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A. Proofs of main results

A.1. Notation

We introduce additional notation. We consider statistics that replace some (not all)
estimated components in the statistics defined in the main text with population quantities.
Let

D;(h) = ZtT=1 dit(g?, h)/\/T

and
- 1 <& _
Hij(ha h/) = f Z (dz’,t—i-min(o,j) (gga h) - 1(9?7 h)) (di,t—max((),j)(gzoa h/) - dz(gzov hl)) 9
t=jl+1

where d;(¢?, h) = Zthl dit(g°, h)/T. Let

T-1 .
Sih W)= Y K(j—N) Hyj(h, ).

j=—T+1
Let

T
~ (g2, h) /T
Dy(h) = ==L i(gw )/ ,

=i(h,h)

and let €;(¢?) denote the (G — 1) x (G — 1) matrix with entries

. _ Zi(h, h) '
<Q’(g’ )>j,j’ \/gi(;u hZ (R, 1)

We write di(h) = di (g2, h).

A.2. Proofs
Proof of Theorem 1. The result follows directly from Lemma |A.1} ]

Proof of Theorem 2. Write k, n(€2) for the 1 —a/N-quantile of a N (0, 2) random variable.
Abbreviate ©; = Q;(¢?) and €; = Q:(¢?).

Let (i denote a diverging sequence, (y — co. For ay = « <1 +2CA 30/ €N log(N/oz))
and C 3 the constant from Lemma we first establish the following chain of inequalities

Ko () < ko (p(ﬁi, eN)> < con (p(ﬁi, eN)> . (A.1)



To prove the second inequality, let t7_;(-) denote the cumulative distribution function
of a t-distributed random variable with (7" — 1)-degrees of freedom and let X denote a
(G — 1) random vector distributed according to centered multivariate ¢-distribution with

T — 1 degrees of freedom and scale matrix p(@i, en). The marginal distribution of the
first component of X, denoted by X, is X; ~ tr_;. Let dy = t}il(l — a/N) and note
that dy — oo. Moreover,

a/N =P (X; > dy) §P< max Xh>dN).
hel,...G—1

Therefore, ¢, N (p(ﬁi, en)) > /T/(T — 1)dy and for Ny and Ty independent of p(Q(g?), en)

and t* the constant defined in Lemma [A.2] we can take
ca,n (p(U, en)) > ¢,

for all N > Ny, T' > Ty. Therefore, the assumptions of Lemma are satisfied for
t=Can (p(Qi, eN)) and N, T large enough and Lemma implies

(I)max,p(ﬁi,eN) (kaaN (p(Qu EN))>
=1—a/N

:tmax,p(ﬁi,eN),T—l < (T - 1)/TC(X,N (p(ﬁla 6N))>

S(I)Ina,x,p(ﬁi,EN) (COC,N (p(ﬁla EN))>

and therefore k, n (p(ﬁi, eN)) < CanN (p(@i, eN)). We now establish the first inequality in

. Note that
oy =« <1 + Cascan (p(ﬁi, EN)>> <« <1 +2C 43 log(N/a)>
by Lemma and that k, n is decreasing in «. Therefore, it suffices to establish
Koy () < o (p(ﬁi, eN)> . (A.2)

It can be established by applying Lemma Lemma yields

19 = Qllmax < Cn < 0N + T~ (log N)® + Tp> = 6,
(N NN <i<N T;

on an event whose probability approaches one. On this set, Lemma states that we
can take ko n(p(Q, en)) > v/log(N/a) > /2 for N large enough. We now show that
dn/eén — 0. Since (i can be taken to diverge at an arbitrarily slow rate, it suffices to



show that, for = > 0,

ron/ (LN IQI;LHN oi) <enT7T,

T (log N)? <exyT™T,
" SENT_W.

Since rg yv/Tlog N = o(ty minj<;<y 0;) and ey > (log N)7*2, the first condition is met
provided

T*1+27r(10g N)71+2k2 — 0(1)

Under the assumed rate condition N < o(1)Ty, this holds for any 0 < 7 < % The second
and third conditions can be checked similarly. Now that we have established dy /ey — 0
we can take 40y < ey, satisfying one of the condition of Lemma . The condition
en < 4c,/3 is assumed. This argument verifies all conditions of Lemma and yields

inequality (A.2)) and therefore (A.1)).

Our assumptions,

ro.n\/ 1 log N/(LN 1r<ni<nN02-) -0
and N < o(1)T% guarantee that (vT V log N)rg n/(tx minj<i<y 0;) and T~ (log N)
vanish. Therefore,
TV log N
pis = VEVIBNI0x | oy 1o jyr 4 70

LN minlSiSN g;

vanishes and Lemma can be applied and yields

P max max
1<i<N heG\{g?}

D)~ D,(w)| > @W*) —o(1). (A.3)

We now prepare to apply the high-dimensional CLT in Lemma Let 6;(h) = 0,0 — 0y,
and
dir(h) _ w6/ [16:(R)]]) vie

Xu(h) = _ |
ST S B i) SO0

where

Z Z Ep [xitxgsuituiso di(h).

t=1 s=1

N[ =

60 =\ 7 D2 " Eldu(h)da(h)] = @(h)/(



Define the vector

/

Xi = ((X1t<h))hEG\{9(1)}’ R (XNt(h))heG\{g?v}) :

This vector has length J = N(G — 1). Let = denote the long-run variance of the time
series X; defined as the J x J matrix with entry (j, k) given by

1 < 1 &
(o ).
(\/thl VT =

Let G denote a centered normal vector with variance matrix =. Clearly, X; is a normal
random vector with covariance matrix §2;. Taking complements, we have

P( max < max D;(h) — 7“7;) > O)
1<i<N \ heB\{g?}

—P( max( max X;p — ri)>0)
1<i<N \ 1<h<G-1
= sup |P(Di(h)<riforallhe G\{¢)} andi=1,...,N)
T1yeeesT N
eSS p(X, <rforallh=1,...,G—landi=1,... N)]|

sup
(Tl ..... T'N)ER{XJr

< su E Zi<al|l —P(X<a
_ae]R(Gpl (\/_ ! > ( - )
(log N)(1+2d1)/(3d1) (log N)7/6
<C ( T T =o(1). (A4)

Here, the last inequality holds by Lemma and the asymptotic order follows from
N < o(1)T%. Now, we have

P (Eli €1,...,N such that T)(¢") > caN(Q )

EIZ €1,..., N such that T(gZ > Koy N )

<P (max max_ (D;(h) — kayn () + (nbRY) > O) + o(
1<i<N hEG\{gO}

P( max. ( max X;p — kayn(%) + Cy bLV*)>0)

1<h<G-1

P( max( max D;(h) —n) >0

sup 4
(n ,,,,, rn)ERY, 1<isN \ heG\{g}}
—P(max( max Xh—n>>0)' o(1)
1<G<N \ 1<h<G-1
SP(1%§?]{V (1<%1<aé< leh kay n(§2) + Ckav*) > 0) +o(1), (A.5)



where the first inequality follows by , the second inequality follows by , the
third inequality holds because the sup bounds deviations for all choices of r; and therefore
in particular 7; = ka, v () — (vb5Y*, and the fourth inequality follows by (A.4).

Next, applying an anti-concentration argument eliminates the (yb%"* term on the
right-hand side of the previous display. To this end, let a > 0 and write ky; = ks v (£).
Then

P(max ( max X — kNﬂ-) —|—a>0> —P(maX ( max X;p — kN7i> >0)
1<i<N \1<h<G-1 1<i<N \ 1<h<G-1

:P<max < max th—kj\m) §0) —P(max ( max th_sz> S—a)
1<i<N \ 1<h<G-1 1<i<N \ 1<h<G-1
=P(X <x+4a)— P(X <x),

where

ZL':(k’NJ—(I,...,k’N,l—a,k’NQ—a,...,k’N,g—CL,...,/{?N7N—CZ,...,/€N7N—CL)
. 7 g A g

~~ ~~ N~

G — 1 times G — 1 times G — 1 times

The Nasarov-type inequality from Lemma A.1 in Chernozhukov, Chetverikov, and Kato
(2017) applies with b =1 and p = (G — 1) N and yields

P(X <z +a)— P(X <) < Crasarov@/10g(N (G — 1)) < O(1)alog N.
Therefore,
P(max ( max X, — k‘Nﬂ-) +a > 0)
1<i<N \ 1<h<G-1
< _
<P (lr;a;](v (1<r}£1<a(>;< 1th sz) > O) + O(1)ar/log N
Now, combining this inequality with (A.5)) by putting a = (yb5"* yields
P D;i(h) — ka by* >0
(12503, DA () + 0k >0)
<P (1ma}]<v ( max  X;p — Kay n(Q )) + (bR > O) +o(1)
. LV *
<P (112%)]{\/ (Kr}?fg( leh k:aN,N(QZ)) > 0) + O(1)Cnby "V/log N + o(1)
< _ .
< 1<Z<:NP <1<r}£1<aé< 1th kay n(€2;) > 0) +o(1)

=Qy +O(1)
=a+ 2Cy3+v/enlog(N/a) 4+ o(1) — a.



]

Proof of Theorem 3. Since the marginal distributions of a multi-variate ¢-distribution
with v degrees of freedom are Student-t with v degrees of freedom, it holds that

T I
<tmax,p(§i(g?),eN),T—l) ( - N) = tTfl - (G _ 1)N

by the union bound. Thus, replacing our critical value with the SNS critical values
yields a more conservative test. Now, inspection of the proof of Theorem 2 shows that
Assumption 1.9 is only used to argue that ;(g?) in the definition of the critical value can
be replaced by the population quantity €;(g?). Since we are replacing the critical value
that depends on €;(g?) by a critical value that is independent of €;(¢?), this step is not
needed. Similarly, the SNS critical value is independent of the regularization sequence,
and the assumptions on €y are therefore unnecessary. ]

Proof of Theorem 4. The proof is similar to the proof of Theorem 2, replacing the
application of Lemma and Lemma by and application of Lemma [A.16] O

Proof of Theorem 5. Let
dg(ga h’) = (yit - w;tew - x;teg)2 - (yit - wgtew - x;teh)Q

and dU(h) dij (g h), dY(h) = df/(g0,h), dY(h) = N~'S dij(h), and df (h) =
Zt 1 Zt( ). We note that the hypothesis selection part of the procedure does not
affect the theoretical analysis. This is because, here, we focus on size and thus need to
consider only the behavior of the test statistics under {g?}&,
In the following o(1) is understood such that a = o(1) if lim supy 1., |a] = 0.

Let J={(i,h) |i€{1,...,N},h € G\{g)}} and

5= {(i,h) e (1) h e G (ah), T —c%%i?},

where (sV(h))? = 3.1 var(d¥(h))/T = var(d¥(h)) (the equality follows by stationarity).
Roughly speaking, J; is the set of pairs of units and groups that are difficult to distinguish
from the true group membership.

Step 1: We first prove that infpep, P (max (i,h)eTe c? (h) < 0) >1-B—-N1-CT°—
Qg N - B
Note that d¥ (h) > 0 for some (i, h) € J¢ implies that

T(dV (h) — Ep(dV (h
max \/_( 7 ( )U P( 7 ( ))) > C%l\j\?
(i,h)eJ syr(h) ’




We observe that

VT (dY(h) —Ep(dY(h
sup P | max ( i ( )U P( z( ))) > C%}\JI\?
PePy (i,h)eJ st (h) )
VT(dY(h) — Ep(dV(h)))
< sup P | max d i S SNs U
Pegi (uioeJ s?(h) 8,N N1

U
PcPy i,h)eJ i (h
where
To,N

LN + minlgiSN o;

The second term on the right-hand side converges to zero by in Lemma Let
B solve c%st = c%%—e%l. To see that Sy is well-defined, note that since c%l\]l\? — 0o and
6%71 — 0 the right-hand side of the equation is diverging and therefore positive for large
N. Moreover, CZS,SIVS 1 0as p?T N/2. We thus establish the existence of fy. Uniqueness
follows from the strict monotonicity of the distribution function of the t-distribution.

Thus, we have

( VT(dV(h)) — Ep(dV (h))) SNS>
(

sup P | max S ¢
Pep% i,h)eJ SzU(h) B,N
VT(d{ (1) — Ep(d (1))
< sup P | max : i = SNS ) Lol
_Perpgv <(i,h)eJ sV (h) Bn,N (1)
<1— (G = YN®(c;0x) +o(1)
<Bn +o(1)
=B+ o(1),
where the second inequality follows by Lemma and the Bonferroni inequality,

the third inequality holds because cgi’SN becomes sufficiently large as N — oo and

the tail of the t-distribution is heavier than that of the standard normal distribution
(Lemma under the unidimensional case), and the last inequality follows by the
fact that |y — 8] < CeX \/log((G —1)N/B) — 0. We now show that |8y — 8| <
Cef 1\/1og((G —1)N/3). Let Fr denote the distribution function of a t-distributed
random variable with 7' — 1 degrees of freedom, and let fr denote its density function.
Let ¢(8) = t;1,(1 = B/((G—=1)N)) and e}, = /(T —1)/Te ;. By the mean-value
theorem

(G le)N @ —Bl)N =Fr(c(B)) = Fr(c(Bn))




=Fr(c(B8)) = Fr(c(B) — eX1) = fr(c)ek’,

where ¢* is a value between ¢ (fx) and ¢ (). Noting that ¢ (Sx) < ¢(f) and that fr is
decreasing on the positive axis, rearranging this equality yields

1By — Bl <fr(c(Bn)) (G —1)NeR
<2¢(Bn) (1 = Fr(c(Bn)) (G —1)Neiy
<dely v /log (G = 1)N/Bw)
<dey 18V log (G — 1)N/B) +4¢; | By — Bl /log (G = 1)N/)
<defy,V/log (G = 1)N/B) +o(|6n — B])

where the second inequality follows from Lemma the third inequality follows from
Lemma [A.17] (with ey = 1), the fourth inequality follows from e, = /T/(T — 1)e}’, >
e N and ﬁ N > 3, the fifth inequality follows from €Y, ~naViog N — 0. This recursion implies

By — B] < 5el1v/1og (G — 1)N/B)

for N large enough.
An implication of Step 1 is as follows. Let

N:{ie{l,...,N}| max ﬁEP(JZU(h))>—C%%\I,§}.

nee\{g0t sV (h)

)

Then

inf P (max max dU(h) < 0) >1—pF+o0(1).

