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Abstract

This supplementary material presents (i) proofs for the identification, (ii) further de-
tails on estimation, (iii) large sample theories for the estimators proposed in the main
text of the paper, and (iv) additional estimation result in the application to the earnings
dynamics of U.S. men.

A Proofs for the Identification

A.1 Proof of Lemma 1

Proof. By (2.1), (2.2) and (2.3), we can write V. as

Vier = Vit Yo =Y = ) e, (A1)

T'=1
Also, by (2.1), (2.2) and (2.3), we can write the first difference Y, ;.11 — Y4, by

p

Yitgr1—Yirg = (Prrgr11— 1) Vit E Prrai1p Virgri—p T Grigit (Eragits Erags 5 E141) Fitgin-
p'=2

(A.2)
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Substituting (A.1) for each 7 € {1,--- ,¢} in (A.2) and rearranging terms, we obtain

qujqurl(:Ot—l—q—l-l) = K(Prq+1) Ve + VZ]qu(PHqH)- (A.3)

Therefore, (4.1) follows under Assumption 8. O

A.2 Proof of Lemma 2

Proof. By Lemma 1, (4.1) holds and thus we have

.
—E[V; Y] +E |:Vt+q+1(pt+q+l) e’iSYt:| :

“(Pt+q+1)

E uﬁqﬂ (Pt+q+1) isY:
(&
"‘J(Pt+q+1)

where the expectation exists under Assumption 9 (i). The first term on the right-hand side is
rewritten as E [e”*U] E [V, ¢**] by U, 1L V. The second term on the right-hand side is zero
by (4.2) and (4.3) that hold under Assumption 7. Therefore, by Assumption 9 (ii), we obtain

Mz/+q+1 (Pt+q+1) isYy

log ¢ (5) — i B [Vt eisV%} _ 1B [m € ] B 1 B ['uz:-q+1(pt+q+1) eisYt]
ds E [elth] E [e’LSYt] H(thqurl) E [estt]

By Assumption 9 and Picard-Lindel6f theorem, we therefore obtain (4.4). Next, using (2.1)
and (4.4), we obtain (4.5) under Assumption 9 (ii). Finally, using (2.2) and (4.5), we obtain
(4.6) under Assumption 9 (ii). O

A.3 Proof of Theorem 1

Proof. Lemma 2 shows that ¢,, is identified up to the finite-dimensional parameters p;;, and
Ptiq+1 by (4.6) under the current assumptions. By Assumption 10 (i) and (ii), we identify the

density function fy, up to the finite-dimensional parameters p;;q41 by

1 —isu
fUt(UQPt+q+1) = %/6 ¢Ut(8;pt+q+1>d5’ (A.4)

where ¢y, (s; priqgr1) is given by (4.5). Similarly, by Assumption 10 (iii) and (iv), we identify

the density function f,, up to the finite-dimensional parameters p;,, and p;144+1 by

1 —1s
Joe (05 gy Progr1) = oy / e Gy, (3 Prrgs Praqr1)ds. (A.5)
where ¢, (S; Prtqs Prrq+1) 18 given by (4.6). Since Uy is first-order Markov under (2.2) and (4.8)
that holds under Assumption 7 (i), the joint density of (Ui, - ,U;) is written as
fUt,---,Ut.H (Ut; T 7Ut+7) = fu, (Ut) H fnt+7/(ut+7’ - Ut+7'71)- (A-6)
T'=1
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Combining (A.4), (A.5) and (A.6) together yields (4.9).

Furthermore, by using (A.6), we identify the joint characteristic function ¢y, .. by

Ut 4r

¢Ut,“' JUttr (St7 Tty 3t+7’) =
/ . / exXp (Z Z St+7-/ut+7-/) fUt (Ut) H fnt+r’ (ut+7./ — ut+7”71>dut . dut+7_. (A7>
7'=0 T'=1

Thus, by (2.1) and (4.7) that holds under Assumption 7 (i), we in turn identify the joint

characteristic function ¢y, ... v, . by

¢‘/t7...,Vt+T (St, . ,3t+7') = ¢Yt7"',Yt+T(St7 cee 3t+7’)/¢Ut,~~-,Ut+T (Sta . 73t+r) —
E [exp (i 37— Se4rYitr)]
f - f exp (Z Z:’;O 3t+T/Ut+7—/) fUt (ut) H:—/:1 fntJrT, (ut-H—’ — ut+7/_1)dut - dut—i—r

Under Assumption 10 (v), we can then recover the joint characteristic function ¢y, .. by

' 1‘/t+ﬂ'

1
T Vi (W 014r) = W// (A.8)

B exp (1 0y se40 (Visw — s
f T f exXp (Z Z:/:() St+7’ut+‘r’) fUt (ut) H;:l fnt+7-’ (ut+‘r’ - utJrT’fl)dut o dutJrT

dSt tee dSt_H—.

Combining (A.4), (A.5) and (A.8) together yields (4.10). O

A.4 Proof of Proposition 3

Proof. Substitute (2.1) and (2.2) in (A.3) with the time subscript reduced by ¢ to get
11 (pe1) = 6(pes1) Viego1 + Yieg = Yiego1 — Ni—q) + 755 (Pe41)-
Further decrementing the time subscript in (A.3) yields
1 (pr) = K(p)Vieg1 + 7 (pr).

Using these two equations to eliminate V;_,_1, we obtain the new restriction

R(po) 1 (Peen) = K(pern) g (pe) =
K(pey1)R(pe) [Yieg = Yicgor — mi—q) + K(p) V51 (pev1) — K(per) V" (pr) — K(pesa) 5 (0e) 11—

By (4.2) and (4.3) that hold under Assumption 7, we have

E [“(Pt)V?fl(/)tﬂ) — K(prr) v (pe) — ’?(Ptﬂ)/ﬁ(/?t)ﬁt—q‘ It—q—l] = 0.

Therefore, the moment equality (4.11) follows. O



B Further Details on Estimation

B.1 Estimator of p; under Example 4

In this section, we describe estimation of the AR parameters under the parametric life-cycle

specification of Example 4. For each j € {1,--- N} andt e {l1+p+gq,---,T — 1}, define

952(0) = (Via—g-1,+ Yiemgp) {5 (AL, 0)) 165,01 (R(t + 1,0)) — k(h(t + 1,0))pj, (A2, 0))
—r(h(t, 0)r(h(t +1,0)) (Viig = Yiig-1)}

The GMM estimator for 6 € © is defined by

-1

1
NT—p—q-1) Z Z gj,t(e)

7=1 t=14p+q

-1

~ _ 1
H:argrggg N(T—p—q—l)z Z

j=1 t=14p+q

gj,t(e)] W

~

for a suitable weighting matrix W. The AR parameters may then be estimated by p; = h(t, 6)
for each t. Since the asymptotic properties of GMM estimators is standard in the literature,
we refer readers to Newey and McFadden (1994; Theorems 2.6 and 3.4).

B.2 Estimation of the MA Structure under Linearity

As remarked at the end of Section 3.4, the MA structure can be explicitly identified under the
additional parametric linearity assumption. The MA parameter \; can be identified by imposing
a restriction on (3.18). Like Example 4, we may impose a parametric life-cycle restriction

At = [(t,9). By eliminating var(e;) and var(ep;q) from (3.18), we obtain the restriction

Aer2var (Vier = praVe) — Aepadericov (Vi — piVier, Vigr — pra Vi)

= cov (Vg1 — pesa Vi, Viga — pra2Vir1) -
Substituting \; = [(¢, 1), we obtain a minimum distance estimator
J = arg min d(L(-,9),L)
for some metric d, where Z( -, 0) and L are given by
L(t,0) = Ut+2, 0050 (Ver — BrsaVa) — Ut + 2, D)t + 1,9)600 (Vi — Vi1, Vit — P Vi)
L(t) = v (Virr — pesiVis Vigo — PrsaVisn)

fort € {2,--- ,T—q—3}. The variance and covariance estimates, var and cov, can be computed
by integration with respect to the multivariate density estimates thJ/z 1 Vise ]/“\Vt_l,vtyi ., and
]?Vt,vf, ., obtained in the previous estimation step. The MA parameter estimates are then given
by A = I(t,7) for each t.



Once A1 is estimated, we can then use the analog estimator for (3.17), given by

1 oo

j;(:r) = 5 e‘isxaat(s)¢K(hs)ds, where
a — 0o
- 73 Vig1—pt11 Vi .
R i | (Yt ) exp (is (Vi — piVi))
Qe (s) = exp / = — ds
0 Elexp (Vi = piVioa)]

The estimated expectations, E, can be computed by integration with respect to the multivariate

density estimates, fy,_, v, and fy, v, ., obtained in the earlier estimation step.

B.3 Closed-Form Moment Estimators

Following the discussion of Section 5, we provide the closed-form estimators for the first four

moments of V;

~(1) /0. ~
¢§/t) (05 Dt+q+1)

as follows.

Ey [M}ft—&-q—l—l (Pttg+1)]

it K(Pt+q+1) ’

o . R N R N ~ _

¢§/t) (05 Dt+q+1) _ EN[N}quH (Pt+q+1)]2 EN[:U’Zt—&-q—f—l (Pt+q+1)Yjt) — En [M}Tt—i-q—&—l (Pt+q+1)]EN[Yiit]
i K(Prrqr1)? K(Pt+q+1) 7

~(3) /. ~
<l5§/t) (03 Petg+1)

EN[N}jt+q+1 (ﬁt+q+1)]3

i3

K (Prtqt1)?
n 3EN [M}jt—i—q—i—l (ﬁt-l-q—s-l)]EN [N}jt-s-q-kl (ﬁt—kq-l-l)yj,t] - 3EN [:U’}jt—&-q-i-l (ﬁt+q+1)]2ﬁN [Yj,t]
K (Pt4q+1)?
EN[/LZt+q+1(ﬁt+q+l)th} + ZEN [M}{t+q+1(ﬁt+q+l)]ﬁN [Yj,t}2
K(Dt+q+1)
—En [/’L}jt—s—q—kl (ﬁt+q+1)]ﬁN [th] - 2EN [/’L}jt—kq—f—l (ﬁt+q+1)y}',t]ﬁN [th]
K(Dt+q+1)

