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A. Proofs of main results
A.1. Notation
We introduce additional notation. We consider statistics that replace some (not all)
estimated components in the statistics defined in the main text with population quantities.
Let

Di(h) =

∑T
t=1 dit(g

0
i , h)/

√
T√

Ξi(h, h)

and

H̃ij(h, h
′) =

1

T

T∑
t=|j|+1

(
di,t+min(0,j)(g

0
i , h)− d̄i(g

0
i , h)

) (
di,t−max(0,j)(g

0
i , h

′)− d̄i(g
0
i , h

′)
)
,

where d̄i(g0i , h) =
∑T

t=1 dit(g
0, h)/T . Let

Ξ̃i(h, h
′) =

T−1∑
j=−T+1

K

(
j

κN

)
H̃ij(h, h

′).

Let

D̃i(h) =

∑T
t=1 dit(g

0
i , h)/

√
T√

Ξ̃i(h, h)
,

and let Ω̃i(g
0
i ) denote the (G− 1)× (G− 1) matrix with entries

(
Ω̃i(g

0
i )
)
j,j′

=
Ξ̃i(h, h

′)√
Ξ̃i(h, h)Ξ̃i(h′, h′)

.

We write dit(h) = dit(g
0
i , h).

A.2. Proofs
Proof of Theorem 1. The result follows directly from Lemma A.1.

Proof of Theorem 2. Write kα,N(Ω) for the 1−α/N -quantile of a N(0,Ω) random variable.
Abbreviate Ωi = Ωi(g

0
i ) and Ω̂i = Ω̂i(g

0
i ).

Let ζN denote a diverging sequence, ζN → ∞. For ᾱN = α
(
1 + 2CA.3

√
εN log(N/α)

)
and CA.3 the constant from Lemma A.3, we first establish the following chain of inequalities

kᾱN ,N (Ωi) ≤ kα,N

(
ρ(Ω̂i, εN)

)
≤ cα,N

(
ρ(Ω̂i, εN)

)
. (A.1)
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To prove the second inequality, let tT−1(·) denote the cumulative distribution function
of a t-distributed random variable with (T − 1)-degrees of freedom and let X denote a
(G− 1) random vector distributed according to centered multivariate t-distribution with
T − 1 degrees of freedom and scale matrix ρ(Ω̂i, εN). The marginal distribution of the
first component of X, denoted by X1, is X1 ∼ tT−1. Let dN = t−1

T−1(1− α/N) and note
that dN → ∞. Moreover,

α/N = P (X1 > dN) ≤ P

(
max

h∈1,...,G−1
Xh > dN

)
.

Therefore, cα,N
(
ρ(Ω̂i, εN)

)
≥
√
T/(T − 1)dN and forN0 and T0 independent of ρ(Ω̂i(g

0
i ), εN)

and t∗ the constant defined in Lemma A.2 we can take

cα,N
(
ρ(Ω̂i, εN)

)
> t∗,

for all N ≥ N0, T ≥ T0. Therefore, the assumptions of Lemma A.2 are satisfied for
t = cα,N

(
ρ(Ω̂i, εN)

)
and N , T large enough and Lemma A.2 implies

Φmax,ρ(Ω̂i,εN )

(
kα,N

(
ρ(Ω̂i, εN)

))
=1− α/N

=tmax,ρ(Ω̂i,εN ),T−1

(√
(T − 1)/Tcα,N

(
ρ(Ω̂i, εN)

))
≤Φmax,ρ(Ω̂i,εN )

(
cα,N

(
ρ(Ω̂i, εN)

))
and therefore kα,N

(
ρ(Ω̂i, εN)

)
≤ cα,N

(
ρ(Ω̂i, εN)

)
. We now establish the first inequality in

(A.1). Note that

αN ≡ α
(
1 + CA.3cα,N

(
ρ(Ω̂i, εN)

))
≤ α

(
1 + 2CA.3

√
log(N/α)

)
by Lemma A.10 and that kα,N is decreasing in α. Therefore, it suffices to establish

kαN ,N (Ωi) ≤ kα,N

(
ρ(Ω̂i, εN)

)
. (A.2)

It can be established by applying Lemma A.3. Lemma A.4 yields

‖Ω̂i − Ωi‖max ≤ ζN

(
rθ,N

ιN min1≤i≤N σi
+ T−c1(logN)c2 + T−ρ

)
≡ δN ,

on an event whose probability approaches one. On this set, Lemma A.10 states that we
can take kα,N(ρ(Ω̂i, εN)) >

√
log(N/α) >

√
2 for N large enough. We now show that

δN/εN → 0. Since ζN can be taken to diverge at an arbitrarily slow rate, it suffices to
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show that, for π > 0,

rθ,N/
(
ιN min

1≤i≤N
σi
)
≤εNT−π,

T−c1(logN)c2 ≤εNT−π,

T−ρ ≤εNT−π.

Since rθ,N
√
T logN = o(ιN min1≤i≤N σi) and εN ≥ (logN)−k2 , the first condition is met

provided

T−1+2π(logN)−1+2k2 = O(1).

Under the assumed rate condition N ≤ o(1)T δ2 , this holds for any 0 < π < 1
2
. The second

and third conditions can be checked similarly. Now that we have established δN/εN → 0
we can take 4δN ≤ εN , satisfying one of the condition of Lemma A.3. The condition
εN ≤ 4cω/3 is assumed. This argument verifies all conditions of Lemma A.3 and yields
inequality (A.2) and therefore (A.1).

Our assumptions,

rθ,N
√
T logN/

(
ιN min

1≤i≤N
σi
)
→ 0

and N ≤ o(1)T δ2 guarantee that (
√
T ∨ logN)rθ,N/(ιN min1≤i≤N σi) and T−c1(logN)c2

vanish. Therefore,

bLV ∗
N =

(
√
T ∨ logN)rθ,N
ιN min1≤i≤N σi

+ T−c1(logN)c2 + T−ρ

vanishes and Lemma A.14 can be applied and yields

P

(
max
1≤i≤N

max
h∈G\{g0i }

∣∣∣D̂i(h)−Di(h)
∣∣∣ > ζNb

LV ∗
N

)
= o(1). (A.3)

We now prepare to apply the high-dimensional CLT in Lemma A.13. Let δi(h) = θg0i − θh
and

Xit(h) =
dit(h)√

T−1
∑T

t=1

∑T
s=1 Ep[dit(h)dis(h)]

= −x
′
it (δi(h)/‖δi(h)‖) vit
ξi(h)/(σi‖δi(h)‖)

,

where

ξi(h) =

√√√√ 1

T

T∑
t=1

T∑
s=1

E[dit(h)dis(h)] =

√√√√δi(h)′

(
1

T

T∑
t=1

T∑
s=1

EP [xitx′isuituis]

)
δi(h).
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Define the vector

Xt =
(
(X1t(h))h∈G\{g01}, . . . , (XNt(h))h∈G\{g0N}

)′
.

This vector has length J = N(G− 1). Let Ξ denote the long-run variance of the time
series Xt defined as the J × J matrix with entry (j, k) given by

cov

(
1√
T

T∑
t=1

Xt,j,
1√
T

T∑
t=1

Xt,k

)
.

Let G denote a centered normal vector with variance matrix Ξ. Clearly, Xi is a normal
random vector with covariance matrix Ωi. Taking complements, we have

sup
(r1,...,rN )∈RN

++

∣∣∣∣P( max
1≤i≤N

(
max

h∈G\{g0i }
Di(h)− ri

)
> 0

)
− P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0

)∣∣∣∣
= sup

(r1,...,rN )∈RN
++

∣∣P (Di(h) ≤ ri for all h ∈ G \ {g0i } and i = 1, . . . , N
)

− P (Xi,h ≤ ri for all h = 1, . . . , G− 1 and i = 1, . . . , N)
∣∣

≤ sup
a∈R(G−1)N

∣∣∣∣∣P
(

1√
T

T∑
t=1

Zt ≤ a

)
− P (X ≤ a)

∣∣∣∣∣
≤C

(
(logN)(1+2d1)/(3d1)

T 1/9
+

(logN)7/6

T 1/9

)
= o(1). (A.4)

Here, the last inequality holds by Lemma A.13 and the asymptotic order follows from
N ≤ o(1)T δ2 . Now, we have

P
(
∃i ∈ 1, . . . , N such that T̂i(g0i ) > cα,N(Ω̂i)

)
≤P

(
∃i ∈ 1, . . . , N such that T̂i(g0i ) > kᾱN ,N(Ωi)

)
≤P

(
max
1≤i≤N

max
h∈G\{g0i }

(
Di(h)− kᾱN ,N(Ωi) + ζNb

LV ∗
N

)
> 0

)
+ o(1).

≤P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N(Ωi) + ζNb

LV ∗
N

)
> 0

)
+ sup

(r1,...,rN )∈RN
++

∣∣∣∣P( max
1≤i≤N

(
max

h∈G\{g0i }
Di(h)− ri

)
> 0

)
− P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0

)∣∣∣∣+ o(1)

≤P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N(Ωi) + ζNb

LV ∗
N

)
> 0

)
+ o(1), (A.5)

5



where the first inequality follows by (A.1), the second inequality follows by (A.3), the
third inequality holds because the sup bounds deviations for all choices of ri and therefore
in particular ri = kᾱN ,N(Ωi)− ζNb

LV ∗
N , and the fourth inequality follows by (A.4).

Next, applying an anti-concentration argument eliminates the ζNbLV ∗
N term on the

right-hand side of the previous display. To this end, let a > 0 and write kN,i = kᾱN ,N(Ωi).
Then

P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN,i

)
+ a > 0

)
− P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN,i

)
> 0

)
=P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN,i

)
≤ 0

)
− P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN,i

)
≤ −a

)
=P (X ≤ x+ a)− P (X ≤ x),

where

x =
(
kN,1 − a, . . . , kN,1 − a︸ ︷︷ ︸

G− 1 times

, kN,2 − a, . . . , kN,2 − a︸ ︷︷ ︸
G− 1 times

, . . . , kN,N − a, . . . , kN,N − a︸ ︷︷ ︸
G− 1 times

)
The Nasarov-type inequality from Lemma A.1 in Chernozhukov, Chetverikov, and Kato
(2017) applies with b = 1 and p = (G− 1)N and yields

P (X ≤ x+ a)− P (X ≤ x) ≤ CNasarova
√

log(N(G− 1)) ≤ O(1)a logN.

Therefore,

P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN,i

)
+ a > 0

)
≤P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN,i

)
> 0

)
+O(1)a

√
logN

Now, combining this inequality with (A.5) by putting a = ζNb
LV ∗
N yields

P

(
max
1≤i≤N

max
h∈G\{g0i }

Di(h)− kᾱN ,N(Ωi) + ζNb
LV ∗
N > 0

)
≤P

(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N(Ωi)

)
+ ζNb

LV ∗
N > 0

)
+ o(1)

≤P
(
max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N(Ωi)

)
> 0

)
+O(1)ζNb

LV ∗
N

√
logN + o(1)

≤
∑

1≤i≤N

P

(
max

1≤h≤G−1
Xi,h − kᾱN ,N(Ωi) > 0

)
+ o(1)

=ᾱN + o(1)

=α + 2CA.3
√
εN log(N/α) + o(1) → α.
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Proof of Theorem 3. Since the marginal distributions of a multi-variate t-distribution
with ν degrees of freedom are Student-t with ν degrees of freedom, it holds that(

tmax,ρ(Ω̂i(g0i ),εN ),T−1

)−1 (
1− α

N

)
≤ t−1

T−1

(
1− α

(G− 1)N

)
by the union bound. Thus, replacing our critical value with the SNS critical values
yields a more conservative test. Now, inspection of the proof of Theorem 2 shows that
Assumption 1.9 is only used to argue that Ω̂i(g

0
i ) in the definition of the critical value can

be replaced by the population quantity Ωi(g
0
i ). Since we are replacing the critical value

that depends on Ω̂i(g
0
i ) by a critical value that is independent of Ω̂i(g

0
i ), this step is not

needed. Similarly, the SNS critical value is independent of the regularization sequence,
and the assumptions on εN are therefore unnecessary.

Proof of Theorem 4. The proof is similar to the proof of Theorem 2, replacing the
application of Lemma A.4 and Lemma A.14 by and application of Lemma A.16.

Proof of Theorem 5. Let

dUit(g, h) = (yit − w′
itθ

w − x′itθg)
2 − (yit − w′

itθ
w − x′itθh)

2

and dUi (h) = dUit(g
0
i , h), d̂Ui (h) = d̂Ui (g

0
i , h), d̄Ui (h) = N−1

∑T
t=1 d

U
it(h), and ¯̂

dUi (h) =

N−1
∑T

t=1 d̂
U
it(h). We note that the hypothesis selection part of the procedure does not

affect the theoretical analysis. This is because, here, we focus on size and thus need to
consider only the behavior of the test statistics under {g0i }Ni=1.

In the following o(1) is understood such that a = o(1) if lim supN,T→∞ |a| = 0.
Let J = {(i, h) | i ∈ {1, . . . , N}, h ∈ G\{g0i }} and

J1 =

{
(i, h) | i ∈ {1, . . . , N}, h ∈ G\{g0i },

√
TEP (d̄Ui (h))
sUi,T (h)

> −cSNS
β,N

}
,

where (sUi (h))
2 =

∑T
t=1 var(d

U
it(h))/T = var(dUit(h)) (the equality follows by stationarity).

Roughly speaking, J1 is the set of pairs of units and groups that are difficult to distinguish
from the true group membership.

Step 1: We first prove that infP∈PN
P
(
max(i,h)∈Jc

1

¯̂
dUi (h) ≤ 0

)
> 1−β−N−1−CT−c−

aθ,N .
Note that ¯̂

dUi (h) > 0 for some (i, h) ∈ J c1 implies that

max
(i,h)∈J

√
T (

¯̂
dUi (h)− EP (d̄Ui (h)))

sUi,T (h)
> cSNS

β,N .
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We observe that

sup
P∈PN

P

(
max
(i,h)∈J

√
T (

¯̂
dUi (h)− EP (d̄Ui (h)))

sUi (h)
> cSNS

β,N

)

≤ sup
P∈PN

P

(
max
(i,h)∈J

√
T (d̄Ui (h)− EP (d̄Ui (h)))

sUi (h)
> cSNS

β,N − eUN,1

)

+ sup
P∈PN

P

(
max
(i,h)∈J

∣∣∣∣∣
√
T (

¯̂
dUi (h)− d̄Ui (h))

sUi (h)

∣∣∣∣∣ > eUN,1

)
,

where

eUN,1 = C
rθ,N

ιN +min1≤i≤N σi
.

The second term on the right-hand side converges to zero by (A.19) in Lemma A.19. Let
βN solve cSNS

βN ,N
= cSNS

β,N−eUN,1. To see that βN is well-defined, note that since cSNS
β,N → ∞ and

eUN,1 → 0 the right-hand side of the equation is diverging and therefore positive for large
N . Moreover, cSNS

p,N ↓ 0 as p ↑ N/2. We thus establish the existence of βN . Uniqueness
follows from the strict monotonicity of the distribution function of the t-distribution.
Thus, we have

sup
P∈PN

P

(
max
(i,h)∈J

√
T (

¯̂
dUi (h))− EP (d̄Ui (h)))

sUi (h)
> cSNS

β,N

)

≤ sup
P∈PN

P

(
max
(i,h)∈J

√
T (d̄Ui (h))− EP (d̄Ui (h)))

sUi (h)
> cSNS

βN ,N

)
+ o(1)

≤1− (G− 1)NΦ(cSNS
βN ,N

) + o(1)

≤βN + o(1)

=β + o(1),

where the second inequality follows by Lemma A.13 and the Bonferroni inequality,
the third inequality holds because cSNS

βN ,N
becomes sufficiently large as N → ∞ and

the tail of the t-distribution is heavier than that of the standard normal distribution
(Lemma A.2 under the unidimensional case), and the last inequality follows by the
fact that |βN − β| ≤ CeUN,1

√
log((G− 1)N/β) → 0. We now show that |βN − β| ≤

CeUN,1
√

log((G− 1)N/β). Let FT denote the distribution function of a t-distributed
random variable with T − 1 degrees of freedom, and let fT denote its density function.
Let c(β) = t−1

T−1(1 − β/((G − 1)N)) and eU∗
N,1 =

√
(T − 1)/TeUN,1. By the mean-value

theorem

βN
(G− 1)N

− β

(G− 1)N
=FT (c(β))− FT (c(βN))
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=FT (c(β))− FT (c(β)− eUN,1) = fT (c
∗)eU∗

N,1,

where c∗ is a value between c (βN) and c (β). Noting that c (βN) < c (β) and that fT is
decreasing on the positive axis, rearranging this equality yields

|βN − β| ≤fT (c (βN)) (G− 1)NeU∗
N,1

≤2c (βN) (1− FT (c (βN)) (G− 1)NeU∗
N,1

≤4eU∗
N,1βN

√
log ((G− 1)N/βN)

≤4eUN,1β
√

log ((G− 1)N/β) + 4eUN,1 |βN − β|
√

log ((G− 1)N/β)

≤4eUN,1
√

log ((G− 1)N/β) + o (|βN − β|) ,

where the second inequality follows from Lemma A.18, the third inequality follows from
Lemma A.17 (with εN = 1), the fourth inequality follows from eUN,1 =

√
T/(T − 1)eU∗

N,1 ≥
eU∗
N,1 and βN ≥ β, the fifth inequality follows from eUN,1

√
logN → 0. This recursion implies

|βN − β| ≤ 5eUN,1
√

log ((G− 1)N/β)

for N large enough.
An implication of Step 1 is as follows. Let

N =

{
i ∈ {1, . . . , N} | max

h∈G\{g0i }

√
TEP (d̄Ui (h))
sUi (h)

> −cSNS
β,N

}
.

Then

inf
P∈PN

P

(
max
i∈Nc

max
h∈G\{g0i }

¯̂
dUi (h) ≤ 0

)
≥ 1− β + o(1).

Step 2: Next, we prove that infP∈PN
P (×N

i=1
M̂i(g

0
i ) ⊇ J1) ≥ 1 − β + o(1). Here, we

drop the g argument for simplicity of notation when arguments are g0i and h.
We note that

sup
P∈PN

P

(
N×
i=1

M̂i(g
0
i ) + J1

)

= sup
P∈PN

P

(
∃(i, h); D̂U

i (h) ≤ −2cSNS
βN ,N

and
√
TEP (d̄Ui (h))
sUi (h)

> −cSNS
β,N

)

≤ sup
P∈PN

P

(
∃(i, h);DU

i (h) ≤ −2cSNS
β,N + eUN,2 and

√
TEP (d̄Ui (h))
sUi (h)

> −cSNS
β,N

)

+ sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

∣∣∣D̂U
i (h)−DU

i (h)
∣∣∣ > eUN,2

)
,

9



where

eUN,2 = C
rθ,N(

√
T +

√
logN)

ιN ∧min1≤i≤N σi
.

By (A.20) in Lemma A.19, it holds that

sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

∣∣∣D̂U
i (h)− D̃U

i (h)
∣∣∣ > eUN,2

)
= o(1).

