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We propose a new specification test for assessing the validity of fuzzy regression
discontinuity designs (FRD-validity). We derive a new set of testable implications,
characterized by a set of inequality restrictions on the joint distribution of ob-
served outcomes and treatment status at the cut-off. We show that this new char-
acterization exploits all of the information in the data that is useful for detecting
violations of FRD-validity. Our approach differs from and complements existing
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approaches that test continuity of the distributions of running variables and base-
line covariates at the cut-off in that we focus on the distribution of the observed
outcome and treatment status. We show that the proposed test has appealing sta-
tistical properties. It controls size in a large sample setting uniformly over a large
class of data generating processes, is consistent against all fixed alternatives, and
has non-trivial power against some local alternatives. We apply our test to evaluate
the validity of two FRD designs. The test does not reject FRD-validity in the class
size design studied by Angrist and Lavy (1999) but rejects it in the insurance sub-
sidy design for poor households in Colombia studied by Miller, Pinto, and Vera-
Hernández (2013) for some outcome variables. Existing density continuity tests
suggest the opposite in each of the two cases.

Keywords. Fuzzy regression discontinuity design, nonparametric test, inequality
restriction, multiplier bootstrap.

JEL classification. C12, C14, C31.

1. Introduction

Regression discontinuity (RD) design, first introduced by Thistlethwaite and Campbell
(1960), is one of the most widely used quasi-experimental methods in program evalua-
tion studies. The RD design exploits discontinuity in treatment assignment due to ad-
ministrative or legislative rules based on a known cut-off of an underlying assignment
variable, which we refer to as the running variable. The RD design is called sharp if the
probability of being treated jumps from zero to one, and is called fuzzy otherwise. See
Imbens and Lemieux (2008), and Lee and Lemieux (2010) for reviews, and Cattaneo and
Escanciano (2017) for recent advances of the literature.

The RD design identifies the causal impact of the treatment by comparing the out-
comes of treated and non-treated individuals close to the cut-off. The validity of the RD
design relies crucially on the assumption that those individuals immediately below the
cut-off have the same distribution of unobservables as those individuals immediately
above the cut-off. The first formalization of this argument appears in Hahn, Todd, and
Van der Klaauw (2001, HTV hereafter), which utilizes a potential outcomes framework to
establish identification of causal effects at the cut-off. Subsequently, Frandsen, Frölich,
and Melly (2012, FFM hereafter), Dong and Lewbel (2015), and Cattaneo et al. (2016)
considered a refined set of identifying conditions. In the fuzzy regression discontinu-
ity design (FRD) setting, the two key conditions for identification, which we refer to as
FRD-validity, are (i) local continuity, the continuity of the distributions of the potential
outcomes and treatment selection heterogeneity at the cut-off, and (ii) local monotonic-
ity, the monotonicity of the treatment selection response to the running variable at the
cut-off.

The credibility of FRD-validity is controversial in many empirical contexts. For in-
stance, agents (or administrative staff) may manipulate the value of the running vari-
able to be eligible for their preferred treatment. If their manipulation depends on their
underlying potential outcomes, this can lead to a violation of the local continuity con-
dition. Even when manipulation of the running variable is infeasible or absent, the local
continuity condition can fail if the distribution of unobservables is discontinuous across
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the cut-off. This is a common concern in empirical research, for instance, when the RD
design exploits geographical boundaries across which individuals are less likely to relo-
cate but the ethnic distribution of the population is changing discontinuously. See Dell
(2010), and Eugster et al. (2017). As a related example, violation of local continuity be-
comes a concern when multiple programs share an index of treatment assignment and
its threshold (e.g., the poverty line, state borders, etc.), but an individual’s treatment sta-
tus is observed only for the treatment of interest. See Miller, Pinto, and Vera-Hernández
(2013), Carneiro and Ginja (2014), and Keele and Titiunik (2015) for examples and dis-
cussions of this issue.

Motivated by a clearer economic interpretation and the availability of testable im-
plications, Lee (2008) imposes a stronger set of identifying assumptions that implies
continuity of the distributions of the running variable and covariates at the cut-off. Fol-
lowing his approach, researchers routinely assess the continuity condition by applying
the tests of McCrary (2008), Otsu, Xu, and Matsushita (2013), Cattaneo, Jansson, and Ma
(2020), and Canay and Kamat (2018). When the running variable is manipulated, Gerard,
Rokkanen, and Rothe (2020) provides a partial identification approach in the presence
of “one-sided manipulation.” As noted by McCrary (2008), however, in the absence of
Lee’s additional identifying assumption, the continuity of the distributions of the run-
ning variable and baseline covariates at the cut-off is neither necessary nor sufficient for
FRD-validity, and rejection or acceptance of the existing tests is not informative about
FRD-validity or violation thereof.