+

~

_l’_
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and

N0 rgr)) BN (Pragn))?
it B K(Prvq+1)*
n 6EN [H}quﬂ (Pr+q+1 )]ZEN [/’LZtJrq«H (Pttq+1)Yje] — 6i£\)N [N}jﬁqﬂ (ﬁt+q+1)]3EN (Y]
K (Pt4q+1)?
4EN [/‘}{t+q+1(ﬁt+q+l)]ﬁf\f ['U'}jt%-q—l—l (ﬁt+£I+1)Yj?t] - 4EN [lu';(t—&-q—i-l(b\t+¢1+1)]2ﬁN[th]
K (Pt+q+1)?
BN Pt Vil + VB 150 (Pt PEN Y
K (Pttqt1)?
_14EN [M}Tt—i-q—i-l (ﬁHqH)]EN [:U’}jt—&-q-i-l (ﬁHqH)Yj,t]EN [Yj,t]
K (Pttq+1)?
n EN [M}ft+q+1 (ﬁHqH)Yj?t] - EN [:U“}jt+q+1 (ﬁHqH)]EN [th]
K(Pt+q+1)
n —3Ey [M}jt—i—q—&-l(ﬁt-&-Q-l—l)th]EN[Y},t] —3Ey [u}jt-i—q—i-l (ﬁt+q+1)YJ}t]EN [th]
K (Pttg+1)
n 6EN [:u}jt—i—q—i-l (ﬁt-i-q-&-l)yj,t]EN [Yj,t]2 - 6EN [/”L}jt—&-q-i-l (ﬁt-l-q—&-l)]EN [Yj,t]g
K(Dt+q+1)
61:iN [N}ftJqurl (ﬁHqH)]EN [Yj,t]EN I:}/j?t]
K(Pt+q+1)

where EN is a short-hand notation for the sample mean operator % Z;VZI
Furthermore, letting $§/’j ) = "By [Y}], we provide the closed-form estimators for the first

four moments of U, as follows.

S0 Pirgin))  BP(0) = S0 (0; Prigin),
31 o il
00 Berqr)) B2 (0) = 208 (0)60)(0; Brvqrn)) — B4 (03 Prrgn)) + 200 (03 Brrgrn)),
72 o i2
O (05 Pergrr))  O(0) = 308 (0)L (05 Bergsr)) — 364 (00042 (05 Prsgrn))
23 o i3
+6¢§/1t) (O)Q%T\/i)(O% ﬁt+q+1)>2 - 925%/32)(0; ﬁt+q+1))
i3
605 (05 D100 (0; Prrgrr)) — 60 (0; Brrgin))?,
2‘3



and

KO Frge))  BD0) — 40 084 (0: Frcger) — 652 (02 (0: pragir))
i4 2’4
+12032(0)84 (05 prag1))? — 405 ()4 (0; Prg1)) — 37 (0; Pregir))
Z’4
+80% (05 P 1)) (0: Prsgi1)) + 664 (03 Prgr1))
2'4

—360%)(0; Dirgs1))20% (05 Prvgin)) + 2460 (0; Prgr1))*

74 '

C Large Sample Properties

Asymptotic properties for nonparametric deconvolution estimators in repeated measurement
models have been studied in the literature (e.g., Li and Vuong, 1998). The uniform convergence
rates for the estimators fUt and J/C\Vt for the marginal density function can be obtained by ex-
tending their results with an additional accounting for the pre-estimation of the AR parameters
p. Our discussions are based on the p, estimator under Example 1, but the same conclusions
will hold under Examples 2 and 3 that similarly yield the v/N convergence rate for the para-
metric estimation of p;. The following assumption ensures that we can ignore the effect of the

pre-estimation on the second-step nonparametric estimation of the marginal densities.

Assumption 1. (9) {Yji—q—p, -, Yji4q} is independently and identically distributed across j.

(11) (Yit—g—1s- s Yit—gp) (Dji1, -+, Ajip) has a finite first moment that is non-singular. (iii)
(Yiieg—1, s Yji—q—p)'Djro has a finite (2 + 0)-th moment for some § > 0. (i) Yyr — Y,
has a finite first moment for each T € {1,--- ,q}.

Parts (i), (ii) and (iii) of Assumption 1 are used to guarantee the root-N convergence of
the estimator p of the AR parameters p — see Lemma 1. Part (iv) in addition ensures that
substitutions of this parametric estimator p in the nonparametric estimators, &Evt, <$Ut and (Ent,
can be ignored in terms of the uniform convergence rates — see Lemma 2.

Following Li and Vuong (1998), we consider the following four cases of smoothness of the
distributions of V; and Uy:

(1) 5, 5|77 < lowi(s)] < dj, |s|77 and d, [s| ™7 < |gu,(s)] < dj, |s| 7
(2) b, s < lowi(s)] < i, |s| 7 and
dS, [s| 77 exp(— [s1™ /7a) < [u ()] < i, [s]7 exp(= || /)

(3) dy, 5| exp(—|s|™ /) < Ioi(s)] < dy, |s| ™™ exp(—[s|™ /7,) and
ds, [s| 7 < |gu, ()] < d, ||



(4) 3, 5|77 exp(=|s|™ /) < |gvi(s)] < dy, |s] ™™ exp(=[s]™ /7,) and
dS, [s| 77 exp (= [s1™ /7a) < [u ()] < i, [s]7 exp(= || /)

The marginal distribution of V; is ordinary-smooth in Cases 1 and 2, while it is super-smooth
in Cases 3 and 4. The marginal distribution of U, is ordinary-smooth in Cases 1 and 3, while
it is super-smooth in Cases 2 and 4. For each of these four cases, we derive the uniform
convergence rates of our characteristic function estimators, g/b\vt( 5 Diq+1), g/b\Ut( © 5 Prag+1), and
am( “ 3 Pt4q» Pt+q+1), by combining our auxiliary result (Lemma 2) with the results of Li and
Vuong (1998) — see Lemmas 3-6. To use the results by Li and Vuong, we also make the following

assumption in addition.
Assumption 2. U;; and V;; have bounded supports for each t.

In Li and Vuong, they use the uniform function for the regularizer ¢, but it is known in
the statistical literature that we can replace it by a more general class of functions For our
purpose to analyze the convergence rates of the estimated density functions, fy,, fy, and f,,,

we make the following assumptions on the kernel function K.

Assumption 3. (i) ¢x(s) =1 for all s € [—c,c| for some ¢ € (0,00). (ii) ¢k (s) € [0,1] for
all s € R. (i) ¢ (s) =0 for all s € R\[-1,1]. (w) [ |px(s)|ds < cc.

In our application, we specifically choose the kernel function

1 if |ul <e¢
—bexp] —2
O (u) = < exp {W] ife<|ul <1 (C.1)
0 if 1< |ul

with b = 0.10 and ¢ = 0.10 (Politis and Romano, 1999). For uniform convergence rates of our
density estimators, parts (i) and (ii) of Assumption 3 helps to control the bias of our estimators,
whereas parts (iii) and (iv) of this assumption help to control the variance of our estimators
— see Lemma 7. Combining our previous auxiliary lemmas, (Lemmas 3-6 tailored to Cases
(1)—(4), respectively) on the convergence rates of the characteristic function estimators, with

this Lemma 7, we obtain the following uniform convergence results.

Theorem 1. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions
under Case (1), then

~ N\ eteteara sy N s
| - o ((_N of(———
(i) sup ‘fvt (v) = fw (’0)‘ b (log log N) + (log log N)
1 a(14+8v,) (1~ Buy)
R N 2Ot 08, Fhuy) N BT e
. _ -0 - TN
(i) Sup ‘fUt (u) = fu, (U)’ b (bg logN> (10g log N>



holds with hy' = O ((L)Z“*ﬁ“t*w) for 0 < a < (L+ By, + Bu)/(2 4 3B + 2Bu,).

loglog N
Furthermore,

a(l+max{ﬁyt Bup_q }+5ut,1 )

~ N _%"‘CH—Q 1+max{ Buy +Buy Bop_1 +Buy_q
= ho| =0, | () y

(¢4i)  sup

neR loglog N

L o (1= (Bu=Bu 1))
( N ) 2+a+2(1+max{5vt+5ut »5vt_1 +5ut_1}>

loglog N

+ O

loglog N

Bues Bory + Bur 1)/ (2 + 2max{ By, + Bu,s Bory + Burs b + Boey + Buey)-

holds with hy! = O (( N )2<1+W{th+5ut’th—ﬁﬁut—l}> for 0 < a < (1+ max{B, +

Theorem 2. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions
under Case (2), then

3+2Bv; +2Buy
3

| ~ N —%—i-a N Ba
(i igﬂg\fww)—fw(v)!:@p((w) )(logop (w))

—Bu,

N B
1 P
" < 00 (loglogND
3+3ﬁvt +26ut

) ~ N —%—i—a N By
(17) iléﬂg ‘fUt(u) - fUt(u)‘ =0y ((W) ) (log O <w>>

~Buy B3

N —3 N 5
S 1 -
+O<(10glogN) ) <Og0(loglogN))

1

holds with hy' = [% log O (Lﬂ 7 for 0 < a < 1/2. Furthermore,

loglog N

(13i)  sup
neR

For) = ()]

3+max{35vt +2ﬁut y35'ut_1 +25ut_1 }+But_1

N O\ ztE N o
— _— 1 _—
O <loglogN) (OgOp (loglogN))
N - Bl
logO | ———=
+<Og <10g10gN)>

1
holds with hy' = [%ﬂ log O <L)] " for 0 <o < 1/3.

loglog N



Theorem 3. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions
under Case (3), then

Cita 3+2Bv +28uy
() s |fulo) - fuw)| =0 120 (et ﬂv
1 v
UEE Vi v Vilv P\ \oglog N log N &5 loglog N
o 1—Bo;, —
—3 N B
1 P
+0 < loglogN ) <Og0<10g10gN>>
L, 30 3+3Buv; +2B8uy
.. ‘ n -0 e log O N -
(i2) i‘éﬁ fo,(u) = fu,(u)| = Op loglog N log N o8 loglog N
| By
+(log 0 loglog N 10

%JFT
) sup |f, =0
i) sup | Fy ) = o p<(log10gN )
3+max{36v; +2Bu; 3Bv,_1 +2Buy_y fHBuy_;

B3
. (log g (loglogN>>

1 (Buu P )
B
<log log N))

holds with hy' = [a% log O <1og10gjv>] 5 for0 < a<1/3.

