtVt+1(vt, vt+1)
∣∣∣

6 C

(
H−1
N sup
|st|6H−1

N ,|st+1|6H−1
N

∣∣∣φ̂VtVt+1(st, st+1)− φVtVt+1(st, st+1)
∣∣∣

+

∫ ∫
R2

∖
[−cH−1

N ,cH−1
N ]

2

∣∣φVtVt+1(st, st+1)
∣∣ dstdst+1

)
holds for some C ∈ (0,∞).

Proof. We can write f̂VtVt+1(vt, vt+1)− fVtVt+1(vt, vt+1) as

f̂VtVt+1(vt, vt+1)− fVtVt+1(vt, vt+1)

=
1

(2π)2

∫ H−1
N

−H−1
N

∫ H−1
N

−H−1
N

e−istvt−ist+1vt+1φ̂VtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

− 1

(2π)2

∫ H−1
N

−H−1
N

∫ H−1
N

−H−1
N

e−istvt−ist+1vt+1φVtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

+
1

(2π)2

∫ ∫
e−istvt−ist+1vt+1φVtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

− 1

(2π)2

∫ ∫
e−istvt−ist+1vt+1φVtVt+1(st, st+1)dstdst+1
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under Assumption 3 (iii). The difference of the first two terms on the right hand side is

uniformly bounded in absolute value as

sup
(vt,vt+1)

∣∣∣∣∣ 1

(2π)2

∫ H−1
N

−H−1
N

∫ H−1
N

−H−1
N

e−istvt−ist+1vt+1φ̂VtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

− 1

(2π)2

∫ H−1
N

−H−1
N

∫ H−1
N

−H−1
N

e−istvt−ist+1vt+1φVtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

∣∣∣∣∣
6 CH−1

N sup
|st|,|st+1|6H−1

N

∣∣∣φ̂VtVt+1(st, st+1)− φVtVt+1(st, st+1)
∣∣∣

for some C ∈ (0,∞) under Assumption 3 (iv). On the other hand, the difference of the last

two terms is uniformly bounded in absolute value as

sup
(vt,vt+1)

∣∣∣∣ 1

(2π)2

∫ ∫
e−istvt−ist+1vt+1φVtVt+1(st, st+1)φK(HNst)φK(HNst+1)dstdst+1

− 1

(2π)2

∫ ∫
e−istvt−ist+1vt+1φVtVt+1(st, st+1)dstdst+1

∣∣∣∣
6

1

(2π)2

∫ ∫
R2\[−cH−1

N ,cH−1
N ]2

∣∣φVtVt+1(st, st+1)
∣∣ dstdst+1

under Assumption 3 (i) and (ii). This proves the first part of the lemma.

From Lemmas 8 and 9, it follows that the estimator f̂VtVt+1 of the joint density function

of (Vt, Vt+1) is uniformly consistent by choosing HN tending to zero slowly enough so that it

satisfies

H−1
N

(
sup

(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣) 1

1+βUt+1

= op(1)

as N → ∞, where the convergence rate of sup(ut,ut+1)

∣∣∣f̂UtUt+1(ut, ut+1)− fUtUt+1(ut, ut+1)
∣∣∣ is

derived in Corollaries 1–4 under Cases 1–4, respectively. Specifically, it is sufficient to choose

HN by

H−1 =

[
logO

(
N

log logN

)] δ
1+βUt+1

, (C.13)

where an admissible choice of δ > 0 varies across Cases 1–4 in the following manner: (1) δ <∞;

(2) δ <
1−(βUt+1

−βUt )
β∗u

; (3) δ < min
{

1−βUt
β∗v

,
1−(βUt+1

−βUt )
β∗v

}
; (4) δ <

1−(βUt+1
−βUt )

β
. We summarize

this result as a corollary below.

Corollary 5. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-

tions, then

sup
(vt,vt+1)

∣∣∣f̂VtVt+1(vt, vt+1)− fVtVt+1(vt, vt+1)
∣∣∣ = op(1)

holds with the choice of HN given in equation (C.13).
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We remark that the specific rate of convergence under each of Cases 1–4 can be derived by

further specifying the tail behavior of the joint characteristic function of (Vt, Vt+1). Unlike the

permanent component Ut, however, the transitory component Vt follows a complicated dynamic

process, and thus the tail behavior of the joint characteristic function φVtVt+1 does not follow

from the tail behaviors of the marginal characteristic functions, φVt and φVt+1 . We thus leave

the shape of φVtVt+1 and derive only the uniform consistency in the above corollary for the joint

transitory components.