PePy i€N® heG\{g?}

Step 2: Next, we prove that infpcp, P()(ij\i1 M;(g®) D J1) > 1 — B+ o(1). Here, we
drop the g argument for simplicity of notation when arguments are ¢¥ and h.
We note that

up P (>< W) 2 A)

PePy i=1
A TEp(dY (h
= sup P [ 3(i, h); DY (h) < —2c¢3\° and M > —c3W
PePy S; (h) ’

U
< sup P | 3(i,h); DY (h) < —2c3¥ + €%, and w > —c3%
PePy S; (h') ’

+ sup P | max max DZUh —D?h’>eU ),
Pe]}% (1§i§Nh€G\{g?} (#) (*) 2



where

By (A.20) in Lemma [A.19] it holds that

U ron(VT + /log N)
€N2 - C . *
’ Ly N miny<;<y 0;

DY () = DY (h)] > €

Q ) = o(1).

sup P (max max
PePy  \ISIEN heG\{gf}
We observe
TEp(d! (h
sup P | 3(i,h); DY (h) < —20%1\5\? + e¥,, and w > — 21\11\?
Peky ’ ’ si (h) ’
VT (Ep(d] (h) — df () _ 257 (h) — s (h) sns 57 (h) 4
< P 1 3 1 7 _ 7
= oup (éﬁ‘?& heB\ (g0} T () Ty AN T (N
Note that sY(h)sY(h) > 1 —r/2 is equivalent to
25 (h) — s¥(h)
1 1 1 _ .
SO
Thus, we have
VT (Ep(df (h) — df () _ 257 (h) — s{'(h) sns 87 (R)
e (m’fv by () T YT S
T(Ep(dY(h) —d¥Y(h
< sup P | max max VT (Er( ZU< ) —di (1) > (1—r)chy — Aeky
PePy 1<isN heG\{g}} Si,T(h) ’ ’
451
+ sup P ||~ -1 >7r/2
o (|3 1) >
57 (h)
o s [ > )

PEPN
where A > 1 is a fixed number. We now note that

57 (h)? — s7(h)?
T

10



By Lemma |A.15 and (A.24]), it holds that

5 (h)? — s (h)’

(]

at[|6:(h)II?

sup [ max
pep \1<iSN

> CT?log N) =o(1). (A.6)
Because s¥ (h) > s;(h) and s;(h)/(0:]|6;(h)||)) is bounded from above and from below by
Assumption 1.4, it holds that

5V (h)

S;(h) - 1‘ > CTY*\/log N) =o(1). (A7)

per (@%}fv
We take r = T-%/*,/Iog N. We then have
sY(h) ‘ ) ( 57 (h) ‘ )
sup P |—+—=<—1|>7/2 |+ sup P| max max |— > A =o0(1).
s P (|5 =1 > v72) + s P (ma, oo, [0 W

Let By be such that CEESN = (1 =)}y — Aef,. We then examine

T(Ep(dY (h) — d¥ (h
sup P [ max max VT (Ep( 1U< ) —di (1)) > (1 —r)c%l\]l\? — AcY,
Peby  \1SiSN heC\(g?) sir(h) ’ ’
T(Ep(dY (h) — d¥ (h
= sup P | max max VT (Er( 1U< ) —di () >C%NSN
Peby  \1SiSN heC\{g?) sy (h) ¥
SNS
<1—(G—=1)N®(cg y) +o(1)
<Py +o(1)
=B+ o(1),

where the first inequality follows by Lemma and the Bonferroni inequality, the
second inequality holds because C%g?]\/ becomes sufficiently large as N — oo and the tail
of the t-distribution is heavier than that of the standard normal distribution (Lemma
under the unidimensional case), and the last inequality follows by the fact that
18y — Bl < Ce§ ,\/10g((G — 1)N/3) = 0 shown in Step 1.

Summing up, we have

N
sup P <>< Vi(g?) J1> < B+ o(1).
PePy i=1
An implication of Step 2 is as follows. Let

N={ie{l,....,N}| Mi(g)) # @} .

11



Then

inf P(N;N) >1- B+ o0(1).

PEPN

Step 3: First, consider the case in which J; = &. In this case, the argument in Step 1
yields that

inf P(§; = g),Vi) = inf P (max max DY (h) < 0) >1—pF+o(1).

The equality in the above display follows because ¢; minimizes the squared loss in the
two-step procedure (see (11) in the main text). Because {g;}, is always included in the
confidence set, the limiting probability of the confidence set not including {g?}¥, is less
than § < a.

Next, consider the case in which |J;| > 1. Observe that

sup P ({g/}%, ¢ Cuoas)

PePy
N
— sup P {ﬁ?>é_ A.?}m{ max f)iUh>O}>
s U( () > e0maps o} 0] s DY)
< sup P {Ti?>éa_ Ai?}u {max ﬁf]h >0}
Peby ZLgJN (9:) 28,N, (9:) igg heGr rg0} (h)
< sup P (| J{7i(s)) > éa_w,mg?)}) + sup P (U {hég\a{);g}l?? (h) > o}) .

PePy PePy

1€N 1€EN¢

By Step 1, we have

PcPy heG\{g?}

sup P <g{ max DY (h) > 0}) < B+ o(1).

By Step 2, we have

sup P <U {T}(g?) > éa—?ﬁ,N,i(ng)}>
PePN ieN

< sup P <{N ONinl {Ti(g?) > éa26,N,i(9?)}) + sup P({N 2 N})

< sup P (U {Ti(g?) > @a25,|N|(9?)}> + 8+ o(1).

12



Thus, we have

sup P ({9} ¢ Curas) < sup P (U {Ti(e?) > éaw,w,i(g%}) +28+o(1).

PePy PcePy ieN

Theorem 2 implies

limsup sup P ({9?}1‘]\;1 ¢ ésehocﬁ) <o
N,T—o0 PEPy

A.3. Supporting lemmas

Lemma A.1. Let (¢;)", denote a collection of independent, non-randomized tests and
suppose that

a; =nP(¢; > 0)

With ey := MaX;—1

a?. o? o 1 o -2
. _ min < . < _ max _ max - _ max
Olmin 5 = P (erllaxn O; > 0) < Qax 5 (1 3 + <1 - ) ) ,

3

where iy = Min—1__, 0y.

77777

Proof. For fixed 0 < z < 1, let & denote a generic intermediate value between zero and
x. By a Taylor expansion around x = 0,

1 1 1
exp(—z)=1—x+ 53:2 ~ 3 exp(—Z)z® > 1 — 2+ 2° (5 — %) : (A.8)
Moreover,
log(l—2)=0—x—
Now, for 0 < a < 1,
(1 — g>n =exp (nlog (1 — g))
n n

> exp(—a) exp (_;_n (1 a %> 2)

13



where the first inequality uses (A.9)), the second inequality uses (A.8]) and the last
inequality uses
1 «
1— 22— —) <1
o+« (2 6) <
We conclude that

P(Erllax ¢i>0) :1—]P><.nllax O; = )

n -2
S 1 o (1 - amax > S amax . amax (1 . amax > + amax (1 o CKI‘IIZ‘).X > )
n

Next, note that

and therefore

P (Amax O; > ()) =1—-P (‘1ax b; = 0) >1— <1 _ Oémin)” > e - amin.

1=1,...,n n
[

Lemma A.2. Let V denote a correlation matrixz, which is possibly singular, and let
Dpax v denote the distribution function of the mazimum element of a multivariate normal
random vector with covariance matrix V. There is t* € R independent of T and V' such

that for all t > t*
/T —1
tmax,V,T—l ( Tt> S q)max,V(t)'

Proof. Let x be a vector of random variables such that x ~ N(0,V). By the definitions
of ®pax v and tpax vr—1, we have

and

T-1 1 T—-1
tmax,V,7—1 (\/ Tt> =P (WX < Tt> ;

where an inequality such as x < t is understood in an element-wise way, and z is a x?
random variable with degree of freedom 7" — 1 independent of x.

14



Let r be the rank of V. We have the following eigen decomposition of V:
V =UxU,

where X is a diagonal matrix with non-negative elements and U is a unitary matrix. We
arrange the elements of U and X such that the first  diagonal elements of 3 are non-zero
and its other diagonal elements are zero. Let X, be the r x r upper-left block of ¥. Let

x* = U'x.

By construction, x* ~ N(0,Y). Because ¥ is diagonal and only the first r diagonal
elements are non-zero, the first r elements of x* can be non-zero, and its other elements
are zero. Let x, be the vector of the first r elements of x*. Note that by the definition of
Y, x* ~ N(0,%,). This observation implies that

*
x = Ux* =U,x,,

where U, is the matrix that consists of the first r columns of U.
We can then write

maxV / ¢ZT Xr er

and
T—-1 / /
Tmax — —Ft| = Xr dxr X'I‘ er,
V,T 1( T ) xg\/thErT 1 ( f - T—1 )
where
b, (%) = (2m)"2(det(%,)) /2 exp< —x,. % Xr> ,
and

P -a0%) =(r(T = D) (en(s,)) o (T2 (b (%»

is the density of the multivariate ¢ distribution with scale matrix V' and T'— 1 degrees of
freedom, and

ot =t (P50 (v (7))

15



. —(T4r-1)/2
x [ 1+ =x.Y 1%, .
o)

We now identify a region in which fg::T_l(xr) > ¢x, (x,). We have

T -1 1 1
10g fEmT—l(Xr) — 10g gbzr (Xr) = AT — ++ 10g (1 + TX;E;IXT) =+ §X;ZT_1XT,

where

T -1 T7—-1
Ar = —g log(T') + log I’ (++> —logI' (T) + glog(Q).

By the property of the logarithm function and the linear function, there is a unique
value, denoted by z%., such that f;’::T_l(xr) < ¢s,(x,) implies x.3 %, < 4. To see
this, we consider the two functions log(1 + y) and ay + b, where a =T/(T +r — 1) and
b=2Ar/(T +r—1). We want to find a value of y, say v/, such that if y > ¢ then
log(1 4 y) < ay + b. Because log(1 + y) is increasing and concave and a > 0 there are
two possibilities: 1) ay + b > log(1 + y) for any y and ay + b > log(1 + y) almost always;
2) the curves log(1 + y) and ay + b intersect with each other at two points, say y; and
yo such that log(1 +y) < ay + b for y < y;, log(1 +y) > ay + b for y; <y < 3o, and
log(1+4y) < ay + b for y > y,. The first case does not apply to our situation because
if this was the case, then gj,Tfl(xr) > ¢y, (x,) almost always, contradicting the fact
that both curves integrate to one. Thus, the second case applies. The values of y; and
Y2 can be obtained by solving log(1 4+ y) = ay + b. It holds y, > 0 because the slope of
log(1 + y) at y» must be smaller than a¢ and 0 < a < 1.

Choose t large enough such that x/ ¥ "1x, < 2 implies x < ¢. This choice of ¢ depends
on T only through z%. In particular, if 2% = O(1) then t can be chosen independently
of T. To prove this set t = (/2% dim(x). Since V is a correlation matrix, its largest
eigenvalue is bounded by r. This implies that and x/.¥'x, > ||x,||?/r. Because x* is a
vector whose first 7 elements are those of x, and other elements are zero, ||x.||*> = ||x*|°.
By the definition of x*, it holds that ||x*||* = |[|[U'x||* = ||x||?, where the last equality
uses the fact that U is a unitary matrix. Observe that if x € ¢ so that an element of x
exceeds t, then [|x||* > t* > z%r. This implies that x/. X 'x, > ||x||?/r > a%r/r = x%.

We have

T —1 «
Prnax,s, (t) = tmax,n, 71 (\/ Tt> = / (6w, (%) =[5 71 (%)) dx,
x<t

—/ (QbZr (x,) — ;:,T—l(XT)) dx;
x’TEflxrgx}
+f (65, 06) = i o)) i,
x§t,x§2flxr>xi}

where the first integral on the right—hand side of the equation is taken over x.3'x, < a
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because {x, : x. ¥ 'x, < 2%, x <t} = {x, : xX. X 'x, < 2k} by our choice of ¢. Because
both ¢x.(x,) and fg::Tfl(Xr) are densities and integrate to one, we have

[ b)) de == [ (om0~ £ () dx
X1 5,. x,«<x*T x/ 3, xr>a:}

Thus, for ¢ large enough such that x'V~'x < x% implies x < ¢, we have

T-—1
cI)max,ET <t> - tmax,Er,T—l Tt

. / (6w, () = [ 1 (x2)) dx,
X,/,,Z.,T]'Xy >z
+ / (65,(%) — flip1 (%)) dx,
x<t,x\ 57 x>k,

—/ (¢x, (%) = fp 1 (%)) dx, >0,
ﬁt X E’r_lxr>$;—‘

where the last inequality follows because x.¥1x, > x% implies ¢y, (x,.) > fVT L(x).
Next, we evaluate the order of z7.. Note that x7p solves

1, Ttr—1 1.
§xT+AT:TIOg <1+TxT)

We first show that A7 = O(1) where the order is taken with respect to 7. We separately
examine the cases of odd and even G. Suppose that r is even (we may assume r > 2).
Then, the recurrent relation of the Gamma function implies that

r/2—1

T
AT:——Iog Zlog(——l—j)+§log(2)
r/2—1 . ’
:——1 1 —1+2j) — =log(2) + = log(2
og(T Zog +2j) = 5 log(2) + 5 log(2)

r/2—1

-2 log( L= —on)

as T — o0o. Next, we consider cases in which r is odd. For r = 1, Ay = O(1) follows
from

— 1. (A.10)



For r > 3, by the recurrent relation of the Gamma function, we have

r/2—1

r T T T —1 r
Ap = — —1log(T log (= 47) +logT (=) —logl [ ——= ) + = 1og(2
T 20g( )+;0 og(2+9>+og <2> 0g ( 5 )+20g()
(r—1)/2-1 .
T +2j 1 2 T T-1
— ] “log (=) +logT (=) —logD [ —— ) .
2 o () e () +osr () e ()

By (A.10)

e (5) (1 (55 (5) ) o

We have established that Ar = O(1) for all » > 1. To prove the lemma, it now suffices

to prove zi = O(1). Suppose the opposite is true. Then, there is a subsequence
T1,..., Tk, ... such that z7, monotonically diverges to infinity. By the definition of x7
we have

1
xp+Ar=(T+r—1)log (1+Tmi})

For sufficiently large y, y/2 > log(1 + y). Therefore, for sufficiently large k, we have

. T+r—-1,
ZL’Tk —|— AT < T:ka
Rearranging terms yields
T—r+1 ,
TmTk + Ap < 0,

contradicting that Ar = O(1) and 27, diverging to infinity can both be true. This proves
= 0(1).
[

Lemma A.3 (Comparison bound for critical values with regularization). Let 2 and O
denote p X p correlation matrices and let €, § and c, denote positive constants such that
46 < e <4e,/3. Suppose that Q;; > —1+¢, foralli,j=1,...,p and

”Q - QHmax S 0.

Let X ~ N(0,Q) and X¢ ~ N(O,p(ﬁ,e)). Then, there is a universal constant C' such
that for all a > /2

=1,...,
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In particular, suppose that ¢, n is the 1 — a/N quantile of max;_; _, X; and let cqpy N
denote the 1 — an /N quantile of max;—y__, X;, where

an = a(l + éq nCve).
If éan > V2 then Can > Cay.N-

Proof. Write € = e*(ﬁ, €). By the Cholesky decomposition, there is a lower-triangular
matrix L (possibly with some diagonal elements equal to zero) such that QO=LL. QO
can be interpreted as the covariance matrix of the random vector LW, where W is a
random vector in R? with expectation zero and covariance matrix [,. V = O+ €l, can
be interpreted as the covariance matrix of the random vector that is generated by adding
independent, component-specific noise F; to the ith components of LW, where E; has
mean zero and variance €. Then, p(@, €) transforms V' into a correlation matrix. Since
p(ﬁ, €) and Q are both correlation matrices, p((AZ, €)ii = Qi = 1,foralli=1,...,p. Let
¢; denote the ith row of L. For ¢ # j, (Alij is equal to the covariance between ¢,/ and
W, e,

Qij = cov(LW, L5W) = € cov(W)E; = 634,
Vij is equal to the covariance between ¢,V + E; and E;-W + L, ie.,

Vij = cov(GW + B, (iW + Ej) = £ cov(W)e; = ¢

Z?J

For:=1,...,p,

~

Vii = cov(lW + Ej bW + E;) = Licov(W)l; + é = Qu + e =1+ ¢

Therefore, for i # j,

We now derive a bound on

+
A= (arcsm( ”> — arcsin ( Zj)) )

Since arcsin(-) is strictly increasing on (0,1), a necessary condition for A;; # 0 is
p(£2,€);; > ;. This condition bounds p(€2,¢€);; and €2;; away from -1 and 1. In
particular,
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implies
Qi > (1+6)Qy,.
Since we also have (AZZ»]- <Q;; 40, an ﬁij fulfilling both conditions exists only if
(1+8)Q; <Qiy+6

or equivalently if é€2;; < d. Suppose that Q;; > 1 —¢/2. Then we have

~

>e+ Qi —0—1>e+(1—¢€/2)—d—1=¢/2—0.
Therefore, €;; < ¢ is only possible if

(€/2— 8)(1—¢/2) < 6.

