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Appendix B: Accounting for random unit size and covariates

B.1 Random unit size

We first extend our framework to cases where K is random and takes values in {2� � � � �K}.
We exclude here units with one individual, for which bounds on segregation indices are
trivial. We consider here the agnostic case where p may depend on K; the case where
p ⊥⊥ K is detailed in Appendix D.4 below. We consider a parameter defined in a similar
way as in Assumption 2.1. With random unit sizes, the issue of whether we focus on
segregation at the unit level or at the individual level matters. Let Fk

p denote the cdf of p
conditional on K = k. In the first case, the parameter of interest is defined by

θ0 = ν

(
K∑

k=2

Pr(K = k)

∫
h(x�m01)dF

k
p(x)�m01

)
� (B.1)

with, as before, m01 = E(p). In contrast, in the second case, the parameter of interest
satisfies

θ0 = ν

(
K∑

k=2

kPr(K = k)

E(K)

∫
h
(
x�E(Kp)/E(p)

)
dFk

p(x)�E(Kp)/E(p)

)
� (B.2)

This expression is therefore the same as above, except that we weight units of size k by
k, to express the fact that the parameter is defined at the individual level.

Because the two cases are very similar, we focus on the first case in this section. Let
ηk

0 = ∫
h(x�m01)dF

k
p(x). Without any joint restriction on (Fk

p�F
k′
p ), the sharp bounds on
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θ0 satisfy

{θ0� θ0} =
{
ν

(
K∑

k=2

Pr(K = k)ηk
0
�m01

)
� ν

(
K∑

k=2

Pr(K = k)ηk
0 �m01

)}
� (B.3)

where the bounds ηk
0

and ηk
0 on ηk

0 can be computed using Theorems 2.1 or 2.2 since
K = k is fixed.

We can then estimate these bounds by taking the empirical counterpart of (B.3).
First, we estimate Pk = (Pr(X = 1|K = k)� � � � �Pr(X = k|K = k))′ by constrained maxi-
mum likelihood on the subsample of units of size k. Then let m̂k = QkP̂k be the esti-
mator of mk = (E(p|K = k)� � � � �E(pk|K = k))′, with Qk the matrix Q defined in Sec-
tion 2.2 when K = k. Second, for any Fk

p ∈ Dk+1
mk with support xk, we may rewrite∫

h(x�m01)dF
k
p(x) as a function of xk, mk, and m01 only. We denote this function by

q(xk�mk�m01), and let

ηk
(
mk�m01

) = max
xk∈Sk+1:V (xk)−1(1�mk′)′≥0

q
(
xk�mk�m01

)
�

ηk
(
mk�m01

) = min
xk∈Sk+1:V (xk)−1(1�mk′)′≥0

q
(
xk�mk�m01

)
�

Finally, let P̂r(K = k) = 1
n

∑n
i=1 1{Ki = k} and m̂01 = ∑K

k=2 P̂r(K = k)m̂k
1 . We estimate the

bounds by

θ̂ = ν

(
K∑

k=2

P̂r(K = k)ηk
(
m̂k� m̂01

)
� m̂01

)
�

θ̂ = ν

(
K∑

k=2

P̂r(K = k)ηk
(
m̂k� m̂01

)
� m̂01

)
�

(B.4)

Turning to inference, we consider the following bootstrap resampling scheme. First,
draw K in its empirical distribution and then draw X conditional on K = k according
to the vector of probabilities P̂k

b = Qkm̂k
b , where m̂k

b is defined as m̂b, for the subsample
of units with K = k. Then we compute the bootstrap bounds and bootstrap statistics
using (B.4). We finally construct the confidence interval CI2

1−α in exactly the same way
as CI1

1−α.

Proposition B.1. Suppose that Assumption 2.1 holds, that ν is C1, and that ηk and ηk

are differentiable at (mk
0 �m01) for all k in the support of K. Then

inf
θ0∈[θ0�θ0]

lim
n→∞ Pr

(
θ0 ∈ CI2

1−α

) = 1 − α�

B.2 Including covariates

Now let us consider the inclusion of covariates. Controlling for exogenous characteris-
tics is important because they may constitute an undesirable source of differences in un-
observed probabilities across units. For instance, foreigners may be hired more in some
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sectors of the economy because they have been selected, or they self-selected, on the
basis of sector-specific skills. Consider an extreme instance where all firms within each
sector would hire foreigners with the same probability. The unconditional index would
still be positive if these probabilities differ from one sector to another. The conditional
index we consider below, on the other hand, would be zero.

Controlling for characteristics defined at a finer level, such as slots in a geographic
area or positions within the firm, may also make the condition X|K�p ∼ B(K�p) more
credible. To see this, suppose, for instance, a simple case where K = 4 and each firm
has two skilled and two unskilled positions. Suppose the individuals are hired indepen-
dently of each other but within each firm, foreigners have a small probability (0�01, say)
of being hired for a skilled position and a higher probability (0�09, say) of being hired for
an unskilled one. Then for each firm, the probability of hiring a foreigner for a position
drawn randomly is p = (0�01 + 0�09)/2. But then Pr(X = 4) = (0�01 × 0�09)2 	= p4, and
X|K�p ∼ B(K�p) fails to hold. On the other hand, conditional on the type of position,
the binomial mixture model is satisfied.