We observe

sup
P∈PN

P

(
∃(i, h);DU

i (h) ≤ −2cSNS
β,N + eUN,2 and

√
TEP (d̄Ui (h))
sUi (h)

> −cSNS
β,N

)

≤ sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

√
T (EP (d̄Ui (h)− d̄Ui (h))

sUi,T (h)
>

2s̃Ui (h)− sUi (h)

sUi (h)
cSNS
β,N − s̃Ui (h)

sUi (h)
eUN,2

)
.

Note that s̃Ui (h)sUi (h) > 1− r/2 is equivalent to

2s̃Ui (h)− sUi (h)

sUi (h)
> 1− r.

Thus, we have

sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

√
T (EP (d̄Ui (h)− d̄Ui (h))

sUi,T (h)
>

2s̃Ui (h)− sUi (h)

sUi (h)
cSNS
β,N − s̃Ui (h)

sUi (h)
eUN,2

)

≤ sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

√
T (EP (d̄Ui (h)− d̄Ui (h))

sUi,T (h)
> (1− r)cSNS

β,N − AeUN,2

)

+ sup
P∈PN

P

(∣∣∣∣ s̃Ui (h)sUi (h)
− 1

∣∣∣∣ > r/2

)
+ sup

P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

∣∣∣∣ s̃Ui (h)sUi (h)

∣∣∣∣ > A

)
,

where A > 1 is a fixed number. We now note that

s̃Ui (h)
2 − sUi (h)

2

=
1

T

T∑
t=1

{
(dUit(h))

2 − EP
[
(dUit(h))

2)
]
− (d̄Ui (h)− EP

[
dUit(h)

]
)(d̄Ui (h) + EP

[
dUit(h)

]}
.

10



By Lemma A.15 and (A.24), it holds that

sup
P∈P

(
max
1≤i≤N

∣∣∣∣ s̃Ui (h)2 − sUi (h)
2

σ2
i ‖δi(h)‖2

∣∣∣∣ ≥ CT−1/2 logN

)
= o(1). (A.6)

Because sUi (h) > si(h) and si(h)/(σi‖δi(h)‖)) is bounded from above and from below by
Assumption 1.4, it holds that

sup
P∈P

(
max
1≤i≤N

∣∣∣∣ s̃Ui (h)sUi (h)
− 1

∣∣∣∣ ≥ CT−1/4
√

logN

)
= o(1). (A.7)

We take r = T−1/4
√
logN . We then have

sup
P∈PN

P

(∣∣∣∣ s̃Ui (h)sUi (h)
− 1

∣∣∣∣ > r/2

)
+ sup

P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

∣∣∣∣ s̃Ui (h)sUi (h)

∣∣∣∣ > A

)
= o(1).

Let β′
N be such that cSNS

β′
N ,N

= (1− r)cSNS
β,N − AeUN,2. We then examine

sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

√
T (EP (d̄Ui (h)− d̄Ui (h))

sUi,T (h)
> (1− r)cSNS

β,N − AeUN,2

)

= sup
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

√
T (EP (d̄Ui (h)− d̄Ui (h))

sUi,T (h)
> cSNS

β′
N ,N

)
≤1− (G− 1)NΦ(cSNS

β′
N ,N

) + o(1)

≤β′
N + o(1)

=β + o(1),

where the first inequality follows by Lemma A.13 and the Bonferroni inequality, the
second inequality holds because cSNS

β′
N ,N

becomes sufficiently large as N → ∞ and the tail
of the t-distribution is heavier than that of the standard normal distribution (Lemma
A.2 under the unidimensional case), and the last inequality follows by the fact that
|β′
N − β| ≤ CeUN,2

√
log((G− 1)N/β) → 0 shown in Step 1.

Summing up, we have

sup
P∈PN

P

(
N×
i=1

M̂i(g
0
i ) + J1

)
≤ β + o(1).

An implication of Step 2 is as follows. Let

N̂ =
{
i ∈ {1, . . . , N} |Mi(g

0
i ) 6= ∅

}
.

11



Then

inf
P∈PN

P
(
N̂ ⊇ N

)
≥ 1− β + o(1).

Step 3: First, consider the case in which J1 = ∅. In this case, the argument in Step 1
yields that

inf
P∈PN

P (ĝi = g0i , ∀i) = inf
P∈PN

P

(
max
1≤i≤N

max
h∈G\{g0i }

D̂U
i (h) ≤ 0

)
≥ 1− β + o(1).

The equality in the above display follows because ĝi minimizes the squared loss in the
two-step procedure (see (11) in the main text). Because {ĝi}Ni=1 is always included in the
confidence set, the limiting probability of the confidence set not including {g0i }Ni=1 is less
than β < α.

Next, consider the case in which |J1| ≥ 1. Observe that

sup
P∈PN

P
(
{g0i }Ni=1 /∈ Ĉsel,α,β

)
= sup

P∈PN

P

(
N⋃
i=1

({
T̂i(g

0
i ) > ĉα−2β,N̂,i(g

0
i )
}
∩
{

max
h∈G\{g0i }

D̂U
i (h) > 0

}))

≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i(g

0
i ) > ĉα−2β,N̂,i(g

0
i )
}
∪
⋃
i∈Nc

{
max

h∈G\{g0i }
D̂U
i (h) > 0

})

≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i(g

0
i ) > ĉα−2β,N̂,i(g

0
i )
})

+ sup
P∈PN

P

(⋃
i∈Nc

{
max

h∈G\{g0i }
D̂U
i (h) > 0

})
.

By Step 1, we have

sup
P∈PN

P

(⋃
i∈Nc

{
max

h∈G\{g0i }
D̂U
i (h) > 0

})
≤ β + o(1).

By Step 2, we have

sup
P∈PN

P

(⋃
i∈N

{
T̂i(g

0
i ) > ĉα−2β,N̂,i(g

0
i )
})

≤ sup
P∈PN

P

(
{N̂ ⊇ N} ∩

⋃
i∈N

{
T̂i(g

0
i ) > ĉα−2β,N̂,i(g

0
i )
})

+ sup
P∈PN

P ({N̂ + N})

≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i(g

0
i ) > ĉα−2β,|N|(g

0
i )
})

+ β + o(1).
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Thus, we have

sup
P∈PN

P
(
{g0i }Ni=1 /∈ Ĉsel,α,β

)
≤ sup

P∈PN

P

(⋃
i∈N

{
T̂i(g

0
i ) > ĉα−2β,|N|,i(g

0
i )
})

+ 2β + o(1).

Theorem 2 implies

lim sup
N,T→∞

sup
P∈PN

P
(
{g0i }Ni=1 /∈ Ĉsel,α,β

)
≤ α.

A.3. Supporting lemmas
Lemma A.1. Let (φi)ni=1 denote a collection of independent, non-randomized tests and
suppose that

αi = nP (φi > 0)

with αmax := maxi=1,...,n αi < 1. Then

αmin −
α2
min

2
≤ P

(
max
i=1,...,n

φi > 0

)
≤ αmax −

α2
max

2

(
1− αmax

3
+

1

n

(
1− αmax

n

)−2
)
,

where αmin := mini=1,...,n αi.

Proof. For fixed 0 < x < 1, let x̄ denote a generic intermediate value between zero and
x. By a Taylor expansion around x = 0,

exp(−x) = 1− x+
1

2
x2 − 1

6
exp(−x̄)x3 ≥ 1− x+ x2

(
1

2
− x

6

)
. (A.8)

Moreover,

log (1− x) = 0− x− x2

2 (1− x̄)2
≥ −x− x2

2 (1− x)2
. (A.9)

Now, for 0 < α < 1,(
1− α

n

)n
=exp

(
n log

(
1− α

n

))
≥ exp(−α) exp

(
−α

2

2n

(
1− α

n

)−2
)

≥
(
1− α + α2

(
1

2
− α

6

))(
1− α2

2n

(
1− α

n

)−2
)

≥1− α +
α2

2

(
1− α

3

)
− α2

2n

(
1− α

n

)−2

,
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where the first inequality uses (A.9), the second inequality uses (A.8) and the last
inequality uses

1− α + α2

(
1

2
− α

6

)
≤ 1.

We conclude that

P
(

max
i=1,...,n

φi > 0

)
= 1− P

(
max
i=1,...,n

φi = 0

)
≤1−

(
1− αmax

n

)n
≤ αmax −

α2
max

2

(
1− αmax

3

)
+
α2
max

2n

(
1− αmax

n

)−2

.

Next, note that (
1− α

n

)n
≤ exp(−α) ≤ 1− α +

α2

2

and therefore

P
(

max
i=1,...,n

φi > 0

)
= 1− P

(
max
i=1,...,n

φi = 0

)
≥ 1−

(
1− αmin

n

)n
≥ αmin −

α2
min

2
.

Lemma A.2. Let V denote a correlation matrix, which is possibly singular, and let
Φmax,V denote the distribution function of the maximum element of a multivariate normal
random vector with covariance matrix V . There is t∗ ∈ R independent of T and V such
that for all t > t∗

tmax,V,T−1

(√
T − 1

T
t

)
≤ Φmax,V (t).

Proof. Let x be a vector of random variables such that x ∼ N(0, V ). By the definitions
of Φmax,V and tmax,V,T−1, we have

Φmax,V (t) = P (x ≤ t)

and

tmax,V,T−1

(√
T − 1

T
t

)
= P

(
1√

z/(T − 1)
x ≤

√
T − 1

T
t

)
,

where an inequality such as x ≤ t is understood in an element-wise way, and z is a χ2

random variable with degree of freedom T − 1 independent of x.
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Let r be the rank of V . We have the following eigen decomposition of V :

V = UΣU ′,

where Σ is a diagonal matrix with non-negative elements and U is a unitary matrix. We
arrange the elements of U and Σ such that the first r diagonal elements of Σ are non-zero
and its other diagonal elements are zero. Let Σr be the r × r upper-left block of Σ. Let

x∗ = U ′x.

By construction, x∗ ∼ N(0,Σ). Because Σ is diagonal and only the first r diagonal
elements are non-zero, the first r elements of x∗ can be non-zero, and its other elements
are zero. Let xr be the vector of the first r elements of x∗. Note that by the definition of
Σr, x∗ ∼ N(0,Σr). This observation implies that

x = Ux∗ = Urxr,

where Ur is the matrix that consists of the first r columns of U .
We can then write

Φmax,V (t) =

∫
x≤t

φΣr(xr) dxr

and

tmax,V,T−1

(√
T − 1

T
t

)
=

∫
x≤

√
T−1
T

t

f tΣr,T−1(xr) dxr =

∫
x≤t

f t,∗Σr,T−1(xr) dxr,

where

φΣr(xr) = (2π)−r/2(det(Σr))
−1/2 exp

(
−1

2
x′
rΣ

−1
r xr

)
,

and

f tΣr,T−1(xr) =(π(T − 1))−r/2(det(Σr))
−1/2Γ

(
T + r − 1

2

)(
Γ

(
T − 1

2

))−1

×
(
1 +

1

T − 1
x′
rΣ

−1
r xr

)−(T+r−1)/2

,

is the density of the multivariate t distribution with scale matrix V and T − 1 degrees of
freedom, and

f t,∗Σr,T−1(xr) =(πT )−r/2(det(Σr))
−1/2Γ

(
T + r − 1

2

)(
Γ

(
T − 1

2

))−1
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×
(
1 +

1

T
x′
rΣ

−1
r xr

)−(T+r−1)/2

.

We now identify a region in which f t,∗Σr,T−1(xr) > φΣr(xr). We have

log fΣr,T−1(xr)− log φΣr(xr) = AT − T + r − 1

2
log

(
1 +

1

T
x′
rΣ

−1
r xr

)
+

1

2
x′
rΣ

−1
r xr,

where

AT = −r
2
log(T ) + log Γ

(
T + r − 1

2

)
− log Γ

(
T − 1

2

)
+
r

2
log(2).

By the property of the logarithm function and the linear function, there is a unique
value, denoted by x∗T , such that f t,∗Σr,T−1(xr) ≤ φΣr(xr) implies x′

rΣ
−1
r xr ≤ x∗T . To see

this, we consider the two functions log(1 + y) and ay + b, where a = T/(T + r − 1) and
b = 2AT/(T + r − 1). We want to find a value of y, say y′, such that if y ≥ y′ then
log(1 + y) ≤ ay + b. Because log(1 + y) is increasing and concave and a > 0 there are
two possibilities: 1) ay + b ≥ log(1 + y) for any y and ay + b > log(1 + y) almost always;
2) the curves log(1 + y) and ay + b intersect with each other at two points, say y1 and
y2 such that log(1 + y) < ay + b for y < y1, log(1 + y) ≥ ay + b for y1 ≤ y ≤ y2, and
log(1 + y) < ay + b for y > y2. The first case does not apply to our situation because
if this was the case, then f t,∗Σr,T−1(xr) > φΣr(xr) almost always, contradicting the fact
that both curves integrate to one. Thus, the second case applies. The values of y1 and
y2 can be obtained by solving log(1 + y) = ay + b. It holds y2 > 0 because the slope of
log(1 + y) at y2 must be smaller than a and 0 < a < 1.

Choose t large enough such that x′
rΣ

−1
r xr ≤ x∗T implies x ≤ t. This choice of t depends

on T only through x∗T . In particular, if x∗T = O(1) then t can be chosen independently
of T . To prove this set t =

√
x∗T dim(x). Since V is a correlation matrix, its largest

eigenvalue is bounded by r. This implies that and x′
rΣ

−1
r xr ≥ ‖xr‖2/r. Because x∗ is a

vector whose first r elements are those of xr and other elements are zero, ‖xr‖2 = ‖x∗‖2.
By the definition of x∗, it holds that ‖x∗‖2 = ‖U ′x‖2 = ‖x‖2, where the last equality
uses the fact that U is a unitary matrix. Observe that if x � t so that an element of x
exceeds t, then ‖x‖2 > t2 ≥ x∗T r. This implies that x′

rΣ
−1
r xr ≥ ‖x‖2/r > x∗T r/r = x∗T .

We have

Φmax,Σr(t)− tmax,Σr,T−1

(√
T − 1

T
t

)
=

∫
x≤t

(
φΣr(xr)− f t,∗Σr,T−1(xr)

)
dxr

=

∫
x′
rΣ

−1
r xr≤x∗T

(
φΣr(xr)− f t,∗Σr,T−1(xr)

)
dxr

+

∫
x≤t,x′

rΣ
−1
r xr>x∗T

(
φΣr(xr)− f t,∗V,T−1(xr)

)
dxr,

where the first integral on the right–hand side of the equation is taken over x′
rΣ

−1
r xr ≤ a
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because {xr : x′
rΣ

−1
r xr ≤ x∗T ,x ≤ t} = {xr : x′

rΣ
−1
r xr ≤ x∗T} by our choice of t. Because

both φΣr(xr) and f t,∗Σr,T−1(xr) are densities and integrate to one, we have∫
x′
rΣ

−1
r xr≤x∗T

(
φΣr(xr)− f t,∗Σr,T−1(xr)

)
dxr = −

∫
x′
rΣ

−1
r xr>x∗T

(
φΣr(xr)− f t,∗Σr,T−1(xr)

)
dxr,

Thus, for t large enough such that x′V −1x ≤ x∗T implies x ≤ t, we have

Φmax,Σr(t)− tmax,Σr,T−1

(√
T − 1

T
t

)
=−

∫
x′
rΣ

−1
r xr>x∗T

(
φΣr(xr)− f t,∗Σr,T−1(xr)

)
dxr

+

∫
x≤t,x′

rΣ
−1
r xr>x∗T

(
φΣr(xr)− f t,∗V,T−1(xr)

)
dxr

=

∫
x�t,x′

rΣ
−1
r xr>x∗T

(
φΣr(xr)− f t,∗V,T−1(xr)

)
dxr ≥ 0,

where the last inequality follows because x′
rΣ

−1
r xr > x∗T implies φΣr(xr) > f t,∗V,T−1(xr).

Next, we evaluate the order of x∗T . Note that x∗T solves

1

2
x∗T + AT =

T + r − 1

2
log

(
1 +

1

T
x∗T

)
.

We first show that AT = O(1) where the order is taken with respect to T . We separately
examine the cases of odd and even G. Suppose that r is even (we may assume r ≥ 2).
Then, the recurrent relation of the Gamma function implies that

AT =− r

2
log(T ) +

r/2−1∑
j=0

log

(
T − 1

2
+ j

)
+
r

2
log(2)

=− r

2
log(T ) +

r/2−1∑
j=0

log (T − 1 + 2j)− r

2
log(2) +

r

2
log(2)

=

r/2−1∑
j=0

log

(
T − 1 + 2j

T

)
= O(1)

as T → ∞. Next, we consider cases in which r is odd. For r = 1, AT = O(1) follows
from √

T

2

Γ
(
T−1
2

)
Γ
(
T
2

) → 1. (A.10)

17



For r ≥ 3, by the recurrent relation of the Gamma function, we have

AT =− r

2
log(T ) +

r/2−1∑
j=0

log

(
T

2
+ j

)
+ log Γ

(
T

2

)
− log Γ

(
T − 1

2

)
+
r

2
log(2)

=

(r−1)/2−1∑
j=0

log

(
T + 2j

T

)
+

1

2
log

(
2

T

)
+ log Γ

(
T

2

)
− log Γ

(
T − 1

2

)
.

By (A.10)

log Γ

(
T

2

)
− log

(
Γ

(
T − 1

2

)(
T

2

)1/2
)

= O(1).

We have established that AT = O(1) for all r ≥ 1. To prove the lemma, it now suffices
to prove x∗T = O(1). Suppose the opposite is true. Then, there is a subsequence
T1, . . . , Tk, . . . such that x∗Tk monotonically diverges to infinity. By the definition of x∗T
we have

x∗T + AT = (T + r − 1) log

(
1 +

1

T
x∗T

)
.

For sufficiently large y, y/2 > log(1 + y). Therefore, for sufficiently large k, we have

x∗Tk + AT <
T + r − 1

2T
x∗Tk

Rearranging terms yields

T − r + 1

2T
x∗Tk + AT < 0,

contradicting that AT = O(1) and x∗Tk diverging to infinity can both be true. This proves
x∗T = O(1).

Lemma A.3 (Comparison bound for critical values with regularization). Let Ω and Ω̂
denote p× p correlation matrices and let ε, δ and cω denote positive constants such that
4δ ≤ ε ≤ 4cω/3. Suppose that Ωij > −1 + cω for all i, j = 1, . . . , p and

‖Ω̂− Ω‖max ≤ δ.

Let X ∼ N(0,Ω) and X̂ε ∼ N(0, ρ(Ω̂, ε)). Then, there is a universal constant C such
that for all a >

√
2

P (maxj=1,...,pXj > a)

P
(
maxj=1,...,p X̂ε

j > a
) − 1 ≤ Ca

√
ε.
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In particular, suppose that ĉα,N is the 1− α/N quantile of maxj=1,...,p X̂
ε
j and let cαN ,N

denote the 1− αN/N quantile of maxj=1,...,pXj, where

αN = α(1 + ĉα,NC
√
ε).

If ĉα,N >
√
2 then ĉα,N ≥ cαN ,N .