This inequality contradicts e > 49 and hence we can take €;; <1 — ¢/2. Moreover, since
€ S QCW, QU 2 _1_Cw Z —1—6/2
For an upper bound on p(€2, €);;, we have

N o o
p(Q €)= —L < R
1+€ ]_—I—E—(]_—QZ])
Qi 1
<~—— < <1—¢/2.
Qz‘j—l—E 1+6

For a lower bound on p(@, €);;, suppose that @ij < 0, in which case,

K
Qij

14 Zﬁij:Qij+§ij_Qij2_1+Cw_(52—1—|—6/2,

()5

M™>

provided that ¢, —€/2 —§ > 0. This condition is satisfied if € < 4¢, /3. Therefore, we
have the bounds

—1+4+€/2<Q;;<1—¢/2
and
—1+4¢/2< p(ﬁij,e) <1-—¢/2.
We also have
P(Q,E)z‘j = = ﬁij/(l +6) — Qi <0+ € < de.

By the intermediate value theorem there is an intermediate value p* between —1 + ¢/2

20



and 1 — €/2 such that, on p(Q, €);; > Qy;,

. p(@, €>ij — Qij 5% 10\/E

o€
S N e (bl RV (e

Let ® denote the cumulative distribution function of a standard normal random variable,
and let ¢ denote its probability density function. Gordon’s lower bound (see, e.g.,
Duembgen 2010)) states that

A

¢(a)

1—®(a) > al—1/a9)