This paper proposes a novel test for FRD-validity. We first derive a new set of testable
implications, characterized by a set of inequality restrictions on the joint distribution
of observed outcomes and treatment status at the cut-off. We show that these testable
implications are sharp necessary conditions for FRD-validity in the sense that they ex-
ploit all the information in the distribution of data useful for refuting FRD-validity. We
propose a nonparametric test for these testable implications. The test controls size uni-
formly over a large class of distributions of observables, is consistent against all fixed
alternatives violating the testable implications, and has nontrivial power against some
local alternatives. Implementability and asymptotic validity of our test neither restricts
the support of the outcome distribution nor presumes continuity of the running vari-
able’s density at the cut-off.

The testable implication that our test assesses differs from and complements the
testable implication that the existing density continuity tests focus on. As we illustrate
in Section 2.3, there are important empirical contexts where the results of the existing
approach are not informative about FRD-validity while ours are. They include scenarios
where the distribution of unobservables is discontinuous at the cut-off, multiple pro-
grams share the same running variable and the same threshold, and manipulation of
the running variable is driven by factors independent of the potential outcomes. It is
also important to note that our testable implication assesses local monotonicity, about
which the existing approach is not informative. The novelty of our approach is that it
exploits those aspects of the data that are informative in assessing FRD-validity but that
have been neglected by the existing density continuity approach. We therefore recom-
mend that our test is implemented alongside existing tests for continuity of the running
variable density, regardless of the results thereof.
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To illustrate our proposal, we apply our test to the designs studied in Angrist and
Lavy (1999), and Miller, Pinto, and Vera-Hernández (2013). Angrist and Lavy (1999) used
the discontinuity of class size with respect to enrollment due to Maimonides’ rule to
identify the causal effect of class size on student performance. We do not find statisti-
cally significant violation of our new testable implication for FRD-validity for any of the
four outcome variables (Grade 4 Math and Verb, Grade 5 Math and Verb). In contrast,
the existing continuity test suggests statistically significant evidence for discontinuity
of the running variable’s density at the cut-off (see Otsu, Xu, and Matsushita (2013)).
Miller, Pinto, and Vera-Hernández (2013) evaluated the impact of “Colombia’s Régimen
Subsidiado”—a publicly financed insurance program—on 33 outcomes, where program
eligibility is determined by a poverty index. Since our approach makes use of obser-
vations of not only the running variable but also of treatment status and the observed
outcome, it has the unique feature of being outcome-specific, that is, when multiple
outcomes are studied within the same FRD design, researchers can assess credibility of
FRD-validity separately for each outcome variable. In this example, the continuity test
supports continuity of the running variable density at the cut-off, while we find statis-
tically significant evidence for the violation of our new testable implication for FRD-
validity for 3 outcome variables (Household Education Spending, Total Spending on
Food, and Total Monthly Spending). This result suggests further investigation would be
beneficial for identifying and estimating the causal effect on these outcomes.

The rest of the paper is organized as follows. In Section 2, we lay out the main iden-
tifying assumptions that our test aims to assess and derive their testable implications.
Section 3 provides test statistics and shows how to obtain their critical values. Monte
Carlo experiments shown in Section 4 examine the finite sample performance of our
tests. Section 5 presents the empirical applications. Section 6 concludes the paper. The
Supplemental Material (Arai et al. (2022)) provides detailed discussion of how our test
differs and complements existing tests, several extensions, the asymptotic validity of our
test, all proofs, and additional empirical results.

2. Identifying assumptions and sharp testable implications

2.1 Setup and notation

We adopt the potential outcome framework introduced in Rubin (1974). Let (�, F , P )
be a probability space, where we interpret � as the population of interest and ω ∈� as
a generic individual in the population.

Let R be an observed continuous random variable with support R ⊂ R.1 We call R
the running variable. Let D(·, ·) : R ×�→ {0, 1} and D(r,ω) be the potential treatment
that individual ω would have received, had her running variable been set to r. For d ∈
{0, 1}, we define mappings Yd(·, ·) : R×�→ Y ⊂R and let Yd(r,ω) denote the potential
outcome of individual ω had her treatment and running variable been set to d and r,
respectively.