Proof. Write ε̂ = ε∗(Ω̂, ε). By the Cholesky decomposition, there is a lower-triangular
matrix L (possibly with some diagonal elements equal to zero) such that Ω̂ = LL′. Ω̂
can be interpreted as the covariance matrix of the random vector LW , where W is a
random vector in Rp with expectation zero and covariance matrix Ip. V = Ω̂ + ε̂Ip can
be interpreted as the covariance matrix of the random vector that is generated by adding
independent, component-specific noise Ei to the ith components of LW , where Ei has
mean zero and variance ε̂. Then, ρ(Ω̂, ε̂) transforms V into a correlation matrix. Since
ρ(Ω̂, ε) and Ω̂ are both correlation matrices, ρ(Ω̂, ε)ii = Ω̂ii = 1, for all i = 1, . . . , p. Let
`i denote the ith row of L. For i 6= j, Ω̂ij is equal to the covariance between `′iW and
`′jW , i.e.,

Ω̂ij = cov(`′iW, `
′
jW ) = `′i cov(W )`j = `′i`j.

Vij is equal to the covariance between `′iW + Ei and `′jW + Ej, i.e.,

Vij = cov(`′iW + Ei, `
′
jW + Ej) = `′i cov(W )`j = `′i`j = Ω̂ij.

For i = 1, . . . , p,

Vii = cov(`′iW + Ei, `
′
iW + Ei) = `′i cov(W )`i + ε̂ = Ω̂ii + ε̂ = 1 + ε̂.

Therefore, for i 6= j,

ρ(Ω̂, ε)ij =
Vij√
ViiVjj

=
Ω̂ij

1 + ε̂
.

We now derive a bound on

∆ij =
(
arcsin

(
ρ(Ω̂, ε)ij

)
− arcsin (Ωij)

)+
.

Since arcsin(·) is strictly increasing on (0, 1), a necessary condition for ∆ij 6= 0 is
ρ(Ω̂, ε)ij > Ωij. This condition bounds ρ(Ω̂, ε)ij and Ωij away from -1 and 1. In
particular,

Ω̂/(1 + ε̂) = ρ(Ω̂, ε)ij > Ωij

19



implies

Ω̂ij > (1 + ε̂)Ωij.

Since we also have Ω̂ij ≤ Ωij + δ, an Ω̂ij fulfilling both conditions exists only if

(1 + ε̂)Ωij < Ωij + δ

or equivalently if ε̂Ωij < δ. Suppose that Ωij > 1− ε/2. Then we have

ε̂ ≥ε− (1− Ω̂ij)

≥ε+ Ωij − δ − 1 > ε+ (1− ε/2)− δ − 1 = ε/2− δ.

Therefore, ε̂Ωij < δ is only possible if

(ε/2− δ)(1− ε/2) < δ.

This inequality contradicts ε ≥ 4δ and hence we can take Ωij ≤ 1− ε/2. Moreover, since
ε ≤ 2cω, Ωij ≥ −1− cω ≥ −1− ε/2.

For an upper bound on ρ(Ω̂, ε)ij, we have

ρ(Ω̂, ε)ij =
Ω̂ij

1 + ε̂
≤ Ω̂ij

1 + ε− (1− Ω̂ij)

≤ Ω̂ij

Ω̂ij + ε
≤ 1

1 + ε
≤ 1− ε/2.

For a lower bound on ρ(Ω̂, ε)ij, suppose that Ω̂ij < 0, in which case,

ρ(Ω̂, ε)ij =
Ω̂ij

1 + ε̂
≥ Ω̂ij = Ωij + Ω̂ij − Ωij ≥ −1 + cω − δ ≥ −1 + ε/2,

provided that cω − ε/2− δ ≥ 0. This condition is satisfied if ε ≤ 4cω/3. Therefore, we
have the bounds

−1 + ε/2 ≤ Ωij ≤ 1− ε/2

and

−1 + ε/2 ≤ ρ(Ω̂ij, ε) ≤ 1− ε/2.

We also have

ρ(Ω̂, ε)ij − Ωij = Ω̂ij/(1 + ε)− Ωij ≤ δ + ε ≤ 5ε.

By the intermediate value theorem there is an intermediate value ρ∗ between −1 + ε/2
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and 1− ε/2 such that, on ρ(Ω̂, ε)ij > Ωij,

∆ij =
ρ(Ω̂, ε)ij − Ωij√

1− (ρ∗)2
≤ 5ε√

1− (1− ε/2)2
≤ 5ε√

ε(1− ε/4)
≤ 10

√
ε√

3
.

Let Φ denote the cumulative distribution function of a standard normal random variable,
and let φ denote its probability density function. Gordon’s lower bound (see, e.g.,
Duembgen 2010) states that

1− Φ(a) >
φ(a)

a(1− 1/a2)

for a > 0 and thus 1− Φ(a) > 1
2
φ(a)/a for a >

√
2. Therefore,

P

(
max
j=1,...,p

X̂j > a

)
≥ P

(
X̂ε

1 > a
)
=1− Φ(a) >

φ(a)

2a
=

exp
(
−a2

2

)
a
√
8π

By Theorem 2.1 in Li and Shao (2002),

P

(
max
j=1,...,p

Xj > a

)
− P

(
max
j=1,...,p

X̂ε
j > a

)
=P

(
max
j=1,...,p

X̂ε
j ≤ a

)
− P

(
max
j=1,...,p

Xj ≤ a

)
≤ 1

2π
exp

(
−a

2

2

) ∑
1≤i<j≤p

∆ij ≤
5

π
√
3
exp

(
−a

2

2

)√
ε

We may assume P (maxj=1,...,pXj > a) > P
(
maxj=1,...,p X̂

ε
j > a

)
since the statement of

the theorem holds trivially otherwise. Then, combining the bounds derived above yields

P (maxj=1,...,pXj > a)− P
(
maxj=1,...,p X̂

ε
j > a

)
P
(
maxj=1,...,p X̂ε

j > a
) <

10a
√
ε√

3
.

This proves the first claim of the lemma. To prove the second claim of the lemma, note
that the first claim of the lemma implies

P

(
max
j=1,...,p

Xj > ĉα,N

)
=
P (maxj=1,...,pXj > ĉα,N)

P
(
maxj=1,...,p X̂j > ĉα,N

)α/N
≤α/N(1 + ĉα,NC

√
ε) ≤ αN/N.

Lemma A.4 (Consistency of Ω̂). Let PN be the set of probability measures which
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satisfy Assumptions 1 with identical choices of a, b, d1, and d2. Assume T δ1 ≤ N
for some universal constant δ1 > 0. Let Assumption 2 hold and κN � T ρ where
0 < ρ < (ϑ− 1)/(3ϑ− 2). Let

bLVN =
rθ,N

ιN min1≤i≤N σi
+ T−c1(logN)c2 + T−ρ,

where c1 > 0 and c2 > 0 are two constants defined in Lemma A.5 with c1 depending only
on (ρ, ϑ) and c2 depending only on (d2, ϑ). Assume that bLVN → 0. For any sequence ζN
such that ζN → ∞ as N, T → ∞,

sup
P∈PN

P

(
max
1≤i≤N

max
(h,h∗)∈G2

∣∣∣(Ω̂i(g
0
i ))h,h∗ − (Ωi(g

0
i ))h,h∗

∣∣∣ > ζNb
LV
N

)
= o(1).

Proof. Throughout the proof, let C, C ′, and C ′′ denote generic constants that do not
depend on P ∈ P. Let ξi(h) =

√
Ξi(h, h) and ξ̂i(h) =

√
Ξ̂i(h, h).

We observe the following decomposition:

(Ω̂i)h,h∗ − (Ωi)h,h∗

=
Ξ̂i(h, h

∗)

ξ̂i(h)ξ̂i(h∗)
− Ξi(h, h

∗)

ξi(h)ξi(h∗)

=

[(
ξi(h)

ξ̂i(h)

)(
ξi(h

∗)

ξ̂i(h∗)

)
− 1

](
Ξ̂i(h, h

∗)

ξi(h)ξi(h∗)
− Ξi(h, h

∗)

ξi(h)ξi(h∗)

)

+

[(
ξi(h)

ξ̂i(h)

)(
ξi(h

∗)

ξ̂i(h∗)

)
− 1

]
Ξi(h, h

∗)

ξi(h)ξi(h∗)
+

(
Ξ̂i(h, h

∗)

ξi(h)ξi(h∗)
− Ξi(h, h

∗)

ξi(h)ξi(h∗)

)
.

Noting that

|Ξi(h, h)| =

∣∣∣∣∣σ2
i δi(h)

′

(
1

T

T∑
t=1

T∑
s=1

EP [vitvisxitx′is]

)
δi(h)

∣∣∣∣∣ ,
Assumption 1.4 implies that ξi(h)/(σi)‖δ(h)‖ (and ξi(h

∗)/(σi)‖δ(h∗)‖) is bounded away
from zero. The inequality |

√
a− 1| ≤ |a− 1| for a > 0 implies that∣∣∣∣∣

(
ξ̂i(h)

ξi(h)

)
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣
(
Ξ̂i(h, h)

Ξi(h, h)

)
− 1

∣∣∣∣∣ .
Thus, we have ∣∣∣∣∣

(
ξi(h)

ξ̂i(h)

)(
ξi(h

∗)

ξ̂i(h∗)

)
− 1

∣∣∣∣∣
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=

∣∣∣∣∣
(
ξi(h)

ξ̂i(h)
− 1 + 1

)(
ξi(h

∗)

ξ̂i(h∗)

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣
(
ξi(h)

ξ̂i(h)
− 1

)(
ξi(h

∗)

ξ̂i(h∗)

)
+

(
ξi(h

∗)

ξ̂i(h∗)
− 1

)∣∣∣∣∣
=

∣∣∣∣∣
(
ξi(h)

ξ̂i(h)
− 1

)(
ξi(h

∗)

ξ̂i(h∗)

)
+

(
ξi(h

∗)

ξ̂i(h∗)
− 1

)∣∣∣∣∣
≤

∣∣∣∣∣Ξi(h, h)Ξ̂i(h, h)
− 1

∣∣∣∣∣
(
Ξi(h

∗, h∗)

Ξ̂i(h∗, h∗)

)1/2

+

∣∣∣∣∣Ξi(h∗, h∗)Ξ̂i(h∗, h∗)
− 1

∣∣∣∣∣ .
Now, it holds that∣∣∣∣∣Ξi(h, h)Ξ̂i(h, h)

− 1

∣∣∣∣∣ ≤
∣∣∣∣∣ Ξ̂i(h, h)− Ξi(h, h)

Ξi(h, h)
+ 1

∣∣∣∣∣
−1 ∣∣∣∣∣ Ξ̂i(h, h)− Ξi(h, h)

Ξi(h, h)

∣∣∣∣∣ .
Provided that bLVN → 0, we have∣∣∣∣∣

(
ξi(h)

ξ̂i(h)

)(
ξi(h

∗)

ξ̂i(h∗)

)
− 1

∣∣∣∣∣ < CζNb
LV
N

with probability approaching one by Lemma A.5. Therefore, by Lemma A.5, the desired
result holds.

Lemma A.5 (Consistency of long-run variance estimator). Let PN be the set of probability
measures which satisfy Assumption 1 with identical choices of a, b, d1 and d2 Assume
T δ1 ≤ N for some universal constant δ1 > 0. Let Assumption 2 hold and κN � T ρ where
0 < ρ < (ϑ− 1)/(3ϑ− 2). Let

bLVN =
rθ,N

ιN min1≤i≤N σi
+ T−c1(logN)c2 + T−ρ,

and assume that bLVN → 0. Then, there exist two constants c1 > 0 depending only on
(ρ, ϑ) and c2 > 0 depending only on (d2, ϑ), such that, for any sequence ζN such that
ζN → ∞ as N, T → ∞,

sup
P∈PN

P

(
max
1≤i≤N

max
(h,h′)∈G2

∣∣∣∣∣ Ξ̂i(h, h′)− Ξi(h, h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣∣ > ζNb
LV
N

)
= o(1).

Proof. To conserve notation, we introduce the short-hands

K
(j)
N =K

(
j

κN

)
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and

u
(+j)
it = ui,t+max(0,j), v

(+j)
it = vi,t+max(0,j), w

(+j)
it = wi,t+max(0,j), x

(+j)
it = xi,t+max(0,j),

u
(−j)
it = ui,t−max(0,j), v

(−j)
it = vi,t−max(0,j), w

(−j)
it = wi,t−max(0,j), x

(−j)
it = xi,t−max(0,j)

and

xixi =
1

T

T∑
u=1

xiux
′
iu, xiwi =

1

T

T∑
u=1

xiuw
′
iu,

uixi =
1

T

T∑
u=1

uiuxiu, vixi =
1

T

T∑
u=1

viuxiu.

By the triangular inequality, we have∣∣∣∣∣ Ξ̂i(h, h′)− Ξi(h, h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣∣ ≤
∣∣∣∣∣ Ξ̂i(h, h′)− Ξ̃i(h, h

′)

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣∣+
∣∣∣∣∣ Ξ̃i(h, h′)− Ξi(h, h

′)

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣∣ .
We examine each of the two terms on the right-hand side. We first examine the second
term and then the first term. We note that

Ξ̃i(h, h
′) =σ2

i δi(h)
′

T−1∑
j=−T+1

K
(j)
N

1

T

T∑
t=|j|+1

(
v
(+j)
it x

(+j)
it − vixi

)(
v
(−j)
it x

(−j)
it − vixi

)′
δi(h

′)

and

Ξi(h, h
′) = σ2

i δi(h)
′

(
1

T

T∑
t=1

T∑
s=1

EP [vitvisxitx′is]

)
δi(h

′).

Lemma A.6 gives the bound of

sup
i,h,h′

∣∣∣∣ T−1∑
j=−T+1

K
(j)
N

1

T

T∑
t=|j|+1

(
v
(+j)
it x

(+j)
it − vixi

)(
v
(−j)
it x

(−j)
it − vixi

)′
−

(
1

T

T∑
t=1

T∑
s=1

EP [vitvisxitx′is]

)∣∣∣∣
∞
.

We thus have

sup
P∈PN

P

(
max
1≤i≤N

max
(h,h′)∈G2

∣∣∣∣∣ Ξ̃i(h, h′)− Ξi(h, h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣∣ > ζ1,N(T
−c1(logN)c2 + T−ρ)

)
= o(1),
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where ζ1,N → ∞. Next, we derive the bound of

sup
i,h,h′

1

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣Ξ̂i(h, h′)− Ξ̃i(h, h
′)
∣∣∣ .

First, note that

dit(h) = −σivitx′it(θg0i − θh) = −σivitx′itδi(h),

and

d̄i(h) = −σivixi′(θg0i − θh) = −σivixi′δi(h).

Let

ûit = yit − x′itθ̂g0i − w′
itθ̂

w,

so that

ûit − uit = −x′it
(
θ̂g0i − θg0i

)
− w′

it

(
θ̂w − θw

)
.

With this notation

d̂it(g
0
i , h) = d̂it(h) =− ûitx

′
itδ̂i(h).

Consider the decomposition(
d̂it(g

0, h)− ¯̂
di(g

0, h)
)(

d̂is(g
0, h′)− ¯̂

di(g
0, h′)

)
−
(
dit(g

0, h)− d̄i(g
0, h)

) (
dis(g

0, h′)− d̄i(g
0, h′)

)
=(δ̂i(h)− δi(h))

′

(
ûitxit −

1

T

T∑
u=1

ûiuxiu

)(
ûisxis −

1

T

T∑
u=1

ûiuxiu

)′

(δ̂i(h
′)− δi(h

′))

− (δ̂i(h)− δi(h))
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

(δ̂i(h
′)− δi(h

′))

+ (δ̂i(h)− δi(h))
′

(
ûitxit −

1

T

T∑
u=1

ûiuxiu

)(
ûisxis −

1

T

T∑
u=1

ûiuxiu

)′

δi(h
′)

− (δ̂i(h)− δi(h))
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

δi(h
′)

+ δi(h)
′

(
ûitxit −

1

T

T∑
u=1

ûiuxiu

)(
ûisxis −

1

T

T∑
u=1

ûiuxiu

)′

(δ̂i(h
′)− δi(h

′))
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− δi(h)
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

(δ̂i(h
′)− δi(h

′))

+ δi(h)
′

(
ûitxit −

1

T

T∑
u=1

ûiuxiu

)(
ûisxis −

1

T

T∑
u=1

ûiuxiu

)′

δi(h
′)

− δi(h)
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

δi(h
′)

+ (δ̂i(h)− δi(h))
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

(δ̂i(h
′)− δi(h

′))

+ (δ̂i(h)− δi(h))
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

δi(h
′)

+ δi(h)
′

(
uitxit −

1

T

T∑
u=1

uiuxiu

)(
uisxis −

1

T

T∑
u=1

uiuxiu

)′

(δ̂i(h
′)− δi(h

′)).

Next, we consider the following decomposition:

ûitxit −
1

T

T∑
u=1

ûiuxiu =uitxit −
1

T

T∑
u=1

uiuxiu − (xitx
′
it − xixi)

(
θ̂g0i − θg0i

)
− (xitw

′
it − xiwi)

(
θ̂w − θw

)
.

We thus have(
ûitxit −

1

T

T∑
u=1

ûiuxiu

)(
ûisxis −

1

T

T∑
u=1

ûiuxiu

)′

=(uitxit − uixi) (uisxis − uixi)
′

− (uitxit − uixi)
(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

)
+ (xisw

′
is − xiwi)

(
θ̂w − θw

))′
−
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

)
+ (xitw

′
it − xiwi)

(
θ̂w − θw

))
(uisxis − uixi)

′

+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

)
+ (xitw

′
it − xiwi)

(
θ̂w − θw

))
×
(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

)
+ (xisw

′
is − xiwi)

(
θ̂w − θw

))′
=(uitxit − uixi) (uisxis − uixi)

′

− (uitxit − uixi)
(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
− (uitxit − uixi)

(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
−
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))
(uisxis − uixi)

′
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−
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))
(uisxis − uixi)

′

+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
+
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
+
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
.