for @ > 0 and thus 1 — ®(a) > 1¢(a)/a for a > /2. Therefore,

. N exp e
P(.max Xj>a)2P(Xf>a> :1_@(a)>¢(a): ( 2)
Jj=L...p 2a av/ ST

By Theorem 2.1 in Li and Shao (2002),

P(max Xj>a)—P(max X;>a)
i—1 j=1

~~~~~ p

=P ( max A§§a — P max X; <a
j=1,..p j=1,.p

7777777777

Ly,

This proves the first claim of the lemma. To prove the second claim of the lemma, note
that the first claim of the lemma implies

) _ P(maxj_y_ ,X; > Can)

.....

P(maszl pXj > éa,N)

.....

<a/N(1+ éanCVe) < an/N.

P (Enax X; > CanN

Jj=1,....p

]

Lemma A.4 (Consistency of @) Let Py be the set of probability measures which
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satisfy Assumptions 1 with identical choices of a, b, dy, and dy. Assume T < N
for some universal constant 61 > 0. Let Assumption 2 hold and ky < TP where
0<p<(W—1)/(30—2). Let

bﬁv — .7’9,N + T (log N)2 +T7°,
LN mlnlgiSN g;

where ¢; > 0 and ¢y > 0 are two constants defined in Lemma[A.5 with ¢, depending only
n (p,9) and cy depending only on (dy, ). Assume that bkY — 0. For any sequence (x
such that (n — o0 as N, T — oo,

sup P (max max (ﬁi(g?))h,h* — (% (99))

PePy 1<i<N (h,h*)eG?

> ng,LVV) = o(1).

Proof. Throughout the proof, let C', C’, and C” denote generic constants that do not
depend on P € P. Let &(h) = /Z;(h, h) and &(h) = /Z;(h, h).

We observe the following decomposition:

(Q)nne — (%)

)
(1) Ei(h,h)
TamEm  &E)

)
G\ (&)Y Si(h,h*)  Ei(h,h)
&(h & h*) Gi(h)&i(h*)  &i(h)&(h*)
.(h) h

)
i(h) ( *) &i(h)&i(h*) Ei(h)&i(hr)  &i(h)&(h) |

Zi(h, h)| =

7

NSt

+

Noting that

Y

025 < ZEP Uztvzs%t% ) di(h)
=1

s=1

Assumption 1.4 implies that & (h)/(o;)||0(h)| (and &(h*)/(0;)]|[6(R*)||) is bounded away
from zero. The inequality |\/a — 1| < |a — 1| for a > 0 implies that

gz(h) . z(hv h) o
‘(éxm) 1H(i<h,m) 1"

(11| 1

Thus, we have
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_|(&m ) ff<h*>) '
&(h) &i(h*)
(e (). (s
&i(h) &i(h*) &i(h*)
(e ) (s
&i(h) &i(h*) &i(h*)
— = (B J* 1/2 = (B J*
< Ez<h7h)_ ‘ iz(hvh)> + ii<h7h>_1.
=i(h,h) Zi(h*, h*) Zi(h*, h*)

Now, it holds that

/‘:\Z(ha h) 1 < ‘:‘Z(h'viz’) B “l(hv h’) +1 :Z<h7£’) B “Z(h7 h)
Ei(h, h) Ei(h, h) Ei(h, h)
Provided that b%Y — 0, we have
i(h (R
(é( )> (5( )> — 1| < O¢ybyY
&i(h) ) \&(h")

with probability approaching one by Lemma [A.5] Therefore, by Lemma the desired
result holds. O

Lemma A.5 (Consistency of long-run variance estimator). Let Py be the set of probability
measures which satisfy Assumption 1 with identical choices of a, b, di and dy Assume

T% < N for some universal constant 6; > 0. Let Assumption 2 hold and rky =< TP where
0<p<(¥—=1)/(30—2). Let

b%v = 'TG,N + T (log N)? +T7°,
LN M << N 05

and assume that bkY — 0. Then, there exist two constants ¢; > 0 depending only on
(p,9) and co > 0 depending only on (da, V), such that, for any sequence (y such that
(ny w00 as N, T — oo,

Zi(h, W) — Ei(h, W)
a?l|o:(h)|l|6:(R") ]

sup P | max al
PePy 1<i<N (h,W)€G?

> CNbf\[V> = 0(1)

Proof. To conserve notation, we introduce the short-hands

) J
KY g (L
vk ()

23



and

(+7) _ (+5) _ (+7) _ (+5) _
Uy ™" = Ui t4max(0,5)y  Yir = Vit4max(0,5)y Wi = = Wit4max(0,5)s Lyt = Tit+max(0,5))
(=3) _ (=3) _ (=3) _ (=3) _
Ujp = = Uit—max(0,5)s Vit = = Vit—max(0,j), Wi = = Wit—max(0,5), Tit = Lit—max(0,5)
and

T
1 Z /
xzxz § xzuxwv T;W; = T L Wiy,
u=1
T
_ 1 . 1
Uiy = 4 E Ui Tiny,  Vili = 7 E ViuLin-
T T
u=1 u=1

By the triangular inequality, we have

Ei(h, 0 = Ei(h, 1) | |Ei(h, W) = Zi(h, W) | | Zi(h, 1Y) — Zi(h, B)
a2[|6: (R)|[]]6: (R | 2[|6; (R)[[[|6; (R) | 2|6, (h)|[[|6:(h)

We examine each of the two terms on the right-hand side. We first examine the second
term and then the first term. We note that

~ T . . . /
Zi(h, 1) =078,(h Z KY Z (o527 — wm) (o V0l — win) 800

j==T+1 t FIER!

and

N~

Zi(h, b)) = a28:(h ( Z Z]Ep U,tvwxztmls]) 5 (h).

t=1 s=1

Lemma gives the bound of

T-1 T
1 o . /
sup Z K .7) Z < Z(;'])I,E:']) m) (,U’Et J)xgt J) _ m)
i,h,h’ j=—T41 t Gl+1
T
( Z Z ]EP ’Uztvzsxztxw]> ‘

We thus have

Zi(h, W) —Ei(h, W)
al|0s(h)[[|o:(h") |

sup P | max max
PePy 1<i<N (h,h)eG?

> G (T (log N)* + T_p)> =o(1),
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where ¢; y — 00. Next, we derive the bound of

1 N _
sup — |Zi(h, 1) = Zi(h, W) .
i 07 [[6:(R)[[110:(R) |

First, note that

dlt(h) = —Uivith;t(QQO — eh) = —Uivit:v;téi(h),

i

and
di(h) = —Jim'(%? —0n) = —ovT; 0;(h).
Let
Uip = Yit — x;tég? - w;téw>
so that

Uiy — Uiy = —T (égg — 99g> — wy <éw — 9“’) .
With this notation
dit(g), h) = diu(h) = — @yl,0i(h).

Consider the decomposition

(dilg® 1) = dilg, 1)) (disl9, W) = dil”, 1))

. 1 < 1 & L
=(0:(h) = &:i(h))’ ('&itxit T fbwﬂﬂzu) UjsTis — T ﬁuﬂ’w) (0:(h") — 6;(R"))
u=1 u=1
. 1 <& 1 <& L
. 1 1 /
+ (6z(h) - 5@<h))l ﬂztxzt T 7:Lzuajzu> (aisxis azuxzu 5l(h/)
u=1 u=1
. 1 1 & '
- ( z(h) - 52(]7/)), Uit Lit — ; uzuxzu> (uisxzs T ; Uiy Ly 52(h/)
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— 0;(h)" | wgzs — % u: UinTiu | | WisTis ; guml‘w> (S:(h') = 6:(1"))
1 & 1 & '
+60; ()" | Gy — T 2 UinTin | | UisTis T 2 ﬂwxw> 6;(h)
1 & /
= 6i(h) | wazi — = Y i | | istis — - ; uuxu> &; (1)
. 1 & 1 & "
+ (0;(h) — 6:(R)) (u,txzt - ; uxu> (um - 2; ux) (0;(h') — 8;(h"))
o 1 T /
+ (0;(h) — &;(h)) <un$1t Z uwxw> (uisxzs 7 ; uwxw> 6;(h)
1 < "
+0i(h) (uzta:n Zuuxu) (uaﬁ 7 ;uuxu> (0:(h") — 6;(R'))

Next, we consider the following decomposition:

1 « 1 «
~ A~ / N A
Gini — 7 ) i i =iy — T > " ui i — (xat, — TiT) (999 - 999>
u=1 u=1
/ —\ [ Qw w
— (zpw;, — Tw;) (9 —0 ) :

We thus have

1 1 '
(ﬂitﬂfit T ; azuxzu) (fbisxz‘s T ; szu%u>
= (uawy — UiT;) (Uisis — UW;)
~ (st — ) ((wantly — 777) (B — ) + (sl —w) (67— 07) )
_ < Ty — TiT;) (ég? - Z) + (xjwy, — Tw;) (é“’ - (9“’)) (Uisis — Wi;)'
+ ( Tl — ( g — 0 0) + (zywi, — Tw;) (éw — (9“’))
X ((a:wx — T7;) (9 0o —0, > (wisw;, — T;05) (éw — 0“’))/

= (ult'rlt uzxz) (uzsxzs uzxz)
R /
— (ugpxiy — Ui;) ((xisx;s — ;%) (99? - 99?))
- (Uitl’it - Uz%) ((miswgs — T

) .
_ ((acitxl-t — T;75;) (999 — Oy
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(@ ; ) (i
+ ((aty — 77m) (00— 0) ) (sl — 737) (0 — 00) )
+ (w57 3 - 0)) (- 0 - )
(-0 - ) ot 77 3 o))
+ (it — ) (67— 0v) ) (et —wmn) (07— ew))'.

Combining these two decomposition results, we have

)

)

(diulg® 1) = dilg®, 1)) (dislg, W) = dil”,
— (dielg", h) — di(g°, b)) (dis(g", b') — di(g",

o —
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J(h, 1)

—_

+ 6i(h) (uizi — Wx7) (istis — WiT;) (Sz(h/) —0;(h')).

J(hy ') —

—_

It thus holds that



j=—T+1 r t=[j]+1
X (x(t_J)w(t V7 wi> (é“’ - 9“’) (6;(h) — 6;(h))
T-1
a1
— (6;(h) — 6:(h)) KW (+3) ()" 2 (0, — 0
5 0h 3 (7 ) 1)
% (g2 — W) (Bilh) = 6i(h)
T-1 o ‘ y A
_ (5 (h) Y (h)) K(])_ xZ(+J)wZ(+J) —zw ) (v — 6V
2 g 3 (e ) (0 0r))
w (w0 um) (8:(h) = 6:(h))
-1 T
PO —smy Y KO S (e —wm) (4 - 0))

j=—T+1 t=|j

1
y (xlqt—j)%(t—j)’ _ m) (égg - ego) (6:(h) — 6:(h))

T

T-1 Tl A o
(k) — 5:(h)) J;ﬂ K}@%t_zjjﬂ (a2 —7) (B~ 0,p))
X (:At M miw> (éw ew) (5:(h) — 6;(h))
T-1 4 T R
+ (5:(h) — 6:(h)) J;ﬂ K}@% t_zj:ﬂ (el — ) (67 - 07))
X (x(t_j)x L= xmi) <égo -0, )

T-1 T

b -y Y K5 S (ol ) (97 - 0))

= D
x (el — wm) (8 - 6v) )(5 (W) — &i(h'))
— 1< |
-G -y Y kg 3 (e )
j==T+1 =[jl+1
() (o) 0
T—1 1 T
— (0:(h) = 8:(h)) Kf(g):? Z W) ) _ )
=T t=ljl+1
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G oy S KRz S (o5l - ) (00 - 0v))
J=—T+1 t=|j]+1
s (159 4 ])—m>/5(h)
G K 3 (242" — i) (6,9 —0,0))
Jj=-T+1 t=|j]+1
X (x(t—ﬂxt—)/_m) <ég —Qg?>>l5i(h)
OGS K 3 (242" — i) (6,9 —0,0))
Jj=—T+1 t=|j]+1
< (25" ) (67— 6v)) di(n)
FEm-amy X KDL S (sl - ) (5 - 60))
j=—T+1 t=[j]+1
< (2525 —7m) (0 — 0,0) ) dil)
FGm-amy K97 S (a7’ - ) (6 - 0+))
J==-T+1 t=|j|+1
. (<x<t Dl ) (60 - 0v)) o)
T—1 T
Z Kj)l Z <ut a:t) u:c>
Jj=-T+1 t|j|+1
x ((xggﬂx(;” xx) (égg eg)) (6:(h) — 6:(R))
T—1
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X (u(_])x(_]) u mi>/ (6;(h) — 8:(R))
-1 T
607 3 W07 3 (e ) =)
X (u( j)xl(-t_j) um) (6;(h) — 6:(R))
-1 T

]:—‘T-I—l t=[j|+1 <<
X ((xgt:_):u(‘” _F wT) (éw - ew)) (5:(h) — 6;(h))
+ 9;(h) ];H K](\?)l t%;l ((xl(:rj)w(;”) ;0 > (0“’ — 0“’))
X ((xgt;ﬂjfg WV 7 ) (égg - egg)) (6:(h) — 6;(h))
a5 0 5 (0w )
. ((;ﬁgngw ) (6 - 6)) ) i) — 8w
—1 T
+ 0;(h) FXT:H K](\?)%t:%;l ( (u(:]):c(:”) ;T )
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Lemma A.6. Let &; be the random vector consisting of distinct elements of vyxy,
ruxly —Ep(xyxl,) and wyxl, —Ep(wyal,). Let Py be the set of probability measures which
satisfy Assumption 1.6 and Assumption 1.7 with identical choices of a, b, dy, and dy. Let
Cy be a sequence satisfying (y — 00 as N — 0o. Assume T < N for some universal
constant 01 > 0. Let Assumption 2 hold and rky < TP where 0 < p < (¢ —1)/(39 — 2).
Then, there ezist two constants ¢; > 0 depending only on (p,v) and co > 0 depending
only on (dg, 1), such that

T— .
2 )
1 T
= Z (62 t+min(0,7) Zgzu) (gzt max(0,5) Zfzu)
_1 T T
( ZZEP%S)\
>y (T

sup P( sup

PePy 1<i<N

t=1 s=1

“(log N)= +T77) ) =o(1).

Proof. We apply Theorem 11(i) of Chang, Chen, and Wu (2023)). In their theorem, B,
is the bound for the Orlicz norm. In our case, this bound depends only on K, a and
d; under Assumption 1.6 by Kosorok (2008, Lemma 8.1) and Lemma A.7. Their 7, is
1 in our case by Assumption 1.6. By Lemma A.9, 75 in Chang, Chen, and Wu (2023])
depends only on do. The conditions for the kernel and the bandwidth are assumed. Thus,
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Theorem 11(i) in Chang, Chen, and Wu (2023) can be applied. Note that their results
are stated in terms of stochastic order, but an inspection of their proof reveals that
the constant terms hidden in the stochastic order depend only on the constants in the
assumptions. [

Lemma A.7 (Tail bounds for functions). Suppose that two random variances X; and Xo
satisfy P(|Xa| > z) < C,exp(=byx®) for a = 0,1, then P(|X1X,| > z) < Cexp(—bz?)
for some positive constants C, b, and dy, and P(|X, + X5| > x) < C'exp(—b'z?) for
some constants C', V', and d'.

Proof. The first statement follows because
P(| X1 X5| > 2) <P(|X1| > Vo) + P(| X2 > V)
<Cy exp(—bz™/?) + Cy exp(—byz®/?)
<2max(Cy, Cy) exp(— min(by, by)zmn(@1:42)/2),
For the second statement, we have
P(| X1+ Xo| > z) <P(|X1| > 2/2) + P(|X3| > x/2)
<Cyexp(—by /2% x™) + Cyexp(—by /22 2%)
<2max(C1, Cy) exp (— min(b; /27, b2/2d2)xmin(d1’d2)) :
[

Lemma A.8 (Tail bounds for norms). Let X; and Xs denote two random vectors such
that there are constants K, b and d such that for any component Y of X; and Xs,
P(|Y| > z) < Cexp (—ba?). Then, there are constants C', b' and d' such that
P(|1X] > ) <C'exp (~t'a”) |
P (]| X;]]* > ) <C"exp (—b’x””) :
P(IXi][1Xl] > ) <C"exp (~¥a”)
Proof. The second statement follows from the first statement. The third statement
follows from the second statement of this lemma and the first statement of Lemma [A 7]

It remains to prove the first statement. Let X; = (Y3,...,Y,) and note that P(|Y}| >
x) < Cexp (—bxd/ 2) for j =1,...,p. Now, the first statement follows from writing

X =Y+ Y

and applying the second statement of Lemma repeatedly. ]

Lemma A.9 (Functions of mixing sequences). Suppose that (T, wy,vy) is a strong
mizing sequence over t with mizing coefficients sup; a;[t] < Cexp(—at?) for constants C,
a and d, then so is g(xy,wy, vy) where g is a measurable function.
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Proof. The proof follows the argument in the proof of Theorem 14.1 in Davidson (1994]).
O

Lemma A.10 (Large quantiles of the normal distribution). Let X denote a standard
normal vector with p X p correlation matriz 0 and let 0 < d < 2. Let con denote the
1 — a/N quantile of X. Then there is a constant Ny that depends only on o and d such
that fora < a <1 and N > Ny

Vdlog(N/a) < can < +/2logp+ v/2log(N/a).

Proof. The upper bound is given in Lemma D.4 in Chernozhukov, Chetverikov, and
Kato (2019). To prove the lower bound put ay = y/dlog(N/a). Let ® denote the
cumulative distribution function of a standard normal random variable, and let ¢ denote
its probability density function. Gordon’s lower bound (see, e.g., Duembgen (2010)))
states that

¢(x)
(1 —1/22?)

for z > 0 and thus 1 — ®(z) > 1¢(z)/x for x > /2. Therefore,

1—®(z) >

P(max X; >aN) >P(X; > ay)

Jj=1,...p
=1- q)((ZN)
2

oty _ (%) e ((N/aﬂd”)

2an anV 8w B anvVv8m anvVv8m

Nl—d/2
=a/N ( 8dm log(N/g)> = a/N.

where the last inequality holds for N > Ny and N is chosen such that N > Ny implies that

N'=4/2/, /8dmlog(N/a) > 1. Such an Ny can be found since N'~%2//8dr log( N/a

0o. The inequality P(max;—y__,X; > ay) > a/N implies co n > an.

.....

Lemma A.11 (Long-run variance is finite). Let &; denote any element of the vec-
tors vyxy, vec(wyal) — Ep vec(xyal,), vec(wyzl,) — Ep vec(wyxl,), and vec(viryxl,) —
Ep vec(vizyal,), or any of the random variables ||zu||?, ||@ulllwiell, [vielllzaell, |2l
|z |[|w2 ]| and |vi|||z%]|. Let Py be a set of probability measures which satisfy Assump-
tion 1.6-1.8 with identical choices of a, b, dy, and dy. Let

sip(P) = max (EP(E?J +2) \E(fit&s)|> :

1<t<T
s>t
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Then, there exists a constant C¢ < 0o such that

limsup sup max s3,(P) < Ce.
N,T—oc PePy 1SISN 7

In particular,

limsup sup max

: < Ct.
N,T—o00 PePy 1SiSN

1 T
varp <ﬁ ; fit)

Proof. Lemma and Lemma imply P(|&:| > 2) < exp(—(z/a¢)™-¢) for some ag
and d; ¢, which in turns implies that Ep(§}) < M, for some universal constant M, < oo
for any integer m by Lemma . Moreover, Lemma implies that &; is an a-mixing
sequence with mixing coefficient sup; a; ¢[k] < exp(1 — bek®¢). Thus, by the argument
in Galvao and Kato (2014}, Section C.1), which is an application of Davidov (1968)), it
holds that, for any s > t and any integer m,

IEp(Eikis)| < 12(Ep(|&a]™) > ™ (aiels — ) ™2™

In particular,

QZ’EP(@&'M < 24(Ep(|§it|m))2/m Z (Oéi,g[s . t])l—Q/m‘

s>T s>T

The right-hand side is bounded by a constant C’é that depends only on a, b, dy, and ds.
This follows from the existence of moments and the mixing property of &;;. Note that
the stationarity assumption is used to apply the result of Davidov (1968)). O

Lemma A.12 (Exponential tail bound implies existence of moments). Suppose that a
random variable X satisfies that P(|X| > z) < Cexp(—(x/a)?) for some C,a > 0 and
d > 1. Then, for any integer p, E|X P < M for M depending only on C,a,d and p.

Proof. By the argument given in Kosorok (2008, page 129), which is based on the series
expansion of the exponential function, we have (E(|X [?))/? < p!||X||,, where || - ||y, is
the Orlicz norm with ,(x) = exp(2®) — 1 as defined in the proof of Lemma [A.13] By
Kosorok (2008, Lemma 8.1), || X4, is bounded by a constant which depends on C, a
and d. O

Lemma A.13 (Large CLT for mixing sequences). Suppose that {{X;:}]_}_, is an
a-mizing sequence (as a sequence indezed by t) with mizing coefficients a(k). Suppose
that T% < J for some &, > 0. Let S; = T~Y23" (Xy,..., Xn). Let G ~ N(0,Z),
where = is the long-run covariance matriz of (Xy, ..., X ). Assume the following three
conditions:

1. There exist some universal constants C7 > 0, a > 0 and di > 0 such that