The discussion above shows that covariates can be defined at the unit level or at
the finer level of a slot or a position. We distinguish between these two cases because
they lead to different treatments. Let Z ∈ {1� � � � �Z} denote a characteristic of the unit.
Note that we focus here on discrete covariates only; the analysis of continuous co-
variates raises difficult issues that are beyond the scope of the paper. Suppose that
the conditional parameter of interest satisfies θ0z = ν(

∫
h(x�m01z dFp|Z=z�m01z), with

m01z =E(p|Z = z). For instance, in the case of the Duncan and Theil indices, this would
amount to considering, respectively,

Dz =E

[ |p−m01Z |
2m01Z(1 −m01Z)

∣∣∣Z = z

]
�

Tz = 1 −E

[
p ln(p)

m01Z(1 −m01Z)

∣∣∣Z = z

]
�

The bounds on θ0z can be estimated exactly as previously, focusing on the subsample

of units {i : Zi = z}. If we are interested in an aggregate parameter θ0· = ∑Z
z=1 Pr(Z =

z)θ0z , then bounds on θ0· can be obtained by a plug-in estimator, and a similar bootstrap
procedure as for the random unit size case can be applied to construct valid confidence
intervals.

Let us turn to covariates W ∈ {1� � � � �W } defined at a finer level, such as the type of
positions within the firm. We suppose to observe, for each unit and each w ∈ {1� � � � �W },
Xw and Kw, which are, respectively, the number of individuals belonging to the minority
group for positions of type W = w and the number of positions of type W = w (so that∑W

w=1 Kw = K and
∑W

w=1 Xw = X). Let pw denote the probability of a person belonging
to the minority group for positions such as W =w. In such a setting, it makes more sense
to suppose that the parameter of interest is defined at the position level. Specifically, let

θ0w = ν

(∫
k

E(Kw)
h(x�m01w)dFpw�Kw(x�k)�m01w

)
�
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with m01w = E(Kwpw)/E(Kw). As above, θ0w is a conditional segregation index, but de-
fined at a position level, so that each unit is weighted by its normalized size K/E(Kw).

An aggregated index can then be defined as θ0· = ∑W
w=1 Pr(W =w)θ0w. Because

∫
kh(x�m01w)dFpw�Kw(x�k) =

Kw∑
k=1

kPr(Kw = k)

E(Kw)

∫
h(x�m01w)dFpw|Kw=k(x)�

we can estimate the bounds on θ0· as in the random unit size case, using Xw and Kw

instead of X and K. The confidence intervals can also be obtained similarly.
Computing θ0· is important from an applied point of view. As we illustrate in our ap-

plication, the idea is to compute an index that reflect the residual level of segregation
while the contribution of a covariate (e.g., the firm’s industry, the position’s occupation)
to segregation is removed. One could make the analogy with linear models, in which co-
variates are introduced to account for the variance of the outcome. Both Hellerstein and
Neumark (2008) and Åslund and Skans (2010) detail the motivation of such an average
index reflecting residual segregation.

Appendix C: Two important tests

C.1 Test of the binomial mixture model

A vector in M satisfies some restrictions such as variance positivity. Therefore, we may
have Q−1P0 /∈ M if the distribution of X conditional on K and p is not binomial. Such
a model is therefore testable. Suppose for instance that K = 2 and P0 = (0�6�0�3)′. This
vector would correspond to the vector of raw moments m0 = (0�6�0�3)′ according to the
binomial model. But 0�3 − 0�62 < 0, which violates the restriction that a variance is posi-
tive. This implies that such a vector P0 invalidates the binomial mixture model.

Testing for this restriction is equivalent to testing P0 ∈ P . We simply rely, for that
purpose, on the likelihood ratio test statistic

LRn = 2
K∑

k=0

Nk ln
(
Nk

nP̂k

)
�

To approximate the distribution of LRn under the null, we use the bootstrap again.
But contrary to what we do in Section 3.2, no correction due to boundary effects is
required here. The important point is rather to define a bootstrap distribution that is
drawn under the null hypothesis. We thus consider a bootstrap distribution of X de-
fined by the vector of probabilities P̂ . Letting LR∗

2n denote the bootstrap counterpart of
LRn, we define the critical region of the test by

CRn = {
LRn > c1−α

(
LR∗

2n
)}
�

Note that when LRn = 0, namely if P̃ ∈ P , we always accept H0 and it is unnecessary to
compute c1−α(LR∗

2n).
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Theorem C.1. If P0 ∈ ◦
P , limn→∞ Pr(CRn) = 0 with probability 1. If P0 ∈ ∂P , CP0 is a half

space, and α < 1/2, limn→∞ Pr(CRn) = α with probability 1. Finally, if P0 /∈ P , Pr(CRn) →
1 with probability 1.

The theorem shows that the test has asymptotic size equal to α and is consistent. Of
course, this does not mean that we reject the binomial mixture model whenever the true
DGP does not satisfy this condition. It may happen that the true DGP is not a binomial
mixture model but can be rationalized by such a model.