Combining these two decomposition results, we have(
d̂it(g

0, h)− ¯̂
di(g

0, h)
)(

d̂is(g
0, h′)− ¯̂

di(g
0, h′)

)
−
(
dit(g

0, h)− d̄i(g
0, h)

) (
dis(g

0, h′)− d̄i(g
0, h′)

)
=(δ̂i(h)− δi(h))

′
(
− (uitxit − uixi)

(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
− (uitxit − uixi)

(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
−
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))
(uisxis − uixi)

′

−
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))
(uisxis − uixi)

′

+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
+
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
+
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′)
(δ̂i(h

′)− δi(h
′))

+ (δ̂i(h)− δi(h))
′
(
− (uitxit − uixi)

(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
− (uitxit − uixi)

(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
−
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))
(uisxis − uixi)

′

−
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))
(uisxis − uixi)

′

+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
+
(
(xitx

′
it − xixi)

(
θ̂g0i − θg0i

))(
(xisw

′
is − xiwi)

(
θ̂w − θw

))′
+
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))(
(xisx

′
is − xixi)

(
θ̂g0i − θg0i

))′
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+
(
(xitw

′
it − xiwi)

(
θ̂w − θw

))(
(xisw

′
is − xiwi)
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(
(xisx

′
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′
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′
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′
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′
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′
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′
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′
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′
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′
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T∑
t=|j|+1

((
x
(+j)
it w

(+j)
it

′
− xiwi

)(
θ̂w − θw

))
×
((
x
(−j)
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it w

(+j)
it

′
− xiwi

)(
θ̂w − θw

))
×
((
x
(−j)
it w

(−j)
it

′
− xiwi

)(
θ̂w − θw

))′)
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− (δ̂i(h)− δi(h))
′

T−1∑
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j=−T+1

K
(j)
N

1

T

T∑
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j=−T+1

K
(j)
N

1

T

T∑
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We examine each term. For vector a, let ap denote the p-th element of a. Let dx be the
dimension of xit. With probability at least aθ,N , it holds
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and Lemma A.11 to
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we obtain
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−1,

where -P signifies that for AN and BN , AN -P BN if supP∈PN
Pr(AN > BNζN) = o(1)
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−1
N ( min

1≤i≤N
σi)

−1,

and

sup
i,h,h′

1

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣δi(h)′ T−1∑
j=−T+1

K
(j)
N

× 1

T

T∑
t=|j|+1

(
u
(+j)
it x

(+j)
it − uixi

)
×
(
u
(−j)
it x

(−j)
it − uixi

)′
(δ̂i(h

′)− δi(h
′))

∣∣∣∣
-P rθ,N ι

−1
N ( min

1≤i≤N
σi)

−1).
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To sum up, we have

sup
i,h,h′

1

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣Ξ̂i(h, h′)− Ξ̃i(h, h
′)
∣∣∣

-P r
3
θ,N ι

−2
N ( min

1≤i≤N
σi)

−1 + r4θ,N ι
−2
N ( min

1≤i≤N
σi)

−2 + r2θ,N ι
−1
N ( min

1≤i≤N
σi)

−1

+ r3θ,N ι
−1
N ( min

1≤i≤N
σi)

−2 + rθ,N( min
1≤i≤N

σi)
−1) + r2θ,N( min

1≤i≤N
σi)

−2

+ r2θ,N ι
−2
N ( min

1≤i≤N
σi)

−1 + rθ,N ι
−1
N ( min

1≤i≤N
σi)

−1

-P rθ,N ι
−1
N ( min

1≤i≤N
σi)

−1,

where the last -P follows by bLVN → 0. We conclude that we have

sup
i,h,h′

1

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣Ξ̂i(h, h′)− Ξi(h, h
′)
∣∣∣

-P rθ,N ι
−1
N ( min

1≤i≤N
σi)

−1 + T−c1(logN)c2 + T−ρ.

Lemma A.6. Let ξit be the random vector consisting of distinct elements of vitxit,
xitx

′
it−EP (xitx′it) and witx′it−EP (witx′it). Let PN be the set of probability measures which

satisfy Assumption 1.6 and Assumption 1.7 with identical choices of a, b, d1, and d2. Let
ζN be a sequence satisfying ζN → ∞ as N → ∞. Assume T δ1 ≤ N for some universal
constant δ1 > 0. Let Assumption 2 hold and κN � T ρ where 0 < ρ < (ϑ− 1)/(3ϑ− 2).
Then, there exist two constants c1 > 0 depending only on (ρ, ϑ) and c2 > 0 depending
only on (d2, ϑ), such that

sup
P∈PN

P

(
sup

1≤i≤N

∣∣∣∣ T−1∑
j=−T+1

K

(
j

κN

)

× 1

T

T∑
t=|j|+1

(
ξi,t+min(0,j) −

1

T

T∑
u=1

ξiu

)(
ξi,t−max(0,j) −

1

T

T∑
u=1

ξiu

)′

−

(
1

T

T∑
t=1

T∑
s=1

EP [ξitξ′is]

)∣∣∣∣
∞

>ζN
(
T−c1(logN)c2 + T−ρ)) = o(1).

Proof. We apply Theorem 11(i) of Chang, Chen, and Wu (2023). In their theorem, Bn

is the bound for the Orlicz norm. In our case, this bound depends only on K, a and
d1 under Assumption 1.6 by Kosorok (2008, Lemma 8.1) and Lemma A.7. Their γ1 is
1 in our case by Assumption 1.6. By Lemma A.9, γ2 in Chang, Chen, and Wu (2023)
depends only on d2. The conditions for the kernel and the bandwidth are assumed. Thus,
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Theorem 11(i) in Chang, Chen, and Wu (2023) can be applied. Note that their results
are stated in terms of stochastic order, but an inspection of their proof reveals that
the constant terms hidden in the stochastic order depend only on the constants in the
assumptions.

Lemma A.7 (Tail bounds for functions). Suppose that two random variances X1 and X2

satisfy P (|Xa| > x) ≤ Ca exp(−baxda) for a = 0, 1, then P (|X1X2| > x) ≤ C exp(−bxd)
for some positive constants C, b, and d2, and P (|X1 + X2| > x) ≤ C ′ exp(−b′xd′) for
some constants C ′, b′, and d′.

Proof. The first statement follows because

P (|X1X2| > x) ≤P (|X1| >
√
x) + P (|X2| >

√
x)

≤C1 exp(−b1xd1/2) + C2 exp(−b2xd2/2)
≤2max(C1, C2) exp(−min(b1, b2)z

min(d1,d2)/2).

For the second statement, we have

P (|X1 +X2| > x) ≤P (|X1| > x/2) + P (|X2| > x/2)

≤C1 exp(−b1/2d1xd1) + C2 exp(−b2/2d2xd2)
≤2max(C1, C2) exp

(
−min(b1/2

d1 , b2/2
d2)xmin(d1,d2)

)
.

Lemma A.8 (Tail bounds for norms). Let X1 and X2 denote two random vectors such
that there are constants K, b and d such that for any component Y of X1 and X2,
P (|Y | > x) ≤ C exp

(
−bxd

)
. Then, there are constants C ′, b′ and d′ such that

P (‖X1‖ > x) ≤C ′ exp
(
−b′xd′

)
,

P
(
‖X1‖2 > x

)
≤C ′ exp

(
−b′xd′

)
,

P (‖X1‖‖X2‖ > x) ≤C ′ exp
(
−b′xd′

)
.

Proof. The second statement follows from the first statement. The third statement
follows from the second statement of this lemma and the first statement of Lemma A.7.
It remains to prove the first statement. Let X1 = (Y1, . . . , Yp) and note that P (|Y 2

j | >
x) ≤ C exp

(
−bxd/2

)
for j = 1, . . . , p. Now, the first statement follows from writing

‖X1‖2 = Y 2
1 + · · ·Y 2

p

and applying the second statement of Lemma A.7 repeatedly.

Lemma A.9 (Functions of mixing sequences). Suppose that (xit, wit, vit) is a strong
mixing sequence over t with mixing coefficients supi ai[t] ≤ C exp(−atd) for constants C,
a and d, then so is g(xit, wit, vit) where g is a measurable function.
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Proof. The proof follows the argument in the proof of Theorem 14.1 in Davidson (1994).

Lemma A.10 (Large quantiles of the normal distribution). Let X denote a standard
normal vector with p × p correlation matrix Ω and let 0 ≤ d < 2. Let cα,N denote the
1− α/N quantile of X. Then there is a constant N0 that depends only on α and d such
that for α ≤ α ≤ 1 and N ≥ N0√

d log(N/α) ≤ cα,N ≤
√

2 log p+
√

2 log(N/α).

Proof. The upper bound is given in Lemma D.4 in Chernozhukov, Chetverikov, and
Kato (2019). To prove the lower bound put aN =

√
d log(N/α). Let Φ denote the

cumulative distribution function of a standard normal random variable, and let φ denote
its probability density function. Gordon’s lower bound (see, e.g., Duembgen (2010))
states that

1− Φ(x) >
φ(x)

x(1− 1/x2)

for x > 0 and thus 1− Φ(x) > 1
2
φ(x)/x for x >

√
2. Therefore,

P

(
max
j=1,...,p

Xj > aN

)
≥P (X1 > aN)

=1− Φ(aN)

>
φ(aN)

2aN
=

exp
(
−a2N

2

)
aN

√
8π

=
(α/N)d/2

aN
√
8π

= α/N

(
(N/α)1−d/2

aN
√
8π

)

≥α/N

(
N1−d/2√

8dπ log(N/α)

)
≥ α/N,

where the last inequality holds for N ≥ N0 and N0 is chosen such that N ≥ N0 implies that
N1−d/2/

√
8dπ log(N/α) ≥ 1. Such an N0 can be found since N1−d/2/

√
8dπ log(N/α) →

∞. The inequality P (maxj=1,...,pXj > aN) > α/N implies cα,N ≥ aN .

Lemma A.11 (Long-run variance is finite). Let ξit denote any element of the vec-
tors vitxit, vec(xitx′it) − EP vec(xitx

′
it), vec(witx′it) − EP vec(witx

′
it), and vec(v2itxitx

′
it) −

EP vec(v2itxitx
′
it), or any of the random variables ‖xit‖2, ‖xit‖‖wit‖, |vit|‖xit‖, ‖xit‖4,

‖x2it‖‖w2
it‖ and |v2it|‖x2it‖. Let PN be a set of probability measures which satisfy Assump-

tion 1.6-1.8 with identical choices of a, b, d1, and d2. Let

s2i,T (P ) = max
1≤t≤T

(
EP (ξ2it) + 2

∑
s>t

|E(ξitξis)|

)
.
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Then, there exists a constant Cξ <∞ such that

lim sup
N,T→∞

sup
P∈PN

max
1≤i≤N

s2i,T (P ) < Cξ.

In particular,

lim sup
N,T→∞

sup
P∈PN

max
1≤i≤N

∣∣∣∣∣ varP
(

1√
T

T∑
t=1

ξit

)∣∣∣∣∣ < Cξ.

Proof. Lemma A.7 and Lemma A.8 imply P (|ξit| > z) < exp(−(z/aξ)
d1,ξ) for some aξ

and d1,ξ, which in turns implies that EP (ξmit ) < Mξp for some universal constant Mξ <∞
for any integer m by Lemma A.12. Moreover, Lemma A.9 implies that ξit is an α-mixing
sequence with mixing coefficient supi αi,ξ[k] ≤ exp(1− bξk

d2,ξ). Thus, by the argument
in Galvao and Kato (2014, Section C.1), which is an application of Davidov (1968), it
holds that, for any s > t and any integer m,

|EP (ξitξis)| ≤ 12(EP (|ξit|m))2/m (αi,ξ[s− t])1−2/m .

In particular,

2
∑
s>T

|EP (ξitξis)| ≤ 24(EP (|ξit|m))2/m
∑
s>T

(αi,ξ[s− t])1−2/m .

The right-hand side is bounded by a constant C ′
ξ that depends only on a, b, d1, and d2.

This follows from the existence of moments and the mixing property of ξit. Note that
the stationarity assumption is used to apply the result of Davidov (1968).

Lemma A.12 (Exponential tail bound implies existence of moments). Suppose that a
random variable X satisfies that P (|X| > x) < C exp(−(x/a)d) for some C, a > 0 and
d > 1. Then, for any integer p, E|X|p < M for M depending only on C, a, d and p.

Proof. By the argument given in Kosorok (2008, page 129), which is based on the series
expansion of the exponential function, we have (E(|X|p))1/p ≤ p!||X||ψ1 where || · ||ψa is
the Orlicz norm with ψa(x) = exp(xa)− 1 as defined in the proof of Lemma A.13. By
Kosorok (2008, Lemma 8.1), ‖X‖ψ1 is bounded by a constant which depends on C, a
and d.

Lemma A.13 (Large CLT for mixing sequences). Suppose that {{Xjt}Jj=1}Tt=1 is an
α-mixing sequence (as a sequence indexed by t) with mixing coefficients α(k). Suppose
that T δ1 ≤ J for some δ1 > 0. Let SJ = T−1/2

∑T
t=1(X1t, . . . , XJt)

′. Let G ∼ N(0,Ξ),
where Ξ is the long-run covariance matrix of (X1t, . . . , XJt). Assume the following three
conditions:

1. There exist some universal constants C1 > 0, a > 0 and d1 > 0 such that
P (|Xjt| > x) < C1 exp(−(1/a)d1xd1) for all t ∈ {1, . . . , T} and j ∈ {1, . . . , J}.
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2. There exist some universal constants C2 > 1, b > 0 and d2 > 0 such that α(k) ≤
C2 exp(−bkd2) for any k ≥ 1.

3. There exists a universal constant C3 > 0 such that VT,j ≥ C3 for any j ∈ {1, . . . , J},
where VT,j = var(

∑T
t=1Xjt/

√
T ).

For a ∈ RN , define A(a) = {x ∈ RN : xj ≤ aj for j = 1, . . . , J .}. Let A =
⋃
a∈RJ A(a).

Then, it holds that

sup
P∈P

sup
A∈A

|P (SJ ∈ A)− P (G ∈ A)| . (log J)(1+2d2)/(3d2)

T 1/9
+

(log J)7/6

T 1/9

provided that (log J)3−d2 = o(T d2/3) and P is a collection of probabilities measures under
which the above three conditions are satisfied with identical choices of C1, C2. C3, a, b,
d1 and d2.
Proof. The lemma follows by Theorem 1 of Chang, Chen, and Wu (2023), noting the
remark at the beginning of Section 2.1 of Chang, Chen, and Wu (2023). Theorem
1 of Chang, Chen, and Wu (2023) has three conditions, and the second and third
conditions are given in the statement of the lemma. The first condition is “There
exist a sequence of constants BJ ≥ 1 and a universal constant d1 ≥ 1 such that
||Xjt||ψd1

≤ BJ for all t ∈ {1, . . . , T} and j ∈ {1, . . . , J}”, where ||ξ||ψα = inf[λ > 0 :
E(ψα(|ξ|/λ)) ≤ 1] for ψα(x) = exp(xα)− 1 (the Orlicz norm with ψα). By Lemma 8.1
of Kosorok (2008), P (|Xjt| > x) < C1 exp(−(1/a)d1xd1) implies this condition by taking
BJ = ((1 + C1/(1/a)

d1))1/d1 , which is constant if C1, a and d1 are constant.
Lemma A.14. Let PN be the set of probability measures which satisfy Assumption 1 with
identical choices of a, b, d1 and d2. Assume that there are finite constants 0 < δ1 < δ2
such that T δ1 ≤ N ≤ o(1)T δ2. Let Assumption 2 hold with κN � T ρ where 0 < ρ <
(ϑ− 1)/(3ϑ− 2). Let

bLV ∗
N =

(
√
T ∨ logN)rθ,N
ιN min1≤i≤N σi

+ T−c1(logN)c2 + T−ρ,

where c1 > 0 and c2 > 0 are two constants defined in Lemma A.5 with c1 depending
only on (ρ, ϑ) and c2 depending only on (d2, ϑ). Assume that bLV ∗

N → 0. Then for any
sequence ζN such that ζN → ∞ as N, T → ∞,

sup
P∈PN

P

(
max
1≤i≤N

max
(h,h∗)∈G2

∣∣∣D̂i(g
0
i , h)−Di(g

0
i , h)

∣∣∣ > ζNb
LV ∗
N

)
= o(1).

Proof. Throughout the proof, let C denote a generic constant that does not depend on
P ∈ P and whose value may change between different equations. Let δi(h) = θg0i − θh

and δ̂i(h) = θ̂g0i − θ̂h. Let ξ̂i(h) =
√
Ξ̂i(h, h) and ξ(h) =

√
Ξi(h, h). Let

bLVN =
rθ,N

ιN min1≤i≤N σi
+ T−c1(logN)c2 + T−ρ.
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By the inequality |1−
√
a| ≤ |1− a|,∣∣∣∣∣1− ξ̂i(h)

ξi(h)

∣∣∣∣∣ ≤
∣∣∣ξ̂i(h, h′)− ξi(h, h

′)
∣∣∣

ξi(h, h′)

≤σ
2
i ‖δi(h)‖‖δi(h′)‖

ξi(h, h′)

∣∣∣ξ̂i(h, h′)− ξi(h, h
′)
∣∣∣

σ2
i ‖δi(h)‖‖δi(h′)‖

.

By Assumption 1.4, ξi(h, h′)/(σ2
i ‖δi(h)‖‖δi(h′)‖) is bounded away from zero. Moreover,

with probability approaching one,∣∣∣ξ̂i(h, h′)− ξi(h, h
′)
∣∣∣

σ2
i ‖δi(h)‖‖δi(h′)‖

≤ ζNb
LV
N

uniformly over i = 1, . . . , N and h, h′ ∈ G \ {g0i }. Therefore, we can take

|1− ξ̂i(h)
/
ξi(h)| ≤ ζNb

LR
N . (A.11)

Next we consider ‖T−1/2
∑T

t=1 vitxit‖. Consider any component xit,p of xit. Set ξit =
vitxit,p in Lemma A.11 and conclude that

s2T = max
1≤i≤N

max
1≤t≤T

(
E(ξ2it) + 2

∑
s>t

|E(ξitξis)|

)

is bounded and fulfills the condition in Lemma A.15. By Lemma A.7 and Lemma A.9,
ξit satisfies the tail and mixing conditions for Xit in Lemma A.15. Now, applying
Lemma A.15

max
1≤i≤N

∥∥∥∥∥T−1/2

T∑
t=1

vitxit

∥∥∥∥∥ = Op (logN) . (A.12)

Similarly, it can be argued that

max
1≤i≤N

∣∣∣∣∣T−1/2

T∑
t=1

(
‖xit‖2 − E‖xit‖

)∣∣∣∣∣ =Op (logN) ,

max
1≤i≤N

∣∣∣∣∣T−1/2

T∑
t=1

(‖xit‖‖wit‖ − E‖xit‖wit‖‖)

∣∣∣∣∣ =Op (logN) ,

max
1≤i≤N

∣∣∣∣∣T−1/2

T∑
t=1

(|vit|‖xit‖ − E|vit|‖xit‖)

∣∣∣∣∣ =Op (logN) .

(A.13)
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We write

D̂i(h)−Di(h) =

(
ξi(h)

ξ̂i(h)
− 1

)
Di(h) +

1√
T

∑T
t=1

(
d̂it(h)− dit(h)

)
/(σi‖δi(h)‖)

ξ̂i(h)/(σi‖δi(h)‖)
≡J1 + J2.

We bound J1 by writing∣∣∣∣∣
(
ξi(h)

ξ̂i(h)
− 1

)
Di(h)

∣∣∣∣∣ =
∣∣∣∣∣ξi(h)ξ̂i(h)

(
1− ξ̂i(h)

ξi(h)

)
1
T

∑T
t=1 vix

′
iδi(h)/‖δi(h)‖

ξi(h)/(σi‖δi(h)‖)

∣∣∣∣∣
≤ξi(h)
ξ̂i(h)

∣∣∣∣∣1− ξ̂i(h)

ξi(h)

∣∣∣∣∣
∥∥∥∥∥ 1√

T

T∑
t=1

vitxi

∥∥∥∥∥
(

ξi(h)

σi‖δi(h)‖

)−1

.