P(|Xj| > x) < Crexp(—(1/a)nz®™) for allt € {1,...,T} and j € {1,...,J}.
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2. There exist some universal constants Cy > 1, b > 0 and dy > 0 such that a(k) <
Cy exp(—bk®) for any k > 1.

3. There exists a universal constant Cs > 0 such that V; > Cs for any j € {1,...,J},
where Vi ; = Var(ZtT:1 X;i/VT).

For a € RN, define A(a) = {z e RN : z; <aq; forj=1,...,J.}. Let A=J,cps Ala).
Then, it holds that

(log J)(1+2d2)/(3d2) (log J)7/6
P(S;e A)—P(GeA)| <
ilé%iléa\ (SreA) (Ge Al T1/9 T1/9

provided that (log J)>~% = o(T%/3) and P is a collection of probabilities measures under
which the above three conditions are satisfied with identical choices of C1, Cy. Cs, a, b,
d1 and dg.

Proof. The lemma follows by Theorem 1 of Chang, Chen, and Wu (2023), noting the
remark at the beginning of Section 2.1 of Chang, Chen, and Wu (2023). Theorem
1 of Chang, Chen, and Wu (2023) has three conditions, and the second and third
conditions are given in the statement of the lemma. The first condition is “There
exist a sequence of constants B; > 1 and a universal constant d; > 1 such that
[ Xjitllpy, < By forallt € {l,....,T} and j € {1,...,J}7, where [[{[|y, = inf[A > 0:
E(Wa(€]/N)) < 1] for ¢ (x) = exp(z®) — 1 (the Orlicz norm with v¢,). By Lemma 8.1
of Kosorok (2008), P(|X;:| > ) < Cyexp(—(1/a)®z™) implies this condition by taking
By = ((1+Cy/(1/a)™))/4 which is constant if C}, a and d; are constant. O

Lemma A.14. Let Py be the set of probability measures which satisfy Assumption 1 with
identical choices of a, b, di and dy. Assume that there are finite constants 0 < d; < do
such that T < N < o(1)T%. Let Assumption 2 hold with ky < T? where 0 < p <
(9 —1)/(3¢0 —2). Let

TVlog N
bﬁv* _ (\/_ . og N)rg n + T (log N)2 + T,
Ly M <i<N T

where ¢; > 0 and ¢y > 0 are two constants defined in Lemma [A.5 with ¢; depending
only on (p,V) and cy depending only on (dy, ). Assume that b%V* — 0. Then for any
sequence Cn such that (y — oo as N, T" — oo,

sup P | max max
PcPy 1<i<N (h,h*)€G?

Dl ) = Dilah )| > 08 ) = o(0),

Proof. Throughout the proof, let C' denote a generic constant that does not depend on
P € P and whose value may change between different equations. Let 6;(h) = Og0 — On

and 8;(h) = 0,0 — 0. Let &(h) = \/Zi(h, h) and &(h) = \/Z;(h, h). Let

bEV = '719,N + T (log N)2 + T,
LN mlnlgiSN g;
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By the inequality |1 — /a| < |1 —al,
Ei(h, W) = &(h, )
&(h, h,)

_oHsmlan) | |5 1) — &b )
- &) PO

&i(h)

e

<

By Assumption 1.4, &(h, 1)/ (a?]|6:(h)||]|6;(1))]|) is bounded away from zero. Moreover,
with probability approaching one,

&i(h, 1) = &(h, W)
o l|6:(R)[Hlo:(R) |

< (wby’

uniformly over i = 1,..., N and h,h/ € G\ {¢?}. Therefore, we can take
1= &(h)/&(h)] < CnbR™. (A.11)

Next we consider | T~Y23"_ vyxy||. Consider any component x;, of z;. Set &; =
Vit p in Lemma and conclude that

$% = max max <E( i)—|—22|E(§,~t§is)|)

1<i<N 1<t<T
s>t

is bounded and fulfills the condition in Lemma[A.15] By Lemma and Lemma [A.9]
& satisfies the tail and mixing conditions for X;; in Lemma [A.T5] Now, applying
Lemma,

T
11;12)}(\[ T-1/2 ;/Uitxit =0, (logN). (A.12)
Similarly, it can be argued that
T
1, [T 2 (el — Elleal}| =0 (log V),
T
max T2 ([l il = Ellzellwie[1)] =0, (log N) (A.13)
- t=1 .
2 77 2 (el = Blealllzal)| =0, (log V).
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We write

77 i (e il|0;
Di(h) — Di(h) = <§i(h) — 1> Di(h) + VT 2=t (dA (h) — da(h )> /(ailld:(h)])
&i(h) &(h)/(o:l0:(M)II)
EJl + J2.

We bound J; by writing

)\ o] L&) (h)\ &S viii(h) /)|6:(R)]

|<5}-(h) 1)“’”‘ G (1 am)) R '
&i(h) &(h) (b N\
“am| e e ()

The right-hand side is bounded by (A.11), (A.12)), noting that & (h)/(o;||0:(R)||) is
bounded away from zero by Assumption 1.4, and observing that
&i(h)

am

in conjunction with (A.11)) implies a lower bound on &(h)/&;(h). Hence, J; is bounded
by C¢yb%Y log N with probability approaching one.
To bound J,, we derive a lower bound on its denominator from

e [(am
ailld: ()l oalloi(h)I| | \ &(h)
in conjunction with (A.11)) and noting that &;(h)/(0;]|0;(h)||) is bounded away from zero
by Assumption 1.4. For the numerator in J, we observe the following decomposition:

dis(h) — dis(h) 1 it (9 00, ) + Wy (éw _ «9“’) / ( 0:(h) )
allsmI 2 o, “\ sl

L <5i(h)_5i(h)>
_ ivn%t l|0:(h)]| |

In the following arguments, we use that

19;(h) — 8;(h)]|
16:(R) |

is bounded by the fact that 79y = o(1 A ty). With probability at least 1 — ag n, we

10: ()1 /116: (Rl < 1+
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bound

dit(h) — diy(R)

Tig||* + || || || ws Vit ||
<o (Il bl il

Uz||5z(h)|| minlSiSNai LN
arr o ((Bllall® + Bl [lw| o Elvil |zl
—='6.N minlSiSN g; LN

§r97NC<H$itH2 + HiL‘thsztH —‘ (EHxltHsztH + EsztHsztH)
mlnlSiSN g;

|vie] [|@ie]| — E |vie] |||
LN ’

+

Noting that E||zy||?, E||z:||||wi|| and E vy ||zs|| are bounded uniformly over i and ¢ by

Assumption 1.6, (A.13) implies

1 o di(h) — di(h)
\/T; oil|6;(h)||

max
1<i<T

<ronC(min o; Auy)~! (\/T + log N>
1<i<N

<rpnC( min o; A LN)_lﬁ,
1<i<N

where the last inequality follows since N < o(1)T°2. The bounds on J; and J, yield the
desired result. [

Lemma A.15 (Fuk-Nagaev-type inequality for mixing sequences). Suppose that X
is a strongly mixing process with zero mean for each i = 1,..., N with tail probabil-
ities sup;_; n P(|1Xy| > ) < exp(l — (z/a)™) and with strong mizing coefficients
sup;_; _y @i[t] < exp(=bt®), where a, b, dy, and dy are positive constants. Let Py
denote a sequence of sets of probability measures that satisfy the above conditions with
given values of a, b, dy, and dy. Let

5% = max max (E(Xft) +2 Z |E<XitXis)|> ‘

1<i<N 1<t<T
s>t

Assume that s2. < Cylog™ N for constants Cy and 0 < a, < 1 which do not depend on
N, T nor P. Then, it holds that for any constant C > 0, as N,T — oo with NT % — 0
for some 9y > 0,

sup P <max

PePy 1<i<N

1 T
— X;
th; ¢

Proof. By the Bonferroni inequality and inequality (1.7) in Merlevede, Peligrad, and Rio
(2011)) which is an application of Rio (2017, Theorem 6.2) (the original French version

> CT 2 log N) — 0.

20



was published in 2000), we have

1 <& 1 &

<4N (1 L T/ 4)2>T/2 +ACN (2/4) " exp (—aw) :

2 dyd
ST bir

sup P ( max

PeP 1<i<N

) cmnsr

PeP 3

where r > 1,d = (d;* +d; ')~ and ("’ is a positive constant. Thus, for z = CT~'/2log N,
it holds that

T
1
sup P max |= X; > CT %log N
PE% (1:1 ,,,,, N T; "= &
C2log? N\ " P (CTY?10g N)¢
<4N (1 + W) +16(C"/C)NTY?1og™ N exp (—a 1 d )

r C?log®> N
=4N exp (—5 log (1 + W))

NT'? e (TV2log N\*
16(C"/C -
+ 16( /)logNeXp< “4dbd( , )

We take r = T'/27¢ for 0 < ¢ < 1/2. The second term on the last line in the above
display converges to zero because 7"/?log N/r = T¢log N and NT~% — 0. We now
argue that the first term vanishes as well. For a close to zero, a second-order Taylor
expansion of the natural logarithm function yields

1 2

log(l—i—a):a—ma,

where a* is an intermediate value between zero and a. For a close to zero, 1/(1 + a*) is
bounded and therefore

log(1 +a) > a+ O(a?).
In particular, log(1 — a) > a + O(a?). We set a = C?log® N/(16T*/?=¢s%). Under the

assumption of the lemma, a — 0. Now, the term in the exponential function can be
bounded by

T (1 Gl N T f CPlogN (T CPlog? N ?
2 16T 252 ) = 2 | 16TV2<s2 16T/ s2,
T'/27°C?log® N
<- (1+0(1))
32T1/2—¢s2,
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C?log*> N
- 6452

Thus, under s2 < K log® N with 0 < a, < 1,
r C?log® N C?log? N
4N ——1 1+ ———— < 4N _ 0.
eXp( 2 Og( T Tors? )) = eXp( 6452 ) -

]

Lemma A.16. Let Py be the set of probability measures which satisfy Assumption 1.1-1.7
and Assumption 1]9 with identical choices of a, b, dy and dy. Assume that there are finite
constants 0 < §; < &y such that T < N < o(1)T% and that

ToN

- — 0.
LN A miny <;<y 0;

Suppose that Assumption 3 holds and Ky = 0. Then, there is a constant C' such that

Di(g?, h) — Di(g?;h)‘ > C ron VT > = o(1)

sup P | max max _
LN N miy<;<n 05

PPy \ 1SiSN (hh*)eG?

and for all ¢ > 0

Qi(g)) — u(g))

> c) =o(1).

Proof. Following the arguments in Lemma [A.14] we bound, with probability at least
I —agn,

sup P max max
PePy 1<i<N (h,h*)€G?

diy(h) — diy(R)

gC(H itll” + fzalllwall | Jval | “”)rm

O'Z||5Z(h)|| minlSiSNJi LN
and hence
1 dulh) —d(h) _ ( o )
T Uz||5( )H P LN/\min1<i<N0,~

) - ) ) — ) _ o
1 d dz Zt b Tg’N
2 o O (e )

t=1

uniformly in unit ¢ and probability measure P € Py. Following similar arguments as in
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the proof of Lemma Lemma yields

'li d(h)da(W) 7 Sy Ep [due(h)du ()]
T & lsmIIam) — oFlamam)]
el + lzalllwal | ol el ) A
< (A.15)
“7 Z< min<;<y o; LN TQ’N
CTQN

1
l’N A\ m1n1<Z<NU + Op( )

where the 0,(1) term is uniform over units ¢ and probability measures P € Py. Noting
that

)

‘}Z 6 h ||’ H\/_Z

Lemma implies

, (log V) (A.16)
‘\/T p Uz\|5 H‘

uniformly in 7 and P. Since Assumption 1.6 bounds the expectation E[viz;z),] by a
finite constant, we have

1i du(h)du () &i(h)' &S viaal,o; ()

T < sMllsw) ]~ lom)ls:(r)]

Z Vi — txitx;t]) H

(A.17)

% Z Bl
=0, (log N/ﬁ) = 0,(1)

uniformly in ¢ and P.
Now, combining the decomposition

~

%23:1 < o(h) — dlt(h)) ( dy(h') — C?it<h/)) %ZL Ep [dit(h)dit(h')]
)

?H Mo (h)] o [16: (h)II1|6: (R |

1 () — du(i)\ (i () — du(H)
Z( al&m)] )( o5 ()] )
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1~ di(h) (W) = di(W)\ | 1<~ du(l) ([ di(h) = du(h)
+T§ illo: (Rl ( oil|o; (W) >+T;ov\|6i(h’>!\ ( o;l|d; ()| >
1< di(h w(W)
a <Tz 0:(h ) (TZmHa Wl
1

T Ay (h)dy (W LS Ep [di(h)du (W
fz (h)dyu(h') P (h)di(R')]

[
atll6:(P)N16: (A atll6:(P)N16: (A

with (A.14]), (A.15), (A.16|) and (A.17)) yields a constant C' such that

30 (dth) = dam)) (du) = duth)) 4 Z (W) ()
DIl O it

>C To.N > = o(1).

sup P| max
PeP 1<i<N

LN A\ miny<;<n 0;

This implies the first statement of the lemma. The proof of the second statement of the
lemma is similar to the proof of Lemma [A.14] but replacing all references to Lemma
by a reference to the result in the previous display. ]

Lemma A.17. Let v(N) > 1 denote a sequence that converge to infinity and let cy(«)
denote the (1 — a/N)-quantile of the t-distribution with v(N) degrees of freedom. Suppose
that (log N)/v(N) — 0. For each e >0 and 0 < a < 1 there is a threshold Ny such that
for N > N,

sup cn(a) < /2(1 + €)log(N/a).

a<a<l

Proof. For notational convenience, write v = v(NN). We prove the bound for a = a
and write cy = c¢y(@). The uniformity then follows from the monotonicity of the
distribution function. Clearly, ¢y — 00 so we can take ¢y > 1, provided that N is large
enough. The density function of the ¢-distribution with v degrees of freedom is given by

ful@) = c(v) (1 + JUQ/V)_VTH, where

as v — oo. It follows that there is a universal constant C' such that ¢(v) < C. We first
show that ¢& /v = O(1). The proof is by contradiction. Suppose that lim supy_, . ¢%/v =
co. Applying Theorem 1 in Soms (1976) with n = 1 yields

14

1= Ffen) < flew) - (145 (A.18)
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This implies that

1 v

2 ) 2 2 — 3

ﬁgc(u)(HC—N) (1+C—N)§C(1+C—N) .
N v v v

Taking logs and re-arranging gives

U (e () )

v -2

The left-hand side of the inequality vanishes under the assumptions of the lemma,
whereas a sub-sequence of the right-hand side diverges to infinity. This establishes that
the inequality is impossible and therefore ¢& /v = O(1). This implies that there exists a
constant b such that

A\ &
1<b§(1+—N) <e,
1%

so that we can take
(1+B)F) <o
> <

o [et1]

(=)
14

Take N large enough that

for a positive €*. Then

fu(cN) S C

1 4logcy 1
14 €/2 A 1+e

Then, the right-hand side of (A.18) can be bounded by

i A 2 41
C oxp (_%N(l - E"/2)‘1) (1 + %N) <2C exp (—%N ((1 refoyt - 28 CN))

2
<2C'exp (—%V (1+ 6*)_1> :

Plugging in 1 — F,(¢y) = /N and taking logs gives

e <(1+ €)log (N/a) + log(20)

<2(1+ €")log (N/a) (1 + = log(2€) ) :

2(1 + €*) log(N/a)
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Hence, there is a constant C' such that ¢4 < C'log(N/«). Using this inequality, we can
now verify that ¢ /v — 0 so that
2\
(1 + C—N) Y e,
v

allowing us to take €* = €/2 for sufficiently large N. Taking N large enough that

1 log(2C)
(1+e/2) (” Wt/ 1og<zv>) slte

yields ¢ < 2(1 + ¢€)log (N/a). O

Lemma A.18. Forv > 1, let F,, and f, denote the distribution and density function of
a t-distributed random variable with v degrees of freedom. For x? > 2

fo(x) <22 (1—F,(x)).

Proof. Applying Theorem 1 in Soms (1976)) with n = 2 yields the inequality

1— F,(z) > (1+2%/v) (1 - ) folz)/x.

(V+2)

Now, 2 > 2 implies

1= ) > (1) o)/

]

Lemma A.19. Let Py denote a family of probability measures satisfying Assumptions 1
with parameters satisfying ||0n|| < M for some finite M for any h. Assume gy = o(1ALy)
and rg,N(ﬁ + V1og N)(tn + mini<;<n 0;) = o(1). There are constants C' and C' such
that

/\

T
1 Z dz gm dg(gz7h)‘ > To.N > :0(1) (A19)
t:1

sY(h) LN + min<<n 0;

~ - T log N
sup P( s |DY(g, ) — DY (g2, | > TV VIoE )

. (2 .
PePy 1<i<N LN + M <i<N T

sup P | max
PePy 1<i<N

) —o(1).  (A.20)

Proof. Throughout the proof, let C' denote a generic constant that does not depend on
P eP. Let 6;(h) = 040 — 0}, and 6;(h) = 00 — 0. Note that

16:(h) — 8:(R)]|

1o (I /1l (R)]| < 1+ 16:(h)
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is bounded by the fact that ro v = o(1 A ty).
We observe

‘Zg(h) d%(h) <(?Jzt w;téw - x;tég?)Q — (yar — w:jtéw - $§téh)2>

l\DI»—t

— 5 (e =l — 80— (g — i — 1))
= — g}y (0;(h) — 8;(h)) + w}y (0" — 0")aly0;(h) + 2,65 (h)aty (B — 0,0)
— S+ (a5 ()
Thus, we have, with probability at least 1 — ag y,
diy(h) —diy )| _ (Hxitn% il el |, o ||:citu) - (A21)
ailloi(R)|l min| <<y 0; LN ’
A 2
(B o (mhplattest o),
and
5 (h) (cigm) - d%(h)) “c (nxitn‘* o o il + s il il + a1 e
aillé:(h) aillé: ()| B mini <<y 0;

2 12 . 13
o el + e | )N
LN

(A.23)

where (|A.23]) also rely on the compactness assumption in the theorem.

Combining (A.22)), Lemmas [A.12| and |[A.15] the fact that s¥ (h) = o;||0;(h)||E|z:] +
E(Jall2)[6:(n) [ = Cos(h)]| yields (A.19).

Let

1 r 2 1 r 5
Z(d% —dY( )) , Z (df(h) — dij(h))
t=1

t=1

We observe that

U(h)? =87 (h)? 1~ ((dY(h) — d5(h) d¥ (h) df{(h)—dm))
o2][8:(h) ||2 Z( ail[6: ()] ) 27 Zm!lé aillo: ()]

t=1

(1~ dgm) —dih) (1 dﬁ»i(h)—d%(h) 2 di(h)
T<TZ o [5:00) | )(TZ o [5:00) *TZ;@H@(h)H)'

t=1 t=1
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Note that

T
1
+ll0i(h)ll > llzal?
t=1

T T

1 dY(h) 1

= T2 RN Vit Lt
T2 o ||| T2

By Lemmas |A.12] and [A.15] and the compactness condition, we have

T
1 d (h
sup P | max |— ”—>C1+T1/2 log N) | =o(1 A.24
aup (N | 20T ) <o (a2
Combining Lemma [A.15 (A.21)), (A.22)), (A.23), and (A.24) yields
U2 _ sU(p)2
S () = 5 (R) 0N ) — o(1). (A.25)

)

LN A minlgiSN g;

e (““fv EROIE
Observing that s¥ (h) > s;(h) which holds under the E(w;; @ik, Tithy Titks) = 0, 0:]|0:(R)|| /Y (h)
is bounded away from infinity by Assumption 1.4. This in turn implies that o;||6;(h)||/3Y (h)
is bounded away from infinity. We thus have