_l’_

Theorem 4. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions
under Case (4), then

3428y +2Buy

1
R N —5to N B
. B _ _ N 1 —
(7) ilelg‘fvt(v) th(U)‘ Op <<log10gN> > <0g0p <loglogN>>
1 N % N 1-Bv =By
(Y — P
—|—exp( Yo < 2 log O <loglogN>) ) <log0 <loglogN)>

) - N —gtatgh N s
(i7) sup ‘fUt (u) — fu, (U)‘ =0y <<loglogj\f) > (log O <1Ogl0gN>)

* 1—Bu; — B}
1 fay N B N s
—— [ LloeO | ——— logO | ————
—|—exp< Yu < 2 8 (loglogN>> ) <0g <loglogN>>

(idi)  sup | Fo () = fi(n)] =

neR

N —statgl4 2t N
o, [ ——— ") (10g0, [
loglog N loglog N
N o Pu)
1 -
(50 (e

10



loglog N
Vo +77u)}, where B = max{B}, B} and

1
holds with hy' = [% logO( N ﬂ " for 0 < o < min{1/2,%/(270 + ), 270Ya/ (270 Ve +

Vu if By < B,

= YuY y * *
=2 g =g

Yo if By, > B,

Theorem 1 follows from Lemmas 3 and 7. Likewise, Theorem 2 (respectively, 3 and 4) follows
from Lemmas 4 (respectively, 5 and 6) and 7, together with Lemma 4.2 of Li and Vuong (1998).
The convergence rates are decomposed into two parts, namely the stochastic part indicated by
O, and the bias part indicated by O. While other papers (e.g., Li and Vuong, 1998; Theorems
3.1-3.4) obtain deterministic rates for the variance part, we only obtain stochastic rates because
of the pre-estimation of p by p.

From the uniform consistency results for fUt and ﬁh in Theorems 1-4, it follows that the
estimator fUtUt ., of the joint density function of (U, Ui11) is also uniformly consistent — see
Corollaries 1-4. Furthermore, these results in turn imply the uniform consistency of the esti-

mator thVt ., of the joint density function of (V;, Vi41) — see Corollary 5.

C.1 Lemma 1: First Step Parametric Estimation

Lemma 1. If Assumption 1 (i), (ii) and (ii1) are satisfied in addition to the identifying as-
sumptions, then ||p — p|| = O,(N~2) holds.

Proof. The conclusion follows from Khintchin’s weak law of large numbers under Assumption
1 (i), (ii), Lyapunov’s central limit theorem under Assumption 1 (i), (iii), and the continuous

mapping theorem under Assumption 1 (ii). ]

C.2 Lemma 2: Effect of First Step Estimation
Lemma 2. If Assumption 1 is satisfied in addition to the identifying assumptions, then
SnAn

< N
[infijes [0 ()] [infiesy lovi(s)| + By

SUp | v, (8 Prrgt1) — Ovi(S; Pragr1)
|s|<Sn

holds for Ay = O,(N~Y?) and By = O, (\/W) as N — oo.

11



Proof. We introduce the following short-hand notations.

N N
An(s) = N3 i (Brrgr)e™ ™ Bu(s) = K(Pragr) N1y e

=1 jfl
N
An(s) = Zﬂgt+q+1 (Pregr1)e’ Yt By(s) = K(pragr1) N 126151/“

First, note that

N~ Z| Jrari-p — Yl = Op(1) (C.2)

by Assumption 1 (i) and (iv) and Khlntchm s week law of large numbers. Because we can write

p N
An(s) — An(s) = Z (Petqr1.pr — Prrgrip) N7 Z (Yitrqri—p — Yjt) e*r,
p'=1 j=1
it follows that
sup [An(s) — An(s ‘ Z g1y — Prrgrip| N™ Z Yitrqri—py — Yiu| = Op(N 1/2)(0 3)
° p'=1 j=1

by Lemma 1 and (C.2).
Second, because we can write

p N

Bn(s) — Bn(s) = Z (Pragity — Proqeip) N1 Z eisYie,
p'=1 j=1
it follows that
sup B () — B(5)] € 3~ usgrn — prsgsi| = 04N (C4)
s ot

by Lemma 1. Furthermore, we also have

sup | Ba(s) — B By(s)| = O (w%) (C.5)

by the law of iterated logarithm under Assumption 1 (i).

Third, note that we can write

Ay(s')  An(s) 5 —
By(s')  Bn(s)

10g¢vt(5§,5t+q+1) —1Og¢w(8;pt+q+1) = Z/ {A -
0

~

2/ A ()—Aw(s) _ s

o EBn(s) + ( n(s) —EBn(s)) — (Bn(s) — Bn(s))

3 Z/ An(s) ' §N(s>—BN<s)A o
o EBn(s)+ (Bn(s) —EBn(s)) EBy(s)+ (By(s)EBy(s)) — (By(s) — By(s))

12



Therefore, for Ay = O,(N~'/?) and By = O, (\ / %), we have by Taylor expansion for
N large enough
SnAy

<
[infiyj<sy [E By (s)l] |infgcsy [B Ba(s)] + By |

~

sup ¢Vt(3§ ﬁt+q+1) — oy, (5§ pt+q+1>
ls|<Sn

by (C.3), (C.4) and (C.5). The conclusion follows by noting that |E By (s)| = |k(prigi1)] -
|9y, (s)]. O

C.3 Lemma 3: Characteristic Function under Case 1

Lemma 3. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under Case (1), then
1
N ~zte
— OP _—
log log N

_1 By
< N ) sttt sara,, A
P

(4) sup |, (s; ﬁt+q+1) — oy, (s; pt+q+1>

|s|<Sn

(i) sup |du, (8; Pevgr1) — ¢u,(8; Praqr1)| =
s|<Sn

loglog N
hOldS ”LUZth SN = O (<$> 2(1+th+5ut>) fOT’ 0 < a < (1 + /th + But)/(Q —I— B/th _|_ 2/But)

Furthermore,

-~

(122) SUP (@, (S Detqs Pragr1) — P (3 Prags Pragin)

[s|<Sn

a(max{ﬁvt Bug_q }+¢3ut,1)

1.,
_0 N 2t +2(1+max{ﬁvt+6ut,ﬁvt,1+ﬁut,1})
P Uoglog N

loglog N

/Butfl})/(2 + Qmax{ﬁvt + ﬂuﬂ /Byt,1 + /Butfl} + /th,l + /But71)'

holds with Sy = O ((L> 2(1emaxd Buctour PrurtPu1}) ) for0 < a < (1+max{ Bo, +Buy, Bory +

Remark 1. For parts (i) and (ii), one can use the same rate of Sy as in (i3). In this case,

13



we instead obtain the following convergence rates.

(2) |SS|2£N DV (85 Pregr1) — Pvi(s; Pt+q+1 <<loglogN> )
(l) |SS|ESpN Qthfl (S; pt+¢]> - gthfl(S; Pt+q ( log 10g N) )
—liat oy
3 ~ . 2 2( 1+max{ Buy +Buy Buy_ 1 +Buy_
(”) |S|U-Sp ¢Ut(s;pt+q+1) ¢Ut(8 pt+¢]+1 - OP log logN ( { t o t 1})
s|<SN
Bvy_q
. ~ ~ _§+a+2 1+maxq Bvy +Bu ;B'ut +But
(”) sup gbUt—l (S; pt-H]) - ¢Ut71 (S; pt+q <10g log N) ( { T _1})

|s|<Sn

loglog N

ﬁut—l})/(2 + 2max{ﬁvt + Buw /Bi)t—l _I_ /But—l} + max {ﬁvw /th—l})'

holds with Sy = O ((L) 2(“‘““{’3%”%#%1+ﬁut1})) for0 < a < (14max{ By, +Buss Lo, +

Proof. Applying Lemma 2 to Case (1) with Sy = O ((L) Q(Hmtw”‘)), we obtain

loglog N
1 1428y, +2Buy
OV (83 Prage1) — Owi ) =0 N T2 T B, Buy)
Sup | Pvi\S; Pt+q+1) — PvilS; Prtq+1 ‘ =Up TP
|s|<Sn loglogN

On the other hand, Li and Vuong (1998; Lemma 3.1) shows that

—%'Hl
_of (N
loglog N

holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

o, (<$)_+> | (C.6)

This proves the first part of the lemma. Now, we note that

- . B ' _ ayt (S) . QbY} (S)
¢Ut (S, pt+q+1) ¢Ut (S, pt+q+1) QZV} (S; /p\t+q+1) ¢Vt (S; pt+q+1)

Ovi(s) — Oy, (s)
OV, (85 Prygr1) + (Cgvt(& Priqr1) — Qv (s; Pt+q+1))

sup ‘¢Vt(5;,0t+q+1) - ¢Vt(5§ Pt+q+1)
|s|<Sn

sup ¢Vt(3§ ﬁt+q+1) — oy, (3§ Pt+q+1)
|s|<SNn

G, (55 Praqe1) - @Vt(s;f)wqﬂ) — by, (s; Pt+q+1))

v, (8; Prigr1) + <¢Vt(5§ Prrq+1) — Ovi(8; pt+q+1>>

14



SUP|s <y | V2 (5:Pt4q+1) =0V, (53p14g+1)|

Since B 0as N — oo under o < (14 8y, +8u,)/ (243Bu, +28u,),

inf|s<sy [V (Sipt4q+1)]
we have

sup ¢Ut(=5‘; ﬁt+q+1) - ¢Ut(3§ Pt+q+1)
[s|<SNn

Py [Bvi(5) = 0vi(s)]

<

infjsj<sy v, (85 Praqr1)| — SUP|s|<Sy ‘¢Vt(5$ Pivqr1) — Pvi(8; Prigin)

SUP|s|<Sy ’W(S; Priqi1) = Ovi(S; Prigi1)

+

inf sy [0vi (85 Pragr)| — SuP|si<sy OV (83 Prag+1) — Pvi (85 Pragr1)

with probability approaching one as N — oo. It follows from Sy = O ((%) 2(1+6vt+ﬁut))
and (C.6) that

Oéﬁvt

~ N 0 N — 3Ot Ry, )
|SS|1£N b, (83 Preqr1) — ¢Ut(3apt+q+1)) =0, (w) :

This proves the second part of the lemma. Note the proof of the above two parts follows

sjmﬂaﬂy with Sy = O (( N )2(1+max{5vt+5ut’But_1+5ut_1})) by applylng Lemma, 4.1 (1) of

loglog N
Li and Vuong (1998) with 3 := max {S,, + Bu,, Bur_s + Bu,_, } to yield the convergence rates

displayed in Remark 1. We thus use Sy = O <<10nggN> 2(1+"‘a"{ﬁvt+ﬁutﬁvz_1+ﬁut_1})> now to

prove the third part of the lemma. Note that

~ 00, (5 Prrart)  O0,(5; Prgrt)
Cbnt(S; Pt+q> Pt+q+1) - ¢77t<8; Pt+q; pt+q+1) == qur - .+q+
OU,_, (85, Prig) Ui (S Prrq)