The right-hand side is bounded by (A.11), (A.12), noting that ξi(h)/(σi‖δi(h)‖) is
bounded away from zero by Assumption 1.4, and observing that

ξ̂i(h)

ξi(h)
≥ 1−

∣∣∣∣∣ ξ̂i(h)ξi(h)
− 1

∣∣∣∣∣
in conjunction with (A.11) implies a lower bound on ξ̂i(h)/ξi(h). Hence, J1 is bounded
by CζNbLVN logN with probability approaching one.

To bound J2, we derive a lower bound on its denominator from

ξ̂i(h)

σi‖δi(h)‖
=

ξi(h)

σi‖δi(h)‖

{(
ξ̂i(h)

ξi(h)
− 1

)
+ 1

}

in conjunction with (A.11) and noting that ξi(h)/(σi‖δi(h)‖) is bounded away from zero
by Assumption 1.4. For the numerator in J2, we observe the following decomposition:

d̂it(h)− dit(h)

σi‖δi(h)‖
=
1

2

x′it

(
θ̂g0i − θg0i

)
+ w′

it

(
θ̂w − θw

)
σi

x′it

(
δ̂i(h)

‖δi(h)‖

)

− 1

2
vitx

′
it

(
δ̂i(h)− δi(h)

)
‖δi(h)‖

.

In the following arguments, we use that

‖δ̂i(h)‖/‖δi(h)‖ ≤ 1 +
‖δ̂i(h)− δi(h)‖

‖δi(h)‖

is bounded by the fact that rθ,N = o(1 ∧ ιN). With probability at least 1 − aθ,N , we
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bound∣∣∣∣∣ d̂it(h)− dit(h)

σi‖δi(h)‖

∣∣∣∣∣ ≤C
(
‖xit‖2 + ‖xit‖‖wit‖

min1≤i≤N σi
+

|vit| ‖xit‖
ιN

)
rθ,N

≤rθ,NC
(
E‖xit‖2 + E‖xit‖‖wit‖

min1≤i≤N σi
+

E |vit| ‖xit‖
ιN

)
≤rθ,NC

(
‖xit‖2 + ‖xit‖‖wit‖ − (E‖xit‖‖wit‖+ E‖xit‖‖wit‖)

min1≤i≤N σi

+
|vit| ‖xit‖ − E |vit| ‖xit‖

ιN

)
.

Noting that E‖xit‖2, E‖xit‖‖wit‖ and E |vit| ‖xit‖ are bounded uniformly over i and t by
Assumption 1.6, (A.13) implies

max
1≤i≤T

∣∣∣∣∣ 1√
T

T∑
t=1

d̂it(h)− dit(h)

σi‖δi(h)‖

∣∣∣∣∣ ≤rθ,NC( min
1≤i≤N

σi ∧ ιN)−1
(√

T + logN
)

≤rθ,NC( min
1≤i≤N

σi ∧ ιN)−1
√
T ,

where the last inequality follows since N ≤ o(1)T δ2 . The bounds on J1 and J2 yield the
desired result.

Lemma A.15 (Fuk-Nagaev-type inequality for mixing sequences). Suppose that Xit

is a strongly mixing process with zero mean for each i = 1, . . . , N with tail probabil-
ities supi=1,...,N P (|Xit| > x) ≤ exp(1 − (x/a)d1) and with strong mixing coefficients
supi=1,...,N ai[t] ≤ exp(−btd2), where a, b, d1, and d2 are positive constants. Let PN
denote a sequence of sets of probability measures that satisfy the above conditions with
given values of a, b, d1, and d2. Let

s2T = max
1≤i≤N

max
1≤t≤T

(
E(X2

it) + 2
∑
s>t

|E(XitXis)|

)
.

Assume that s2T < Cs log
as N for constants Cs and 0 ≤ as ≤ 1 which do not depend on

N, T nor P . Then, it holds that for any constant C > 0, as N, T → ∞ with NT−δ2 → 0
for some δ2 > 0,

sup
P∈PN

P

(
max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣ ≥ CT−1/2 logN

)
→ 0.

Proof. By the Bonferroni inequality and inequality (1.7) in Merlevède, Peligrad, and Rio
(2011) which is an application of Rio (2017, Theorem 6.2) (the original French version
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was published in 2000), we have

sup
P∈P

P

(
max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣ ≥ x

)
≤ sup

P∈P

N∑
i=1

P

(∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣ ≥ x

)

≤4N

(
1 +

T (x/4)2

rs2T

)−r/2

+ 4CN(x/4)−1 exp

(
−a(Tx/4)

d

bdrd

)
,

where r ≥ 1, d = (d−1
1 +d−1

2 )−1 and C ′ is a positive constant. Thus, for x = CT−1/2 logN ,
it holds that

sup
P∈P

P

(
max

i=1,...,N

∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣ ≥ CT−1/2 logN

)

≤4N

(
1 +

C2 log2N

16rs2T

)−r/2

+ 16(C ′/C)NT 1/2 log−1N exp

(
−a(CT

1/2 logN)d

4dbdrd

)
=4N exp

(
−r
2
log

(
1 +

C2 log2N

16rs2T

))
+ 16(C ′/C)

NT 1/2

logN
exp

(
−a cd

4dbd

(
T 1/2 logN

r

)d)

We take r = T 1/2−c for 0 < c < 1/2. The second term on the last line in the above
display converges to zero because T 1/2 logN/r = T c logN and NT−δ2 → 0. We now
argue that the first term vanishes as well. For a close to zero, a second-order Taylor
expansion of the natural logarithm function yields

log(1 + a) = a− 1

(1 + a∗)2
a2,

where a∗ is an intermediate value between zero and a. For a close to zero, 1/(1 + a∗) is
bounded and therefore

log(1 + a) ≥ a+O(a2).

In particular, log(1 − a) ≥ a + O(a2). We set a = C2 log2N/(16T 1/2−cs2T ). Under the
assumption of the lemma, a → 0. Now, the term in the exponential function can be
bounded by

−T
1/2−c

2
log

(
1 +

C2 log2N

16T 1/2−cs2T

)
≤− T 1/2−c

2

{
C2 log2N

16T 1/2−cs2T
+O

([
C2 log2N

16T 1/2−cs2T

]2)}

≤− T 1/2−cC2 log2N

32T 1/2−cs2T
(1 + o(1))
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≤− C2 log2N

64s2T
.

Thus, under s2T ≤ K logas N with 0 < as < 1,

4N exp

(
−r
2
log

(
1 +

C2 log2N

16rs2T

))
≤ 4N exp

(
−C

2 log2N

64s2T

)
→ 0.

Lemma A.16. Let PN be the set of probability measures which satisfy Assumption 1.1–1.7
and Assumption 1.9 with identical choices of a, b, d1 and d2. Assume that there are finite
constants 0 < δ1 < δ2 such that T δ1 ≤ N ≤ o(1)T δ2 and that

rθ,N
ιN ∧min1≤i≤N σi

→ 0.

Suppose that Assumption 3 holds and κN = 0. Then, there is a constant C such that

sup
P∈PN

P

(
max
1≤i≤N

max
(h,h∗)∈G2

∣∣∣D̂i(g
0
i , h)−Di(g

0
i , h)

∣∣∣ > C
rθ,N

√
T

ιN ∧min1≤i≤N σi

)
= o(1)

and for all c > 0

sup
P∈PN

P

(
max
1≤i≤N

max
(h,h∗)∈G2

∥∥∥Ω̂i(g
0
i )− Ωi(g

0
i )
∥∥∥ > c

)
= o(1).

Proof. Following the arguments in Lemma A.14, we bound, with probability at least
1− aθ,N , ∣∣∣∣∣ d̂it(h)− dit(h)

σi‖δi(h)‖

∣∣∣∣∣ ≤C
(
‖xit‖2 + ‖xit‖‖wit‖

min1≤i≤N σi
+

|vit| ‖xit‖
ιN

)
rθ,N

and hence

1

T

T∑
t=1

d̂it(h)− dit(h)

σi‖δi(h)‖
= Op

(
rθ,N

ιN ∧min1≤i≤N σi

)
1

T

T∑
t=1

(d̂it(h)− dit(h))(d̂it(h
′)− dit(h

′))

σ2
i ‖δi(h)‖‖δi(h′)‖

= Op

(
r2θ,N

ι2N ∧min1≤i≤N σ2
i

) (A.14)

uniformly in unit i and probability measure P ∈ PN . Following similar arguments as in
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the proof of Lemma A.14, Lemma A.15 yields∣∣∣∣ 1T
T∑
t=1

dit(h)dit(h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

−
1
T

∑T
t=1 EP [dit(h)dit(h

′)]

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣
≤C 1

T

T∑
t=1

(
‖xit‖2 + ‖xit‖‖wit‖

min1≤i≤N σi
+

|vit| ‖xit‖
ιN

)2

r2θ,N

≤
C r2θ,N

ι2N ∧min1≤i≤N σ2
i

+ op(1),

(A.15)

where the op(1) term is uniform over units i and probability measures P ∈ PN . Noting
that ∣∣∣∣ 1√

T

T∑
t=1

dit(h)

σi‖δi(h)‖

∣∣∣∣ = ∥∥∥∥ 1√
T

T∑
t=1

vitxit

∥∥∥∥,
Lemma A.15 implies ∣∣∣∣ 1√

T

T∑
t=1

dit(h)

σi‖δi(h)‖

∣∣∣∣ = Op (logN) (A.16)

uniformly in i and P . Since Assumption 1.6 bounds the expectation E[v2itxitx′it] by a
finite constant, we have

1

T

T∑
t=1

dit(h)dit(h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

=
δi(h)

′ 1
T

∑T
t=1 v

2
itxitx

′
itδi(h

′)

‖δi(h)‖‖δi(h′)‖
.

≤

∥∥∥∥∥ 1T
T∑
t=1

(
v2itxitx

′
it − E[v2itxitx′it]

)∥∥∥∥∥
+

∥∥∥∥∥ 1T
T∑
t=1

E[v2itxitx′it]

∥∥∥∥∥
=Op

(
logN/

√
T
)
= op(1)

(A.17)

uniformly in i and P .
Now, combining the decomposition

1
T

∑T
t=1

(
d̂it(h)− ¯̂

dit(h)
)(

d̂it(h
′)− ¯̂

dit(h
′)
)

σ2
i ‖δi(h)‖‖δi(h′)‖

−
1
T

∑T
t=1 EP [dit(h)dit(h

′)]

σ2
i ‖δi(h)‖‖δi(h′)‖

=
1

T

T∑
t=1

(
d̂it(h)− dit(h)

σi‖δi(h)‖

)(
d̂it(h

′)− dit(h
′)

σi‖δi(h′)‖

)
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+
1

T

T∑
t=1

dit(h)

σi‖δi(h)‖

(
d̂it(h

′)− dit(h
′)

σi‖δi(h′)‖

)
+

1

T

T∑
t=1

dit(h
′)

σi‖δi(h′)‖

(
d̂it(h)− dit(h)

σi‖δi(h)‖

)
.

−

(
1

T

T∑
t=1

d̂it(h)

σi‖δi(h)‖

)(
1

T

T∑
t=1

d̂it(h
′)

σi‖δi(h′)‖

)

+
1

T

T∑
t=1

dit(h)dit(h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

−
1
T

∑T
t=1 EP [dit(h)dit(h

′)]

σ2
i ‖δi(h)‖‖δi(h′)‖

with (A.14), (A.15), (A.16) and (A.17) yields a constant C such that

sup
P∈P

P

(
max
1≤i≤N

∣∣∣∣∣
1
T

∑T
t=1

(
d̂it(h)− ¯̂

dit(h)
)(

d̂it(h
′)− ¯̂

dit(h
′)
)

σ2
i ‖δi(h)‖‖δi(h′)‖

− 1

T

T∑
t=1

dit(h)dit(h
′)

σ2
i ‖δi(h)‖‖δi(h′)‖

∣∣∣∣∣
≥ C

rθ,N
ιN ∧min1≤i≤N σi

)
= o(1).

This implies the first statement of the lemma. The proof of the second statement of the
lemma is similar to the proof of Lemma A.14, but replacing all references to Lemma A.5
by a reference to the result in the previous display.

Lemma A.17. Let ν(N) ≥ 1 denote a sequence that converge to infinity and let cN(α)
denote the (1−α/N)-quantile of the t-distribution with ν(N) degrees of freedom. Suppose
that (logN)/ν(N) → 0. For each ε > 0 and 0 < α < 1 there is a threshold N0 such that
for N ≥ N0

sup
α≤α<1

cN(α) ≤
√

2(1 + ε) log(N/α).

Proof. For notational convenience, write ν = ν(N). We prove the bound for α = α
and write cN = cN(α). The uniformity then follows from the monotonicity of the
distribution function. Clearly, cN → ∞ so we can take cN ≥ 1, provided that N is large
enough. The density function of the t-distribution with ν degrees of freedom is given by
fν(x) = c(ν) (1 + x2/ν)

− ν+1
2 , where

c(ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) → 1√
2π

as ν → ∞. It follows that there is a universal constant C such that c(ν) ≤ C. We first
show that c2N/ν = O(1). The proof is by contradiction. Suppose that lim supN→∞ c2N/ν =
∞. Applying Theorem 1 in Soms (1976) with n = 1 yields

1− Fν(cN) ≤ fν(cN)
1

cN

(
1 +

c2N
ν

)
. (A.18)
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This implies that

α

N
≤ c(ν)

(
1 +

c2N
ν

)− ν+1
2
(
1 +

c2N
ν

)
≤ C

(
1 +

c2N
ν

)− ν−1
2

.

Taking logs and re-arranging gives

log(N/α)

ν
≥ 1

2

ν − 1

ν

(
log

(
1 +

c2N
ν

)
− C

)
.

The left-hand side of the inequality vanishes under the assumptions of the lemma,
whereas a sub-sequence of the right-hand side diverges to infinity. This establishes that
the inequality is impossible and therefore c2N/ν = O(1). This implies that there exists a
constant b such that

1 < b ≤
(
1 +

c2N
ν

) ν

c2
N ≤ e,

so that we can take ((
1 +

c2N
ν

) ν

c2
N

)−1

≤ e−
ν

ν+1
(1+ε∗/2)−1

for a positive ε∗. Then

fν(cN) ≤ C

[(
1 +

c2N
ν

) ν

c2
N

]− c2N
2

[
ν+1
ν

]
≤ C exp

(
−c

2
N

2
(1 + ε∗/2)−1

)
.

Take N large enough that

1

1 + ε∗/2
− 4 log cN

c2N
>

1

1 + ε∗
.

Then, the right-hand side of (A.18) can be bounded by

C exp

(
−c

2
N

2
(1− ε∗/2)−1

)(
1 +

c2N
ν

)
≤2C exp

(
−c

2
N

2

(
(1 + ε∗/2)−1 − 4 log cN

c2N

))
≤2C exp

(
−c

2
N

2
(1 + ε∗)−1

)
.

Plugging in 1− Fν(cN) = α/N and taking logs gives

c2N ≤(1 + ε∗) log (N/α) + log(2C)

≤2(1 + ε∗) log (N/α)

(
1 +

1

2(1 + ε∗)

log(2C)

log(N/α)

)
.
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Hence, there is a constant C such that c2N ≤ C log(N/α). Using this inequality, we can
now verify that c2N/ν → 0 so that (

1 +
c2N
ν

) ν

c2
N → e,

allowing us to take ε∗ = ε/2 for sufficiently large N . Taking N large enough that

(1 + ε/2)

(
1 +

1

2(1 + ε/2)

log(2C)

log(N)

)
≤ 1 + ε

yields c2N ≤ 2(1 + ε) log (N/α).

Lemma A.18. For ν ≥ 1, let Fν and fν denote the distribution and density function of
a t-distributed random variable with ν degrees of freedom. For x2 > 2

fν(x) < 2x (1− Fν(x)) .

Proof. Applying Theorem 1 in Soms (1976) with n = 2 yields the inequality

1− Fν(x) ≥ (1 + x2/ν)

(
1− ν

(ν + 2)x2

)
fν(x)/x.

Now, x2 > 2 implies

1− Fν(x) >

(
1− 1

2

)
fν(x)/x.

Lemma A.19. Let PN denote a family of probability measures satisfying Assumptions 1
with parameters satisfying ‖θh‖ < M for some finite M for any h. Assume rθ,N = o(1∧ιN)
and rθ,N(

√
T +

√
logN)(ιN +min1≤i≤N σi) = o(1). There are constants C and C ′ such

that

sup
P∈PN

P

(
max
1≤i≤N

∣∣∣∣ 1T
T∑
t=1

d̂Uit(g
0
i , h)− dUit(g

0
i , h)

sUi (h)

∣∣∣∣ ≥ C
rθ,N

ιN +min1≤i≤N σi

)
=o(1). (A.19)

sup
P∈PN

P

(
max
1≤i≤N

∣∣∣D̂U
i (g

0
i , h)− D̃U

i (g
0
i , h)

∣∣∣ ≥ C ′ rθ,N(
√
T +

√
logN)

ιN +min1≤i≤N σi

)
=o(1). (A.20)

Proof. Throughout the proof, let C denote a generic constant that does not depend on
P ∈ P. Let δi(h) = θg0i − θh and δ̂i(h) = θ̂g0i − θ̂h. Note that

‖δ̂i(h)‖/‖δi(h)‖ ≤ 1 +
‖δ̂i(h)− δi(h)‖

‖δi(h)‖
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is bounded by the fact that rθ,N = o(1 ∧ ιN).
We observe

d̂Uit(h)− dUit(h) =
1

2

(
(yit − w′

itθ̂
w − x′itθ̂g0i )

2 − (yit − w′
itθ̂

w − x′itθ̂h)
2
)

− 1

2

(
(yit − w′

itθ
w − x′itθg0i )

2 − (yit − w′
itθ

w − x′itθh)
2
)

=− uitx
′
it(δ̂i(h)− δi(h)) + w′

it(θ̂
w − θw)x′itδ̂i(h) + x′itδ̂i(h)x

′
it(θ̂g0i − θg0i )

− 1

2
(x′itδ̂i(h))

2 +
1

2
(x′itδi(h))

2.