57 (h) To.N B
?312?}1’ (1212%}]{\/ §U(h) B 1’ C (LN A minlSiSN Uz)) N 0(1) (A26>
Lastly, we consider
pom v — (L0 o IS () = ) /@l m) ) e
DA = Gy ) P AT a
We bound J; by writing
57 () s
. — 1) D;(h
(G ) 2]
REAQ (1 B 5?@)) 7 i1 di (1) / (aillai()])
st (h) 57 (h) 57 (h)/(ail|a:(R)]])
& (h) ' éU(h)\ Ly ( & (h) )
<— 1——= Vit T zi|1?(|6: (R
st |15 | |77 & Z” I al

and applying Lemma to bound |72 37, vy, (A-26)) to bound |1 — ;(h)/5:(h)),
(A.26)) for a lower bound on 8Y(h)/(o;]|6:(h)||) and

the discussion above
U(h
oy

7 (h)

>
c
—
>
N—
v
—_
I
D | »>

7 (h)

V2R3
I

in conjunction with (A.26) to derive a lower bound on §¥(h)/sY (h). To bound JY, we

o8



derive a lower bound on its denominator from

ojrifgzw - oua(@)r\ {HZ; - 1) * 1}

in conjunction with (A.26]) and the lower bound on 8¥ (h)/(o;||6:(h)]|) discussed above.
The numerator in JY is bounded by the argument used to prove (A.19). The bounds on

JY and JY yield (A.20) 0
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B.1. One-step confidence set

B. Additional results for empirical application

baseline SNS
State gi pvalg card CS p-val g card CS
Alabama 1 0.000 1 1 0.000 1 1
Alaska 3 1.000 3 2,34 1.000 3 2,34
Arizona 3 1.000 3 23,4 1.000 3 2,3, 4
Arkansas 2 0.027 1 2 0.041 1 2
California 3 0.000 1 3 0.000 1 3
Colorado 4 0.893 2 3,4 1.000 2 3,4
Connecticut 3 0.631 2 2,3 0.715 2 2,3
Delaware 2 1.000 2 2,3 1.000 2 2,3
D.C. 2 1.000 4 1,2,3,4 1.000 4 1,2,3,4
Florida 4 0.049 1 4 0.074 2 3,4
Georgia 1 0.000 1 1 0.000 1 1
Hawaii 2 1.000 4 1,2,3,4 1.000 4 1,2,3,4
Idaho 3 0.664 2 3,4 0.852 2 3,4
Illinois 3 0.003 1 3 0.004 1 3
Indiana 3 0.024 1 3 0.038 1 3
Towa 4 0.000 1 4 0.000 1 4
Kansas 4 0.010 1 4 0.015 1 4
Kentucky 3 0.093 2 3,4 0.151 3 2,34
Louisiana 1 0.000 1 1 0.000 1 1
Maine 2 0.015 1 2 0.023 1 2
Maryland 2 0.000 1 2 0.000 1 2
Massachusetts 2 1.000 2 2,3 1.000 2 2,3
Michigan 2 0.001 1 2 0.001 1 2
Minnesota 2 0.000 1 2 0.000 1 2
Mississippi 1 0.001 1 1 0.001 1 1
Missouri 2 0.002 1 2 0.003 1 2
Montana 3 1.000 3 2,34 1.000 3 2,34
Nebraska 4 1.000 3 23,4 1.000 3 2,34
Nevada 2 1.000 4 1,2,3,4 1.000 4 1,2,3,4
New Hampshire 3 0.080 2 3,4 0.130 2 3,4
New Jersey 2 1.000 2 2,3 1.000 2 2,3
New Mexico 3 0.094 3 2,3,4 0.121 3 2,3,4
New York 2 0.000 1 2 0.000 1 2
North Carolina 2 0.000 1 2 0.000 1 2
North Dakota 4 0.010 1 4 0.015 1 4
Ohio 1 0.000 1 1 0.000 1 1
Oklahoma 3 0.168 2 2,3 0.207 2 2,3
Oregon 4 0.000 1 4 0.000 1 4
Pennsylvania 3 0.021 1 3 0.030 1 3
Rhode Island 2 0.000 1 2 0.001 1 2
South Carolina 1 0.000 1 1 0.000 1 1
South Dakota 4 1.000 3 2,3, 4 1.000 3 2,3, 4
Tennessee 2 0.000 1 2 0.000 1 2
Texas 1 0.000 1 1 0.000 1 1
Utah 4 1.000 2 3,4 1.000 2 3,4
Vermont 4 0.000 1 4 0.000 1 4
Virginia 2 1.000 2 2,3 1.000 2 2,3
Washington 4 0.000 1 4 0.000 1 4
West Virginia 3 0.014 1 3 0.041 1 3
Wisconsin 3 0.392 2 2,3 0.455 2 2,3
Wyoming 3 1.000 3 2,3, 4 1.000 3 2,34

61



)

Table B.1: Marginal confidence set at level 1 — a = 0.95. “p-val §;” is the p-value for
the significance of the estimated group membership. “CS cardinality” is the
cardinality of the marginal confidence set for the state. “CS” is the marginal
confidence set. “Baseline” refers to the procedure with critical values defined
in Section 3.4. “SNS” refers to the procedure with critical values defined in
Section 5.1.

B.2. Two-step confidence set assuming no serial correlation

Under the assumption of no serial correlation, we can use the non-HAC variance estimator
from Section 5.2 in the main paper and eliminate nine units in the first step.

0.20
District of Columbia
°
unit selection

0.15
i:’ ® e
IS
? &) yes
A
o
8 0101 Delaware
9}

°

° -
£ Idaho significant
g © . Nebraska
1%} ° O 1o

0.05 e °®

u]
yes
Massachusetts

uoo1lllllll 5N sEEEEEss sses® EEEEEEEEEEEEEEEEEEEEEER

state

Table B.2: Two-step procedure assuming no serial correlation. Second-step p-values for
the significance of the estimated group memberships with and without unit
selection (o = 0.05, § = 0.01). The dashed horizontal line indicates the
threshold for significance without unit selection. The solid horizontal line
indicates the threshold for significance with unit selection.

As illustrated in Figure [B.2] the elimination at the first stage decreases the second-step
p-values since the Bonferroni adjustment is over a smaller number of simultaneous tests.
On the other hand, turning on unit selection lowers the threshold p-value at which we
can conclude significance from o = 0.05 to o — 25 = 0.03. In this example, the two-step
procedure reduces p-values in the second step but does not produce a smaller confidence
set.
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C. Additional simulation results

C.1. Choice of the regularization sequence ¢y
C.1.1. Benchmark simulation designs from Section 7

For our simulation results in Section 7 in the main text, we set the regularization
sequence €y equal to the constant sequence ey = 0.01. In this appendix, we investigate
the robustness of our simulation results to this choice of regularization sequence.

The simulation design is identical to the specification simulated in Section 7. For
all simulation results presented in this section, we estimate the group-specific model
parameters by the kmeans estimator and use the HAC-type estimator of the long-run
variance with data-driven bandwidth. Simulation results are based on 500 replications.

We first consider constant sequences ey = 0,0.01,0.05. Here, ey = 0.01 is the value
used in the simulations in the main text, and ey = 0 turns off the regularization of the
variance matrix. Table reports the simulation results.

coverage average cardinality

p N T €e=0 e€=001 €e€=005 e€=0 €e=001 €e=0.05

0.0 50 60 0.92 0.92 0.93 1.94 1.97 2.00
120 1.00 1.00 1.00 1.14 1.16 1.18

100 60 0.95 0.95 0.95 2.10 2.13 2.19

120 0.99 1.00 1.00 1.19 1.21 1.26

200 60 0.97 0.96 0.95 2.28 2.30 2.37

120 1.00 0.98 0.99 1.27 1.28 1.34

0.5 50 60 0.69 0.69 0.66 3.39 3.42 3.49
120 0.98 0.98 0.98 3.67 3.72 3.78

100 60 0.67 0.69 0.73 3.60 3.62 3.66

120 0.97 0.98 0.97 3.83 3.84 3.85

200 60 0.68 0.70 0.68 3.73 3.74 3.76

120 0.97 0.97 0.98 3.86 3.87 3.87

Table C.1: Simulation results for ey = 0,0.01,0.05. Nominal level 1 — a = 0.95. “cover-
age” is the empirical coverage probability of the joint confidence set. “car-
dinality” is the expected average (over all units) cardinality of the marginal
unit-wise confidence sets.

The results are not very sensitive to the choice of ey. Notably, the performance of
our method is not affected substantially by turning off regularization completely (i.e.,
choosing ey = 0). In the next section, we show that regularization plays a greater,
though still limited, role in an alternative design that is tailored to make regularization
relevant.

We also simulate vanishing sequences ey = log™> N, log N. These sequences satisfy
the rate condition imposed in Theorem 2. Table reports the simulation results.

~3/2
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€ coverage average cardinality

p N T e=log 2N e=log 32N e=log 2N e=log 32N e=log 2N e=log 32N

0.0 50 60 0.07 0.13 0.92 0.93 2.03 2.04
120 0.07 0.13 1.00 0.99 1.19 1.18

100 60 0.05 0.10 0.96 0.96 2.19 2.25

120 0.05 0.10 1.00 1.00 1.24 1.26

200 60 0.04 0.08 0.95 0.97 2.37 2.44

120 0.04 0.08 1.00 1.00 1.34 1.35

0.5 50 60 0.07 0.13 0.72 0.74 3.49 3.53
120 0.07 0.13 0.98 0.97 3.79 3.80

100 60 0.05 0.10 0.75 0.71 3.67 3.68

120 0.05 0.10 0.99 0.98 3.85 3.86

200 60 0.04 0.08 0.67 0.68 3.75 3.77

120 0.04 0.08 0.98 0.98 3.87 3.87

Table C.2: Simulation results for ey = log™2 N,log™®/> N. Nominal level 1 — o = 0.95.
“coverage” is the empirical coverage probability of the joint confidence set.
“cardinality” is the expected average (over all units) cardinality of the marginal
unit-wise confidence sets.

Again, we find that the simulation results are not sensitive to the choice of regularization
sequence.

C.1.2. A design where regularization matters

In our benchmark designs, the choice of regularization parameter hardly affects the
performance of our procedure, raising the question of whether regularization is indeed
necessary. It seems possible that regularization may be a purely technical device to
facilitate the mathematical proof of the validity of our procedure, but that it may not
have any practical relevance.

We address this concern by presenting an alternative simulation design where regular-
ization affects the finite-sample performance of our procedure.

The design is very stylized and exhibits close-to-perfect correlations among the moment
inequalities. For such correlations, our comparison bound relies on regularization to
bound the estimation error in the critical values (see proof of Lemma [A.3)).

Similar to the simulation designs in Section 7, the data generating process is given by

lemp,, = ng_oﬁllmwit + Hggglpopit + 09?73lempit + oV

fori=1,...,Nand t=1,...,T. We simplify the generating process of the covariates
—— - _—~—TOT
and obtain z;; = (lmwy, 1pop,;; lemp,, ) by sampling independently three times from the

empirical distribution of 1mw;; observed in the data for our application. This guarantees
that the components of z;; have identical and independent marginal distributions which
makes it easier to parameterize the correlation structure of the moment inequalities with
the parameter x below.

For group g = 1, we set the group-specific coefficient ¢, = (011,61 2,0:13) equal to
(0.5,0.5,0.5). For the remaining groups, the coefficients are a convex combination of a
design with parallel groups and a design with orthogonal groups. For g = 2, 3,4, the

64



coefficients with parallel groups are 95“3”“61 = c401, with ¢; = 0.7, ¢3 = 0.4 and ¢4 = 0.1.

The coefficients with orthogonal groups are 655" = (0.5,0,0), 65""°#™! = (0,0.5, 0),
gsrhezenal — (0.0,0.5). For g = 2,3,4, the group-specific coefficients are given by the
convex combination ¢, = (1 — /ﬁ)@f;aranel + mﬁgrthogonal, where k£ = 0,0.05,0.1,0.2. For
rk = 0, groups are parallel, and all off-diagonal entries of the population correlation
matrix €2;(g) are perfect correlations. For k = 1, groups are orthogonal, and the matrix
Q;(g) is diagonal.

As in the designs in Section 7, each unit ¢ is assigned to one of the four groups with
equal probability and exhibits a random heteroscedasticity parameter o; = 0.1 x x?(4)/4,
where x?(df) is a random draw from a y?-distribution with df degrees of freedom.

To establish a conjecture about the role of regularization in this design, we briefly
review where regularization enters our theoretical arguments. Regularization is part of
our strategy to control estimation errors in the critical values. This estimation error
comes from the fact that the group-specific critical values are estimated from data. It is,
therefore, a greater concern in small panels (7" and N small) than in large panels (T or
N large). Consider a positive off-diagonal entry in ;(g?). From the proof of Lemma[A.3]
it is apparent that estimation error is easily controlled if the entry is bounded away
from unity. We apply an argument that relies on our regularization scheme to control
estimation error if the entry is close to unity. In summary, regularization is expected to
be relevant if T'and/or N are small and & is small.

coverage average cardinality
MVT SNS MVT SNS

K N T €e=0 €=0.01 €e=0.05 e=0 €=0.01 €e=0.05
0.0 50 60 0.82 0.80 0.84 0.86 2.19 2.18 2.22 230
120 0.91 0.94 0.94 0.95 1.66 1.65 1.69 1.74
100 60 0.92 0.91 0.93 0.95 2.32 2.32 2.36 247
120 0.93 0.96 0.95 0.96 1.72 1.73 1.77 1.83
0.1 50 60 0.69 0.74 0.73 0.75 2.32 2.32 2.35 242
120 0.86 0.87 0.89 091 1.80 1.79 1.80 1.85
100 60 0.84 0.82 0.85 0.87 2.46 2.46 2.50 2.58
120 0.93 0.92 0.92 0.95 1.87 1.87 1.89 1.95
0.2 50 60 0.65 0.62 0.66  0.68 2.42 2.42 2.43  2.50
120 0.87 0.86 0.85 0.88 1.88 1.90 1.89 1.93
100 60 0.78 0.78 0.76  0.81 2.59 2.60 2.59  2.67
120 0.91 0.90 0.91 0.94 1.99 1.98 1.99 2.03

Table C.3: Simulation results for a stylized design with strongly correlated moment
inequalities. Nominal level 1 — a = 0.95. “coverage” is the empirical coverage
probability of the joint confidence set. “cardinality” is the expected average
(over all units) cardinality of the marginal unit-wise confidence sets. MVT =
use MV'T critical values. SNS = use SNS critical values.

This conjecture is confirmed by the simulation results in Table For k = 0,0.1,
regularization improves size control in the designs with small samples. In particular,
we see improvements if N = 50. For x = 0.2, regularization leads to slightly worse
size control. We interpret this as a sign that for k = 0.2, the cost of regularization in

65



terms of a biased variance estimator is not outweighed by the benefit of guarding against
underestimating close-to-perfect positive correlations.

Simulation designs that investigate the role of regularization are by necessity designs
with substantial sampling error in the the group-specific coefficients. Without sampling
error, there is no uncertainty about the critical values and regularization is not needed.
The overall noisiness that makes the designs presented here informative about regulariza-
tion also affects the performance of our procedure directly, leading to a confidence set
that is underpowered independently of imprecisely estimated critical values. This can
be seen by comparing the performance of the regularized procedure with MVT critical
values to the procedure with data-independent SNS critical values. The coverage under
SNS critical values provides an upper bound on the coverage that can be achieved by
eliminating estimation error in the critical values, i.e., an upper bound on what better
regularization can achieve. This has to be considered when interpreting the improvements
in size control from regularization. For example, for k = 0.1, N = 50, and T = 60,
regularization improves the size by about five percentage points, bringing the size within
a percentage point of the size under SNS critical values.

The simulation results offer some evidence that the theoretical considerations that
motivate our regularization approach have practical relevance. This suggests that it
may not be possible to rigorously justify a version of our procedure that does not
use regularization. On the other hand, even in this highly stylized design, gains from
regularization are limited. From a practical perspective, correct regularization may not
be a key concern.

C.2. Testing the estimated group membership g;

In the definition of éa, ~,i, we explicitly add ¢; to the confidence set. Not doing this
changes the marginal confidence set of unit ¢ only if g; is not already included anyway,
ie., if

A~

T; (fh) > Ca,N,i (ﬁz) . (0-27)

We simulate the finite sample probability of this happening in our simulation designs
from Section 7 in the main text. The simulation results are summarized in the following
table.
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P o N T  coverage cardinality §; not rej