5@(5? Ditqr1) — P, (S5 Prigr1)
bu,_, (8 Pt+q) + <¢UH<5§ ﬁt+q) — du,_, (s Pt+q)>
¢77t—1 ’ <$Ut71 (S; ﬁt-&-q) - ¢Ut71 (3; pt+Q)>

¢Ut71 (S; pt+Q> + (gb\szl(s; ﬁtJrq) - ¢Uz71 (5; pt+Q>) '

SUP|s|<S | ($Ut,1(S;[A’t+q)*¢Ut,1(S§Pt+q))| p
—0as N — d 1
inf\s\gsNMUt_l(S;PtJrq)’ as oo under & < ( + maX{ﬁvt + ﬁu“ﬁvt_l +

Bu,1 })/ (1 4+ 2max{ By, + Bu,: Bosr + Buer } + Booy + Pu,_.), We have

sup
|s|<Sn

Since

G (83 Prrgs Prrqr1) — Oy (83 Progy Progr1)

SUP|s|<sy ‘¢Ut(3§ Pi+qr1) — P, (8; Preqe1)
(Gs(5: Prsa) = b1 (5 100))
Sup\sKSN ‘(bUtfl (5; ﬁtJrq) - ¢Ut71 (5; Pt+q)

<$Ut_1 (85 Prtq) — QUi (85 Pt+q)) ‘

<
inf|3|<51\r ‘¢Ut—1 (8;pt+q)| — SUPjs1<8y

inf g <gy |¢Ut_1(35 pt+q)| — SUPjsj<sy

15



with probability approaching one as N — oco. It follows from

1 aBuy
—~ R N T O S e ] Bog + Bug oy + By
sup ¢Ut (3; pt+q+1> - §Z5Ut(8; pH‘Q-‘rl) - OP (10g logN) ( { t o t 1})

|s|<Sn

oBvy_y

_0 N _%+a+2(1+max{5vt+5ut,ﬁvt_1+5ut_1})
P Uoglog N

sup ¢Ut—l(s;ﬁt+q) - ¢Ut,1(s;pt+q)

|s|<Sn
and SN — O L 2(1+max{5vt+5ut;ﬁvt_l‘i’ﬁut_l})
loglog N
that
1 Ot(th"’/But_l)
~ N _§+a+2<1+max{ﬁ +Buy B 18 })
; D D - s — O - vt Ut PvE_q up_1

ISSIEEN P53 Pras Petr) = O3 P pt+q+1)‘ 8 (log log N)

O‘(th_l “rﬁut_l)

1,
_|_O N 2t +2(1+max{ﬁvt+5utﬂvt,1+ﬁut,1})
P \loglog N

This proves the third part of the lemma. m

C.4 Lemma 4: Characteristic Function under Case 2

Lemma 4. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions
under Case (2), then

~

(@) sup ¢Vt(5§ ﬁt+q+1> - ¢W<S; pt+q+1)
[s|<Sn
1 242y +2Buy
N Tt N ]
—0,| ([ ——— log O, [ —
p<(loglog]\/') ) (og p(loglogN))
(47) sup (9w, (8 Prrq+1) — Qv (8; pt+q+1)’
|s|<Sn
2+3Bvy +2Buy

N —%-i—a N %
=0 ((loglogN) ) (logOp <1oglogN)>

holds with Sy = [% log O (L)} 7 for 0 <« < 1/2. Furthermore,

loglog N
D) Islug Dui (83 Detrqs Perar1) — P (83 Prags Prrqr1)
S|<SN
N 7%+37(1 N 2+max{3,@vt +25ut 735611;5_1 +25ut_1 }Jrﬂui_l
0, ———— log O, | ——— '
p(loglogN) (og p(loglogN))
1
holds with Sy = [O%logO (@H “ for 0 < o < 1/3.
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1
Proof. Applying Lemma 2 to Case (2) with Sy = [% log O (@)] % we obtain

1428y +2Buy
— 3

N o\t N o
- S 1 "
O ((bglogN) ) (OgOp (loglogN>)

On the other hand, Li and Vuong (1998; Lemma 3.2) shows that

sup ¢w(3§ ﬁt+q+1) - ¢Vt(5; pt+q+1)
|s|<Sn

2+42Bv; +2Buy

N —%-Fa N 5%
= A — 1 A
O(<1oglogN) ) (OgO(loglogN>)

holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

sup |, (s; Pt+q+1) — by, (s; Pt+q+1)
|s|<Sn

1 2428y +2Buy
su s; — oy, (s; = S 0 -
|S|<EN Vil Prea+t Vil Prart b loglog N &% loglog N
(C.7)

SUP|s <5y | BV4 (5:Pttq 1) —Bv; (Siptqt1)] P0as N — oo

This proves the first part of the lemma. Since .
Inf|s)<sn ‘¢Vt (5§,Dt+q+1)|

under o < 1/2, we have

sup |¢u, (s; ﬁt+q+1) — ¢, (s; Pt+q+1)
[s|<Sn

SUP|s|<Sy ‘ﬁth(S) — dvi(s)

<

inf|5 <5y DV (85 Pragr1)| — SUD|s|1<sn OV (85 Prag+1) — Ovi (S5 Pragr1)

Sup\SKSN ‘¢W (57 ﬁt+q+1) - (th (3, pt+q+1>

+ =
infjsi<sy [PV (5 Progra)] — SuDP|si<sy ‘615%(35 Prtq+1) — Pvi(s; pt+q+1)‘

1
with probability approaching one as N — oo. It follows from Sy = [% log O (%)] &
and (C.7) that

2428y +3Bu;

1
N BERR N B
= (log log N ) <10g O (10g log N >)

sup|s<sy | (BUy_y (8Peva)—du,_, (sipt1q)) |

sup QbUt(S; ﬁt+q+1) - ¢Ut(3§ Pt+q+1)
[s|<Sn

(C.8)
20 as

This proves the second part of the lemma. Since :
1ﬂf\s\gsN|¢Ut,1(8;pt+q)|

N — oo under o < 1/3, we have

~

sup ¢m(5; ﬁt+q7/p\t+q+1) - ¢m(5; pt+qapt+q+1)

|s|<Sn

SUDP|s|<sy ‘¢Ut(3§ Di+qr1) — P, (S; Preqr1)
(Gs(5: Prsa) = b1 (5 100))
Sup\sKSN ‘(bUtfl (5; ﬁtJrq) - ¢Ut71 (5; Pt+q)

<$Ut_1 (85 Prtq) — QUi (85 Pt+q)) ‘

<
inf|3|<51\r ‘¢Ut—1 (8;pt+q)| — SUPjs1<8y

inf g <gy |¢Ut_1(35 pt+q)| — SUPjsj<sy

17



with probability approaching one as N — oo. It follows from (C.8) and our choice of Sy =
["% log O (Lﬂ 7 that

loglog N

-~

¢m(3§ @Jrqa 5t+q+1) - ¢nt(5; Pt+q> Pt+q+1)

sup
Is|<Sn
3 2+3Bvy +2Buy +Buy _q

N O\ 2t N B
= O (loglogN) (logOp <loglogN)> +

3o 2+43Bvy 1 +3Buy_q

N O\ 2t N 5
O (log log N ) (bg O <log log N ) )

This proves the third part of the lemma. O

C.5 Lemma 5: Characteristic Function under Case 3

Lemma 5. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions
under Case (3), then

() sup [dvi(siPerarn) = Ovilsi prgi)
[s|<Sn
: N —%—&-a - N 2+2£v§§’25ut
- r <loglogN> <0g p<loglogN>>
(i) sup |ou, (8; Prtq+1) — du,(s; Pt+q+l)‘
[s|<Sn

N —%-4-370‘ N %3’312;57:%%
=0 R — loe O oy v
8 <<loglogN> ) <Og 8 <loglogN>>

1 3a
N . R N —3t%
201 Sup | bn, (8; Pitq, Pt 1) — On, (S; Prrqs Pt 1 ‘ =0 ()
( ) ls|<Sx nt( +q +q+ ) nt( +q +q+ ) p lOg lOgN

2max{ 380, +2Bu;,3Bu, 1 +2Bu;y_q p+Buy 4
log O N "
v v
08 p loglog N

holds with Sy = [%bgo (L)} 5 for 0 < o < 1/3.

loglog N

Proof. Applying Lemma 2 to Case (3) with Sy = [O‘% log O (L)] % we obtain

2 loglog N
N 7%4»& N 1+2Bv5:‘25ut

v (5 Prrarr) — Oui(s; =0, [——— log O, [ ——— ’
;EEN ‘¢w(s,pt+q+1) ¢vt(8,pt+q+1)’ b ((bg logN> ) (og . (loglogN))
On the other hand, Li and Vuong (1998; Lemma 3.3) shows that

1 242Bv, +26u,

5 o((—2 ") (1ogo (2 K

|SS|'1<1£N Vi (S; Pragr1) — Ovi (85 Pragr)| = w 0g w

18



holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

1 24280, +2Bu,
Ovi (53 Brrar1) — Iuil =0, ((—2 )" (1og0, (—Y v
| o _ .
oy |V Pkt T OUAS Prar "\ \loglog N 577 \loglog N
(C.9)

SUP|s|<Spy |¢Vt (8:Pt+q+1)—¢v, (S§Pt+q+1)|

This proves the first part of the lemma. Since % 0as N = 0o

inf |y < [V (Sipt4q+1))]
under a < 1/3, we have

sup | ¢, (s; ﬁt+q+1) — du,(s; Pt+q+1)’
[s|<Sn

SUD sy [Bvi(5) = 0xi(s)]

<

ianSKSN [Py, (55 Pt+q+1)| — SUPj5<sy ‘¢%(S; ﬁt+q+1) — ov, (s Pt+q+1)

SUP|s|<sy )W(S; Priqr1) — Ovi(S; Prigin)
+

infisj<sy [0vi (83 praqr1)| — SUP|s|<Sy ‘GM(S; Perar1) — Ovi(S; Progr1)

with probability approaching one as N — oo. It follows from Sy = [a;” log O (ﬁ)] &
and (C.9) that