Thus, we have, with probability at least 1− aθ,N ,∣∣∣∣∣ d̂Uit(h)− dUit(h)

σi‖δi(h)‖

∣∣∣∣∣ ≤C
(
‖xit‖2 + ‖xit‖‖wit‖

min1≤i≤N σi
+

|vit| ‖xit‖
ιN

)
rθ,N , (A.21)(

d̂Uit(h)− dUit(h)

σi‖δi(h)‖

)2

≤C

(
‖xit‖4 + ‖xit‖2‖wit‖2

min1≤i≤N σ2
i

+
|vit|2 ‖xit‖2

ι2N

)
r2θ,N (A.22)

and∣∣∣∣∣ dUit(h)

σi‖δi(h)‖

(
d̂Uit(h)− dUit(h)

σi‖δi(h)‖

)∣∣∣∣∣ ≤ C

(
‖xit‖4 + |vi| ‖xit‖3 + |vi| ‖xit‖2‖wit‖+ ‖xit‖3‖wit‖

min1≤i≤N σi

+
|vi|2 ‖xit‖2 + |vi| ‖xit‖3

ιN

)
rθ,N ,

(A.23)

where (A.23) also rely on the compactness assumption in the theorem.
Combining (A.22), Lemmas A.12 and A.15, the fact that sUi (h) = σi‖δi(h)‖E‖xit‖+

E(‖xit‖2)‖δi(h)‖2 ≥ Cσi‖δi(h)‖ yields (A.19).
Let

ŝUi (h)
2 =

1

T

T∑
t=1

(
d̂Uit(h)−

¯̂
dUit(h)

)2
, s̃Ui (h)

2 =
1

T

T∑
t=1

(
dUit(h)− d̄Uit(h)

)2
We observe that

ŝUi (h)
2 − s̃Ui (h)

2

σ2
i ‖δi(h)‖2

=
1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)

σi||δi(h)||

)2

+ 2
1

T

T∑
t=1

dUit(h)

σi‖δi(h)‖
(d̂Uit(h)− dUit(h))

σi‖δi(h)‖

− T

(
1

T

T∑
t=1

d̂Uit(h)− dUit(h)

σi||δi(h)||

)(
1

T

T∑
t=1

d̂Uit(h)− dUit(h)

σi||δi(h)||
+

2

T

T∑
t=1

dUit(h)

σi||δi(h)||

)
.
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Note that ∣∣∣∣∣ 1T
T∑
t=1

dUit(h)

σi||δi(h)||

∣∣∣∣∣ ≤
∥∥∥∥∥ 1T

T∑
t=1

vitxit

∥∥∥∥∥+ ‖δi(h)‖
1

T

T∑
t=1

‖xit‖2

By Lemmas A.12 and A.15, and the compactness condition, we have

sup
P∈P

P

(
max
1≤i≤N

∣∣∣∣ 1T
T∑
t=1

dUit(h)

σi‖δi(h)‖

∣∣∣∣ ≥ C(1 + T−1/2
√

logN)

)
= o(1), (A.24)

Combining Lemma A.15, (A.21), (A.22), (A.23), and (A.24) yields

sup
P∈P

(
max
1≤i≤N

∣∣∣∣ ŝUi (h)2 − s̃Ui (h)
2

σ2
i ‖δi(h)‖2

∣∣∣∣ ≥ C
rθ,N

ιN ∧min1≤i≤N σi

)
= o(1). (A.25)

Observing that sUi (h) > si(h) which holds under the E(uitxitk1xitk2xitk3) = 0, σi‖δi(h)‖/sUi (h)
is bounded away from infinity by Assumption 1.4. This in turn implies that σi‖δi(h)‖/s̃Ui (h)
is bounded away from infinity. We thus have

sup
P∈P

(
max
1≤i≤N

∣∣∣∣ ŝUi (h)s̃Ui (h)
− 1

∣∣∣∣ ≥ C

(
rθ,N

ιN ∧min1≤i≤N σi

))
= o(1). (A.26)

Lastly, we consider

D̂U
i (h)− D̃U

i (h) =

(
s̃Ui (h)

ŝUi (h)
− 1

)
Di(h) +

1√
T

∑T
t=1

(
d̂Uit(h)− dUit(h)

)
/(σi‖δi(h)‖)

ŝUi (h)/(σi‖δi(h)‖)
= JU1 + JU2 .

We bound J1 by writing∣∣∣∣( s̃Ui (h)ŝUi (h)
− 1

)
D̃i(h)

∣∣∣∣
=

∣∣∣∣∣ s̃Ui (h)ŝUi (h)

(
1− ŝUi (h)

s̃Ui (h)

) 1
T

∑T
t=1 d

U
it(h)/(σi‖δi(h)‖)

s̃Ui (h)/(σi‖δi(h)‖)

∣∣∣∣∣
≤ s̃

U
i (h)

ŝUi (h)

∣∣∣∣1− ŝUi (h)

s̃Ui (h)

∣∣∣∣
(∥∥∥∥∥ 1√

T

T∑
t=1

vitxi

∥∥∥∥∥+ 1

σi
√
T

T∑
t=1

‖xit‖2‖δi(h)‖

)(
s̃Ui (h)

σi‖δi(h)‖

)−1

and applying Lemma A.15 to bound ‖T−1/2
∑T

t=1 vitxit‖, (A.26) to bound |1− ŝi(h)/s̃i(h)|,
the discussion above (A.26) for a lower bound on s̃Ui (h)/(σi‖δi(h)‖) and

ŝUi (h)

s̃Ui (h)
≥ 1−

∣∣∣∣ ŝUi (h)s̃Ui (h)
− 1

∣∣∣∣
in conjunction with (A.26) to derive a lower bound on ŝUi (h)/s̃

U
i (h). To bound JU2 , we
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derive a lower bound on its denominator from

ŝUi (h)

σi‖δi(h)‖
=

s̃Ui (h)

σi‖δi(h)‖

{(
ŝUi (h)

s̃Ui (h)
− 1

)
+ 1

}
in conjunction with (A.26) and the lower bound on s̃Ui (h)/(σi‖δi(h)‖) discussed above.
The numerator in JU2 is bounded by the argument used to prove (A.19). The bounds on
JU1 and JU2 yield (A.20)
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B. Additional results for empirical application
B.1. One-step confidence set

baseline SNS

State ĝi p-val ĝi card CS p-val ĝi card CS

Alabama 1 0.000 1 1 0.000 1 1
Alaska 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Arizona 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Arkansas 2 0.027 1 2 0.041 1 2
California 3 0.000 1 3 0.000 1 3

Colorado 4 0.893 2 3, 4 1.000 2 3, 4
Connecticut 3 0.631 2 2, 3 0.715 2 2, 3
Delaware 2 1.000 2 2, 3 1.000 2 2, 3
D.C. 2 1.000 4 1, 2, 3, 4 1.000 4 1, 2, 3, 4
Florida 4 0.049 1 4 0.074 2 3, 4

Georgia 1 0.000 1 1 0.000 1 1
Hawaii 2 1.000 4 1, 2, 3, 4 1.000 4 1, 2, 3, 4
Idaho 3 0.664 2 3, 4 0.852 2 3, 4
Illinois 3 0.003 1 3 0.004 1 3
Indiana 3 0.024 1 3 0.038 1 3

Iowa 4 0.000 1 4 0.000 1 4
Kansas 4 0.010 1 4 0.015 1 4
Kentucky 3 0.093 2 3, 4 0.151 3 2, 3, 4
Louisiana 1 0.000 1 1 0.000 1 1
Maine 2 0.015 1 2 0.023 1 2

Maryland 2 0.000 1 2 0.000 1 2
Massachusetts 2 1.000 2 2, 3 1.000 2 2, 3
Michigan 2 0.001 1 2 0.001 1 2
Minnesota 2 0.000 1 2 0.000 1 2
Mississippi 1 0.001 1 1 0.001 1 1

Missouri 2 0.002 1 2 0.003 1 2
Montana 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Nebraska 4 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Nevada 2 1.000 4 1, 2, 3, 4 1.000 4 1, 2, 3, 4
New Hampshire 3 0.080 2 3, 4 0.130 2 3, 4

New Jersey 2 1.000 2 2, 3 1.000 2 2, 3
New Mexico 3 0.094 3 2, 3, 4 0.121 3 2, 3, 4
New York 2 0.000 1 2 0.000 1 2
North Carolina 2 0.000 1 2 0.000 1 2
North Dakota 4 0.010 1 4 0.015 1 4

Ohio 1 0.000 1 1 0.000 1 1
Oklahoma 3 0.168 2 2, 3 0.207 2 2, 3
Oregon 4 0.000 1 4 0.000 1 4
Pennsylvania 3 0.021 1 3 0.030 1 3
Rhode Island 2 0.000 1 2 0.001 1 2

South Carolina 1 0.000 1 1 0.000 1 1
South Dakota 4 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Tennessee 2 0.000 1 2 0.000 1 2
Texas 1 0.000 1 1 0.000 1 1
Utah 4 1.000 2 3, 4 1.000 2 3, 4

Vermont 4 0.000 1 4 0.000 1 4
Virginia 2 1.000 2 2, 3 1.000 2 2, 3
Washington 4 0.000 1 4 0.000 1 4
West Virginia 3 0.014 1 3 0.041 1 3
Wisconsin 3 0.392 2 2, 3 0.455 2 2, 3

Wyoming 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
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Table B.1: Marginal confidence set at level 1 − α = 0.95. “p-val ĝi” is the p-value for
the significance of the estimated group membership. “CS cardinality” is the
cardinality of the marginal confidence set for the state. “CS” is the marginal
confidence set. “Baseline” refers to the procedure with critical values defined
in Section 3.4. “SNS” refers to the procedure with critical values defined in
Section 5.1.

B.2. Two-step confidence set assuming no serial correlation
Under the assumption of no serial correlation, we can use the non-HAC variance estimator
from Section 5.2 in the main paper and eliminate nine units in the first step.
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Table B.2: Two-step procedure assuming no serial correlation. Second-step p-values for
the significance of the estimated group memberships with and without unit
selection (α = 0.05, β = 0.01). The dashed horizontal line indicates the
threshold for significance without unit selection. The solid horizontal line
indicates the threshold for significance with unit selection.

As illustrated in Figure B.2, the elimination at the first stage decreases the second-step
p-values since the Bonferroni adjustment is over a smaller number of simultaneous tests.
On the other hand, turning on unit selection lowers the threshold p-value at which we
can conclude significance from α = 0.05 to α− 2β = 0.03. In this example, the two-step
procedure reduces p-values in the second step but does not produce a smaller confidence
set.
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C. Additional simulation results
C.1. Choice of the regularization sequence εN

C.1.1. Benchmark simulation designs from Section 7

For our simulation results in Section 7 in the main text, we set the regularization
sequence εN equal to the constant sequence εN = 0.01. In this appendix, we investigate
the robustness of our simulation results to this choice of regularization sequence.

The simulation design is identical to the specification simulated in Section 7. For
all simulation results presented in this section, we estimate the group-specific model
parameters by the kmeans estimator and use the HAC-type estimator of the long-run
variance with data-driven bandwidth. Simulation results are based on 500 replications.

We first consider constant sequences εN = 0, 0.01, 0.05. Here, εN = 0.01 is the value
used in the simulations in the main text, and εN = 0 turns off the regularization of the
variance matrix. Table C.1 reports the simulation results.

coverage average cardinality

ρ N T ε = 0 ε = 0.01 ε = 0.05 ε = 0 ε = 0.01 ε = 0.05

60 0.92 0.92 0.93 1.94 1.97 2.0050
120 1.00 1.00 1.00 1.14 1.16 1.18
60 0.95 0.95 0.95 2.10 2.13 2.19100

120 0.99 1.00 1.00 1.19 1.21 1.26
60 0.97 0.96 0.95 2.28 2.30 2.37

0.0

200
120 1.00 0.98 0.99 1.27 1.28 1.34

60 0.69 0.69 0.66 3.39 3.42 3.4950
120 0.98 0.98 0.98 3.67 3.72 3.78
60 0.67 0.69 0.73 3.60 3.62 3.66100

120 0.97 0.98 0.97 3.83 3.84 3.85
60 0.68 0.70 0.68 3.73 3.74 3.76

0.5

200
120 0.97 0.97 0.98 3.86 3.87 3.87

Table C.1: Simulation results for εN = 0, 0.01, 0.05. Nominal level 1− α = 0.95. “cover-
age” is the empirical coverage probability of the joint confidence set. “car-
dinality” is the expected average (over all units) cardinality of the marginal
unit-wise confidence sets.

The results are not very sensitive to the choice of εN . Notably, the performance of
our method is not affected substantially by turning off regularization completely (i.e.,
choosing εN = 0). In the next section, we show that regularization plays a greater,
though still limited, role in an alternative design that is tailored to make regularization
relevant.

We also simulate vanishing sequences εN = log−2N, log−3/2N . These sequences satisfy
the rate condition imposed in Theorem 2. Table C.2 reports the simulation results.
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ε coverage average cardinality

ρ N T ε = log−2N ε = log−3/2N ε = log−2N ε = log−3/2N ε = log−2N ε = log−3/2N

60 0.07 0.13 0.92 0.93 2.03 2.0450
120 0.07 0.13 1.00 0.99 1.19 1.18
60 0.05 0.10 0.96 0.96 2.19 2.25100

120 0.05 0.10 1.00 1.00 1.24 1.26
60 0.04 0.08 0.95 0.97 2.37 2.44

0.0

200
120 0.04 0.08 1.00 1.00 1.34 1.35

60 0.07 0.13 0.72 0.74 3.49 3.5350
120 0.07 0.13 0.98 0.97 3.79 3.80
60 0.05 0.10 0.75 0.71 3.67 3.68100

120 0.05 0.10 0.99 0.98 3.85 3.86
60 0.04 0.08 0.67 0.68 3.75 3.77

0.5

200
120 0.04 0.08 0.98 0.98 3.87 3.87

Table C.2: Simulation results for εN = log−2N, log−3/2N . Nominal level 1 − α = 0.95.
“coverage” is the empirical coverage probability of the joint confidence set.
“cardinality” is the expected average (over all units) cardinality of the marginal
unit-wise confidence sets.

Again, we find that the simulation results are not sensitive to the choice of regularization
sequence.

C.1.2. A design where regularization matters

In our benchmark designs, the choice of regularization parameter hardly affects the
performance of our procedure, raising the question of whether regularization is indeed
necessary. It seems possible that regularization may be a purely technical device to
facilitate the mathematical proof of the validity of our procedure, but that it may not
have any practical relevance.

We address this concern by presenting an alternative simulation design where regular-
ization affects the finite-sample performance of our procedure.

The design is very stylized and exhibits close-to-perfect correlations among the moment
inequalities. For such correlations, our comparison bound relies on regularization to
bound the estimation error in the critical values (see proof of Lemma A.3).

Similar to the simulation designs in Section 7, the data generating process is given by

l̃empit = θg0i ,1l̃mwit + θg0i ,2l̃popit + θg0i ,3l̃emp
TOT
it + σivit

for i = 1, . . . , N and t = 1, . . . , T . We simplify the generating process of the covariates
and obtain xit = (l̃mwit, l̃popit, l̃emp

TOT
it ) by sampling independently three times from the

empirical distribution of l̃mwit observed in the data for our application. This guarantees
that the components of xit have identical and independent marginal distributions which
makes it easier to parameterize the correlation structure of the moment inequalities with
the parameter κ below.

For group g = 1, we set the group-specific coefficient θ1 = (θ1,1, θ1,2, θ1,3) equal to
(0.5, 0.5, 0.5). For the remaining groups, the coefficients are a convex combination of a
design with parallel groups and a design with orthogonal groups. For g = 2, 3, 4, the
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coefficients with parallel groups are θparallel
g = cgθ1, with c2 = 0.7, c3 = 0.4 and c4 = 0.1.

The coefficients with orthogonal groups are θorthogonal
2 = (0.5, 0, 0), θorthogonal

3 = (0, 0.5, 0),
θorthogonal
4 = (0, 0, 0.5). For g = 2, 3, 4, the group-specific coefficients are given by the

convex combination θg = (1 − κ)θparallel
g + κθorthogonal

g , where κ = 0, 0.05, 0.1, 0.2. For
κ = 0, groups are parallel, and all off-diagonal entries of the population correlation
matrix Ωi(g) are perfect correlations. For κ = 1, groups are orthogonal, and the matrix
Ωi(g) is diagonal.

As in the designs in Section 7, each unit i is assigned to one of the four groups with
equal probability and exhibits a random heteroscedasticity parameter σi = 0.1×χ2(4)/4,
where χ2(df) is a random draw from a χ2-distribution with df degrees of freedom.

To establish a conjecture about the role of regularization in this design, we briefly
review where regularization enters our theoretical arguments. Regularization is part of
our strategy to control estimation errors in the critical values. This estimation error
comes from the fact that the group-specific critical values are estimated from data. It is,
therefore, a greater concern in small panels (T and N small) than in large panels (T or
N large). Consider a positive off-diagonal entry in Ωi(g

0
i ). From the proof of Lemma A.3,

it is apparent that estimation error is easily controlled if the entry is bounded away
from unity. We apply an argument that relies on our regularization scheme to control
estimation error if the entry is close to unity. In summary, regularization is expected to
be relevant if T and/or N are small and κ is small.

coverage average cardinality

MVT SNS MVT SNS

κ N T ε = 0 ε = 0.01 ε = 0.05 ε = 0 ε = 0.01 ε = 0.05

60 0.82 0.80 0.84 0.86 2.19 2.18 2.22 2.3050
120 0.91 0.94 0.94 0.95 1.66 1.65 1.69 1.74
60 0.92 0.91 0.93 0.95 2.32 2.32 2.36 2.47

0.0

100
120 0.93 0.96 0.95 0.96 1.72 1.73 1.77 1.83

60 0.69 0.74 0.73 0.75 2.32 2.32 2.35 2.4250
120 0.86 0.87 0.89 0.91 1.80 1.79 1.80 1.85
60 0.84 0.82 0.85 0.87 2.46 2.46 2.50 2.58

0.1

100
120 0.93 0.92 0.92 0.95 1.87 1.87 1.89 1.95

60 0.65 0.62 0.66 0.68 2.42 2.42 2.43 2.5050
120 0.87 0.86 0.85 0.88 1.88 1.90 1.89 1.93
60 0.78 0.78 0.76 0.81 2.59 2.60 2.59 2.67

0.2

100
120 0.91 0.90 0.91 0.94 1.99 1.98 1.99 2.03

Table C.3: Simulation results for a stylized design with strongly correlated moment
inequalities. Nominal level 1− α = 0.95. “coverage” is the empirical coverage
probability of the joint confidence set. “cardinality” is the expected average
(over all units) cardinality of the marginal unit-wise confidence sets. MVT =
use MVT critical values. SNS = use SNS critical values.

This conjecture is confirmed by the simulation results in Table C.3 For κ = 0, 0.1,
regularization improves size control in the designs with small samples. In particular,
we see improvements if N = 50. For κ = 0.2, regularization leads to slightly worse
size control. We interpret this as a sign that for κ = 0.2, the cost of regularization in
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terms of a biased variance estimator is not outweighed by the benefit of guarding against
underestimating close-to-perfect positive correlations.

Simulation designs that investigate the role of regularization are by necessity designs
with substantial sampling error in the the group-specific coefficients. Without sampling
error, there is no uncertainty about the critical values and regularization is not needed.
The overall noisiness that makes the designs presented here informative about regulariza-
tion also affects the performance of our procedure directly, leading to a confidence set
that is underpowered independently of imprecisely estimated critical values. This can
be seen by comparing the performance of the regularized procedure with MVT critical
values to the procedure with data-independent SNS critical values. The coverage under
SNS critical values provides an upper bound on the coverage that can be achieved by
eliminating estimation error in the critical values, i.e., an upper bound on what better
regularization can achieve. This has to be considered when interpreting the improvements
in size control from regularization. For example, for κ = 0.1, N = 50, and T = 60,
regularization improves the size by about five percentage points, bringing the size within
a percentage point of the size under SNS critical values.