1In this paper, we consider a continuous running variable. Kolesár and Rothe (2018) studied inference
on ATE in the sharp regression discontinuity designs with a discrete running variable.
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We view (Y1(r, ·), Y0(r, ·),D(r, ·))r∈R as random elements indexed by r and write
them as (Y1(r ), Y0(r ),D(r )) when it causes no confusion. By definition, D(R) ∈ {0, 1}
is the observed treatment and we abbreviate it as D. Likewise, we denote the observed
outcome by Y = Y1(R)D(R) + Y0(R)(1 −D(R)) throughout the paper. We use P to de-
note the joint distribution of ((Y1(r ), Y0(r ),D(r ))r∈R, R), which induces the joint distri-
bution of observables (Y ,D, R).2 We assume throughout that the conditional distribu-
tion of (Y ,D) given R= r is well-defined for all r in some neighborhood of r0, and that
limr↓r0 D(r ) and limr↑r0 D(r ) are well defined for all ω. Note that by letting the potential
outcomes be indexed by r, we allow the running variable to have a direct causal effect on
outcomes. This could be relevant in some empirical applications as discussed in Dong
and Lewbel (2015), and Dong (2018).

Analogous to the local average treatment effect (LATE) framework (Imbens and An-
grist (1994)), we define the compliance status T (r,ω) of individual ω in a small neigh-
borhood of the cut-off r0 based on how the potential treatment varies with r. Similar to
FFM, Bertanha and Imbens (2020), and Dong and Lewbel (2015), for ε > 0, we classify
the population members into one of the following five categories:

Tε(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A, ifD(r,ω) = 1, for r ∈ (r0 − ε, r0 + ε),

C, ifD(r,ω) = 1{r ≥ r0}, for r ∈ (r0 − ε, r0 + ε),

N, ifD(r,ω) = 0, for all r ∈ (r0 − ε, r0 + ε),

DF, ifD(r,ω) = 1{r < r0}, for r ∈ (r0 − ε, r0 + ε),

I, otherwise,

(1)

where A, C, N, DF, and I represent “always takers,” “compliers,” “never takers,” “defiers,”
and “indefinite,” respectively.3

2.2 Identifying assumptions and testable implication

We present the main identifying assumptions and their testable implications. In the
statement of the assumptions, we assume that all the limiting objects exist.

Assumption 1 (Local monotonicity). For t ∈ {DF, I}, limε→0 P(Tε = t|R= r0 +ε) = 0 and
limε→0 P(Tε = t|R= r0 − ε) = 0.

Assumption 2 (Local continuity). For d = 0, 1, t ∈ {A, C, N}, and any measurable subset
B⊆ Y ,

lim
ε→0

P
(
Yd(r0 + ε) ∈ B, Tε = t|R= r0 + ε) = lim

ε→0
P

(
Yd(r0 − ε) ∈ B, Tε = t|R= r0 − ε).

2For the purpose of exposition, we do not introduce other observable covariatesX here. Appendix C.2 of
the Online Supplemental Material (Arai, Hsu, Kitagawa, Mourifié, and Wan (2022)) incorporatesX into the
analysis.

3The above definition coincides with the definition of types in FFM as ε→ 0. As pointed out by Dong
and Lewbel (2015), for a given ε and a given individual ω, this definition implicitly assumes the group to
which ω belongs does not vary with r. This way of defining the treatment selection heterogeneity does not
restrict the shape of P(D= 1|R= r ) over (r0 − ε, r0 + ε).
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Assumptions 1 and 2 play similar roles to the instrument monotonicity and instru-
ment exogeneity (exclusion and random assignment) assumptions in the LATE frame-
work. Assumption 1 says that as the neighborhood of r0 shrinks, the conditional pro-
portion of defiers and indefinites converges to zero, implying that only “always takers,”
“compliers,” and “never takers” may exist at the limit. The local continuity assumption
says that the conditional joint distributions of potential outcomes and compliance types
are continuous at the cut-off. Our local continuity condition concerns distributional
continuity rather than only continuity of the conditional mean (and so is unlike HTV).

The main feature of FRD designs is that the probability of receiving treatment is dis-
continuous at the cut-off. To be consistent with the local monotonicity assumption, we
specify the discontinuity so that the propensity score jumps up as r goes above the cut-
off.