—3+3 243Bvs +2Buy
Gu(sipisae) —onlsipmaasd)] =00 (5 ) (180 (e ))
su ACH — ou, (s = 0
|5|<>£)N U\ S5 Pttq+1 U\ S5 Pttq+1 P \loglog N g Up Tog log N o
10

supjsi<sy | (P, (5Ptra)—bu,_ (sipi44))|

p
, — 0 as
inf)51<s ‘¢Ut_1 (S;pt+q)|

This proves the second part of the lemma. Since

N — 00, we have

sup
[s|<Sn

Oue (85 Prevgs Perqr1) = G (S5 Prags Prag1) ’

SUD|5/<Sy ‘¢Ut(8; Prrq+1) — O, (S; pt+q+1)‘

< ~
infjsj<sy ‘(bUt—l(S;pt-i-q)‘ — SUPsi<Sy ‘((?Utfl(S; Prq) — U, (S5 Pt+q)>‘

Pl <sy |Gus (5 isa) = vy (53 prva)

(¢Ut—l (S; ﬁtJrq) - ¢Ut71 (5; pt+£1>) ‘

with probability approaching one as N — oo. It follows from (C.10) and our choice of Sy =
1

[% log O (@)] * that

~

(bm (5; ﬁH—qa ﬁt—&-q—l-l) - (bm (5; Pt+q> pt+q+1)

infig<sy ‘¢Ut—1<5;pt+q)| — SUPjg<sy

sup
[s|<Sn

1+30¢ 2+3Bvy +2Buy +Buy_q
N BERE N B3
= O — logO, | ————

p((loglogN> > <0g p(loglogN))
1 4 3a 2+43Bvy 1 +3Buy_q
N 22 N - B

@) —_— locO, [ ———
+ p((loglog]\f) ) (og p(loglogN))




This proves the third part of the lemma. O

C.6 Lemma 6: Characteristic Function under Case 4

Lemma 6. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under Case (4), then
N\
_Op<(loglogN> ) 8

() sup ‘¢Vt<8;ﬁt+q+1) R AAGE Pt+q+1)

|s|<Sn

2+42Bv; +2Buy

R N —gtatgh
@) s [du(siPingen) — o s = O ( (e ) ><

|s|<Sn

2+3Bv; +2Buy

N 5
<10g Or (10g log N > )

oy

1 ay
—~ R R N _§+a+m+27u
Cbm(S; Pt+qs Pt+q+1) - ¢m(3; Pt+qs Pt+q+1)‘ =0, ( ) X

(141) sup

|s|<Sn

log log N

2+max{36v, +20u; 38v; 1 +2Buy_y f+Bus 4

1
holds with Sy = [% log O <L>} " for0<a< min{1/2, v,/ (27, +7), 27/ (290 Yu + 770 +

loglog N

77u)}7 where ﬁ = maX{ﬂL 62} and
Yu if By < B,
T=q 2 =g
Yo if By > B

Proof. Applying Lemma 2 to Case (4) with Sy = [% log O (ﬁ)} E, we obtain

1428y +2Buy

N\t N 5
=0y <(loglogN) ) (logOp (loglogN))

On the other hand, Li and Vuong (1998; Lemma 3.4) shows that

sup ¢w(3; ﬁt+q+1) - ¢Vt(5; ﬂt+q+1)
|s|<Sn

2428y +2Buy

N\t N b
—¢ (<1og10gN) ) (10g0 (loglogN>)

holds under our identifying assumptions and our Assumption 2. Therefore, it follows that

sup ¢Vt(3; Pt+q+1) - 925%(3; Pt+q+1)
[s|<Sn

2428y +2Buy

N o\t N b
= <(10glogN> ) (logOp (loglogN>)

(C.11)

sup (ov, (s; ﬁt+q+1) — dvi(s; Pt+q+1)
[s|<Sn

20



This proves the first part of the lemma. Since Sup‘s‘gsf\’|¢Vt(S;ptﬂﬂ)_(ﬁv’f(S;ptﬂﬂ)' B 0as N = o0
inf <5,y | SV (Sipe+at1)]
under a < min{1/2,~,/(2v, + )}, we have

sup (v, (85 Pragr1) — U, (S5 Praqr1)
[s|<SNn

< SUP)s|<sy ‘5&(3) - (byt(s)‘

infjg<sy |Dv; (85 Prgr1)| — SUP |5 1<sy ‘GM(S; Pergr1) — Ovi(S; Prrgr1)

SUP|s|<sy ’vat(s; Priqr1) — Ovi(S; Prigin)

+

inf sy [0V (85 Pragr)| — SUpP|s|<sy ‘¢Vt(5§ P+qr1) — Ovi (85 Proge1)

1
with probability approaching one as N — oo. It follows from Sy = [? log O (%)] ’ and
(C.11) that

—~ R O N *%4’0{4’% | O N
|ST;1§N bu, (83 Proqr1) — ¢Ut(87pt+q+l)‘ =0, <10glogN> (og » <loglogN>

2+3Bvy +2Buy

(C.12)

This proves the second part of the lemma. Since SUP‘SKSN_|(¢UH(S;ptﬂ)i%t’l(squ))‘ 200 as
1Hf\s\<sN‘¢Ut_1(S;pt+q)|

N — oo under o < 27vYu/ (29 Yu + YVo + YY), We have

~

SUP | P, (85 Detqs Pragr1) — P (S5 Prags Pregr1)

[s|<Sn

SUP|s|<Sy ‘ﬁgUt(SQ Divqr1) — OU.(8; Prigr1)
(aUt_l(S; Prtq) — Pu,_, (8 Pt+q)> ‘
SUP|g|<sy ‘QZUH(S; Pirq) = U, (85 Praq)
<$Ut_1 (85 Prrq) — DUy (5 Pt+q)) ’

with probability approaching one as N — oo. It follows from (C.12) and our choice of Sy =
1
[% log O (@)] ’ that

<

inf sy |Gv,_, (53 praq)| — SUD<sy

infig<sy |¢Ut_1($3 Pt+q)| — SUPjs<sy

sup ¢m(3;ﬁt+qa @+q+1) - ¢m(S§Pt+qa Pt+q+1)‘
|s|<Sn

= O N e log O N
P \loglog N 08 loglog N
2H8Bup g +3Puy—y

N EEARAEITRET N E
- 1 -
t O (bglogN) (OgOp <1oglogN)>

This proves the third part of the lemma. O

2438y, +2Bu; +Bu;_
B
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C.7 Lemma 7: Marginal Density Functions

Lemma 7. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions,
then

<Z5Vt(3§ ﬁt+q+1) — oy, (5§ Pt+q+1)

SUP‘J?Vt( — fu(v)] <

veER

< <h L sup +/ |¢Vt(5;/)t+q+1)‘d5>
|s|<h " chy!

sup‘fAUt( — fu,(u )‘ < (h L sup

u€R ls|<h iy

¢Ut<5; ﬁt+q+1) - ¢Ut(=5‘§ Pt+q+1)

+/1 |Ou, (85 pragi1)| ds
RN

N———

and

sup | £, (n) = fu ()| < € (hlsup

neR |s|<hyt

Cbm (3; ﬁt+qa ﬁt+q+1) - Cbm (5§ Pt+q> pt+q+1)‘

+/ B ’¢m<3§pt+qapt+q+1)|d3>
C

h

hold for some C € (0,00).

Proof. We can write th(v) — fu,(v) as

—1 —1
1 hn hn

N —isv ~ 1 —isv
f%(“) - th(U) = 5= € ¢Vt(5§ Pt+q+1)¢K(h5)d5 ~ 5= € ¢Vt(5§ Pt+q+1)¢K(h5)dS

1 —1isv 1 —1isv
+§/6 P (85 Prag+1) Qi (hs)ds — %/6 OV (83 Pragr1)ds

under Assumption 3 (iii). The first line on the right hand side is uniformly bounded in absolute

value as

-1
1 hy

o _iw(ﬁVt (85 Praqr1)0x (hs)ds

sup | —
veER

Ryt 1
/ lqusvt(s Piiq1)Px (hs)ds — o

< Chj\,l sup

s|<hy!

¢w(8; Di+q+1) — Ovi(S; Pragr1)

for some C' € (0, 00) under Assumption 3 (iv). On the other hand, the second line is uniformly

bounded in absolute value as

sup
veER

1 o0
< 2 [ lentsipgn)lds

™

1 —15V 1 —15V
2ﬂ/€ <Z5Vt(5;/?t+q+1)¢K(h5)dS_%/€ Dvi (S5 Prigr1)ds

under Assumption 3 (i) and (ii). This proves the first part of the lemma. The second and third
parts follow by analogous arguments replacing V; by U; and 7, respectively. O
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C.8 Uniform Consistency of ]/C\UtUt o

As corollaries, it follows from Theorems 1-4 and the equality fy,u,,, (U, uey1) = fu,(u) -
Joer (W1 — uy) the following uniform convergence rates for our estimator ]/C\UtUt ., of the joint

density function of (U, Uyy1).
Assumption 4. The density functions fy, and f,, ., are uniformly bounded.

Corollary 1. If Assumptions 1, 2, 8 and 4 are satisfied in addition to the identifying assump-
tions under Case (1), then

a(l—Buy)

—~ 0 N 2(1+th+ffut)
su U 5 Uu - + u s u = -
(Ut’ugl) fUtUt+1< t t+1) fUtU +1( t t-i-l)‘ lOg lOgN

1 a(1+max{5vt+1yﬁvt}+ﬂut>
+ N 2 +a+ 2<1+max{ﬁ1,t+1 +ﬁut+1 Bug +Buy })
Pl \loglog N

(1= (sursr 5ur))

—3+a+
L0 ( N ) 2 2(1+max{ Buy +Bug g1 B +6u; })
loglog N

loglog N

/But+17 Bo, + /But})/(z +2 ma‘X{/BUt+1 + ﬁutJrl?BUt + Bm} + By, + ﬁut)

holds with hy' = O (( il )2(”‘“‘""‘{‘*”#1”%“’Bvﬁﬁ“t})) for 0 < a < (1 + max{f,,,, +

Corollary 2. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-
tions under Case (2), then

a 1—Buy By
~ N 2 N B
i) — )| =0 [ (—— log O [ ————
o [0 (1) = S (e utH)‘ <<log log N ) ) ( % (log log N ))
30 3+max{3ﬂvt+1 +2B“t+1 13Bup +2Buy }Jrﬁut

1
N —3t% N 8L
o, —— logO, | ————
p(loglogN> (Og p<10glogN)>
1—(ﬁut+1—ﬂut)

N Br
1 -
" <Og0 <10g10gN)>

holds with hy = [% log O (L)] o0 < a0 < 1/3.

loglog N

Corollary 3. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-
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tions under Case (3), then

¢
R N By
fUtUtJrl (Ut,Ut+1) - fUtUt+l(ut7ut+1)’ = (logO (]()glog]\f)) *

sup
(ut,uet1)
3+maX{3th+1 +25ut+1 13Bvy +2Buy }“rﬁut

1, 3a
N ety N 5
- 1 S
Or <<1oglogN> ) <OgO” (loglogN>>
1—(Buyy 1 —Buy)
N By
1 [
" < o0 <10glogN>>

holds with hy' = [a% log O (W)] % for0 < a<1/3.