01 50 60 0.99 1.60 0.99
0.0 120 1.00 1.07 0.99
100 60 0.99 1.76 1.00

120 1.00 1.12 1.00

200 60 0.99 1.95 1.00

120 1.00 1.17 1.00

02 50 60 0.92 1.97 0.99
120 1.00 1.16 0.99

100 60 0.95 2.13 0.99

120 1.00 1.21 1.00

200 60 0.96 2.30 1.00

120 0.98 1.28 1.00

01 50 60 0.87 3.35 0.99
0.5 120 0.99 3.71 1.00
100 60 0.86 3.52 1.00

120 0.99 3.80 1.00

200 60 0.82 3.67 1.00

120 1.00 3.84 1.00

02 50 60 0.69 3.42 0.99
120 0.98 3.72 1.00

100 60 0.69 3.62 0.99

120 0.98 3.84 1.00

200 60 0.70 3.74 1.00

120 0.97 3.87 1.00

Table C.4: Simulated probability of the event ((C.27)).

In Table [C.4] the column “g; not rej” gives the simulated probability of our group
membership not rejecting the estimated group membership (i.e., one minus the probability
of the event defined in equation ) We find that our test for group membership
does not reject the estimated group membership with probability close to, but not equal
to, one.

C.3. Two-step procedure

In this appendix, we report simulation results regarding the finite-sample performance of
our two-step procedure.

We simulate a design with independent time periods. Like our main design in Section 7
in the main text, the design studied here builds on the model estimated in Section 6
in the main text. A unit ¢ corresponds to a US state and the “time periods” are given
by observations of different counties in different quarters. The panel model is specified
as in equation (12) in the main text, with coefficients equal to the estimate coefficients

—_—

in Table 1 in the main text. The joint distribution of the regressors lmw;, 1/p\o¥>it and

lemp,, is defined from the data used in our empirical application. In particular,
1mw;;, lpop,, and lemp,  are sampled from the pooled empirical distribution of the

respective fixed-effect transformations of log(mw;;), log(pop;;) and log(empf©T). The error
component v;; is a standard normal noise term.

We set the distribution of heteroscedasticity and group membership, i.e., to the joint
distribution of (¢;, T}, ¢?) so that the simulation results reveal different aspects of the
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performances of the two-step procedure. We note that the two-step procedure is sensitive
to this distribution. We determine it from the data by mapping each simulated unit ¢ to
one of the N = 51 units from our empirical application. We set o; equal to m, times
the standard deviation of the empirical residuals for unit i, ¢? equal to the estimated
group membership of ¢ and T} equal to the number of observed “time periods” for unit
i (i.e. counties times quarters). The parameter m, = 1/4, 1,4 shifts the global level of
uncertainty.

The other parameters for the simulations are set as follows. The nominal level of
the simulated joint confidence set is 1 — a = 0.95. We simulate different values of the
first-step parameter 5 = a/5,a/10 = 0.01,0.005. The regularization sequence is specified
as ey = 0.01. We simulate the confidence set using our benchmark critical values defined
in Section 3.4 of the main text (labelled MVT = multi-variate ¢-distribution), as well as
the SNS critical values defined in Section 5.1 of the main text (labelled SNS).

success failure card with sel card without sel
me  «f/f insignif signif insignif signif insignif signif insignif = signif N coverage
MVT
0.25 10 0.55 0 0.00 0.00 1.48 1.00 2.01 1 10.06 1.00
5 0.48 0 0.00 0.00 1.55 1.00 2.01 1 9.29 1.00
1.00 10 0.13 0 0.00 0.00 2.15 1.00 2.21 1 33.73 0.99
5 0.00 0 0.01 0.03 2.22 1.00 2.21 1 3235 1.00
4.00 10 0.00 0 0.50 0.45 2.75 1.02 2.72 1 50.95 0.96
5 0.00 0 0.80 0.77 2.79 1.05 2.72 1 50.90 0.97
SNS
0.25 10 0.53 0 0.00 0.00 1.51 1.00 2.00 1 10.04 1.00
5 0.46 0 0.00 0.00 1.58 1.00 2.00 1 9.32 1.00
1.00 10 0.13 0 0.00 0.00 2.21 1.00 2.27 1 33.73 1.00
5 0.00 0 0.01 0.04 2.27 1.00 2.27 1 3242 1.00
4.00 10 0.00 0 0.52 0.44 2.78 1.02 2.75 1 50.95 0.98
5 0.00 0 0.81 0.73 2.82 1.05 2.75 1 50.92 0.98

Table C.5: Simulation results for the two-step procedures (unit selection).

The simulation results are based on 1000 replications and reported in Table The
columns labeled “insignif” give averages over units that are insignificant under no unit-
selection. Columns labeled “signif” give averages over units that are significant under no
unit-selection. A unit is labeled as a “success” (“failure”) if its marginal confidence set is
strictly smaller (strictly larger) under unit-selection than under no unit-selection. The
columns labeled “card with sel” (“card without sel”) give the cardinality of unit-wise
marginal confidence sets if unit-selection is turned on (turned off). The column labeled
N gives the simulated expected number of units that survive unit selection (N =51).
“Coverage” gives the simulated joint coverage probability of the two-step joint confidence
set (nominal level 1 — o = 0.95).

In all designs, unit selection produces a valid joint confidence set that covers the true
group structure at the prescribed nominal level.

Unit selection aims to tighten the marginal confidence sets for units for which estimated
group memberships are insignificant under a one-step procedure. Among such units,
the expected proportion of units for which a two-step procedure tightens the marginal
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confidence set varies across the different designs. In the design with low error variances
(my, = 0.25), this proportion ranges between 46% and 55%. This means that the two-
step procedure improves the marginal confidence sets for roughly half of the units for
which they can be improved. In the design with medium error variances (m, = 1), this
proportion lies between 0% and 13%. In the design with high error variances (m, = 4),
there are no improvements. This illustrates that the two-step procedures can only be
successful if the overall uncertainty is low but unequally distributed across units. If overall
uncertainty is high, then the first step cannot deselect units, and hence the second-step
confidence sets cannot be tightened.

The two-step procedures can cause the confidence set to become wider if insufficiently
many units are eliminated in the first step. This happens in the designs with high error
variance (m, = 4): hardly any units are eliminated in the first step and the size of
the marginal confidence sets increases both for units with significant and units with
insignificant group membership estimates under the one-step procedure.

Using MVT instead of SNS critical values increases the power of our two-step procedure.
In our designs, both choices of critical values select a similar number of units for the
second step. Therefore, the power gain from using MVT critical values is almost entirely
due to more efficient testing in the second step.

D. Weak group separation

D.1. Introduction

In this appendix, we consider grouped panel models in which groups are only weakly
separated. By weak separation, we mean that groups are distinct but very similar to
each other. We formalize this notion using an approach inspired by the local alternatives
in asymptotic testing theory. In particular, we let the distance between groups shrink to
zero at a fixed rate.

We offer new theoretical results on the rate of consistency of the kmeans estimator
under weak separation. In particular, we give conditions under which the estimated
group-specific coefficients converge at the parametric v/ NT-rate if the distance between
groups shrinks at a rate slower than 77'/2. We then use this result to derive conditions
under which our confidence set is valid under weak group separation.

In addition to the theoretical analysis, we provide simulation studies to investigate the
finite sample behavior of the kmeans estimator and our joint confidence set under weak
separation and to verify our theoretical predictions.

This appendix is structured as follows. In Section we discuss existing results on
kmeans estimation in a setting where groups are not separated at all. We then turn to
our analysis of the kmeans estimation under weak separation. In Section [D.3] we present
asymptotic results. In Section [D.4] we present simulation evidence. Proofs are given in

Section
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D.2. No group separation

We first discuss kmeans estimation under no group separation. By “no group separation”
we mean that there are at least two groups with identical coefficients. This corresponds
to over-specification of the number of groups. Bonhomme and Manresa (2015) study
this setting in their supplemental appendix. In this setting, the estimators of the group-
specific coefficient converge at most at the rate of 772, As discussed in the main text
of this paper, this rate is too slow to satisfy our conditions for the validity of the joint
confidence set.

We consider a simple mean shift model where we observe y;;, for : = 1,..., N and
t =1,...T. The parameter of interest is the mean of y;;. We assume that there is a
latent group structure with G' groups and that the mean of y;; may depend on unit ¢’s
group membership. Suppose that there is only one distinct group, i.e., all units have
the same mean, but we incorrectly set the number of groups to two. Specifically, the
estimated model is

Yit = Qg + Vs,

where g; = 1,2 and vy is assumed to be 7.i.d.N(0,0?). Let &; and &y be the estimators
of ay and am, respectively, by the kmeans method. By relabelling if necessary, we impose
Q1 > @sy. The true model is homogeneous such that a = a; = as.

Proposition S.2 of Bonhomme and Manresa (2015)) (supplemental appendix) states
that, as N — oo with T fixed, it holds that

. [ 2 . /2
— — — — —.
(6%} o+ 7TT, (67) (6] T

We note that the model considered in Proposition S.2 of Bonhomme and Manresa
(2015) includes regressors with common coefficients, but its presence does not affect the
probability limits of &; and as.

The above result indicates that, even we take 7" — oo in addition to N — oo, the
convergence rates of &; and dy are at most of order 7-/2. In particular, the probability
that P(|a, — a| > CT~/2) for fixed C' does not converge to 0.

D.3. Asymptotic analysis

We now turn to the setting of weak group separation, where groups are distinct but very
similar. The discussion given here is a simplified version of Lumsdaine, Okui, and Wang
(2022, Supplemental Appendix C).

We observe (y;, xy) fori=1,...,Nandt =1,...,T. Units are divided into G groups,
and all members of a group share the same value of the regression coefficient. The model
is

_ 0
Yir = Tiylgo + Ui,
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where 92, g =1,...,G, are group-specific coefficients, g0 € {1,...,G} is unit ’s true
group membership, and wu; is an error term.

The parameters are estimated by the kmeans method (Bonhomme and Manresa 2015)).
Let G = {1,...,G} be the set of groups. Then, GV is the parameter space for the
group membership structure. A typical element of G is v = (g1, .., gn). The true group
membership structure is 7° = (¢?,...,¢%) € G. The parameter space for the coefficients
is denoted as B C R®?. The estimator is

T

N
-~ A ) 1
(4,0) = arg min = NT Z Z(yit —2},0,.)%.

N g
vEGY .68 t=1 i=1

We prove a rate of consistency of the kmeans estimator and the following assumptions
that are weaker than the standard set of assumptions imposed in the literature (see,
e.g., Bonhomme and Manresa 2015)). Most importantly, the group separation condition
is relaxed, allowing the difference between the slope coefficients associated with two
groups to vanish asymptotically. In addition, we relax the conditions on the existence of
moments and the mixing properties of the data.

Assumption D.1. 1. Let zy be xl,xy, or ||uyxyl|. Assume the following holds for
any choice of zy: zy s a strictly stationary and strong mizing sequence over t
whose mixing coefficients a;[t] are bounded by a[t] such that maxy<;<n a;[t] < at]
and Y 2 (t + 1)/ Lat]t/ ™+t < 0o for some b > 0, and maxi<;<n F(]z|™*?) < 00
for some b > 0.

2. B is compact.

3. Let pn(7,9,7) be the minimum eigenvalue of
N T
> D 1{g) = g}1{g; = glwual,/(NT),
i=1 t=1

where v = (g1, ...,9n). For any g € G,

min max P v 9, QN > pAa
YE(G)N geG N(’Y )
wheleﬁ—>pp as N,T-) o0 cmdp > 0.

4. There exists p* such that for any i,

1 T
/ Ak
Amin (T ;xitfﬂit> > p

and p* —, p* >0 as N, T — 00, where Anin gives the minimum eigenvalue of its
argument.
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5. There exists a nonrandom sequence cp > T2+ for some e > 0 such that for any
g # h where g, h € G, it holds that |09 — 6)|| > cr.

Assumption [D.1][f is the key assumption that replaces the usual group separation
assumption by weak group separation. Similar to the standard assumptions, any pair
of groups must have distinct coefficients. In particular, the distance between their
coefficients has to be bounded away from zero in any finite sample. We generalize the
standard assumptions and allow the distance to vanish asymptotically. In the limit,
groups are not separated. We assume that the rate at which group differences vanish is
slower than 7-1/2,

The mixing and moment conditions in Assumption are weaker than the standard
assumptions imposed in the literature (see, e.g., Bonhomme and Manresa 2015). However,
we impose the additional assumption of strict stationarity. Under this assumption, we
can relate the degree of weak group separation to a condition on the relative magnitudes
of N and T

All other assumptions are standard in the literature.

The following theorem derives an asymptotic equivalence between the kmeans estimator
6 and the oracle estimator  under known group membership structure. The oracle
estimator is trivially v/ NT-consistent.

Unlike most existing results on the consistency of the kmeans estimator in grouped
panels, the theorem holds under weak group separation. However, the degree of group
separation affects the required condition on the relative magnitudes of N and T'. The
faster group separation converges to the limit of no group separation, the stronger the
conditions on N and T'. In particular, when group separation is weak, T" must be large
relative to V.

Theorem D.1. Suppose that Assumptions [DA[IHD.1|[3 hold. As N,T — oo with
NT=" = 0, where e and r are defined in Assumptions and [D. 1[5, respectively, it
holds that

~

0 =0+ 0,(1/VNT).

Since the oracle estimator 8 is v/ NT-consistent, Theorem implies that 0 is vV NT-
consistent.

Under the conditions of Theorem [D.1], group consistency still holds (see Lemma .
This is restrictive since the relevance of our testing problem relies on uncertainty about
the group memberships even in the asymptotic limit. We leave a formal analysis that
extends our results to settings with asymptotic misclassification for future research.

Our results indicate that such an extension is feasible. In our previous work in Dzemski
and Okui (2021)), we have shown that consistent estimation of group memberships is not