D Additional Results

This section presents additional results of the empirical application to earnings dynamics.

D.1 Results: Baseline Sample

Figure 1 displays estimates for the marginal densities of the permanent earnings Ut, the tran-

sitory earnings Vt, the cumulative permanent shocks
∑

t ηt and the composite MA shocks

εt + λtεt−1 under the ARMA(1,1) model. Figure 2 compares the marginal densities of the

permanent earnings Ut and the transitory earnings Vt that we obtain under the ARMA(0,0)

model (left) and the ARMA(1,1) model (right). Figure 3 compares the marginal densities of

the permanent earnings Ut and the transitory earnings Vt that we obtain under the ARMA(2,2)

model (left) and the ARMA(4,4) model (right). Figure 4 displays estimates (solid curves) for

the marginal densities of the permanent earnings Ut and the transitory earnings Vt under the

ARMA(1,1) together with Gaussian references (dashed curves).

Some density figures show bumps near the tails of the distributions, particularly for the

transitory components. These bumps are common features of deconvolution density estimates.

For example, a closely related paper by Bonhomme and Robin (2010; Figure 5) also exhibit

similar bumps near the tails, especially for transitory shocks as we do similarly. They are

the artefact of the choice of h – when h is chosen to be large, a wider spectrum of waves are

truncated for the purpose of reducing the variance, and hence low-frequency bumps remain.

Removing these bumps will require non-optimal choice of h. With this said, these bumps

will not anyway affect the statistical inference based on moments, as those statistics do not

rely on h. In other words, the statistics displayed in the main text as well as in the current

supplementary material are invariant from tuning of h.

Figure 5 displays the long-run joint densities of the permanent earnings Ut and the transitory

earnings Vt under the ARMA(0,0) model (left) and the benchmark ARMA(1,1) model (right).

Similarly, Figure 6 displays the long-run joint densities of the permanent earnings Ut and

the transitory earnings Vt under the ARMA(2,2) model (left) and the benchmark ARMA(4,4)
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model (right). These figures contain important information about model implications for life-

cycle earnings dynamics, but the contour curves are not the most effective way to present

the information. Therefore, we extract some important features behind these long-run joint

densities, and present them in terms of the lower tail dependence measure presented in the

main text.

D.2 Results: Workers with Strong Labor Force Attachment

Figure 7 displays estimates for the marginal densities of the permanent earnings Ut, the tran-

sitory earnings Vt, the cumulative permanent shocks
∑

t ηt and the composite MA shocks

εt + λtεt−1 under the ARMA(1,1) model. Figure 8 compares the marginal densities of the

permanent earnings Ut and the transitory earnings Vt that we obtain under the ARMA(0,0)

model (left) and the ARMA(1,1) model (right). Figure 9 compares the marginal densities of

the permanent earnings Ut and the transitory earnings Vt that we obtain under the ARMA(2,2)

model (left) and the ARMA(4,4) model (right). Figure 10 displays estimates (solid curves) for

the marginal densities of the permanent earnings Ut and the transitory earnings Vt under the

ARMA(1,1) together with Gaussian references (dashed curves).

Figure 11 displays the long-run joint densities of the permanent earnings Ut and the tran-

sitory earnings Vt under the ARMA(0,0) model (left) and the benchmark ARMA(1,1) model

(right). Similarly, Figure 12 displays the long-run joint densities of the permanent earnings

Ut and the transitory earnings Vt under the ARMA(2,2) model (left) and the benchmark

ARMA(4,4) model (right).

Figure 13 displays trajectories of the lower tail dependence measure λl30,t(q) = P (Ut ≤
F−1
Ut

(q)|U30 ≤ F−1
U30

(q)) of permanent earnings following the event of permanent earnings less

than or equal to the q-th quantile at age 30 for q ∈ {0.10, 0.05, 0.01}. The solid lines represent

the trajectories under our semiparametric model. The dashed lines represent those under the

bivariate normal distribution. The results are displayed under each of the ARMA(1,1) and

ARMA(2,2) specifications with time-varying coefficients.