Corollary 4. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-
tions under Case (4), then

sSup fUtUt+1(ut7ut+1) - fUtUtH(ut,ut—i—l)‘ =

(ut,uy1)

[3:1 1*ﬁut *BZ

1 [ay N B N B
—— [ —=logO | ———— logO | ————
eXp o ( 2 8 (log log N)) ( 8 (log log N))

s+max{36v,, 1 +26u; 1 38v; +26u; J+Bu

N SACES AR N 7
_ 1 _
O ((loglogN> ) <Og0” (loglogN>>

1-(Buyyq —Buy )

N B
- <1Og0 <1oglogN))

holds with hy' = [‘” log O <W>}E for 0 < o < min{1/2,7,/(2v + 7v), 2VYu/ (29 Yu +
Y + V), where B = max{g}, B;} and
Vu if By < B,
y={ e g g
Yo if By > B,

™

C.9 Uniform Consistency of j?vtv;s "

With Assumption 2, we can estimate the joint characteristic function ¢y,y,,, by

¢UtUt+1(St’3t+1) ://€Z5tut+wt+1Ut+1fUtUt+1(ut7ut+1>dutdut+1
uJu

integrated over a bounded set U containing the bounded supports of U; and U;;. In addition,

we can estimate the joint characteristic function ¢y,y,,, by

_ E ZSt +—ve)Fist41 (Y041 —Ve41)
¢Yth+1 (St7 St+1 & &
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which is uniformly root-N consistent under Assumption 1. With these short-hand notations,

OU,U 1 (S, Se+1) and @y, (St, Se+1), we obtain the estimator

. 1 ~
Jvivi (U, V1) = (27)2//¢VtVt+1(St7St+1)¢K(HNSt)¢K(HNSt+1)dStdSt+1

for the joint density function fy,v,,, (vs, vi41), where

b Dyivis (St Se41)
¢VtVt+1(StaSt+1) = ottt ty 2t
UiUs g1 (St St41)

The symbol Hy denotes the bandwidth parameter, who rate of convergence will be discussed
later. We use the upper case notation Hy to distinguish it from the previous bandwidth
parameter hy. The asymptotic behavior of the estimator thVt o1 (vg, v41) relies on the shape of

the joint characteristic function ¢y,y,,,, which can be further decomposed as

¢UtUt+l (St’ St-i-l) = ¢Ut (St + St-i-l) ’ ¢77t+1(8t+1)'

Specifically, the uniform convergence rates of fUtUt ., obtained in Corollaries 1-4 translate into

the uniform convergence rates of quSVt through its shape in the following manner.

Vit1
Lemma 8. If Assumptions 1 and 2 are satisfied in addition to the identifying assumptions

under any of Cases (1)-(4), then

sup ‘¢VtV§s+1 (Sta 5t+1) - ¢WW+1 (8157 St+1) <
[st+si+1|<SN,|se41|<SN

1
SJﬁVUm (Op (ﬁ) + B( sup |
Ut ,Ut+1

fUtUtH (Ut, Ut+1) - fUtUtH (Ut, ut+1)

)

holds.

Proof. First, by the definition of our estimator ;Z;UtUt 1 (84, 8¢41), we have

¢UtUt+1 (St, St+1) - QbUtUt.H (St, 3t+1)

sup
(st,5¢41)

< B sup fUtUt+1(ut7 ut+1) - fUtUt+l (uta ut+1>

(we uet1)

where B = m(U x U) is the area of U x U. Under each of the four smoothness cases, the

characteristic function ¢y,y, , is bounded in absolute value as

dy, _ (B
tdl S gy 4 a1 Bu, By (Buyy1—Buy) < ‘¢UtUt+1(St7st+1)‘
Ut
di, d} _ B B
X % |5¢ + Si41] P |St41] (1 =Pe)
t

25



Note that we can write

(szV%H (8157 St+1> - ¢WW+1 <5t7 5t+1) =

U1 (St5 St41) [Cbnml(sn St11) = Ovivies (St St+1)}

¢UtUt+1 (St7 St—l-l) ¢UtUt+1 (St7 St+1) + <¢U1Ut+1 (Sta St—l-l) - gbUtUtJrl (St7 St+1))

¢Yth+1 (St7 3t+1) |:¢UtUt+1 (Stv St+1) - ¢UtUt+1 (8157 St-l-l)]

GU U1 (Sts 5t41) | OUU, (St, St41) + <¢UtUt+1(5ta St+1) — QUU,. (8¢, 5t+1)>

Therefore, we have

<

sup ‘¢Vtvt+1 (8ts St41) — Pviviys (St Se41)
|st+se+1|<SN,|se+1|<SN

Bu, ~BU1—BU, 1
SyiSy ™ O (—) + B sup
Mo ( . VN (ut,uty1)

as claimed. O

fUtUtH (Ut; Ut+1) - fUtUtH (Ut, Ut+1) ‘)

The following lemma provides the asymptotic rate of uniform convergence for the stochastic
and bias parts of J?Vtvt +1» where the stochastic part depends on the uniform convergence rate of

®v,v,,, provided in the previous lemma.

Lemma 9. If Assumptions 1, 2 and 3 are satisfied in addition to the identifying assumptions,

then
sup thVt+1 (Uta vt-i—l) - thVt+1 ('Uta Ut—&—l)‘
(vuvt-o-l)
< C H]?fl sSup PViviiy (8¢, 8641) — PViviia (8¢5 5¢41)
|St|<H§1:\5t+1|<H;,1

+// ) |¢‘/t‘/t+1(st7st+1)‘ dStd$t+1>
R2\[—CH;,1,CH;]1]

holds for some C € (0,00).
Proof. We can write fy,v,,, (v, vit1) — frivie, (U, Uig1) as

thVt+1 Uta UtJrl thVt+1 (Utv Ut+1>

_zstvt—i3t+1vt+1 ¢WW+1 (St7 8t+1)¢[{<HNSt)¢K(HN$t+1)dStdSt+1

B @—iStvt—iStH”tﬂqsw/m (5ts St+1) P (Hn )i (HnSt41)dsedsi 41

eI gy (g S Oi (HNse) O (H St dsedse

—1S¢Vt— 1St 41V 1
€ A ¢%%+1<St>3t+1)d5td8t+1
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under Assumption 3 (iii). The difference of the first two terms on the right hand side is

uniformly bounded in absolute value as

-1 -1
1 Hy  rHyo ~
( sSup : (QW)Q / ) / ) e Zstﬂvt“ﬁbvtvtﬂ(su 8t+1)¢K(HNSt)¢K(HNSt+1)dStdSt+1
Vg, V41 7H]§ —Hy,
1 HJ:fl HN1 . .
B (2m)? / 1 / 1 A A (8¢, 8041)Or (Hn st )P (HnSeq1)dsidsi i
~H'J-Hy
< CH];l sSup ‘QSVtVtH(Stv st+1) - ¢VtVt+1 (3t> St-i—l)

Isel,seq1]|<HN'

for some C' € (0,00) under Assumption 3 (iv). On the other hand, the difference of the last

two terms is uniformly bounded in absolute value as

sup
(vz,vt+1)

1 . .
W//e_wtvt_wt+m“¢ww+1(SnSt+1)¢K(HNSt)¢K(HNSt+1)dStd$t+1

1 .
_(271.)2 //6 1StUt 28t+1vt+1¢VtVz+1 (St, 3t+1)d8td8t+1
1

dsyd
(27T)2//R?\[cHN1,cHN1]2 |0Vt (51, 5e1) | dsedse

under Assumption 3 (i) and (ii). This proves the first part of the lemma. O

From Lemmas 8 and 9, it follows that the estimator J?vtvz .. of the joint density function

of (V4, Viy1) is uniformly consistent by choosing Hy tending to zero slowly enough so that it

= 0y(1)

fUtUt+1 (Ut, ut—i—l) - fUtUt+1 (uty ut-i—l) iS

derived in Corollaries 1-4 under Cases 1-4, respectively. Specifically, it is sufficient to choose

o by N 1+B(S
H' =1 _ S 1
e ()| e

satisfies

Hy' ( sup | fu,ves, (W, Wer) — fuue,, (U, Ueg)

(ut,ue41)

as N — oo, where the convergence rate of sup,, ,,. )

where an admissible choice of 6 > 0 varies across Cases 1-4 in the following manner: (1) § < oo;

(2) 6 < w; (3) 6 < min{kﬁ”t, 17('8%;37&”)}; (4) 4 < M We summarize

this result as a corollary below.

Corollary 5. If Assumptions 1, 2, 3 and 4 are satisfied in addition to the identifying assump-

tions, then

sup thVt-H (Uta Ut+1) - thVt-H (vt7 vt+1) = Op(l)

(ve,ve41)

holds with the choice of Hyx given in equation (C.13).
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We remark that the specific rate of convergence under each of Cases 1-4 can be derived by
further specifying the tail behavior of the joint characteristic function of (V;, V;y1). Unlike the
permanent component U;, however, the transitory component V; follows a complicated dynamic

process, and thus the tail behavior of the joint characteristic function ¢y, does not follow

Vit
from the tail behaviors of the marginal characteristic functions, ¢y, and ¢v,,,. We thus leave
the shape of ¢y,y,,, and derive only the uniform consistency in the above corollary for the joint

transitory components.

D Additional Results

This section presents additional results of the empirical application to earnings dynamics.