C.2 A test of constant segregation

We consider here a test that K �→ θ0(K) is constant over K, where θ0(K) denotes the true
parameter corresponding to units of size K. Because of partial identification, we cannot
test directly for this condition. Instead, we test for an implication of it, namely

H0 : 	 ≡ min
K∈K

θ0(K)− max
K∈K

θ0(K) ≥ 0� (C.1)

where θ0(K) and θ0(K) are the sharp lower and upper bounds of θ0(K).
We consider the critical region {	̂ < cn}, where 	̂ is the plug-in estimator of 	 and

cn is chosen such that under the null 	 = 0, limn P(	̂ < cn) = α, where α is the nominal
level of the test. The difficulty here is that the distribution of 	̂ under the null may be
complicated. Moreover, it is known that bootstrap can fail to estimate consistently the
asymptotic distribution of statistics involving nondifferentiable functions such as the
max or the min operators. We therefore rely on subsampling. Our asymptotic results
and standard arguments imply that, whether the null holds or not,

√
n
(

min
K∈K

θ̂(K)− min
K∈K

θ0(K)�max
K∈K

θ̂(K)− max
K∈K

θ0(K)
)

d−→ (Z1�Z2)� (C.2)

Note that Z1 and Z2 may not be normal, either because of the boundary issues or if there
exists K1 	= K2 such that θ0(K1) = θ0(K2) = minK∈K θ0(K), say. But in any case, sub-
sampling will provide a consistent estimator of the distribution of (Z1�Z2). Let us call

(Zs
1�Z

s
2) this subsampling distribution. Under the null 	 = 0,

√
n	̂

d−→ Z1 − Z2. There-
fore, the threshold cn can be chosen as the quantile of order α of the distribution Zs

1 −Zs
2.

Appendix D: Additional results on inference

D.1 A simple test of m̂ ∈ ∂M

We recall that m̂ ∈ ∂M is implied by P̃ /∈ P , and the converse also holds with probability
tending to 1. In turn, testing for P̃ /∈ P is equivalent to testing for Q−1P̃ /∈ M. More gen-
erally, the issue of whether a given vector μ belongs to the set M of first K moments of a
probability distribution on [0�1] is known as the truncated Hausdorff problem. Several
necessary and sufficient conditions have been established for this problem. Proposi-
tion D.1 below, which is proved, for instance, by Krein and Nudel’man (1977, Theorems
III.2.3 and III.2.4), provides a characterization that is rather simple to use. It relies on the
matrices Aμ, Bμ, and Cμ defined in Section 2.3.
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Proposition D.1. When K is even, P̃ = Qμ ∈ P if and only if Aμ and −Cμ are positive.
When K is odd, P̃ =Qμ ∈ P if and only if Aμ −Bμ and Bμ are positive.

D.2 Sufficient conditions for Assumption 3.2

The following lemma shows that under some restrictions on the segregation index, the
differentiability requirements of Assumptions 3.2 and 3.3 are satisfied.

Lemma D.2. Suppose that Assumption 2.1 holds and ν is C1:

(i) If h does not depend on m01, θ and θ are directionally differentiable at any m ∈ ◦
M

and differentiable almost everywhere.

(ii) If Assumption 2.2 holds, then θ and θ are differentiable at any m ∈ ◦
M.

This result relies on a remarkable property of the Chebyshev–Markov moment
problem, namely convexity (resp. concavity) of m �→ minF∈Dm

∫
h(x)dF(x) (resp. m �→

maxF∈Dm

∫
h(x)dF(x)). Part (i) applies, for instance, to the Atkinson index for all K, while

part (ii) applies to the Theil index or to the Atkinson index for any odd K < 50.

D.3 Uniformly valid but conservative confidence intervals

We consider here confidence intervals that are uniformly valid but also conservative in
general. Uniformity is achieved over sets Fu�v defined by

Fu�v = {
F ∈ D : F(1 − u)− F(u) ≥ v

}
for 0 < u < 1/2 and v ∈ (0�1). Restricting Fp to Fu�v may be seen as a reinforcement
of Assumption 3.1, since Bernoulli distributions on p are never in Fu�v for any 0 < u <

1/2 and v ∈ (0�1). In addition, Fp ∈ ⋃
0<u<1/2�v∈(0�1)Fu�v is equivalent to Fp satisfying

Assumption 3.1. In this sense, the two conditions become equivalent when u and v tend
to zero.

We consider the confidence region on P0 with asymptotic level 1 − α defined by

I1−α = {
P ∈ (0�1)K : (P − P̃)′Σ(P)−1(P − P̃) ≤ χ2

K(1 − α)
}
�

where χ2
K(1 − α) is the 1 − α quantile of a χ2

K distribution.1 Then define

CI3
1−α =

[
inf

P∈P∩I1−α

θ
(
Q−1P

)
� sup
P∈P∩I1−α

θ
(
Q−1P

)]
� (D.1)

1An alternative would be to replace Σ(P) by Σ(P̃) in I1−α. There are two reasons for using Σ(P) instead
of Σ(P̃). First, in practice Σ(P̃) is often singular because one of the components of P̃ is zero. Second, it has
been shown that, in the case of binomial models (not multinomial as here), the finite sample performances
of confidence intervals based on Σ(P) are far better than those using Σ(P̃) (Blyth and Still (1983)).
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Theorem D.3. Suppose that Assumptions 2.1 and 3.1 hold. Then, for all u ∈ (0�1/2) and
v ∈ (0�1),

lim
n→∞ inf

F∈Fu�v

Pr F
([θ0F�θ0F ] ⊂ CI3

1−α

) ≥ 1 − α�

This theorem shows actually that CI3
1−α is uniformly valid for the whole set [θ0� θ0],

not only for θ0. This result is obtained under very mild assumptions. Even if these con-
fidence intervals are conservative in general, simulations suggest that they may still be
informative, especially when K is small.