Figure 14 displays trajectories of the lower tail dependence measures λl30,t(q) = P (Ut ≤
F−1
Ut

(q)|U30 ≤ F−1
U30

(q)) and λl40,t(q) = P (Ut ≤ F−1
Ut

(q)|U40 ≤ F−1
U40

(q)) of permanent earnings

following the event of permanent earnings less than or equal to the q-th quantile at age 30

and 40, respectively, for q ∈ {0.10, 0.05, 0.01}. The solid lines represent the trajectories un-

der our semiparametric model. The dashed lines represent those under the bivariate normal

distribution. The results are displayed under the ARMA(4,4) specification with time-varying

coefficients.
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D.3 Results: Married Workers

Tables 1, 2, 3,4 and 5 summarize estimated marginal distributional indices under the ARMA(0,0),

ARMA(1,1), ARMA(2,2), ARMA(3,3) and ARMA(4,4) models with time-varying and time-

invariant AR coefficients. These indices are the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-values for the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.

Figures 15 and 16 displays trajectories of the lower tail dependence measure λl30,t(0.01) =

P (Ut ≤ F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent

earnings less than or equal to the 1 percentile at age 30. The solid lines represent the trajectories

under our semiparametric model. The dashed lines represent those under the bivariate normal

distribution. The results are displayed under each of the ARMA(0,0), ARMA(1,1), ARMA(2,2),

ARMA(3,3) and ARMA(4,4) specifications with time-varying coefficients and time-invariant

coefficients.
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f̂Ut under ARMA(1,1) f̂Vt under ARMA(1,1)

f̂∑
t ηt

under ARMA(1,1) f̂εt+λtεt−1 under ARMA(1,1)

Figure 1: Nonparametric estimates of the marginal densities of the permanent earnings (top

left), the transitory earnings (top right), the cumulative permanent shocks (bottom left), and

the composite MR errors (bottom right) under the ARMA(1,1) specification. The results are

based on the baseline sample.
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f̂Ut under ARMA(0,0) f̂Ut under ARMA(1,1)

f̂Vt under ARMA(0,0) f̂Vt under ARMA(1,1)

Figure 2: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specification (left

column) and the ARMA(1,1) specification (right column). The results are based on the baseline

sample.
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f̂Ut under ARMA(2,2) f̂Ut under ARMA(4,4)

f̂Vt under ARMA(2,2) f̂Vt under ARMA(4,4)

Figure 3: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specification (left

column) and the ARMA(4,4) specification (right column). The results are based on the baseline

sample.
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f̂Ut at t = 30 f̂Ut at t = 50

f̂Vt at t = 30 f̂Vt at t = 50

Figure 4: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) for t = 30 (left column) and t = 50 (right

column) under the ARMA(1,1) specification with Gaussian references (dashed curves). The

results are based on the baseline sample.
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f̂U30U50 under ARMA(0,0) f̂U30U50 under ARMA(1,1)

f̂V30V50 under ARMA(0,0) f̂V30V50 under ARMA(1,1)

Figure 5: Nonparametric estimates of the long-run joint densities of the permanent earnings

(top row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specification

(left column) and the ARMA(1,1) specification (right column). The results are based on the

baeline sample.
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f̂U30U50 under ARMA(2,2) f̂U30U50 under ARMA(4,4)

f̂V30V50 under ARMA(2,2) f̂V30V50 under ARMA(4,4)

Figure 6: Nonparametric estimates of the long-run joint densities of the permanent earnings

(top row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specification

(left column) and the ARMA(4,4) specification (right column). The results are based on the

baeline sample.
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f̂Ut under ARMA(1,1) f̂Vt under ARMA(1,1)

f̂∑
t ηt

under ARMA(1,1) f̂εt+λtεt−1 under ARMA(1,1)

Figure 7: Nonparametric estimates of the marginal densities of the permanent earnings (top

left), the transitory earnings (top right), the cumulative permanent shocks (bottom left), and

the composite MR errors (bottom right) under the ARMA(1,1) specification. The sample

consists of individuals with strong labor force attachment.
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f̂Ut under ARMA(0,0) f̂Ut under ARMA(1,1)

f̂Vt under ARMA(0,0) f̂Vt under ARMA(1,1)