Assumption 3 (Discontinuity). π+ ≡ limr↓r0 P(D= 1|R= r )> limr↑r0 P(D= 1|R= r ) ≡
π−.

Under Assumptions 1 to 3, the compliers’ potential outcome distributions at the cut-
off, defined as

FY1(r0 )|C,R=r0 (y ) ≡ lim
r→r0

P
(
Y1(r ) ≤ y|T|r−r0| = C, R= r),

FY0(r0 )|C,R=r0 (y ) ≡ lim
r→r0

P
(
Y0(r ) ≤ y|T|r−r0| = C, R= r),

are identified by the following quantities:4 for all y ∈ Y ,

FY1(r0 )|C,R=r0 (y ) =
lim
r↓r0

EP

[
1{Y ≤ y}D|R= r] − lim

r↑r0
EP

[
1{Y ≤ y}D|R= r]

π+ −π− ,

FY0(r0 )|C,R=r0 (y ) =
lim
r↑r0

EP

[
1{Y ≤ y}(1 −D)|R= r] − lim

r↓r0
EP

[
1{Y ≤ y}(1 −D)R= r]

π+ −π− .

This is analogous to the distributional identification result by Imbens and Rubin (1997)
for the LATE model. The identification of the compliers’ potential outcome distributions
implies the identification of a wide class of causal parameters including the average ef-
fect amongst the compliers and local quantile treatment effects.5 Our identification re-
sult modifies FFM’s Lemma 1 to accommodate the fact that we do not exclude r from
the potential outcomes.

Note that Assumption 3 can be tested using the inference methods proposed by
Calonico, Cattaneo, and Titiunik (2014), and Canay and Kamat (2018). We therefore fo-
cus on testing Assumptions 1 and 2.

4For completeness, we show this identification result in Proposition E.1 in Appendix E.2 of the Online
Supplemental Material.

5Assumptions 1 and 2 play similar roles to FFM’s Assumptions I3 and I2, respectively. The main differ-
ence from FFM’s assumptions is that FFM define the compliance status solely at the limit, and assume
that the conditional distributions of the potential outcomes given the limiting compliance status and the
running variable are continuous at the cut-off.
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The next theorem shows that local monotonicity and local continuity together imply
a set of inequality restrictions on the distribution of data.

Theorem 1.

(i) Under Assumptions 1 and 2, the following inequalities hold:

lim
r↑r0

EP

[
1
{
y ≤ Y ≤ y ′}D|R= r] − lim

r↓r0
EP

[
1
{
y ≤ Y ≤ y ′}D|R= r] ≤ 0, (2)

lim
r↓r0

EP

[
1
{
y ≤ Y ≤ y ′}(1 −D)|R= r] − lim

r↑r0
EP

[
1
{
y ≤ Y ≤ y ′}(1 −D)|R= r]

≤ 0 (3)

for all y, y ′ ∈R.

(ii) For a given distribution of observables (Y ,D, R), assume that the conditional dis-
tribution of Y given (D, R) has a probability density function with respect to a
dominating measure μ on Y , has an integrable envelope with respect to μ, and
whose left-limit and right-limit with respect to the conditioning variable R are
well-defined at R = r0, μ-a.s. If inequalities (2) and (3) hold, there exists a joint
distribution of (D̃(r ), Ỹ1(r ), Ỹ0(r ) : r ∈ R) such that Assumptions 1 and 2 hold, and
the conditional distribution of Ỹ = Ỹ1(R)D̃(R) + Ỹ0(R)(1 − D̃(R)) and D̃= D̃(R)
given R= r induces the conditional distribution of (Y ,D) given R= r for all r ∈ R.

Theorem 1(i) shows a necessary condition that the distribution of observable vari-
ables has to satisfy under the FRD-validity conditions. In other words, a violation of in-
equalities (2) and (3) is informative that at least one of the FRD-validity conditions is
violated. Theorem 1(ii) clarifies that inequalities (2) and (3) are the most informative
way to detect all of the observable violations of the FRD-validity assumptions and the
testable implications cannot be strengthened without making further assumptions. We
emphasize, however, that FRD-validity is a refutable but not a confirmable assumption,
that is, finding inequalities (2) and (3) hold in data does not guarantee FRD-validity.