D.4 Inference with a random unit size independent of p

The previous bounds are obtained when one is fully agnostic on the dependence be-
tween p and K, which is a safe option in the cases in which unit size might be a potential
determinant of segregation. However, if one is ready to impose independence between
these two variables, we can use units of size K to identify the first K unconditional mo-
ments of p. Actually, the vector of unconditional moments m0 = (m01� � � � �m0K) is overi-
dentified by

P0 = Qm0� (D.2)

where P0 (resp. Q) vertically stacks the vectors Pk
0 = (Pr(X = 1|K = k)� � � � �Pr(X = k|

K = k)) (resp. the matrices Qk) for different k. Theorems 2.1 or 2.2 then apply directly
with K =K.

Apart from the accuracy gains due to the overidentification of m0, the bounds on θ0

are thus likely to be very close, since they exploit the knowledge of the first K moments,
with K potentially large. In particular, θ0 is point identified when K = ∞, because the
knowledge of all moments of a distribution on [0�1] fully characterizes it (see, e.g., Gut
(2005, Theorems 8.1 and 8.3)), reducing Dm0 to a singleton. However, to avoid any incor-
rect inference, the independence assumption should not be used when the overidenti-
fication test based on Equation (D.2) is rejected.

We can still estimate P0 by constrained maximum likelihood, using distributions
with at most L + 1 support points, where L is the integer part of (K + 1)/2. We have
to use it in this context:

Pk
0i = Pr(X = i|K = k)=

(
k

i

)L+1∑
j=1

yjx
i
j(1 − xj)

k−i� i ∈ {0� � � � �k}�k ∈ {2� � � � �K}�

Given (D.2), we then estimate m0 = (m01� � � � �m0K) by m̂ = (Q′Q)−1QP̂. Once more, m̂ ∈
M by construction. The bounds can then be estimated as in the case with a single unit
size, with K simply replaced by K.

We can define a bootstrap confidence interval as follows. Letting m̂b = (m̂b1� � � � �

m̂bK) as before, we first draw K in its empirical distribution and then draw X conditional
on K = k according to the vector of probabilities P̂k

b =Qk(m̂b1� � � � � m̂bk)
′. The bootstrap
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confidence interval can then be obtained using CI1
1−α as in the case with a single K. We

can also test for independence between p and K, for instance, with a likelihood ratio test
that compares the likelihood under independence with the likelihood obtained without
independence. The critical value of this test can be obtained by bootstrapping under the
null, as described above.

Finally, an important particular case occurs when some individuals in the unit are
unobserved (e.g., survey data). If only nK < K individuals are sampled from units, then
X denotes the number of individuals belonging to the group of interest in this subsam-
ple. As previously, X follows, conditional on p and nK , a binomial distribution B(nK�p).
Hence, the result for a fixed K applies by simply replacing K by nK . Moreover, it is usually
plausible to assume nK to be independent of p conditional on K. Under this condition,
the nK first moments of p conditional on K are identified, nK denoting the maximum
of the support of nK conditional on K. Therefore, we can recover bounds on the seg-
regation index for the whole population using (B.3) by simply changing the unit size K

by nK .

Appendix E: Additional Monte Carlo simulations

In this section, we investigate several other finite sample properties of our estimators,
confidence intervals, and tests. First, because the bootstrap confidence intervals may
not be uniformly consistent, we investigate how the DGP affects its coverage rate. Ta-
ble E.1 displays these coverage rates with three alternative DGP, with K fixed to 6. The
first DGP is discrete: p takes the values 0 and 1/3 with probabilities 0�9 and 0�1, re-
spectively. This DGP was chosen so that m0 ∈ ∂M for all K ≥ 3, and the first two mo-
ments are close to those of our application. The second and third DGPs are such that
�−1(p)∼ N (−2�12�1�56) and �−1(p) ∼ N (−1�12�1�56), leading to minority proportions
higher than in our baseline specification (E(p)� 0�126 and 0�273, respectively).

As with our baseline specification, CI1
0�95 is usually conservative. This was expected

for the two continuous DGPs, but we also observe this pattern with the discrete DGP,
for which the asymptotic level is equal to 95%. Monte Carlo simulations (not reported
here) reveal that we get closer to 95% for n larger than 10,000. For discrete DGPs with
higher minority proportions, we also observe levels that are closer to 95% for small or
intermediate n.

Finally, Table E.2 displays some elements about the performance of the bootstrap
test of the binomial model proposed in the previous section. We use the same discrete
distribution of p as before. The test performs well in practice, with true levels close to
the nominal one except for n= 100 and K = 3, where it appears to be conservative.

Appendix F: Proofs

F.1 Proof of Proposition B.1

The proof is very close to the proof of Theorem 3.2 and we only emphasize the differ-
ences hereafter. Instead of considering P̂b and P̃∗, we consider, respectively, the vectors
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Table E.1. Influence of the DGP on inference.