Figure 8: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specification (left

column) and the ARMA(1,1) specification (right column). The sample consists of individuals

with strong labor force attachment.
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f̂Ut under ARMA(2,2) f̂Ut under ARMA(4,4)

f̂Vt under ARMA(2,2) f̂Vt under ARMA(4,4)

Figure 9: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specification (left

column) and the ARMA(4,4) specification (right column). The sample consists of individuals

with strong labor force attachment.
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f̂Ut at t = 30 f̂Ut at t = 50

f̂Vt at t = 30 f̂Vt at t = 50

Figure 10: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) for t = 30 (left column) and t = 50 (right

column) under the ARMA(1,1) specification with Gaussian references (dashed curves). The

sample consists of individuals with strong labor force attachment.
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f̂U30U50 under ARMA(0,0) f̂U30U50 under ARMA(1,1)

f̂V30V50 under ARMA(0,0) f̂V30V50 under ARMA(1,1)

Figure 11: Nonparametric estimates of the long-run joint densities of the permanent earnings

(top row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specifica-

tion (left column) and the ARMA(1,1) specification (right column). The sample consists of

individuals with strong labor force attachment.
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f̂U30U50 under ARMA(2,2) f̂U30U50 under ARMA(4,4)

f̂V30V50 under ARMA(2,2) f̂V30V50 under ARMA(4,4)

Figure 12: Nonparametric estimates of the long-run joint densities of the permanent earnings

(top row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specifica-

tion (left column) and the ARMA(4,4) specification (right column). The sample consists of

individuals with strong labor force attachment.
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λl30,t(0.10) under ARMA(1,1) λl30,t(0.10) under ARMA(2,2)

λl30,t(0.05) under ARMA(1,1) λl30,t(0.05) under ARMA(2,2)

λl30,t(0.01) under ARMA(1,1) λl30,t(0.01) under ARMA(2,2)

Figure 13: Trajectories of the lower tail dependence measure λl30,t(q) = P (Ut ≤ F−1
Ut

(q)|U30 ≤
F−1
U30

(q)) of permanent earnings following the event of permanent earnings less than or equal to

the q-th quantile at age 30 for q ∈ {0.10, 0.05, 0.01}. The sample consists of individuals with

strong labor force attachment. The solid lines represent the trajectories under our semipara-

metric model, while the dashed lines represent those under the bivariate normal distribution.

The results are displayed under each of the ARMA(1,1) and ARMA(2,2) specifications with

time-varying coefficients.
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λl30,t(0.10) under ARMA(4,4) λl40,t(0.10) under ARMA(4,4)

λl30,t(0.05) under ARMA(4,4) λl40,t(0.05) under ARMA(4,4)

λl30,t(0.01) under ARMA(4,4) λl40,t(0.01) under ARMA(4,4)

Figure 14: Trajectories of the lower tail dependence measures λl30,t(q) = P (Ut ≤ F−1
Ut

(q)|U30 ≤
F−1
U30

(q)) and λl40,t(q) = P (Ut ≤ F−1
Ut

(q)|U40 ≤ F−1
U40

(q)) of permanent earnings following the event

of permanent earnings less than or equal to the q-th quantile at age 30 and 40, respectively, for

q ∈ {0.10, 0.05, 0.01}. The sample consists of individuals with strong labor force attachment.

The solid lines represent the trajectories under our semiparametric model, while the dashed

lines represent those under the bivariate normal distribution. The results are displayed under

the ARMA(4,4) specification with time-varying coefficients.
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Married

ARMA(0,0) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.331 -0.490 2.867 p-value = 0.687

(0.014) (0.010) (0.107) (0.273)

U40 0.000 0.382 -0.353 3.277 p-value = 0.180

(0.016) (0.012) (0.116) (0.303)

U50 0.000 0.389 -0.319 3.383 p-value = 0.221

(0.018) (0.014) (0.151) (0.499)

V30 -0.000 0.210 -2.354 17.840 p-value = 0.005

(0.010) (0.018) (0.736) (5.744)