Similar to the testable implications of the LATE model considered in Balke and Pearl
(1997), Imbens and Rubin (1997), Heckman and Vytlacil (2005), Kitagawa (2015), and
Mourifié and Wan (2017), the testable implications of Theorem 1(i) can be interpreted
as an FRD version of non-negativity of the potential outcome density functions for the
compliers at the cut-off. Despite such an analogy, the framework and features specific to
RD designs give rise to some important differences and challenges. First, the assump-
tion that we test is continuity of the conditional distributions of the potential outcomes
and compliance status local to the cut-off, rather than the global exclusion or no-defier
restrictions of the standard LATE model. Second, since the testable implications con-
cern distributional inequalities local to the cut-off, the construction of the test statistic
requires proper smoothing with respect to the conditioning running variable.
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2.3 How does our testable implication differ from existing implications?

FRD-validity, as defined by Assumptions 1 and 2, does not constrain the marginal den-
sity of R to be continuous at the cut-off. This contrasts with the testable implications of
continuity of the running variable and covariate densities obtained in Lee (2008), and
Dong (2018), which hinge on a stronger restriction such that the density of the run-
ning variable given the potential outcomes is continuous at the cut-off. See McCrary
(2008), Otsu, Xu, and Matsushita (2013), Cattaneo, Jansson, and Ma (2020), and Bugni
and Canay (2021) for tests of the continuity of the running variable density, and Canay
and Kamat (2018) for tests of the continuity of the covariate densities.

The testable implication of Theorem 1 (i) is valid no matter whether one assumes
such an additional restriction or not. The testable implication concerns the joint distri-
bution of (Y ,D) local to the cut-off, which the existing approach of assessing continuity
of the densities of the running variable and observable covariates does not make use of.
In this sense, our approach, which does not require continuity of the running variable’s
density, complements the existing approach of using continuity tests and we recom-
mend the implementation of our test (proposed below) in any FRD studies, whatever
results the existing continuity tests yield.

There are several important empirical contexts where supporting or rejecting conti-
nuity of the running variable’s density is not informative about FRD-validity, while the
testable implication of Theorem 1 (i) can be. First, even when the running variable’s den-
sity is known to be continuous, it is still often controversial to assume that the distribu-
tion of unobservable heterogeneity affecting the outcomes is continuous at the cut-off.
For instance, when an RD design exploits geographical or language boundaries (e.g.,
Dell (2010), and Eugster et al. (2017)), the distribution of (unobservable) ethnicity may
change discontinuously, even though the running variable (distance to the boundary)
has the density that is continuous at the origin. If the discontinuity of the distribution
of unobservables leads to violation of the testable implication of Theorem 1 (i), our ap-
proach correctly refutes FRD-validity.

Second, if multiple programs share the same running variable and the same thresh-
old (compound treatments), an FRD design that ignores the other programs can lead to
violation of continuity of the potential outcome distributions (for the program of inter-
est), even when the density of the running variable is continuous. For instance, empirical
scenarios that rely on a spatial regression discontinuity design exploiting jurisdictional,
electoral, or market boundaries (see Keele and Titiunik (2015), and references therein)
can violate local continuity in this way. The issue of compound treatments is also of con-
cern when multiple social programs targeted at the poor assign their eligibility according
to a common poverty index and poverty line (Carneiro and Ginja (2014)).

Third, in contrast to the previous two contexts, discontinuity of the running vari-
able’s density does not necessarily imply violation of local continuity if manipulation
of the running variable is independent of the potential outcomes (possibly conditional
on observable covariates). In this case, the testable implication of Theorem 1 (i) does
not refute FRD-validity even though the running variable’s density is discontinuous. See
our empirical application in Section 5.1, below. In addition, Appendix B of the Online
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Supplemental Material provides detailed analytical comparisons between the testable
implications of Lee (2008) and ours.

Another distinguishing feature of our approach is that our testable implication can
also detect violation of local monotonicity. It is therefore valuable to assess the testable
implication also in those scenarios where local continuity is credible while local mono-
tonicity is less credible. Examples include studies examining the returns to field of study
or college major, exploiting discontinuity generated by a centralized score-based admis-
sion system (Hastings, Neilson, and Zimmerman (2014), and Kirkeboen, Leuven, and
Mogstad (2016)). In a simplified context of Kirkeboen, Leuven, and Mogstad (2016)),
for instance, the running variable is student’s performance score for college admission,
the cut-off is an admission threshold to a competitive major (say, science) rather than
less competitive majors (say, humanities), and the treatment variable is an indicator for
graduating with a degree in science rather than a degree in humanities. The validity of
local monotonicity can be a concern if an individual’s choice of treatment (graduating
with a degree in science rather than a degree in humanities) is different from their initial
assignment to the program (admitted to a science or humanities program). Defiers can
exist if some students, who tend to be attracted by nonmajored subjects and/or change
their minds about their career choices, always switch from their assigned major to the
other based on revisions of their beliefs or preferences.6