CI1
0�95

DGP [θ0� θ0] n [E(̂θ)
(σ(̂θ)))

� E(̂θ)
(σ(̂θ)))

] Length CR(θ0)

Theil index
�−1(p) ∼ N (−2�12�1�56) [0�506�0�553] 100 [0�520

(0�072)
� 0�521
(0�072)

] 0�308 0�968

1000 [0�517
(0�033)

� 0�538
(0�033)

] 0�147 0�955

10,000 [0�507
(0�009)

� 0�551
(0�010)

] 0�088 0�978

�−1(p) ∼ N (−1�12�1�56) [0�481�0�511] 100 [0�491
(0�060)

� 0�494
(0�061)

] 0�233 0�945

1000 [0�487
(0�022)

� 0�504
(0�023)

] 0�100 0�943

10,000 [0�482
(0�007)

� 0�511
(0�007)

] 0�054 1�000

Discrete [0�677�0�677] 100 [0�653
(0�073)

� 0�653
(0�073)

] 0�436 0�985

1000 [0�666
(0�028)

� 0�666
(0�028)

] 0�141 0�973

10,000 [0�673
(0�011)

� 0�673
(0�011)

] 0�055 0�983

Duncan index
�−1(p) ∼ N (−2�12�1�56) [0�649�0�740] 100 [0�709

(0�065)
� 0�712
(0�064)

] 0�286 0�950

1000 [0�688
(0�041)

� 0�722
(0�033)

] 0�176 0�973

10,000 [0�660
(0�019)

� 0�738
(0�008)

] 0�144 0�990

�−1(p) ∼ N (−1�12�1�56) [0�620�0�677] 100 [0�653
(0�060)

� 0�657
(0�060)

] 0�236 0�940

1000 [0�637
(0�030)

� 0�669
(0�022)

] 0�128 0�968

10,000 [0�620
(0�010)

� 0�675
(0�007)

] 0�088 1�000

Discrete [0�931�0�931] 100 [0�904
(0�053)

� 0�904
(0�053)

] 0�327 1�000

1000 [0�922
(0�018)

� 0�922
(0�018)

] 0�102 0�985

10,000 [0�928
(0�006)

� 0�929
(0�006)

] 0�032 0�983

Note: For each DGP and each n, simulations are based on 400 draws of samples. In the discrete DGP, p takes values 0
and 1/3, with probabilities 0�9 and 0�1, leading to T � 0�677 and D � 0�931. The two other DGPs correspond to larger minority
proportion than in the baseline specification (E(p) � 0�126 and 0�273, respectively). For the first, T � 0�533 and D � 0�707, while
for the second, T � 0�497 and D � 0�658. In all cases, K = 6. The term CR(θ0) denotes the coverage rate of the confidence interval
CI1

0�95 (i.e., Pr(θ0 ∈ CI1
1−α)).

V̂b = (P̂r(K = 2)� � � � � P̂r(K =K)� P̂2′� � � � � P̂K ′)′ and

Ṽ ∗ = (
P̂r∗

(K = 2)� � � � � P̂r∗
(K =K)� P̃2∗′� � � � � P̃K∗′)′

�

where

P̃k∗ =

n∑
i=1

1
{
K∗

i = k
}
Ik

(
X∗

i

)
n∑

i=1

1
{
K∗

i = k
}
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Table E.2. Tests of the binomial model: true levels of
the bootstrap test (for a nominal level of 5%).

K n True Level K n True Level

3 100 0�020 9 100 0�064
3 1000 0�045 9 1000 0�064
3 10,000 0�050 9 10,000 0�058

6 100 0�054 12 100 0�060
6 1000 0�060 12 1000 0�049
6 10,000 0�058 12 10,000 0�062

Note: For each (n�K), simulations are based on 2000 draws. The
distribution of p takes values 0 and 1/3 with probabilities 0�9 and 0�1,
respectively.

and Ik(x) = (1{x = 1}� � � � �1{x = k})′. The asymptotic distribution of V̂b can be estab-
lished exactly as in Theorem 3.1. Because P̃k∗ is a ratio of averages, asymptotic normal-
ity of Ṽ ∗ follows by the Lindebergh–Feller central limit theorem and the delta method
for the bootstrap.

In Step 2, we consider, instead of P̂∗, the vector

V̂ ∗ = (
P̂r∗

(K = 2)� � � � � P̂r∗
(K = K)� P̂2∗′� � � � � P̂K∗′)′

�

but otherwise the same reasoning as in Theorem 3.2 applies. Regarding Step 3, note that
by (B.4) and differentiability of ν, ηk, and ηk, the bounds are differentiable functions of

V = (Pr(K = 2)� � � � �Pr(K = K)�P2′� � � � �PK ′)′. Finally, Steps 4 and 5 are the same as in
Theorem 3.2. �

F.2 Proof of Theorem C.1

First, if P0 ∈ ◦
P , we have

Pr(Cn) ≤ 1 − Pr(LRn = 0) = 1 − Pr(P̃ ∈ P)→ 0�

Next, suppose that P0 ∈ ∂P , CP0 is a half space, and α < 1/2. As previously, we here-
after let LR∗

n denote the bootstrap counterpart of LRn, with the underlying vector of
probability P̂b for X . When P̃ /∈ P or, equivalently, LRn > 0, we have P̂b = P̂ . As a result,

LR∗
2n|LRn > 0 d= LR∗

n|LRn > 0� (F.1)

Thus,

Pr(Cn)= Pr
(
LRn > c1−α

(
LR∗

2n
)|LRn > 0

)
Pr(LRn > 0)

= Pr
(
LRn > c1−α

(
LR∗

n

)|LRn > 0
)

Pr(LRn > 0)

= Pr
(
LRn > c1−α

(
LR∗

n

))
�

(F.2)
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Now, similar reasoning as in the first part of the proof of Lemma F.1 yields

LRn = n
∥∥P̃ − ρ(P̃)

∥∥2 + oP
(
n
∥∥P̃ − ρ(P̃)

∥∥2)
�

LR∗
n = n

∥∥P̃∗ − ρ
(
P̃∗)∥∥2 + oP

(
n
∥∥P̃∗ − ρ

(
P̃∗)∥∥2)