V40 -0.000 0.165 -2.867 18.320 p-value = 0.012

(0.010) (0.017) (0.951) (6.626)

V50 -0.000 0.219 -3.616 26.217 p-value = 0.002

(0.013) (0.026) (0.876) (7.879)

Table 1: Estimated distributional indices under the ARMA(0,0) model for the sub-sample

of married individuals. The indices include the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-value of the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(1,1) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.313 -0.339 1.792 p-value = 0.941

(0.017) (0.011) (0.161) (0.773)

U40 0.000 0.357 -0.460 3.430 p-value = 0.114

(0.018) (0.014) (0.159) (0.356)

U50 -0.000 0.371 -0.379 3.052 p-value = 0.462

(0.022) (0.017) (0.166) (0.548)

V30 -0.000 0.228 -2.706 18.568 p-value = 0.003

(0.014) (0.023) (0.740) (5.597)

V40 -0.000 0.192 -1.047 7.624 p-value = 0.032

(0.013) (0.020) (0.842) (5.211)

V50 0.000 0.208 -3.158 25.745 p-value = 0.038

(0.018) (0.032) (1.453) (12.827)

Married: Time-Constant Coefficients

ARMA(1,1) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.309 -0.289 1.464 p-value = 0.971

(0.018) (0.013) (0.205) (1.083)

U40 0.000 0.356 -0.465 3.443 p-value = 0.116

(0.017) (0.014) (0.163) (0.370)

U50 -0.000 0.371 -0.350 3.027 p-value = 0.480

(0.020) (0.016) (0.161) (0.534)

V30 -0.000 0.234 -2.665 17.933 p-value = 0.005

(0.016) (0.025) (0.734) (5.512)

V40 -0.000 0.193 -1.014 7.393 p-value = 0.060

(0.013) (0.018) (0.822) (2.833)

V50 0.000 0.208 -3.320 25.962 p-value = 0.019

(0.015) (0.030) (1.232) (11.053)

Table 2: Estimated distributional indices under the ARMA(1,1) model for the sub-sample

of married individuals. The indices include the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-value of the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(2,2) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.306 -0.519 2.828 p-value = 0.651

(0.016) (0.011) (0.140) (0.445)

U40 0.000 0.326 -0.260 3.296 p-value = 0.206

(0.018) (0.013) (0.158) (0.362)

U50 -0.000 0.335 -0.380 2.827 p-value = 0.556

(0.022) (0.018) (0.255) (1.218)

V30 -0.000 0.223 -2.064 13.689 p-value = 0.027

(0.014) (0.019) (0.685) (5.543)

V40 -0.000 0.208 -1.360 6.638 p-value = 0.017

(0.014) (0.016) (0.424) (1.712)

V50 0.000 0.244 -1.808 15.764 p-value = 0.044

(0.020) (0.029) (1.076) (7.494)

Married: Time-Invariant Coefficients

ARMA(2,2) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.303 -0.528 2.840 p-value = 0.630

(0.017) (0.012) (0.149) (0.479)

U40 0.000 0.325 -0.258 3.297 p-value = 0.213

(0.018) (0.013) (0.159) (0.374)

U50 -0.000 0.340 -0.353 2.897 p-value = 0.539

(0.021) (0.017) (0.227) (1.041)

V30 -0.000 0.226 -1.974 12.910 p-value = 0.031

(0.015) (0.019) (0.676) (5.314)

V40 -0.000 0.209 -1.351 6.565 p-value = 0.016

(0.014) (0.016) (0.425) (1.658)

V50 0.000 0.236 -2.024 17.348 p-value = 0.037

(0.017) (0.028) (1.106) (8.053)

Table 3: Estimated distributional indices under the ARMA(2,2) model for the sub-sample

of married individuals. The indices include the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-value of the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(3,3) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.290 -0.343 2.196 p-value = 0.915

(0.017) (0.011) (0.150) (0.587)

U40 -0.000 0.312 0.052 2.821 p-value = 0.685

(0.019) (0.013) (0.168) (0.370)

U50 -0.000 0.330 -0.292 2.654 p-value = 0.679

(0.023) (0.017) (0.212) (0.746)