a necessary condition for v/ NT-estimation of the group-specific coefficients under weak
separation. We proved this result for the mean-shift model estimated from i.i.d. data.
Theorem extends some of our previous analysis to a grouped panel regression model
with weakly dependent time series. To simplify the derivations and make our main point
(robustness to weak separation) in a clear and transparent manner, we impose a uniform
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165 — 63 16°]]
T =025 ¢=0.00 e=-0.25 ¢=025 =000 e=-0.25

30 0.50 0.22 0.09 1.01 0.99 0.98
60 0.43 0.16 0.06 1.00 0.98 0.98
120 0.36 0.11 0.03 1.00 0.98 0.98

Table D.1: Group separation and e.

bound on the variance of the error term (see our Assumption . This bound implies

group consistency. We conjecture that the uniform variance bound can be replaced by a

set of more convoluted conditions (see condition (4) in Dzemski and Okui [2021)) that do

not imply group consistency. We leave the details of this argument to future research.
Putting (y = ¢y, Theorem 2 in the main text yields

TlferNyT — 0 (D28)

as N,T — oo as a necessary condition (ignoring a log term) for the validity of our
confidence set. Here, 7 7 is the rate of convergence of (él, e ég) It indicates that the
validity of our confidence set holds even when groups are only weakly separated as long
as the cross-sectional sample is sufficiently large so that the group-specific coefficients
converge sufficiently fast.

D.4. Simulations

We now report simulation evidence to study the finite sample effect of weak group
separation on the rate of convergence of the kmeans estimator and the validity of our
joint confidence set for group membership.

The simulation design is a simplified version of the design in Section 7 in the main
text. The data generating process is given by

lemp,, = Qggllmwit + Hg?’leopit + Qg?,glempit + o5

fori =1,...,N and t = 1,...,T, where ¢! is the group membership of unit i and
takes either the value one or two with equal probability. For ¢ = 1,2, the group
specific-coefficient is equal to
0, + 0 _
O, = (1—27 /) == ; 2 42772,

where (01, 0,) are estimated by fitting the model to the data from the empirical application
using the kmeans algorithm and setting the number of groups to G = 2. The data
generating process for the covariates and error is the same as in Section 7 in the main text,

setting p = 0 and o = 0.2. We simulate designs with N = 50, 100, 200, T" = 30, 60, 120
and e = —0.25,0,0.25. The parameter e controls the rate at which the two group-specific
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coefficients converge to a common value as T"— oco. Under e = —0.25, the two groups
converge to a common group the fastest, and under e = 0.25, they converge the slowest.
The case e = 0.25 is covered by the theoretical result in Theorem [D.I] The case e = 0 is
the infimum of the e considered in Theorem [D.1} Under e = —0.25, group separation
vanishes at a rate too fast to be covered by Theorem |D.1. Table reports group
separation between the two groups for the different choices of e.

To measure the distance between two sets of group-specific slope coefficients 6 = (6;, 05)

and 0" = (0}, 0,) we define

2
16 =01l = \| > _Elo, — 6,13
g=1

and

161 =

2
> E[6,]3
g=1

and -2 is the Lg-norm. Table shows that, for ° = (67,69), ||6°| is almost
independent of e.

We simulate the joint confidence for group membership using the variance estimator
for the case of no serial correlation (i.e., setting the bandwidth equal to zero). For all
simulations, the nominal level for the joint confidence set is set to 1 — a = 0.95, and the
number of replications is 500. The simulation results are summarized in Table

The column “coverage” gives the simulated coverage probability of the joint confidence
set for group membership. The coverage is always conservative for the designs with
slowly vanishing group separation (e = 0.25). For the designs with group separation that
vanishes at a moderate or fast rate (e = 0 and e = —0.25, respectively), the confidence
set has appropriate or conservative coverage provided N and T are large enough.

The columns labelled “6 — 6” simulate the expected total error of kmeans estimation
16 — 6°)/]|6°||, where 6 = (6y,0,) and the norm |- is defined above. This error is
relevant for assessing the finite sample validity of the assumptions we impose on coefficient
estimation in Theorem 2 in the main text. When scaled by T/2, the error is approximately
constant when increasing 7" and leaving N constant. This indicates that this is the rate
at which time-series variation reveals information about the panel model. A smaller error
can be achieved by using both time-series and cross-sectional variation, i.e., by increasing
both T and N. As discussed in Section [D.3] a necessary condition for the asymptotic
validity of our confidence set is

T )6 — 6°|| — 0

as N, T — oo. Clearly, this condition cannot be met by increasing 7" alone while keeping
N constant. However, the estimation error scaled by T'~¢ vanishes if N increases,
suggesting that estimation error from kmeans estimation is negligible in panels with a
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large cross-sectional dimension.

The columns labelled “6 — 67 simulate ||0 — || /||6°]|. They are the expected differences
between the kmeans estimator § and the oracle estimator 6. Based on these columns,
we assess the finite-sample relevance of our asymptotic result on kmeans estimation
under weak separation. Only the designs with e = 0.25 are covered by Theorem [D.1] As
predicted by the theorem, the difference between the kmeans estimator and the oracle
estimation vanishes at a faster rate than 7-'/2. We find the same result for e = 0, —0.25,
two cases not covered by our asymptotic results.

The columns labelled “6 — 6” report the simulated value of ||6 — 6°]/]|6°||, i.c., the
expected error of the oracle estimator.

The columns labeled “6 — 67 are equivalent to differently scaled versions of the
convergence rate of é, i.e., of ryr defined in Assumption 1.3. The column scaled by T"~¢
checks the validity of condition in finite samples. This condition is necessary for
the validity of our joint confidence set under weak separation. For e = 0.25, Theorem
predicts that 7' ¢ryr — oo (i.e., condition (D.28)) above) if N is sufficiently large
compared to T'. The simulation evidence confirms this prediction. The settings with
e = 0, —0.25 are not covered by the asymptotic analysis in Theorem Our simulation
evidence suggests that the conditions for T'~¢ry 7 — 0 are possibly even weaker under
these settings.

D.5. Proof of Theorem D.1]
Let

1TN 1TN
10 = e DG 0 ¢ S

r'sao t=1 i=1
The theorem follows from the following sequence of lemmas.

Lemma D.1. Suppose that Assumptions and [D.1)[2 hold. Then,

- 1
0) — 0) =0, —=].
s ot -ee0] <0, (%)

Proof. The proof is almost identical to the proof of Lemma S.3 of Bonhomme and
Manresa (2015). We have

Q(fy’ 9) - Q(Va - - QL Z Z x;t 91 uZt

t17,1

5



error error scaled by T'1/2 error scaled by T1—¢

e N T coverage 06—60 6—-6 6-—-60 6-—-60 6—-6 6-60 6-—-60 6-6 6—06

50 30 0.97 0.28 0.12 0.25 1.52 0.66 1.37 3.55 1.54 3.22

0.25 60 0.99 0.20 0.05 0.19 1.52 0.35 1.48 4.23 0.99 4.11
120 1.00 0.14 0.00 0.14 1.56 0.04 1.56 5.16 0.15 5.16

100 30 0.97 0.20 0.10 0.17 1.09 0.53 0.95 2.54 1.23 2.23

60 0.99 0.14 0.04 0.14 1.10 0.30 1.06 3.07 0.85 2.96

120 1.00 0.10 0.01 0.10 1.09 0.06 1.09 3.61 0.21 3.61

200 30 0.98 0.15 0.08 0.12 0.80 0.43 0.68 1.87 1.00 1.59

60 0.99 0.10 0.03 0.10 0.76 0.23 0.76 2.12 0.64 2.11

120 1.00 0.07 0.00 0.07 0.79 0.05 0.78 2.61 0.16 2.58

50 30 0.84 0.39 0.24 0.26 2.16 1.33 1.41 2.16 1.33 1.41

0.00 60 0.94 0.23 0.12 0.19 1.81 0.90 1.51 1.81 0.90 1.51
120 0.99 0.15 0.03 0.14 1.61 0.33 1.58 1.61 0.33 1.58

100 30 0.90 0.28 0.19 0.18 1.55 1.04 0.98 1.55 1.04 0.98

60 0.96 0.17 0.09 0.14 1.35 0.71 1.09 1.35 0.71 1.09

120 0.98 0.10 0.03 0.10 1.15 0.29 1.11 1.15 0.29 1.11

200 30 0.91 0.23 0.17 0.13 1.26 0.94 0.70 1.26 0.94 0.70

60 0.97 0.12 0.07 0.10 0.96 0.55 0.77 0.96 0.55 0.77

120 0.99 0.07 0.02 0.07 0.82 0.21 0.79 0.82 0.21 0.79

50 30 0.42 0.76 0.60 0.26 4.17 3.28 1.42 1.78 1.40 0.61

-0.25 60 0.58 0.42 0.30 0.19 3.23 2.31 1.51 1.16 0.83 0.54
120 0.89 0.18 0.09 0.14 1.95 0.97 1.58 0.59 0.29 0.48

100 30 0.46 0.55 0.45 0.18 3.02 2.44 0.98 1.29 1.04 0.42

60 0.65 0.31 0.23 0.14 2.40 1.79 1.09 0.86 0.64 0.39

120 0.93 0.13 0.07 0.10 1.40 0.77 1.11 0.42 0.23 0.33

200 30 0.52 0.48 0.41 0.13 2.60 2.23 0.70 1.11 0.95 0.30

60 0.68 0.24 0.20 0.10 1.88 1.52 0.77 0.67 0.55 0.28

120 0.95 0.09 0.05 0.07 1.04 0.58 0.79 0.31 0.18 0.24

Table D.2: Estimation error and confidence set coverage under shrinking group separation.
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We rewrite a part of the right-hand side as

Z Z xnﬁ oUit = Z Z Z 1(g:(B) = g)x;tOS?uit.

t=1 =1 geGB t=1 =1

For each g € GP, it holds that

2

T 2 T
E (%Zzl )70 0Uzt> Z Z TigUit|| = <%> )

t=1 =1 t=1 g;(B)=

where the inequality is the Cauchy-Schwarz inequality with C' satisfying ||6,,]|* < C for
any 0 € B (by Assumption , and the equality follows since Theorem 1 of Yokoyama
(1980) implies that under Assumption , for any L C {1,..., N}, there exists M
which does not depend on L such that

H E E Lt Uit

t=1 i€l

L]
N2T”

<M (D.29)

where |L| denotes the cardinality of L. We then examine the other part of Q(v,8)—Q(, 6).
It follows that

TR
(ﬁ Z Z x;tegiuit)

t=1 =1

| X T 2

( NT Z egi Z xz’t%‘t)

=1 t=1

N

1 ) 1

< ( | | 9i | | ) T2 Zl
o 2).

where the first inequality follows by the Cauchy-Schwarz inequality and the second
inequality follows by Assumption [D.1][2] and the Markov inequality by (D.29). We thus

have
()

2

T
g Lt Ut

t=1

O(,6) ~ Q(,0) =0 (ﬁ) 10

uniformly over 6 and , and consequently

sup
vEG,0eB

Q0.0 - 00.0)] =0, ().

7



Lemma D.2. Suppose that Assumptions[1{3 hold. Then,

|| = o,a/vD).

max min
geG geG

Proof. The proof is almost identical to the proofs of Lemmas A.2 and B.3 of Bonhomme
and Manresa (2015). Lemma implies

0(4.6) =Q(4.0) + 0, (%)

<Q(Y",¢°) + 0, (%) = Q" 60°) + 0, <%) :

The fact that Q(v,6) is minimized at (7°,6°) implies

0(4.0) - O, 0% = 0, (%) |

We now establish a lower bound of Q(v,0) — Q(1°,6°) such that

7.0) = Q(",6°)

T
t=1 %
T
t=1 g
T G

t=1 g=1 g

MZ O

9i>>2

1

Z‘H Z‘H
~ ~

>N 1{g) = gHgi = GH,(0) — 05))°

1 =1 i=1

M

px(7,9,3) |60 — 65|

'ﬂ|>—‘

- 1IM=

>pG* max min ||9O
9€G GeGB

where the first inequality follows by the definition of py(7, g, §) and the second inequality
is from the definition of p. Now, Assumption [D.1]{] implies

I-o(5)
O

Lemma D.3. Suppose that Assumptions [D.1)[1{D. 1|3, and (D13 are satisfied. Then
.y —O(l/\/_)foranygEG.

max min
geG geG

a(g)

Proof. We construct a permutation with the property stated in the lemma. Indeed, we
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show that

0_A~ 2
6° — 4,

o(g) = argmin |0,

geG

2
is such a permutation. We first show that o satisfies (|09 — 0,(,)|| = O,(1/V/T) for any

g € G, and that it is a permutation.
Lemma [D.2] states that

0 A Zf
0 — 05| =

g Op(1/VT).

max min
geG geG

U(g)’ O,(1/V/T) for any g € G.
It remains to establish that ¢ is a permutation. For g # g, the triangular inequality
gives

Oo(9) — Vo (3)

The map o, by construction, satisfies H@S —0

05 — bo(5)

> [|05 — 6511 — ||65 — 0

a(g)

~

= 0,(1/VT) and |69 = B3| = O,(1/VT).
Assumption 5| states that H¢92 - 02“ > cp. The condition that ¢y > T—Y2%¢ implies
that [|69 — 65]| = 05 = ot | — ||68 — 0oia
means that o(g) # o(g) for g # g with probability approaching one. Thus, o possesses a
well-defined inverse and is bijective; in other words, ¢ is a permutation. O

In the above we have seen that ‘ y — ég(g)

> () with probability approaching one. This

From Lemmas [D.2} - and [D.3 E we observe that the Hausdorff distance between #° and
6 converges to 0 at the rate of v/7T. By using the labelling such that o(g) = g, we can

write H@g - égHQ = 0,(1/V/T) for any g € G.

We then establish that the group membership structure is correct asymptotically as
long as the coefficients are in a neighborhood of the true value. Let N = {6 : —b,]| <
n =T VYg € G} for 0 < f < e, where ¢ is defined in Assumption ., for any
g €G.

Lemma D.4. Suppose that Assumptions [D.1[1], [D.4[2, [D.1[f] and [D.4[3 hold. As
N, T — oo with NT~°" — 0, where e and r are defined in Assumptions[D.1[1] and [D. 13,
respectively, it holds that

Pr {4(0) # +° for some 6§ € N'} — 0.

Proof. We establish an equivalent statement:

e sup 1{g;(6) # 9} = op(1).
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Note that

T T
1{3:(0) # g7} = s 1 (Z Yit = P (- xét@ggf) ‘

t=1 t=1
We have
T
Z <(?/it - x;teg)Q — (Yie — x;teg?)z)
t=1
T T
= 2uuwu(0 — 07) + Y (i (05 — 09))* + ¥,
t=1 t=1
where

T
U= " 2uywi( — 0, — O + 05)

+ 3 (B0 — Oy — 0% + 00 2}, (205 — 0,0 — 6,)

~

+ ) (0% — 69w}, (6% — Ogp — 0, + 65).

t=1

Applying the Cauchy-Schwarz inequality and then Assumption and the definition
of N gives

| < nCy +nCs

T T
/
E Ui Ty E Lt Ly
t=1 t=1

where C} and C5 are constants independent of n and T. We thus have the following
inequality

t=1 t=1

kK01
( Z Quztxn — 00)

T
- Z(I&(% - 62,3»2 +nCh
=1

T k—1
1 (Z(yit — :E;,ﬁg)z < Z(yzt - x;teg?)2>

+nCy

T
!
Tty

t=1

T
E Uit it

t=1

).
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Thus, we have

P (sup1(0) £ of) #0)

0eN

T /) T
< Z Pr (% Z(x;t(ﬁgg —09))* < %) + Pr < %Zuitmit > M)
9€G\{g?} =1 =1
+ Pr 1 ZT: Tt || > M
T 2 itLi|| =
1 T //
+ Pr ? Z 2uztx;t(92? — 9 ) —? + 7701M + 7702 ))

where we take ¢, = e x p* for ¢ in Assumption and p* in Assumption and

M is some large constant.
We now bound the second and third terms on the right-hand side of the inequality.
First, we have

1 & 1 o 1 ¢
/ o /
Pr ( T 4 > M) < Pr (f ;1 | zay || > M) =Pr (T ;1 Tyt 2> M) .

> e,
t=1
Assumption enables us to the Markov inequality and Theorem 1 of Yokoyama
(1980) to x},x;y — E(x},x4), and we establish

(172
r_
T_

/
E Tt Ly
t=1

> M) =0 (T,

by taking M large enough such that Zt L E(2lzq)/T < M. A similar argument under
Assumption |D. 11mphes that Pr (H ZtT L WitTig || > M) =0 ( —r/z)

Next, we consider the first term. We now use Assumptions [D.1][4] [D.1][5] and [D.IJ[I]
The Markov inequality combined with Theorem 1 of Yokoyama (1980) implies

“(

We thus have uniformly over g:

T

S 6 — 60— D B (6 — 6)°)

t=1 t=1

C% —er
> — | = .
> ) o(T*")
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Lastly, we consider the fourth term. It follows that
( ZQUzt%ﬁ —69) < _7 + nCy M + nCyM )

( 22%% —60) < {f) — O(T~")

uniformly over g under Assumption [D.IJI] The inequality follows by ¢ = O(cr) =
O(T~Y/%*¢) and n = o(T~'/**¢). The equality holds by the Markov inequality and
Theorem 1 of Yokoyama (1980)).

To sum up, we have

1<i<N genN 0eN

Pr (max sup 1(:(0) # 9;) 7&0) ZPr(supl 9i )#g?)%())

=O(N(T~" +T7"/?)) = O(NT~").
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