�

Moreover, by Lemma F.1 and (A.9),

√
n
(
ρ(P̃)− P̃

) = [πCP0
− Id](√n(P̃ − P0)

) + oP(1)�

√
n
(
ρ
(
P̃∗) − P̃∗) = [πCP0

− Id](√n
(
P̃∗ − P̂b

)) + oP(1)�

By the continuous mapping theorem, LRn
d−→ LR∞, with LR∞ = ‖πCP0

(Z) − Z‖2. By

Step 1 of the proof of Theorem 3.2, we also have LR∗
n

d−→ LR∞. Moreover, because CP0 is
a half space, there exists u0 ∈R

K such that LR∞ = max(u′
0Z�0). Moreover, Pr(u′

0Z ≤ 0) =
1/2 < 1 − α. Thus, the distribution of LR∞ is continuous at its quantile c1−α(LR∞). As a
result, by Theorem 1.2.1 of Politis, Romano, and Wolf (1999) and with probability 1,

Pr
(
LRn > c1−α

(
LR∗

n

)) → α�

The second point of the theorem follows using (F.2).

Finally, suppose that P0 /∈ P . Then P̃
P−→ P0 and by the continuous mapping theo-

rem, P̂ = ρ(P̃)
P−→ ρ(P0) 	= P0. Therefore,

K∑
k=0

P̃k ln(P̃k/P̂k)
P−→

K∑
k=0

P0k ln
(
P0k/ρk(P0k)

)
> 0�

As a result, LRn tends to infinity. On the other hand, similar reasoning as previously
shows that the asymptotic distribution LR∗

2n is that of LR∞. In other words, c1−α(LR∗
n) =

OP(1). This implies that Pr(Cn) → 1. �

F.3 Proof of Lemma D.2

Let us define h(m) = minF∈Dm

∫
h(x)dF(x) and let h be defined similarly. We also sup-

pose without loss of generality that ν(·�m1) is increasing.

Step 1. The function h is independent of m01 For any m= (m1� � � � �mK)
′ ∈ M,

θ(m) = ν
(
h(m)�m01

)
� θ(m) = ν

(
h(m)�m01

)
�

Now, by Proposition IV.P.4.2 of Krein and Nudel’man (1977), h (resp. h) is convex (resp.

concave). Thus, h and h admit directional derivatives in any m ∈ ◦
M (see, e.g., Hiriart-

Urruty and Lemaréchal (2001, p. 174)) and are differentiable almost everywhere (Hiriart-
Urruty and Lemaréchal (2001, Theorem 4.2.3 of Chapter B)). The result follows by the
chain rule, since ν is C1.
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Step 2. The function g satisfies Assumption 2.2 We have, for any m ∈ ◦
M,

{
θ(m)�θ(m)

} =
{
ν

(
L+1∑
j=1

y
j
(m)h

(
xj(m)

)
�m1

)
� ν

(
L+1∑
j=1

yj(m)h
(
xj(m)

)
�m1

)}
�

where xj(m) (resp. xj(m)) denotes one of the roots of the polynomial Pm (resp. Pm) and
y
j
(m) is the associated probability. Let us focus hereafter on the lower principal repre-

sentation. Because(
y

1
(m)� � � � � y

L+1
(m)

)′ = V
(
x(m)

)−1
(1�m1� � � � �mL)

′

and m �→ V (x(m))−1 is smooth, it suffices to prove that m �→ x(m) is smooth. Now, the
coefficients of Pm are smooth functions of m. Furthermore, the map from the coeffi-
cients of a polynomials to its roots is analytical at all vectors of coefficients such that the
corresponding roots are all distinct (see, e.g., Hörmander (1966)), which is the case here.
Hence the map m �→ x(m) is C1. The result follows by the chain rule, since ν is also C1. �

F.4 Proof of Theorem D.3

Introduce the function I(x) = (1{x = 1}� � � � �1{x = K})′ and the vectors Ui(P0) =
Σ(P0)

−1/2(I(Xi) − P0), where Σ(P0)
−1/2 denotes a square root matrix of Σ(P0)

−1, and
U(P0)= 1

n

∑n
i=1 Ui(P0). Hereafter P0 depends on the cdf F of p, but we omit this depen-

dency in the absence of ambiguity. Let S1−α denote the sphere of radius
√
χ2
K(1 − α) in

R
K . By definition of CI3

1−α,

PrF(P0 ∈ I1−α)= PrF
(√

nU(P0) ∈ S1−α

)
� (F.3)

We have E(Ui(P0)) = 0 and V (Ui(P0)) = IK , the identity matrix of size K. As a result,
by the multivariate Berry–Esseen bound (see, e.g., Esseen (1945, p. 92)),

∣∣Pr F
(√

nU(P0) ∈ S1−α

) − (1 − α)
∣∣ ≤ C(K)

EF

(
K∑
j=1

U1j(P0)
4

)
nK/(K+1) � (F.4)

where Z ∼ N (0� IK), C(K) is a constant independent of the distribution of X (and thus
p), and U1j(P0) is the jth component of U1(P0). Now, we have

EF

(
K∑
j=1

U1j(P0)
4

)
≤E

[(
K∑
j=1

U1j(P0)
2

)2]
= E

[∥∥U1(P0)
∥∥4]