V30 -0.000 0.221 -2.205 15.593 p-value = 0.038

(0.015) (0.022) (0.840) (7.075)

V40 0.000 0.223 -1.875 8.198 p-value = 0.004

(0.016) (0.019) (0.421) (1.928)

V50 -0.000 0.248 -1.948 16.164 p-value = 0.026

(0.020) (0.030) (1.009) (6.758)

Married: Time-Invariant Coefficients

ARMA(3,3) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.288 -0.335 2.118 p-value = 0.907

(0.018) (0.012) (0.160) (0.667)

U40 -0.000 0.312 0.062 2.804 p-value = 0.703

(0.019) (0.013) (0.168) (0.368)

U50 -0.000 0.333 -0.277 2.686 p-value = 0.667

(0.022) (0.016) (0.202) (0.728)

V30 -0.000 0.224 -2.153 15.073 p-value = 0.040

(0.016) (0.022) (0.833) (6.897)

V40 0.000 0.224 -1.878 8.174 p-value = 0.004

(0.017) (0.019) (0.419) (1.936)

V50 -0.000 0.244 -2.076 17.140 p-value = 0.024

(0.019) (0.029) (1.038) (7.166)

Table 4: Estimated distributional indices under the ARMA(3,3) model for the sub-sample

of married individuals. The indices include the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-value of the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(4,4) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.283 -0.363 2.50 p-value = 0.875

(0.019) (0.013) (0.157) (0.435)

U40 -0.000 0.314 -0.364 3.233 p-value = 0.335

(0.020) (0.015) (0.195) (0.544)

U50 0.000 0.347 -0.291 2.394 p-value = 0.921

(0.027) (0.017) (0.163) (0.429)

V30 -0.000 0.210 -0.917 4.926 p-value = 0.144

(0.016) (0.016) (0.414) (1.814)

V40 0.000 0.203 -0.834 6.239 p-value = 0.074

(0.017) (0.019) (0.601) (2.237)

V50 -0.000 0.228 -2.732 24.345 p-value = 0.079

(0.023) (0.036) (1.642) (15.0917)

Married: Time-Invariant Coefficients

ARMA(4,4) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.280 -0.367 2.490 p-value = 0.862

(0.019) (0.013) (0.168) (0.467)

U40 -0.000 0.314 -0.366 3.233 p-value = 0.334

(0.020) (0.015) (0.194) (0.545)

U50 0.000 0.349 -0.275 2.4378 p-value = 0.883

(0.025) (0.016) (0.158) (0.473)

V30 -0.000 0.214 -0.883 4.743 p-value = 0.162

(0.017) (0.017) (0.415) (1.768)

V40 0.000 0.203 -0.825 6.218 p-value = 0.076

(0.017) (0.019) (0.615) (2.247)

V50 -0.000 0.226 -2.840 24.757 p-value = 0.035

(0.021) (0.035) (1.494) (11.985)

Table 5: Estimated distributional indices under the ARMA(4,4) model for the sub-sample

of married individuals. The indices include the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-value of the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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ARMA(0,0)

ARMA(1,1) ARMA(1,1) with Constant Coefficients

ARMA(2,2) ARMA(2,2) with Constant Coefficients

Figure 15: Trajectories of the lower tail dependence measure λl30,t(0.01) = P (Ut ≤
F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent earnings

less than or equal to the 1 percentile at age 30. The sample consists of married individuals. The

solid lines represent the trajectories under our semiparametric model, while the dashed lines

represent those under the bivariate normal distribution. The results are displayed under each

of the ARMA(0,0), ARMA(1,1), and ARMA(2,2) specifications with time-varying coefficients

and time-invariant coefficients.
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ARMA(3,3) ARMA(3,3) with Constant Coefficients

ARMA(4,4) ARMA(4,4) with Constant Coefficients

Figure 16: Trajectories of the lower tail dependence measure λl30,t(0.01) = P (Ut ≤
F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent earnings

less than or equal to the 1 percentile at age 30. The sample consists of married individuals.

The solid lines represent the trajectories under our semiparametric model, while the dashed

lines represent those under the bivariate normal distribution. The results are displayed un-

der each of the ARMA(3,3) and ARMA(4,4) specifications with time-varying coefficients and

time-invariant coefficients.
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