D.1 Results: Baseline Sample

Figure 1 displays estimates for the marginal densities of the permanent earnings U;, the tran-
sitory earnings V;, the cumulative permanent shocks ), 7n, and the composite MA shocks
e + Mer—1 under the ARMA(1,1) model. Figure 2 compares the marginal densities of the
permanent earnings U; and the transitory earnings V; that we obtain under the ARMA(0,0)
model (left) and the ARMA(1,1) model (right). Figure 3 compares the marginal densities of
the permanent earnings U; and the transitory earnings V; that we obtain under the ARMA(2,2)
model (left) and the ARMA(4,4) model (right). Figure 4 displays estimates (solid curves) for
the marginal densities of the permanent earnings U; and the transitory earnings V; under the
ARMA(1,1) together with Gaussian references (dashed curves).

Some density figures show bumps near the tails of the distributions, particularly for the
transitory components. These bumps are common features of deconvolution density estimates.
For example, a closely related paper by Bonhomme and Robin (2010; Figure 5) also exhibit
similar bumps near the tails, especially for transitory shocks as we do similarly. They are
the artefact of the choice of h — when h is chosen to be large, a wider spectrum of waves are
truncated for the purpose of reducing the variance, and hence low-frequency bumps remain.
Removing these bumps will require non-optimal choice of h. With this said, these bumps
will not anyway affect the statistical inference based on moments, as those statistics do not
rely on h. In other words, the statistics displayed in the main text as well as in the current
supplementary material are invariant from tuning of A.

Figure 5 displays the long-run joint densities of the permanent earnings U; and the transitory
earnings V; under the ARMA(0,0) model (left) and the benchmark ARMA(1,1) model (right).
Similarly, Figure 6 displays the long-run joint densities of the permanent earnings U, and
the transitory earnings V; under the ARMA(2,2) model (left) and the benchmark ARMA (4,4)
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model (right). These figures contain important information about model implications for life-
cycle earnings dynamics, but the contour curves are not the most effective way to present
the information. Therefore, we extract some important features behind these long-run joint
densities, and present them in terms of the lower tail dependence measure presented in the

main text.

D.2 Results: Workers with Strong Labor Force Attachment

Figure 7 displays estimates for the marginal densities of the permanent earnings U;, the tran-
sitory earnings V;, the cumulative permanent shocks ), n, and the composite MA shocks
e + Mer—1 under the ARMA(1,1) model. Figure 8 compares the marginal densities of the
permanent earnings U; and the transitory earnings V; that we obtain under the ARMA(0,0)
model (left) and the ARMA(1,1) model (right). Figure 9 compares the marginal densities of
the permanent earnings U; and the transitory earnings V; that we obtain under the ARMA(2,2)
model (left) and the ARMA(4,4) model (right). Figure 10 displays estimates (solid curves) for
the marginal densities of the permanent earnings U; and the transitory earnings V; under the
ARMA(1,1) together with Gaussian references (dashed curves).

Figure 11 displays the long-run joint densities of the permanent earnings U; and the tran-
sitory earnings V; under the ARMA(0,0) model (left) and the benchmark ARMA(1,1) model
(right). Similarly, Figure 12 displays the long-run joint densities of the permanent earnings
U; and the transitory earnings V; under the ARMA(2,2) model (left) and the benchmark
ARMA(4,4) model (right).

Figure 13 displays trajectories of the lower tail dependence measure Xy ,(q) = P(Up <
F; N (q)|Uso < FyL(q)) of permanent earnings following the event of permanent earnings less
than or equal to the ¢-th quantile at age 30 for ¢ € {0.10,0.05,0.01}. The solid lines represent
the trajectories under our semiparametric model. The dashed lines represent those under the
bivariate normal distribution. The results are displayed under each of the ARMA(1,1) and
ARMA(2,2) specifications with time-varying coefficients.

Figure 14 displays trajectories of the lower tail dependence measures )‘lgo,t(Q) = P(U; <
Fu ()|Uso < Fl(q) and Ny, (q) = P(U, < F.'(q)|Us < Fyj(q)) of permanent earnings
following the event of permanent earnings less than or equal to the ¢-th quantile at age 30
and 40, respectively, for ¢ € {0.10,0.05,0.01}. The solid lines represent the trajectories un-
der our semiparametric model. The dashed lines represent those under the bivariate normal
distribution. The results are displayed under the ARMA(4,4) specification with time-varying

coefficients.
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D.3 Results: Married Workers

Tables 1, 2, 3,4 and 5 summarize estimated marginal distributional indices under the ARMA(0,0),
ARMA(1,1), ARMA(2,2), ARMA(3,3) and ARMA(4,4) models with time-varying and time-

invariant AR coefficients. These indices are the mean, the standard deviation, the skewness,

and the kurtosis. The numbers in parentheses indicate the standard errors of the respective

estimates. The last column shows the p-values for the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.

Figures 15 and 16 displays trajectories of the lower tail dependence measure /\éoyt(0.0l) =
PU, < FU_tl(O.01)|U30 < FJi}(0.0l)) of permanent earnings following the event of permanent
earnings less than or equal to the 1 percentile at age 30. The solid lines represent the trajectories
under our semiparametric model. The dashed lines represent those under the bivariate normal
distribution. The results are displayed under each of the ARMA(0,0), ARMA(1,1), ARMA(2,2),
ARMA(3,3) and ARMA(4,4) specifications with time-varying coefficients and time-invariant

coefficients.
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Figure 1: Nonparametric estimates of the marginal densities of the permanent earnings (top

left), the transitory earnings (top right), the cumulative permanent shocks (bottom left), and
the composite MR errors (bottom right) under the ARMA(1,1) specification. The results are

based on the baseline sample.
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Figure 2: Nonparametric estimates of the marginal densities of the permanent earnings (top
row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specification (left
column) and the ARMA(1,1) specification (right column). The results are based on the baseline

sample.
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fUt under ARMA(2,2) J?Ut under ARMA(4,4)
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Figure 3: Nonparametric estimates of the marginal densities of the permanent earnings (top
row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specification (left
column) and the ARMA (4,4) specification (right column). The results are based on the baseline

sample.
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Figure 4: Nonparametric estimates of the marginal densities of the permanent earnings (top
row) and the transitory earnings (bottom row) for ¢ = 30 (left column) and ¢t = 50 (right
column) under the ARMA(1,1) specification with Gaussian references (dashed curves). The

results are based on the baseline sample.
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J?UsoUs)o under ARMA(0,0) f/.\UsoU50 under ARMA(1,1)

Figure 5: Nonparametric estimates of the long-run joint densities of the permanent earnings
(top row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specification
(left column) and the ARMA(1,1) specification (right column). The results are based on the

baeline sample.
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J?UsoUs)o under ARMA(2,2) J?UsoUs,o under ARMA(4,4)
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Figure 6: Nonparametric estimates of the long-run joint densities of the permanent earnings
(top row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specification
(left column) and the ARMA(4,4) specification (right column). The results are based on the

baeline sample.
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fUt under ARMA(1,1) ]/C\V;: under ARMA(1,1)
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Figure 7: Nonparametric estimates of the marginal densities of the permanent earnings (top
left), the transitory earnings (top right), the cumulative permanent shocks (bottom left), and
the composite MR errors (bottom right) under the ARMA(1,1) specification. The sample

consists of individuals with strong labor force attachment.
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fu, under ARMA(0,0) fu, under ARMA(1,1)
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Figure 8: Nonparametric estimates of the marginal densities of the permanent earnings (top
row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specification (left
column) and the ARMA(1,1) specification (right column). The sample consists of individuals

with strong labor force attachment.

38



fUt under ARMA(2,2) J?Ut under ARMA(4,4)
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Figure 9: Nonparametric estimates of the marginal densities of the permanent earnings (top
row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specification (left
column) and the ARMA(4,4) specification (right column). The sample consists of individuals

with strong labor force attachment.
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Figure 10: Nonparametric estimates of the marginal densities of the permanent earnings (top

row) and the transitory earnings (bottom row) for ¢ = 30 (left column) and ¢t = 50 (right

column) under the ARMA(1,1) specification with Gaussian references (dashed curves). The

sample consists of individuals with strong labor force attachment.
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Figure 11: Nonparametric estimates of the long-run joint densities of the permanent earnings
(top row) and the transitory earnings (bottom row) under each of the ARMA(0,0) specifica-
tion (left column) and the ARMA(1,1) specification (right column). The sample consists of

individuals with strong labor force attachment.
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Figure 12: Nonparametric estimates of the long-run joint densities of the permanent earnings
(top row) and the transitory earnings (bottom row) under each of the ARMA(2,2) specifica-
tion (left column) and the ARMA(4,4) specification (right column). The sample consists of

individuals with strong labor force attachment.

42



Ab0:(0.10) under ARMA(1,1) A0:(0.10) under ARMA(2,2)

1.0
1.0

06
-
1
1
~
s
1
‘
!
06
~
!
4
!
’
A
1
!
LY

04

04

Lower Tall Dependence
0.2

f

L
Lower Tail Dependence

0.2

g0
0.0

25 30 35 40 45 50 25 30 35 40 45 50

Aget Aget

Aby:(0.05) under ARMA(1,1) A50,4(0.05) under ARMA(2,2)

1.0
1.0

08
08

Lower Tail Dependence
06

1

1

s
-

s
A

1

’

Lower Tail Dependence
04 086

A

1

rd
\

A

!
~

i

0.2
0.2

0.0
0.0

Aget Aget

A0:(0.01) under ARMA(1,1) A5,,(0.01) under ARMA(2,2)

10
10

08
08

06
|
06
|

04
04

Lower Tall Dependence
Lower Tail Dependence

02
1

0.0
0.0

Aget Aget

Figure 13: Trajectories of the lower tail dependence measure Xy, ,(q) = P(Uy < Fy;'(q)|Uso <
F;;}(q)) of permanent earnings following the event of permanent carnings less than or equal to
the ¢-th quantile at age 30 for ¢ € {0.10,0.05,0.01}. The sample consists of individuals with
strong labor force attachment. The solid lines represent the trajectories under our semipara-
metric model, while the dashed lines represent those under the bivariate normal distribution.
The results are displayed under each of the ARMA(1,1) and ARMA(2,2) specifications with

time-varying coefficients.
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Figure 14: Trajectories of the lower tail dependence measures N ,(q) = P(Uy < Fy; ' (q)|Uso <
Fyl(q)) and Xyg,(q) = P(U; < F; ' (q)|Uso < FyL () of permanent earnings following the event
of permanent earnings less than or equal to the ¢-th quantile at age 30 and 40, respectively, for
q € {0.10,0.05,0.01}. The sample consists of individuals with strong labor force attachment.
The solid lines represent the trajectories under our semiparametric model, while the dashed
lines represent those under the bivariate normal distribution. The results are displayed under

the ARMA(4,4) specification with time-varying coefficients.
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Married