3. Testing procedure

This section proposes a testing procedure for the testable implications of Theorem 1(i).
We assume that a sample consists of independent and identically distributed (i.i.d.)
observations, {(Yi,Di, Ri )}ni=1. Noting that the inequality restrictions of Theorem 1 (i)
amount to an infinite number of unconditional moment inequalities local to the cut-off,
we adopt and extend the inference procedure for conditional moment inequalities de-
veloped in Andrews and Shi (2013) by incorporating the local feature of the RD design.7

The implementation and asymptotic validity of our test neither restricts the support ofY
nor presumes continuity of the running variable’s density at the cut-off. See Appendix D
of the Online Supplemental Material for regularity conditions and the asymptotic valid-
ity of our test.

Consider a class of instrument functions G indexed by � ∈ L:

G = {
g�(·) = 1{· ∈ C�} : �≡ (

y, y ′) ∈ L
}

, where

C� = [
y, y ′] ∩Y ,

L = {(
y, y ′) : −∞ ≤ y ≤ y ′ ≤ ∞}

.

6See Zafar (2011), and Stinebrickner and Stinebrickner (2014) for empirical evidence on how college stu-
dents form and revise their beliefs on own academic outcomes for their majored and nonmajored subjects
and how this relates to their subsequent switch of majors.

7Other approaches and recent advances of the inference of conditional moment inequalities include
Chernozhukov, Lee, and Rosen (2013), Armstrong and Chan (2016), and Chetverikov (2018). The methods
proposed in these works are free from the infinitesimal uniformity factor η in Algorithm 1. Formal inves-
tigation of their applicability to the current regression discontinuity context is beyond the scope of this
paper.
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G consists of indicator functions of closed and connected intervals on Y . Expressing the
inequalities (2) and (3) by

νP ,1(�) ≡ lim
r↑r0

EP

[
g�(Y )D|R= r] − lim

r↓r0
EP

[
g�(Y )D|R= r] ≤ 0,

νP ,0(�) ≡ lim
r↓r0

EP

[
g�(Y )(1 −D)|R= r] − lim

r↑r0
EP

[
g�(Y )(1 −D)|R= r] ≤ 0,

(4)

for all � ∈ L, we set up the null and alternative hypotheses as

H0 : νP ,1(�) ≤ 0 and νP ,0(�) ≤ 0 for all � ∈ L,

H1 :H0 does not hold.
(5)

Noting that H0 is equivalent to supd∈{0,1},�∈Lωd(�)νP ,d(�) ≤ 0 for a positive weight
function ωd(�) > 0, we construct our test statistic by plugging in estimators of νP ,d(�)
weighted by the inverse of its standard error estimate.

We construct ν̂d(�), an estimator for νP ,d(�), as the difference of the two local linear
regressions estimated from below and above the cut-off. We do not vary the bandwidths
over � ∈ L, but we allow them to vary across the cut-offs; let h+ = c+h and h− = c−h be
the bandwidths above and below the cut-off, respectively. We assume that their conver-
gence rates with respect to the sample size n are common, as specified by h, for example,
h= n−1/4.5. The difference between h+ and h− can be captured by possibly distinct con-
stants c+ and c−.

Let σP ,d(�) be the asymptotic standard deviation of
√
nh(ν̂d(�) − νP ,d(�)) and σ̂d(�)

be a uniformly consistent estimator for σP ,d(�). See Algorithm 1, below, for its construc-
tion. To ensure uniform convergence of the variance weighted processes, we weigh ν̂d(�)
by a trimmed version of the standard error estimators, σ̂d,ξ(�) = max{ξ, σ̂d(�)}, where
ξ > 0 is a trimming constant chosen by the user. See the explanation following Algorithm
1 for the choice of ξ in our simulation study. We then define a Kolmogorov–Smirnov (KS)
type test statistic,

Ŝn = sup
d∈{0,1}, �∈L

√
nh · ν̂d(�)
σ̂d,ξ(�)

. (6)