The simulation results offer some evidence that the theoretical considerations that
motivate our regularization approach have practical relevance. This suggests that it
may not be possible to rigorously justify a version of our procedure that does not
use regularization. On the other hand, even in this highly stylized design, gains from
regularization are limited. From a practical perspective, correct regularization may not
be a key concern.

C.2. Testing the estimated group membership ĝi

In the definition of Ĉα,N,i, we explicitly add ĝi to the confidence set. Not doing this
changes the marginal confidence set of unit i only if ĝi is not already included anyway,
i.e., if

T̂i (ĝi) > ĉα,N,i (ĝi) . (C.27)

We simulate the finite sample probability of this happening in our simulation designs
from Section 7 in the main text. The simulation results are summarized in the following
table.
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ρ σ N T coverage cardinality ĝi not rej

60 0.99 1.60 0.9950
120 1.00 1.07 0.99
60 0.99 1.76 1.00100

120 1.00 1.12 1.00
60 0.99 1.95 1.00

0.1

200
120 1.00 1.17 1.00

60 0.92 1.97 0.9950
120 1.00 1.16 0.99
60 0.95 2.13 0.99100

120 1.00 1.21 1.00
60 0.96 2.30 1.00

0.0

0.2

200
120 0.98 1.28 1.00

60 0.87 3.35 0.9950
120 0.99 3.71 1.00
60 0.86 3.52 1.00100

120 0.99 3.80 1.00
60 0.82 3.67 1.00

0.1

200
120 1.00 3.84 1.00

60 0.69 3.42 0.9950
120 0.98 3.72 1.00
60 0.69 3.62 0.99100

120 0.98 3.84 1.00
60 0.70 3.74 1.00

0.5

0.2

200
120 0.97 3.87 1.00

Table C.4: Simulated probability of the event (C.27).

In Table C.4, the column “ĝi not rej” gives the simulated probability of our group
membership not rejecting the estimated group membership (i.e., one minus the probability
of the event defined in equation (C.27)). We find that our test for group membership
does not reject the estimated group membership with probability close to, but not equal
to, one.

C.3. Two-step procedure
In this appendix, we report simulation results regarding the finite-sample performance of
our two-step procedure.

We simulate a design with independent time periods. Like our main design in Section 7
in the main text, the design studied here builds on the model estimated in Section 6
in the main text. A unit i corresponds to a US state and the “time periods” are given
by observations of different counties in different quarters. The panel model is specified
as in equation (12) in the main text, with coefficients equal to the estimate coefficients
in Table 1 in the main text. The joint distribution of the regressors l̃mwit, l̃popit and
l̃emp

TOT
it is defined from the data used in our empirical application. In particular,

l̃mwit, l̃popit and l̃emp
TOT
it are sampled from the pooled empirical distribution of the

respective fixed-effect transformations of log(mwit), log(popit) and log(empTOT
it ). The error

component vit is a standard normal noise term.
We set the distribution of heteroscedasticity and group membership, i.e., to the joint

distribution of (σi, Ti, g0i ) so that the simulation results reveal different aspects of the
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performances of the two-step procedure. We note that the two-step procedure is sensitive
to this distribution. We determine it from the data by mapping each simulated unit i to
one of the N = 51 units from our empirical application. We set σi equal to mσ times
the standard deviation of the empirical residuals for unit i, g0i equal to the estimated
group membership of i and Ti equal to the number of observed “time periods” for unit
i (i.e. counties times quarters). The parameter mσ = 1/4, 1, 4 shifts the global level of
uncertainty.

The other parameters for the simulations are set as follows. The nominal level of
the simulated joint confidence set is 1− α = 0.95. We simulate different values of the
first-step parameter β = α/5, α/10 = 0.01, 0.005. The regularization sequence is specified
as εN = 0.01. We simulate the confidence set using our benchmark critical values defined
in Section 3.4 of the main text (labelled MVT = multi-variate t-distribution), as well as
the SNS critical values defined in Section 5.1 of the main text (labelled SNS).

success failure card with sel card without sel

mσ α/β insignif signif insignif signif insignif signif insignif signif N̂ coverage

MVT
0.25 10 0.55 0 0.00 0.00 1.48 1.00 2.01 1 10.06 1.00

5 0.48 0 0.00 0.00 1.55 1.00 2.01 1 9.29 1.00
1.00 10 0.13 0 0.00 0.00 2.15 1.00 2.21 1 33.73 0.99

5 0.00 0 0.01 0.03 2.22 1.00 2.21 1 32.35 1.00
4.00 10 0.00 0 0.50 0.45 2.75 1.02 2.72 1 50.95 0.96

5 0.00 0 0.80 0.77 2.79 1.05 2.72 1 50.90 0.97
SNS

0.25 10 0.53 0 0.00 0.00 1.51 1.00 2.00 1 10.04 1.00
5 0.46 0 0.00 0.00 1.58 1.00 2.00 1 9.32 1.00

1.00 10 0.13 0 0.00 0.00 2.21 1.00 2.27 1 33.73 1.00
5 0.00 0 0.01 0.04 2.27 1.00 2.27 1 32.42 1.00

4.00 10 0.00 0 0.52 0.44 2.78 1.02 2.75 1 50.95 0.98
5 0.00 0 0.81 0.73 2.82 1.05 2.75 1 50.92 0.98

Table C.5: Simulation results for the two-step procedures (unit selection).

The simulation results are based on 1000 replications and reported in Table C.5. The
columns labeled “insignif” give averages over units that are insignificant under no unit-
selection. Columns labeled “signif” give averages over units that are significant under no
unit-selection. A unit is labeled as a “success” (“failure”) if its marginal confidence set is
strictly smaller (strictly larger) under unit-selection than under no unit-selection. The
columns labeled “card with sel” (“card without sel”) give the cardinality of unit-wise
marginal confidence sets if unit-selection is turned on (turned off). The column labeled
N̂ gives the simulated expected number of units that survive unit selection (N = 51).
“Coverage” gives the simulated joint coverage probability of the two-step joint confidence
set (nominal level 1− α = 0.95).

In all designs, unit selection produces a valid joint confidence set that covers the true
group structure at the prescribed nominal level.

Unit selection aims to tighten the marginal confidence sets for units for which estimated
group memberships are insignificant under a one-step procedure. Among such units,
the expected proportion of units for which a two-step procedure tightens the marginal
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confidence set varies across the different designs. In the design with low error variances
(mσ = 0.25), this proportion ranges between 46% and 55%. This means that the two-
step procedure improves the marginal confidence sets for roughly half of the units for
which they can be improved. In the design with medium error variances (mσ = 1), this
proportion lies between 0% and 13%. In the design with high error variances (mσ = 4),
there are no improvements. This illustrates that the two-step procedures can only be
successful if the overall uncertainty is low but unequally distributed across units. If overall
uncertainty is high, then the first step cannot deselect units, and hence the second-step
confidence sets cannot be tightened.

The two-step procedures can cause the confidence set to become wider if insufficiently
many units are eliminated in the first step. This happens in the designs with high error
variance (mσ = 4): hardly any units are eliminated in the first step and the size of
the marginal confidence sets increases both for units with significant and units with
insignificant group membership estimates under the one-step procedure.

Using MVT instead of SNS critical values increases the power of our two-step procedure.
In our designs, both choices of critical values select a similar number of units for the
second step. Therefore, the power gain from using MVT critical values is almost entirely
due to more efficient testing in the second step.

D. Weak group separation
D.1. Introduction
In this appendix, we consider grouped panel models in which groups are only weakly
separated. By weak separation, we mean that groups are distinct but very similar to
each other. We formalize this notion using an approach inspired by the local alternatives
in asymptotic testing theory. In particular, we let the distance between groups shrink to
zero at a fixed rate.

We offer new theoretical results on the rate of consistency of the kmeans estimator
under weak separation. In particular, we give conditions under which the estimated
group-specific coefficients converge at the parametric

√
NT -rate if the distance between

groups shrinks at a rate slower than T−1/2. We then use this result to derive conditions
under which our confidence set is valid under weak group separation.

In addition to the theoretical analysis, we provide simulation studies to investigate the
finite sample behavior of the kmeans estimator and our joint confidence set under weak
separation and to verify our theoretical predictions.

This appendix is structured as follows. In Section D.2 we discuss existing results on
kmeans estimation in a setting where groups are not separated at all. We then turn to
our analysis of the kmeans estimation under weak separation. In Section D.3, we present
asymptotic results. In Section D.4, we present simulation evidence. Proofs are given in
Section D.5.
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D.2. No group separation
We first discuss kmeans estimation under no group separation. By “no group separation”
we mean that there are at least two groups with identical coefficients. This corresponds
to over-specification of the number of groups. Bonhomme and Manresa (2015) study
this setting in their supplemental appendix. In this setting, the estimators of the group-
specific coefficient converge at most at the rate of T−1/2. As discussed in the main text
of this paper, this rate is too slow to satisfy our conditions for the validity of the joint
confidence set.

We consider a simple mean shift model where we observe yit, for i = 1, . . . , N and
t = 1, . . . T . The parameter of interest is the mean of yit. We assume that there is a
latent group structure with G groups and that the mean of yit may depend on unit i’s
group membership. Suppose that there is only one distinct group, i.e., all units have
the same mean, but we incorrectly set the number of groups to two. Specifically, the
estimated model is

yit = αgi + vit,

where gi = 1, 2 and vit is assumed to be i.i.d.N(0, σ2). Let α̂1 and α̂2 be the estimators
of α1 and α2, respectively, by the kmeans method. By relabelling if necessary, we impose
α̂1 ≥ α̂2. The true model is homogeneous such that α = α1 = α2.

Proposition S.2 of Bonhomme and Manresa (2015) (supplemental appendix) states
that, as N → ∞ with T fixed, it holds that

α̂1 → α +

√
2

πT
, α̂2 → α−

√
2

πT
.

We note that the model considered in Proposition S.2 of Bonhomme and Manresa
(2015) includes regressors with common coefficients, but its presence does not affect the
probability limits of α̂1 and α̂2.

The above result indicates that, even we take T → ∞ in addition to N → ∞, the
convergence rates of α̂1 and α̂2 are at most of order T−1/2. In particular, the probability
that P (|α̂g − α| > CT−1/2) for fixed C does not converge to 0.

D.3. Asymptotic analysis
We now turn to the setting of weak group separation, where groups are distinct but very
similar. The discussion given here is a simplified version of Lumsdaine, Okui, and Wang
(2022, Supplemental Appendix C).

We observe (yit, xit) for i = 1, . . . , N and t = 1, . . . , T . Units are divided into G groups,
and all members of a group share the same value of the regression coefficient. The model
is

yit = x′itθ
0
g0i
+ uit,
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where θ0g , g = 1, . . . , G, are group-specific coefficients, g0i ∈ {1, . . . , G} is unit i’s true
group membership, and uit is an error term.

The parameters are estimated by the kmeans method (Bonhomme and Manresa 2015).
Let G = {1, . . . , G} be the set of groups. Then, GN is the parameter space for the
group membership structure. A typical element of G is γ = (g1, . . . , gN). The true group
membership structure is γ0 = (g01, . . . , g

0
N) ∈ G. The parameter space for the coefficients

is denoted as B ⊂ RGp. The estimator is

(γ̂, θ̂) = arg min
γ∈GN ,θ∈B

=
1

NT

T∑
t=1

N∑
i=1

(yit − x′itθgi)
2.

We prove a rate of consistency of the kmeans estimator and the following assumptions
that are weaker than the standard set of assumptions imposed in the literature (see,
e.g., Bonhomme and Manresa 2015). Most importantly, the group separation condition
is relaxed, allowing the difference between the slope coefficients associated with two
groups to vanish asymptotically. In addition, we relax the conditions on the existence of
moments and the mixing properties of the data.

Assumption D.1. 1. Let zit be x′itxit, or ‖uitxit‖. Assume the following holds for
any choice of zit: zit is a strictly stationary and strong mixing sequence over t
whose mixing coefficients ai[t] are bounded by a[t] such that max1≤i≤N ai[t] ≤ a[t]
and

∑∞
t=0(t+ 1)r/2−1a[t]b/r+b <∞ for some b > 0, and max1≤i≤N E(|zit|r+b) <∞

for some b > 0.

2. B is compact.

3. Let ρN(γ, g, g̃) be the minimum eigenvalue of

N∑
i=1

T∑
t=1

1{g0i = g}1{gi = g̃}xitx′it/(NT ),

where γ = (g1, . . . , gN). For any g ∈ G,

min
γ∈(G)N

max
g̃∈G

ρN(γ, g, g̃) > ρ̂,

where ρ̂→p ρ as N, T → ∞ and ρ > 0.

4. There exists ρ̂∗ such that for any i,

λmin

(
1

T

T∑
t=1

xitx
′
it

)
≥ ρ̂∗

and ρ̂∗ →p ρ
∗ > 0 as N, T → ∞, where λmin gives the minimum eigenvalue of its

argument.
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5. There exists a nonrandom sequence cT > T−1/2+e for some e > 0 such that for any
g 6= h̃ where g, h ∈ G, it holds that ‖θ0g − θ0h‖ > cT .

Assumption D.1.5 is the key assumption that replaces the usual group separation
assumption by weak group separation. Similar to the standard assumptions, any pair
of groups must have distinct coefficients. In particular, the distance between their
coefficients has to be bounded away from zero in any finite sample. We generalize the
standard assumptions and allow the distance to vanish asymptotically. In the limit,
groups are not separated. We assume that the rate at which group differences vanish is
slower than T−1/2.

The mixing and moment conditions in Assumption D.1.1 are weaker than the standard
assumptions imposed in the literature (see, e.g., Bonhomme and Manresa 2015). However,
we impose the additional assumption of strict stationarity. Under this assumption, we
can relate the degree of weak group separation to a condition on the relative magnitudes
of N and T .

All other assumptions are standard in the literature.
The following theorem derives an asymptotic equivalence between the kmeans estimator

θ̂ and the oracle estimator θ̃ under known group membership structure. The oracle
estimator is trivially

√
NT -consistent.

Unlike most existing results on the consistency of the kmeans estimator in grouped
panels, the theorem holds under weak group separation. However, the degree of group
separation affects the required condition on the relative magnitudes of N and T . The
faster group separation converges to the limit of no group separation, the stronger the
conditions on N and T . In particular, when group separation is weak, T must be large
relative to N .

Theorem D.1. Suppose that Assumptions D.1.1-D.1.5 hold. As N, T → ∞ with
NT−er → 0, where e and r are defined in Assumptions D.1.1 and D.1.5, respectively, it
holds that

θ̂ = θ̃ + op(1/
√
NT ).

Since the oracle estimator θ̃ is
√
NT -consistent, Theorem D.1 implies that θ̂ is

√
NT -

consistent.
Under the conditions of Theorem D.1, group consistency still holds (see Lemma D.4).

This is restrictive since the relevance of our testing problem relies on uncertainty about
the group memberships even in the asymptotic limit. We leave a formal analysis that
extends our results to settings with asymptotic misclassification for future research.

Our results indicate that such an extension is feasible. In our previous work in Dzemski
and Okui (2021), we have shown that consistent estimation of group memberships is not
a necessary condition for

√
NT -estimation of the group-specific coefficients under weak

separation. We proved this result for the mean-shift model estimated from i.i.d. data.
Theorem D.1 extends some of our previous analysis to a grouped panel regression model
with weakly dependent time series. To simplify the derivations and make our main point
(robustness to weak separation) in a clear and transparent manner, we impose a uniform
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‖θ01 − θ02‖ ‖θ0‖

T e=0.25 e=0.00 e=-0.25 e=0.25 e=0.00 e=-0.25

30 0.50 0.22 0.09 1.01 0.99 0.98
60 0.43 0.16 0.06 1.00 0.98 0.98

120 0.36 0.11 0.03 1.00 0.98 0.98

Table D.1: Group separation and e.

bound on the variance of the error term (see our Assumption D.1.1). This bound implies
group consistency. We conjecture that the uniform variance bound can be replaced by a
set of more convoluted conditions (see condition (4) in Dzemski and Okui 2021) that do
not imply group consistency. We leave the details of this argument to future research.

Putting ιN = cT , Theorem 2 in the main text yields

T 1−erN,T → 0 (D.28)

as N, T → ∞ as a necessary condition (ignoring a log term) for the validity of our
confidence set. Here, rN,T is the rate of convergence of (θ̂1, . . . , θ̂G). It indicates that the
validity of our confidence set holds even when groups are only weakly separated as long
as the cross-sectional sample is sufficiently large so that the group-specific coefficients
converge sufficiently fast.

D.4. Simulations
We now report simulation evidence to study the finite sample effect of weak group
separation on the rate of convergence of the kmeans estimator and the validity of our
joint confidence set for group membership.

The simulation design is a simplified version of the design in Section 7 in the main
text. The data generating process is given by

l̃empit = θg0i ,1l̃mwit + θg0i ,2l̃popit + θg0i ,3l̃emp
TOT
it + σivit

for i = 1, . . . , N and t = 1, . . . , T , where g0i is the group membership of unit i and
takes either the value one or two with equal probability. For g = 1, 2, the group
specific-coefficient is equal to

θg = (1− 2T−1/2+e)
θ̄1 + θ̄2

2
+ 2T−1/2+eθ̄g,

where (θ̄1, θ̄2) are estimated by fitting the model to the data from the empirical application
using the kmeans algorithm and setting the number of groups to G = 2. The data
generating process for the covariates and error is the same as in Section 7 in the main text,
setting ρ = 0 and σ = 0.2. We simulate designs with N = 50, 100, 200, T = 30, 60, 120
and e = −0.25, 0, 0.25. The parameter e controls the rate at which the two group-specific
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coefficients converge to a common value as T → ∞. Under e = −0.25, the two groups
converge to a common group the fastest, and under e = 0.25, they converge the slowest.
The case e = 0.25 is covered by the theoretical result in Theorem D.1. The case e = 0 is
the infimum of the e considered in Theorem D.1. Under e = −0.25, group separation
vanishes at a rate too fast to be covered by Theorem D.1. Table D.1 reports group
separation between the two groups for the different choices of e.

To measure the distance between two sets of group-specific slope coefficients θ = (θ1, θ2)
and θ′ = (θ′1, θ

′
2) we define

‖θ − θ′‖ =

√√√√ 2∑
g=1

E‖θg − θ′g‖22

and

‖θ‖ =

√√√√ 2∑
g=1

E‖θg‖22

and ‖·‖2 is the L2-norm. Table D.1 shows that, for θ0 = (θ01, θ
0
2), ‖θ0‖ is almost

independent of e.
We simulate the joint confidence for group membership using the variance estimator

for the case of no serial correlation (i.e., setting the bandwidth equal to zero). For all
simulations, the nominal level for the joint confidence set is set to 1− α = 0.95, and the
number of replications is 500. The simulation results are summarized in Table D.2.

The column “coverage” gives the simulated coverage probability of the joint confidence
set for group membership. The coverage is always conservative for the designs with
slowly vanishing group separation (e = 0.25). For the designs with group separation that
vanishes at a moderate or fast rate (e = 0 and e = −0.25, respectively), the confidence
set has appropriate or conservative coverage provided N and T are large enough.