�

In addition,

∥∥U1(P0)
∥∥2 ≤

∥∥I(X1)− P0
∥∥2

δ(P0)
≤ K + 1

δ(P0)
�
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where δ(P0) is the smallest eigenvalue of Σ(P0). Some algebra shows that δ(P0) =
minK

i=1 P0i. Thus,

EF

(
K∑
j=1

U1j(P0)
4

)
≤ (K + 1)2

min
i

P2
0i

�

Now, for all i = 1� � � � �K and all F ∈ Fu�v,

P0i = EF

[
Pr F(X = i|p)]

=
(
K

i

)∫ 1

0
pi(1 −p)K−i dF(p)

≥
∫ 1−u

u
pi(1 −p)K−i dF(p)

= uK
∫ 1−u

u

(
p

u

)i(1 −p

u

)K−i

dF(p)

≥ uK
∫ 1−u

u
dF(p)

≥ uKv�

where the last inequality follows from F ∈ Fu�v. As a result,

sup
F∈Fu�v

EF

(
K∑
j=1

U1j(P0)
4

)
≤ (K + 1)2

u2Kv2 � (F.5)

Combining (F.3), (F.4), and (F.5), we obtain

lim
n→∞ sup

F∈Fu�v

∣∣Pr F(P0 ∈ I1−α)− (1 − α)
∣∣ = 0� (F.6)

Finally, note that

P0 ∈ I1−α ⇒ θ
(
Q−1P0

) ∈ θ
(
Q−1I1−α

)
� θ

(
Q−1P0

) ∈ θ
(
Q−1I1−α

)
⇒ [θ0F�θ0F ] ⊂

[
inf

P∈P∩I1−α

θ
(
Q−1P

)
� sup
P∈P∩I1−α

θ
(
Q−1P

)]
�

Thus, by definition of CI3
1−α, Pr F([θ0F�θ0F ] ⊂ CI3

1−α) ≥ PrF(P0 ∈ I1−α). The result follows
by (F.6). �

F.5 Additional lemmas

In the following discussion, for any vector x= (x1� � � � � xK)
′, we let x0 = 1 −∑K

k=1 xk. The
following lemma is used in the proofs of Theorems 3.1 and 3.2.
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Lemma F.1. Suppose that Assumption 3.1 holds, that (Qn)n∈N is a random sequence

such that
√
n(Qn − P0)

d−→ Z for some random variable Z , and that P0 ∈ P . For any
Q = (Q1� � � � �QK), let ρ(Q) = arg minR∈P

∑K
k=0 Qk ln(Qk/Rk). Then

√
n
(
ρ(Qn)− P0

) = πCP0

(√
n(Qn − P0)

) + oP(1)�

Proof. The proof is divided into three steps.
Step 1. Approximation of ρ(Qn) by a projection First, note that for any (x� y) ∈ R

K ,
‖x − y‖2 = ∑K

k=0(xk − yk)
2/P0k. We also define πP(Q) = arg minR∈P ‖R − Q‖. We first

prove that, as Q → P0,∥∥ρ(Q)−πP(Q)
∥∥ = o

(‖Q− P0‖
)
� (F.7)

First, ρ = (ρ1� � � � � ρK) is continuous by the Berge maximum theorem. Thus ‖ρ(Q) −
Q‖ → 0 as Q → P0. Similarly, |ρ0(Q) − P0| → 0, with ρ0(Q) = 1 − ∑K

k=1 ρk(Q). By As-
sumption 3.1, P0k > 0 for k = 0� � � � �K. Thus, we also have Qk > 0 for Q close enough to
P0. Then, by a Taylor expansion,

K∑
k=0

Qk ln
(
ρk(Q)/Qk

)

=
K∑

k=0

Qk

[
ρk(Q)−Qk

Qk
−

(
ρk(Q)−Qk

)2

2Q2
k

+ o
((
ρk(Q)−Qk

)2)]

= −1
2

K∑
k=0

(
ρk(Q)−Qk

)2

Qk
+ o

(∥∥ρ(Q)−Q
∥∥2)

= −1
2

∥∥ρ(Q)−Q
∥∥2 + o

(∥∥ρ(Q)−Q
∥∥2)

�

(F.8)

Similarly, note that ‖πP(Q) − Q‖ ≤ ‖P0 − Q‖ by definition of πP = (π1P � � � � �πKP).
Therefore, by a similar Taylor expansion,

K∑
k=0

Qk ln
(
πkP(Q)/Qk

) = −1
2

∥∥πP(Q)−Q
∥∥2 + o

(‖P0 −Q‖2)� (F.9)

where we let π0P(Q) = 1 −∑K
k=1 πkP(Q). Now (F.8) and (F.9) imply, by definition of ρ(Q)

and πP(Q),∥∥πP(Q)−Q
∥∥2 ≤ ∥∥ρ(Q)−Q

∥∥2 ≤ ∥∥πP(Q)−Q
∥∥2 + o

(‖P0 −Q‖2 + ∥∥ρ(Q)−Q
∥∥2)

�

This also implies that ‖ρ(Q)−Q‖2 = O(‖P0 −Q‖2). Hence,∥∥ρ(Q)−Q
∥∥2 − ∥∥πP(Q)−Q

∥∥2 = o
(‖P0 −Q‖2)� (F.10)
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Now, note that∥∥ρ(Q)−πP(Q)
∥∥2

= ∥∥ρ(Q)−Q
∥∥2 + ∥∥Q−πP(Q)

∥∥2 + 2
〈
ρ(Q)−Q�Q−πP(Q)

〉
= ∥∥ρ(Q)−Q

∥∥2 − ∥∥Q−πP(Q)
∥∥2 + 2

〈
ρ(Q)−πP(Q)�Q−πP(Q)

〉
≤ ∥∥ρ(Q)−Q

∥∥2 − ∥∥Q−πP(Q)
∥∥2
�

where the inequality follows by the property of the projection onto a convex set. Com-
bined with (F.10), this yields (F.7).