A large value of Ŝn is statistical evidence against the null hypothesis. The cardinality of
L is infinite if Y is continuously distributed, while with our construction of ν̂d(�) and
σ̂d,ξ(�) shown in Appendix A, we can coarsen L to the class of intervals spanned by the
observed values of Y in the sample,

L̂ ≡ {
[Yi, Yj ] : Yi ≤ Yj , i, j ∈ {1, � � � , n}

}
, (7)

without changing the value of the test statistic. In the Monte Carlo studies of Section 4
and the empirical applications of Section 5, we standardize and rescale the range of Y to
the unit interval (by applying a transformation through the cdf of the standard normal
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distribution �(·)),8 and employ the following coarsening of the class of intervals:

Lcoarse = {
(y, y + c) : c−1 = q, and q · y ∈ {

0, 1, 2, � � � , (q− 1)
}

for q= 1, 2, � � � ,Q
}

. (8)

As done in Hansen (1996), and Barrett and Donald (2003) in different contexts, we
obtain asymptotically valid critical values by approximating the null distribution of the
statistic using multiplier bootstrap. Algorithm 1, below, summarizes the implementation
of our test. Theorems D.1–D.3 in Appendix D of the Online Supplemental Material show
that the proposed test controls size at pre-specified significant levels uniformly, rejects
fixed alternatives with probability approaching one, and has good power against a class
of local alternatives.

Algorithm 1 (Implementation).

i. Specify a finite class of intervals L∗. For instance, L∗ = L̂ of (7), or a coarsened
version with the standardized outcome, L∗ = Lcoarse of (8) with a choice of finite
integerQ (e.g.,Q= 15).

ii. For each � ∈ L∗, let m̂1,+(�) and m̂1,−(�) be local linear estimators for
limr↓r0 EP[g�(Y )D|R= r] and limr↑r0 EP[g�(Y )D|R= r], respectively. Similarly, let
m̂0,+(�) and m̂0,−(�) be local linear estimators for limr↓r0 EP[g�(Y )(1 −D)|R= r]
and limr↑r0 EP[g�(Y )(1 −D)|R= r], respectively. See equation (11) in Appendix A
for their closed-form expressions. Obtain ν̂1(�) and ν̂0(�) as follows:

ν̂1(�) = m̂1,−(�) − m̂1,+(�), ν̂0(�) = m̂0,+(�) − m̂0,−(�). (9)

iii. For each � ∈ L∗, calculate sample analogs of the influence functions

φ̂ν1,i(�) = √
nh

(
w−
n,i ·

(
g�(Yi )Di − m̂1,−(�)

) −w+
n,i ·

(
g�(Yi )Di − m̂1,+(�)

))
,

φ̂ν0,i(�) = √
nh

(
w+
n,i ·

(
g�(Yi )(1 −Di ) − m̂0,+(�)

)
−w−

n,i ·
(
g�(Yi )(1 −Di ) − m̂0,−(�)

))
,

where the definitions of the weighting terms {(w+
n,i, w

−
n,i ) : i = 1, � � � , n} are given

in Appendix A. We then estimate the asymptotic standard deviation σP ,d(�) by

σ̂d(�) =
√∑n

i=1 φ̂
2
νd ,i(�) and obtain the trimmed estimators as σ̂d,ξ(�) = max{ξ,

σ̂d(�)}. See the explanation after Algorithm 1 for more details on the trimming
constant.

iv. Calculate the test statistic Ŝn = Ŝn = supd∈{0,1}, �∈L∗
√
nh·ν̂d(�)
σ̂d,ξ(�) .

v. Let an and Bn be sequences of nonnegative numbers. For d = 0, 1, and � ∈ L, de-
fine ψn,d(�) as

ψn,d(�) = −Bn · 1
{√

nh · ν̂d(�)
σ̂d,ξ(�)

<−an
}

. (10)

8Since the null hypothesis and the test statistic are invariant to strictly monotonic transformations of Y ,
this standardization does not affect the theoretical guarantee and the empirical results of our test.
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Following Andrews and Shi (2013, 2014), we use an = √
0.3 ln(n) and Bn =√

0.4 ln(n)
ln ln(n) .

vi. Draw U1,U2, � � �Un as i.i.d. standard normal random variables that are indepen-
dent of the original sample. Compute the bootstrapped processes, �̂ν1 (�) and
�̂ν0 (�), defined as