The columns labelled “θ̂ − θ” simulate the expected total error of kmeans estimation
‖θ̂ − θ0‖/‖θ0‖, where θ̂ = (θ̂1, θ̂2) and the norm ‖·‖ is defined above. This error is
relevant for assessing the finite sample validity of the assumptions we impose on coefficient
estimation in Theorem 2 in the main text. When scaled by T 1/2, the error is approximately
constant when increasing T and leaving N constant. This indicates that this is the rate
at which time-series variation reveals information about the panel model. A smaller error
can be achieved by using both time-series and cross-sectional variation, i.e., by increasing
both T and N . As discussed in Section D.3, a necessary condition for the asymptotic
validity of our confidence set is

T 1−e‖θ̂ − θ0‖ → 0

as N, T → ∞. Clearly, this condition cannot be met by increasing T alone while keeping
N constant. However, the estimation error scaled by T 1−e vanishes if N increases,
suggesting that estimation error from kmeans estimation is negligible in panels with a
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large cross-sectional dimension.
The columns labelled “θ̂− θ̃” simulate ‖θ̃− θ̂‖/‖θ0‖. They are the expected differences

between the kmeans estimator θ̂ and the oracle estimator θ̃. Based on these columns,
we assess the finite-sample relevance of our asymptotic result on kmeans estimation
under weak separation. Only the designs with e = 0.25 are covered by Theorem D.1. As
predicted by the theorem, the difference between the kmeans estimator and the oracle
estimation vanishes at a faster rate than T−1/2. We find the same result for e = 0,−0.25,
two cases not covered by our asymptotic results.

The columns labelled “θ̃ − θ” report the simulated value of ‖θ̂ − θ0‖/‖θ0‖, i.e., the
expected error of the oracle estimator.

The columns labeled “θ̂ − θ” are equivalent to differently scaled versions of the
convergence rate of θ̂, i.e., of rN,T defined in Assumption 1.3. The column scaled by T 1−e

checks the validity of condition (D.28) in finite samples. This condition is necessary for
the validity of our joint confidence set under weak separation. For e = 0.25, Theorem D.1
predicts that T 1−erN,T → ∞ (i.e., condition (D.28) above) if N is sufficiently large
compared to T . The simulation evidence confirms this prediction. The settings with
e = 0,−0.25 are not covered by the asymptotic analysis in Theorem D.1. Our simulation
evidence suggests that the conditions for T 1−erN,T → 0 are possibly even weaker under
these settings.

D.5. Proof of Theorem D.1
Let

Q(γ, θ) =
1

NT

T∑
t=1

N∑
i=1

(yit − x′itθgi)
2.

Note that Q(γ, θ) is the objective function for the estimation. We also define

Q̃(γ, θ) =
1

NT

T∑
t=1

N∑
i=1

(x′it(θ
0
g0i
− θgi))

2 +
1

NT

T∑
t=1

N∑
i=1

u2it.

The theorem follows from the following sequence of lemmas.

Lemma D.1. Suppose that Assumptions D.1.1 and D.1.2 hold. Then,

sup
γ∈GN ,θ∈B

∣∣∣Q̃(γ, θ)−Q(γ, θ)
∣∣∣ = Op

(
1√
T

)
.

Proof. The proof is almost identical to the proof of Lemma S.3 of Bonhomme and
Manresa (2015). We have

Q̃(γ, θ)−Q(γ, θ) =− 2
1

NT

T∑
t=1

N∑
i=1

x′it(θ
0
g0i
− θgi)uit.
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error error scaled by T 1/2 error scaled by T 1−e

e N T coverage θ̂ − θ θ̂ − θ̃ θ̃ − θ θ̂ − θ θ̂ − θ̃ θ̃ − θ θ̂ − θ θ̂ − θ̃ θ̃ − θ

30 0.97 0.28 0.12 0.25 1.52 0.66 1.37 3.55 1.54 3.22
60 0.99 0.20 0.05 0.19 1.52 0.35 1.48 4.23 0.99 4.11

50

120 1.00 0.14 0.00 0.14 1.56 0.04 1.56 5.16 0.15 5.16

30 0.97 0.20 0.10 0.17 1.09 0.53 0.95 2.54 1.23 2.23
60 0.99 0.14 0.04 0.14 1.10 0.30 1.06 3.07 0.85 2.96

100

120 1.00 0.10 0.01 0.10 1.09 0.06 1.09 3.61 0.21 3.61

30 0.98 0.15 0.08 0.12 0.80 0.43 0.68 1.87 1.00 1.59
60 0.99 0.10 0.03 0.10 0.76 0.23 0.76 2.12 0.64 2.11

0.25

200

120 1.00 0.07 0.00 0.07 0.79 0.05 0.78 2.61 0.16 2.58

30 0.84 0.39 0.24 0.26 2.16 1.33 1.41 2.16 1.33 1.41
60 0.94 0.23 0.12 0.19 1.81 0.90 1.51 1.81 0.90 1.51

50

120 0.99 0.15 0.03 0.14 1.61 0.33 1.58 1.61 0.33 1.58

30 0.90 0.28 0.19 0.18 1.55 1.04 0.98 1.55 1.04 0.98
60 0.96 0.17 0.09 0.14 1.35 0.71 1.09 1.35 0.71 1.09

100

120 0.98 0.10 0.03 0.10 1.15 0.29 1.11 1.15 0.29 1.11

30 0.91 0.23 0.17 0.13 1.26 0.94 0.70 1.26 0.94 0.70
60 0.97 0.12 0.07 0.10 0.96 0.55 0.77 0.96 0.55 0.77

0.00

200

120 0.99 0.07 0.02 0.07 0.82 0.21 0.79 0.82 0.21 0.79

30 0.42 0.76 0.60 0.26 4.17 3.28 1.42 1.78 1.40 0.61
60 0.58 0.42 0.30 0.19 3.23 2.31 1.51 1.16 0.83 0.54

50

120 0.89 0.18 0.09 0.14 1.95 0.97 1.58 0.59 0.29 0.48

30 0.46 0.55 0.45 0.18 3.02 2.44 0.98 1.29 1.04 0.42
60 0.65 0.31 0.23 0.14 2.40 1.79 1.09 0.86 0.64 0.39

100

120 0.93 0.13 0.07 0.10 1.40 0.77 1.11 0.42 0.23 0.33

30 0.52 0.48 0.41 0.13 2.60 2.23 0.70 1.11 0.95 0.30
60 0.68 0.24 0.20 0.10 1.88 1.52 0.77 0.67 0.55 0.28

-0.25

200

120 0.95 0.09 0.05 0.07 1.04 0.58 0.79 0.31 0.18 0.24

Table D.2: Estimation error and confidence set coverage under shrinking group separation.
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We rewrite a part of the right-hand side as

1

NT

T∑
t=1

N∑
i=1

x′itθ
0
g0i
uit =

1

NT

∑
g∈GB

T∑
t=1

N∑
i=1

1(gi(B) = g)x′itθ
0
g0i
uit.

For each g ∈ GB, it holds that

E

(
1

NT

T∑
t=1

N∑
i=1

1(gi(B) = g)x′itθ
0
g0i
uit

)2

≤ CE

∥∥∥∥∥∥ 1

NT

T∑
t=1

∑
gi(B)=g

xituit

∥∥∥∥∥∥
2

= O

(
1

NT

)
,

where the inequality is the Cauchy-Schwarz inequality with C satisfying ‖θgi‖
2 < C for

any θ ∈ B (by Assumption D.1.2), and the equality follows since Theorem 1 of Yokoyama
(1980) implies that under Assumption D.1.1, for any L ⊆ {1, . . . , N}, there exists M
which does not depend on L such that

E

∥∥∥∥∥ 1

NT

T∑
t=1

∑
i∈L

xituit

∥∥∥∥∥
2
 ≤M

|L|
N2T

, (D.29)

where |L| denotes the cardinality of L. We then examine the other part of Q̃(γ, θ)−Q(γ, θ).
It follows that(

1

NT

T∑
t=1

N∑
i=1

x′itθgiuit

)2

≤

(
1

NT

N∑
i=1

θgi

T∑
t=1

xituit

)2

≤

(
1

N

N∑
i=1

||θgi ||2
) 1

NT 2

N∑
i=1

∥∥∥∥∥
T∑
t=1

xituit

∥∥∥∥∥
2


=Op

(
1

T

)
,

where the first inequality follows by the Cauchy-Schwarz inequality and the second
inequality follows by Assumption D.1.2 and the Markov inequality by (D.29). We thus
have

Q̃(γ, θ)−Q(γ, θ) =O

(
1√
NT

)
+O

(
1√
T

)
uniformly over θ and γ, and consequently

sup
γ∈G,θ∈B

∣∣∣Q̃(γ, θ)−Q(γ, θ)
∣∣∣ = Op

(
1√
T

)
.
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Lemma D.2. Suppose that Assumptions 1-3 hold. Then,

max
g∈G

min
g̃∈G

∥∥∥θ0g − θ̂g̃

∥∥∥2 = Op(1/
√
T ).

Proof. The proof is almost identical to the proofs of Lemmas A.2 and B.3 of Bonhomme
and Manresa (2015). Lemma D.1 implies

Q̃(γ̂, θ̂) =Q(γ̂, θ̂) +Op

(
1√
T

)
≤Q(γ0, θ0) +Op

(
1√
T

)
= Q̃(γ0, θ0) +Op

(
1√
T

)
.

The fact that Q̃(γ, θ) is minimized at (γ0, θ0) implies

Q̃(γ̂, θ̂)− Q̃(γ0, θ0) = Op

(
1√
T

)
.

We now establish a lower bound of Q̃(γ, θ)− Q̃(γ0, θ0) such that

Q̃(γ, θ)− Q̃(γ0, θ0)

=
1

NT

T∑
t=1

N∑
i=1

(x′it(θ
0
g0i
− θgi))

2

=
1

NT

T∑
t=1

G∑
g=1

G∑
g̃=1

N∑
i=1

1{g0i = g}{gi = g̃}(x′it(θ0g − θg̃))
2

≥ 1

T

T∑
t=1

G∑
g=1

G∑
g̃=1

ρN(γ, g, g̃)
∥∥θ0g − θg̃

∥∥2
≥ρ̂G2max

g∈G
min
g̃∈GB

∥∥θ0g − θg̃
∥∥2 ,

where the first inequality follows by the definition of ρN(γ, g, g̃) and the second inequality
is from the definition of ρ̂. Now, Assumption D.1.4 implies

max
g∈G

min
g̃∈G

∥∥∥θ0g − θ̂g̃

∥∥∥2 = Op

(
1√
T

)
.

Lemma D.3. Suppose that Assumptions D.1.1-D.1.3, and D.1.5 are satisfied. Then
there exist a permutation σ : G 7→ G such that

∥∥∥θ0g − θ̂σ(g)

∥∥∥2 = Op(1/
√
T ) for any g ∈ G.

Proof. We construct a permutation with the property stated in the lemma. Indeed, we
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show that

σ(g) = argmin
g̃∈G

∥∥∥θ0g − θ̂g̃

∥∥∥2
is such a permutation. We first show that σ satisfies

∥∥∥θ0g − θ̂σ(g)

∥∥∥2 = Op(1/
√
T ) for any

g ∈ G, and that it is a permutation.
Lemma D.2 states that

max
g∈G

min
g̃∈G

∥∥∥θ0g − θ̂g̃

∥∥∥2 = Op(1/
√
T ).

The map σ, by construction, satisfies
∥∥∥θ0g − θ̂σ(g)

∥∥∥2 = Op(1/
√
T ) for any g ∈ G.

It remains to establish that σ is a permutation. For g 6= g̃, the triangular inequality
gives ∥∥∥θ̂σ(g) − θ̂σ(g̃)

∥∥∥ ≥
∥∥θ0g − θ0g̃

∥∥− ∥∥∥θ0g − θ̂σ(g)

∥∥∥− ∥∥∥θ0g̃ − θ̂σ(g̃)

∥∥∥ .
In the above we have seen that

∥∥∥θ0g − θ̂σ(g)

∥∥∥ = Op(1/
√
T ) and

∥∥∥θ0g̃ − θ̂σ(g̃)

∥∥∥ = Op(1/
√
T ).

Assumption 5 states that
∥∥θ0g − θ0g̃

∥∥ > cT . The condition that cT > T−1/2+e implies
that

∥∥θ0g − θ0g̃
∥∥− ∥∥∥θ0g − θ̂σ(g)

∥∥∥− ∥∥∥θ0g̃ − θ̂σ(g̃)

∥∥∥ > 0 with probability approaching one. This
means that σ(g) 6= σ(g̃) for g 6= g̃ with probability approaching one. Thus, σ possesses a
well-defined inverse and is bijective; in other words, σ is a permutation.

From Lemmas D.2 and D.3, we observe that the Hausdorff distance between θ0 and
θ̂ converges to 0 at the rate of

√
T . By using the labelling such that σ(g) = g, we can

write
∥∥∥θ0g − θ̂g

∥∥∥2 = Op(1/
√
T ) for any g ∈ G.

We then establish that the group membership structure is correct asymptotically as
long as the coefficients are in a neighborhood of the true value. Let N = {θ :

∥∥θ0g − θg
∥∥ <

η = T−1/2+f ,∀g ∈ G} for 0 < f < e, where e is defined in Assumption D.1.5, for any
g ∈ G.

Lemma D.4. Suppose that Assumptions D.1.1, D.1.2, D.1.4 and D.1.5 hold. As
N, T → ∞ with NT−er → 0, where e and r are defined in Assumptions D.1.1 and D.1.5,
respectively, it holds that

Pr
{
γ̂(θ) 6= γ0 for some θ ∈ N

}
→ 0.

Proof. We establish an equivalent statement:

max
1≤i≤N

sup
θ∈N

1{ĝi(θ) 6= g0i } = op(1).
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Note that

1
{
ĝi(θ) 6= g0i

}
= max

g∈G\{g0i }
1

(
T∑
t=1

(yit − x′itθg)
2 <

T∑
t=1

(yit − x′itθg0i )
2

)
.

We have
T∑
t=1

(
(yit − x′itθg)

2 − (yit − x′itθg0i )
2
)

=
T∑
t=1

2uitxit(θ
0
g0i
− θ0g) +

T∑
t=1

(x′it(θ
0
g0i
− θ0g))

2 +Ψ,

where

Ψ =
T∑
t=1

2uitxit(θg0i − θg − θ0g0i
+ θ0g)

+
T∑
t=1

(θg0i − θg − θ0g0i
+ θ0g)

′xitx
′
it(2θ

0
g0i
− θg0i − θg)

+
T∑
t=1

(θ0g0i
− θ0g)

′xitx
′
it(θ

0
g0i
− θg0i − θg + θ0g).

Applying the Cauchy-Schwarz inequality and then Assumption D.1.2 and the definition
of N gives

|Ψ| ≤ ηC1

∥∥∥∥∥
T∑
t=1

uitxit

∥∥∥∥∥+ ηC2

∥∥∥∥∥
T∑
t=1

xitx
′
it

∥∥∥∥∥ ,
where C1 and C2 are constants independent of η and T . We thus have the following
inequality

1

(
T∑
t=1

(yit − x′itθg)
2 <

k−1∑
t=1

(yit − x′itθg0i )
2

)

≤1

(
k0−1∑
t=1

2uitx
′
it(θ

0
g0i
− θ0g)

−
T∑
t=1

(x′it(θ
0
g0i
− θ0g,B))

2 + ηC1

∥∥∥∥∥
T∑
t=1

uitxit

∥∥∥∥∥+ ηC2

∥∥∥∥∥
T∑
t=1

xitx
′
it

∥∥∥∥∥
)
.
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Thus, we have

Pr

(
sup
θ∈N

1(ĝi(θ) 6= g0i ) 6= 0

)
≤

∑
g∈G\{g0i }

(
Pr

(
1

T

T∑
t=1

(x′it(θ
0
g0i
− θ0g))

2 ≤ c′′T
2

)
+ Pr

(∥∥∥∥∥ 1T
T∑
t=1

uitxit

∥∥∥∥∥ ≥M

)

+ Pr

(∥∥∥∥∥ 1T
T∑
t=1

xitx
′
it

∥∥∥∥∥ ≥M

)

+ Pr

(
1

T

T∑
t=1

2uitx
′
it(θ

0
g0i
− θ0g) < −c

′′
T

2
+ ηC1M + ηC2M

))
,

where we take c′′T = cT × ρ∗ for c in Assumption D.1.5 and ρ∗ in Assumption D.1.4 and
M is some large constant.

We now bound the second and third terms on the right-hand side of the inequality.
First, we have

Pr

(∥∥∥∥∥ 1T
T∑
t=1

xitx
′
it

∥∥∥∥∥ ≥M

)
≤ Pr

(
1

T

T∑
t=1

‖xitx′it‖ ≥M

)
= Pr

(
1

T

T∑
t=1

x′itxit ≥M

)
.

Assumption D.1.1 enables us to the Markov inequality and Theorem 1 of Yokoyama
(1980) to x′itxit − E(x′itxit), and we establish

Pr

(∥∥∥∥∥ 1T
T∑
t=1

xitx
′
it

∥∥∥∥∥ ≥M

)
= O

(
T−r/2) ,

by taking M large enough such that
∑T

t=1E(x
′
itxit)/T < M . A similar argument under

Assumption D.1.1 implies that Pr
(∥∥∥(T )−1

∑T
t=1 uitxit

∥∥∥ ≥M
)
= O

(
T−r/2).

Next, we consider the first term. We now use Assumptions D.1.4, D.1.5 and D.1.1.
The Markov inequality combined with Theorem 1 of Yokoyama (1980) implies

Pr

(∣∣∣∣∣ 1T
T∑
t=1

(x′it(θ
0
g0i
− θ0g))

2 − 1

T

T∑
t=1

E((x′it(θ
0
g0i
− θ0g))

2)

∣∣∣∣∣ ≥ c′′T
2

)
= O(T−er).

We thus have uniformly over g:

Pr

(
1

T

T∑
t=1

(x′it(θ
0
g0i
− θ0g))

2 ≥ c′′T
2

)
= O(T−er).
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Lastly, we consider the fourth term. It follows that

Pr

(
1

T

T∑
t=1

2uitx
′
it(θ

0
g0i
− θ0g) < −c

′′
T

2
+ ηC1M + ηC2M

)

≤Pr

(
1

T

T∑
t=1

2uitx
′
it(θ

0
g0i
− θ0g) < −c

′′
T

4

)
= O(T−er)

uniformly over g under Assumption D.1.1. The inequality follows by c′′T = O(cT ) =
O(T−1/2+e) and η = o(T−1/2+e). The equality holds by the Markov inequality and
Theorem 1 of Yokoyama (1980).

To sum up, we have

Pr

(
max
1≤i≤N

sup
θ∈N

1(ĝi(θ) 6= g0i ) 6= 0

)
≤

N∑
i=1

Pr

(
sup
θ∈N

1(ĝi(θ) 6= g0i ) 6= 0

)
=O(N(T−er + T−r/2)) = O(NT−er).
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