Step 2. Asymptotic distribution of πP(Qn) Next we show that

√
n
(
πP(Qn)− P0

) = πCP0

(√
n(Qn − P0)

) + oP(1)� (F.11)

Let us consider

fn(h) = √
n
(
πP(P0 + h/

√
n)− P0

)
� f∞(h) = πCP0

(h)�

and let f̃n(h) = (fn(h)� f∞(h)). Let us prove that for all sequences hn, if a subsequence
hnk tends to h, then

f̃nk(hnk)→ (
f∞(h)� f∞(h)

)
� (F.12)

The results then follow by applying the extended continuous mapping (see van der Vaart
(2000, Theorem 18.11)) to the functions f̃n and the sequence

√
n(Qn − P0).

To prove (F.12), note first that f∞ is continuous as a projection. Therefore, we just
have to prove that fnk(hnk) → f∞(h). Now, for all h ∈ R

K and as t → 0 (see, e.g., Hiriart-
Urruty (1982)),

πP(P0 + th)= P0 + tπCP0
(h)+ o(t)�

Taking t = 1/
√
n, this implies that fnk(h) − f∞(h) = o(1). Moreover, as a projection, πP

satisfies ‖πP(h′)−πP(h)‖ ≤ ‖h′ − h‖ for all (h�h′) in R
K . Thus,∥∥fnk(hnk)− f∞(h)

∥∥ ≤ ∥∥fnk(hnk)− fnk(h)
∥∥ + ∥∥fnk(h)− f∞(h)

∥∥
≤ ‖hnk − h‖ + o(1) = o(1)�

Hence, (F.12), and thus (F.11), hold.
Step 3. Asymptotic distribution of ρ(Qn) Finally, let us write

√
n
(
ρ(Qn)− P0

) = √
n
(
ρ(Qn)−πP(Qn)

) + √
n
(
πP(Qn)− P0

)
= oP

(√
n(Qn − P0)

) +πCP0

(√
n(Qn − P0)

) + oP(1)�

= πCP0

(√
n(Qn − P0)

) + oP(1)�
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where the second equality follows from (F.11) and (F.7) combined with Qn − P0
P−→ 0

(see, e.g., Lemma 2.12 of van der Vaart (2000)). �

The following lemma is used to establish the consistency of the bounds in the proof
of Theorem 3.1.

Lemma F.2. Suppose that Assumption 2.1 holds. Then θ and θ are continuous at any
m ∈ M.

Proof. We establish the continuity of θ(·) only, the result being similar for θ(·). First,
note that

θ(m) = max
F∈D

g̃(F�m) s.t. F ∈G(m)�

where g̃(F�m) = g(F�m1) and G is the correspondence defined on M to D by G(m) =
Dm. To show continuity of θ, we check that the conditions of the Berge maximum the-
orem (see, e.g., Carter (2001, Theorem 2.3)) are satisfied. First we show that g̃ is contin-
uous with respect to the product topology on D × M (we consider the weak topology
on D and the standard topology on M). By an application of the triangular inequality
and continuity of h, the function (F�m) �→ ∫

h(x�m1)dF(x) is continuous. Because ν is
continuous by Assumption 2.1, g̃ is continuous as well.

Second, because any sequence of distributions on [0;1] is uniformly tight, D is com-
pact for the topology induced by the weak convergence. Because Dm is closed for the
weak convergence and Dm ⊂ D, then Dm is also compact. Therefore, G is compact val-
ued. Third, the domain and range of G are compact and the graph of G is ϕ−1({0}), with
ϕ(F�m) = ∫

(x� � � � � xK)′ dF − m. Because ϕ is continuous, the graph of G is closed. As a
consequence, G is upper hemicontinuous (see, e.g., Carter (2001, Exercise 2.107)).

Finally, we prove that G is lower hemicontinuous. We have to show that for any
(F�m), F ∈ G(m), and for any sequence mn → m (mn ∈ M), there exists a subsequence

(mnk)k and Fnk ∈ G(mnk) such that Fnk
d−→ F . Let m̃n ∈ ∂M and λn ∈ [0�1] be such that

mn = λnm+ (1 − λn)m̃n�

By Theorem 2.1, G is reduced to a singleton on ∂M. Let {F̃n} =G(m̃n) and

Fn = λnF + (1 − λn)F̃n�

By construction, Fn ∈ G(mn). Because ‖mn − m‖ → 0 (where ‖ · ‖ denotes the euclidian
norm), we also have

(1 − λn)‖m− m̃n‖ → 0�

If lim inf‖m − m̃n‖ > 0, then λn → 1, implying that Fn
d−→ F . On the other hand, if

lim inf‖m− m̃n‖ = 0, there exists a subsequence (mnk)k such that ‖m−mnk‖ → 0. More-
over, m ∈ ∂M because mnk ∈ ∂M and ∂M is closed. Because G is upper hemicontinu-
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ous and single-valued on ∂M, it is continuous on ∂M. As a result, F̃nk
d−→ F , implying

also that Fnk
d−→ F . Hence, in all cases, we have proved that there exists a subsequence

(mnk)k and Fnk ∈G(mnk) such that Fnk
d−→ F . The result follows. �
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