ARMA(0,0) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  0.000  0.331 -0.490 2.867  p-value = 0.687
(0.014) (0.010)  (0.107)  (0.273)

Ugp 0.000  0.382 -0.353 3.277  p-value = 0.180
(0.016) (0.012)  (0.116)  (0.303)

Uso 0.000  0.389 -0.319 3.383  p-value = 0.221
(0.018) (0.014)  (0.151)  (0.499)

Vo -0.000  0.210 -2.354 17.840  p-value = 0.005
(0.010) (0.018)  (0.736)  (5.744)

Vi -0.000  0.165 -2.867 18.320  p-value = 0.012
(0.010) (0.017)  (0.951)  (6.626)

Vso  -0.000  0.219 -3.616 26.217  p-value = 0.002
(0.013) (0.026)  (0.876)  (7.879)

Table 1: Estimated distributional indices under the ARMA(0,0) model for the sub-sample
of married individuals. The indices include the mean, the standard deviation, the skewness,
and the kurtosis. The numbers in parentheses indicate the standard errors of the respective
estimates. The last column shows the p-value of the one-sided test of the null hypothesis that

kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(1,1) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  -0.000  0.313 -0.339 1.792  p-value = 0.941
(0.017) (0.011)  (0.161)  (0.773)

Usyp  0.000 0.357 -0.460 3.430 p-value = 0.114
(0.018) (0.014)  (0.159)  (0.356)

Usp -0.000 0.371 -0.379 3.052 p-value = 0.462
(0.022) (0.017)  (0.166)  (0.548)

Vi -0.000  0.228 -2.706 18.568  p-value = 0.003
(0.014) (0.023) (0.740)  (5.597)

Vi -0.000 0.192 -1.047 7.624 p-value = 0.032
(0.013) (0.020) (0.842)  (5.211)

Vie 0000 0208  -3.158 25745 p-value — 0.038
(0.018) (0.032) (1.453)  (12.827)

Married: Time-Constant Coefficients

ARMA(1,1) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  -0.000  0.309 -0.289 1.464 p-value = 0.971
(0.018) (0.013)  (0.205)  (1.083)

Uyp 0.000  0.356 -0.465 3.443 p-value = 0.116
(0.017) (0.014)  (0.163)  (0.370)

Uso -0.000 0.371 -0.350 3.027  p-value = 0.480
(0.020) (0.016) (0.161)  (0.534)

Vo -0.000  0.234 -2.665 17.933  p-value = 0.005
(0.016) (0.025) (0.734)  (5.512)

Vip -0.000  0.193 -1.014 7.393  p-value = 0.060
(0.013) (0.018) (0.822)  (2.833)

Vso  0.000  0.208 -3.320 25.962  p-value = 0.019
(0.015) (0.030) (1.232)  (11.053)

Table 2: Estimated distributional indices under the ARMA(1,1) model for the sub-sample
of married individuals. The indices include the mean, the standard deviation, the skewness,
and the kurtosis. The numbers in parentheses indicate the standard errors of the respective
estimates. The last column shows the p-value of the one-sided test of the null hypothesis that
kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(2,2) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  -0.000  0.306 -0.519 2.828  p-value = 0.651
(0.016) (0.011)  (0.140)  (0.445)

Uy  0.000 0.326 -0.260 3.296 p-value = 0.206
(0.018) (0.013)  (0.158)  (0.362)

Uso -0.000 0.335 -0.380 2.827 p-value = 0.556
(0.022) (0.018) (0.255)  (1.218)

Vs -0.000  0.223 -2.064 13.689  p-value = 0.027
(0.014) (0.019)  (0.685)  (5.543)

Vi -0.000  0.208 -1.360 6.638 p-value = 0.017
(0.014) (0.016)  (0.424)  (L.712)

Vso  0.000 0.244 -1.808 15.764  p-value = 0.044
(0.020) (0.029) (1.076)  (7.494)

Married: Time-Invariant Coefficients

ARMA(2,2) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  -0.000 0.303 -0.528 2.840 p-value = 0.630
(0.017) (0.012) (0.149)  (0.479)

Uyp 0.000 0.325 -0.258 3.297  p-value = 0.213
(0.018) (0.013)  (0.159)  (0.374)

Usp -0.000  0.340 -0.353 2.897  p-value = 0.539
(0.021) (0.017)  (0.227)  (1.041)

Vo -0.000  0.226 -1.974 12.910  p-value = 0.031
(0.015) (0.019)  (0.676)  (5.314)

Vio  -0.000  0.209 -1.351 6.565  p-value = 0.016
(0.014) (0.016) (0.425)  (1.658)

Vso  0.000  0.236 -2.024 17.348  p-value = 0.037
(0.017) (0.028) (1.106)  (8.053)

Table 3: Estimated distributional indices under the ARMA(2,2) model for the sub-sample
of married individuals. The indices include the mean, the standard deviation, the skewness,
and the kurtosis. The numbers in parentheses indicate the standard errors of the respective
estimates. The last column shows the p-value of the one-sided test of the null hypothesis that
kurtosis is less than equal to three, against the alternative hypothesis that it is greater than

three.
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Married: Time-Varying Coefficients

ARMA(3,3) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  -0.000  0.290 -0.343 2.196  p-value = 0.915
(0.017) (0.011)  (0.150)  (0.587)

Uyp -0.000 0.312 0.052 2.821 p-value = 0.685
(0.019) (0.013)  (0.168)  (0.370)

Uso -0.000  0.330 -0.292 2.654 p-value = 0.679
(0.023) (0.017) (0.212)  (0.746)

Vs -0.000  0.221 -2.205 15.593  p-value = 0.038
(0.015) (0.022) (0.840)  (7.075)

Vi 0.000 0.223 -1.875 8.198 p-value = 0.004
(0.016) (0.019) (0.421)  (1.928)

Vio -0.000 0.248  -1.948  16.164 p-value = 0.026
(0.020) (0.030) (1.009)  (6.758)

Married: Time-Invariant Coefficients

ARMA(3,3) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  -0.000  0.288 -0.335 2.118 p-value = 0.907
(0.018) (0.012)  (0.160)  (0.667)

Uyp -0.000 0.312 0.062 2.804 p-value = 0.703
(0.019) (0.013) (0.168)  (0.368)

Usp -0.000 0.333 -0.277 2.686 p-value = 0.667
(0.022) (0.016) (0.202)  (0.728)

Vap -0.000  0.224 -2.153 15.073  p-value = 0.040
(0.016) (0.022) (0.833)  (6.897)

Vio  0.000  0.224 -1.878 8.174 p-value = 0.004
(0.017) (0.019) (0.419)  (1.936)

Vie -0.000 0244  -2.076  17.140  p-value = 0.024
(0.019) (0.029) (1.038)  (7.166)

Table 4: Estimated distributional indices under the ARMA(3,3) model for the sub-sample
of married individuals. The indices include the mean, the standard deviation, the skewness,
and the kurtosis. The numbers in parentheses indicate the standard errors of the respective
estimates. The last column shows the p-value of the one-sided test of the null hypothesis that
kurtosis is less than equal to three, against the alternative hypothesis that it is greater than
three.
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Married: Time-Varying Coeflicients

ARMA(4,4) Mean SD  Skewness Kurtosis Hy: Kurtosis<3
Uy 0.000  0.283 -0.363 2.50 p-value = 0.875
(0.019) (0.013) (0.157)  (0.435)
Uyp -0.000 0.314 -0.364 3.233 p-value = 0.335
(0.020) (0.015)  (0.195) (0.544)
Uso  0.000 0.347 -0.291 2.394 p-value = 0.921
(0.027) (0.017)  (0.163)  (0.429)
Vs -0.000  0.210 -0.917 4.926 p-value = 0.144
(0.016) (0.016) (0.414)  (1.814)
Vi 0.000 0.203 -0.834 6.239 p-value = 0.074
(0.017) (0.019)  (0.601)  (2.237)
Vie -0.000 0228  -2.732  24.345  p-value = 0.079
(0.023) (0.036) (1.642)  (15.0917)

Married: Time-Invariant Coefficients

ARMA(4,4) Mean SD  Skewness Kurtosis Hj : Kurtosis<3

Usp  0.000  0.280 -0.367 2.490 p-value = 0.862
(0.019) (0.013) (0.168)  (0.467)

Uyp -0.000 0.314 -0.366 3.233 p-value = 0.334
(0.020) (0.015)  (0.194)  (0.545)

Uso 0.000  0.349 -0.275 24378  p-value = 0.883
(0.025) (0.016) (0.158)  (0.473)

Vo -0.000  0.214 -0.883 4.743 p-value = 0.162
(0.017) (0.017)  (0.415)  (1.768)

Vi 0.000  0.203 -0.825 6.218  p-value = 0.076
(0.017) (0.019) (0.615)  (2.247)

Vso  -0.000  0.226 -2.840 24.757  p-value = 0.035
(0.021) (0.035) (1.494)  (11.985)

Table 5: Estimated distributional indices under the ARMA(4,4) model for the sub-sample
of married individuals. The indices include the mean, the standard deviation, the skewness,
and the kurtosis. The numbers in parentheses indicate the standard errors of the respective
estimates. The last column shows the p-value of the one-sided test of the null hypothesis that
kurtosis is less than equal to three, against the alternative hypothesis that it is greater than
three.
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Figure 15: Trajectories of the lower tail dependence measure MA,,(0.01) = P(U; <

F;;1(0.01)|Usg < Fy;,(0.01)) of permanent earnings following the event of permanent earnings
less than or equal to the 1 percentile at age 30. The sample consists of married individuals. The
solid lines represent the trajectories under our semiparametric model, while the dashed lines
represent those under the bivariate normal distribution. The results are displayed under each
of the ARMA(0,0), ARMA(1,1), and ARMA(2,2) specifications with time-varying coefficients

and time-invariant coeflicients.
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Figure 16: Trajectories of the lower tail dependence measure M,,,(0.01) = P(U; <

F;;1(0.01)|Usy < Fy;, (0.01)) of permanent earnings following the event of permanent earnings
less than or equal to the 1 percentile at age 30. The sample consists of married individuals.
The solid lines represent the trajectories under our semiparametric model, while the dashed
lines represent those under the bivariate normal distribution. The results are displayed un-

der each of the ARMA(3,3) and ARMA(4,4) specifications with time-varying coefficients and

time-invariant coefficients.
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