�̂ν1 (�) =
n∑
i=1

Ui · φ̂ν1,i(�), �̂ν0 (�) =
n∑
i=1

Ui · φ̂ν0,i(�).

vii. Iterate Step (vi) B̄ times (B̄ is a large integer) and denote the realizations of the
bootstrapped processes by (�̂bν1

(·), �̂bν0
(·) : b= 1, � � � , B̄). Let q̂(τ) be the τth em-

pirical quantile of { sup
d∈{0,1}, �∈L∗

{
�̂bνd

(�)

σ̂d,ξ(�) + ψn,d(�)} : b = 1, � � � , B̄}. For significance

level α < 1/2, obtain a critical value ĉη(α) of the test by ĉη(α) = q̂(1 − α+η) +η,
where η> 0 is an arbitrarily small positive number, for example, 10−6.9

viii. RejectH0 if Ŝn > ĉη(α).

Following the existing papers in the moment inequality literature, Step (vii) in Algo-
rithm 1 uses the generalized moment selection (GMS) proposed by Andrews and Soares
(2010), and Andrews and Shi (2013). It is similar to the recentering method of Hansen
(2005), and Donald and Hsu (2016), and the contact set approach of Linton, Song, and
Whang (2010).

Regarding the bandwidths for the local linear estimators in step (ii), our informal
recommendation is to have the bandwidth of m̂d,+(�), d = 1, 0, common for all � ∈ L∗
and the bandwidth of m̂d,−(�), d = 1, 0, common for all � ∈ L∗. We denote the two band-
widths by h+ and h−, respectively, and allow h+ �= h−. There is merit to using the band-
widths that are recommended for point estimation of the LATE at the cut-off, such as
the bandwidths suggested in Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and
Titiunik (2014), and Arai and Ichimura (2016). This is because the FRD-Wald estimator
is numerically equal to the difference of the means between the following distribution
function estimates for compliers:

F̂Y1(r0 )|C,R=r0 (y ) = m̂1,+
(
(−∞, y )

) − m̂1,−
(
(−∞, y )

)
π̂+ − π̂− ,

F̂Y0(r0 )|C,R=r0 (y ) = m̂0,−
(
(−∞, y )

) − m̂0,+
(
(−∞, y )

)
π̂+ − π̂− ,

where m̂1,+((−∞, y )) and m̂0,+((−∞, y )) use h+, m̂1,−((−∞, y )) and m̂0,−((−∞, y ))
use h−, and π̂+ and π̂− are the local linear estimators for limr↓r0 P(D = 1|R = r ) and
limr↑r0 P(D = 1|R = r ) with bandwidths h+ and h−, respectively. Accordingly, reusing

9This η constant is called an infinitesimal uniformity factor and is introduced by Andrews and Shi (2013)
to avoid the problems that arise due to the presence of the infinite-dimensional nuisance parameters
νP ,1(�) and νP ,0(�).
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these bandwidths to compute our test statistic, we assess nonnegativity of the compli-
ers’ potential outcome densities based on the same in-sample information as that which
the point estimate for the compliers’ causal effect relies on.10

The trimming of σ̂d,ξ(�) in step (iii) ensures not to divide by a number close to zero
and is necessary for σ̂−1

d,ξ(�) to be a uniformly consistent estimator for σ−1
P ,d(�). See An-

drews and Shi (2013) for related discussion. Choosing the trimming constant too large
can affect local power, although it does not affect size control. In the simulations, we set
ξ = √

a(1 − a), where a = 0.0001. We also use a ∈ {0.001, 0.03, 0.5}. The results are in-
sensitive to the choice of a. These tuning parameters are motivated by the observation
that the denominator of the asymptotic variance takes the form of p�(1 − p� ), where
p� = limr→r0 P(Y ∈ C�,D= d|R= r ).

4. Simulation

This section investigates the finite sample performance of the proposed test by Monte
Carlo experiments. We consider six data generating processes (DGPs) including two
DGPs, Size1-Size2, for examining the size properties and four DGPs, Power1-Power4,
for examining the power properties of the test. For all DGPs, we set the cut-off point at
r0 = 0.

4.1 Size properties

Size1 Let R∼N(0, 1) truncated at −2 and 2. The propensity score P(D= 1|R= r ) =
0.5 for all r. Y |(D = 1, R = r ) ∼N(1, 1) for all r and Y |(D = 0, R = r ) ∼N(0, 1) for
all r.

Size2 Same as Size1 except that

P(D= 1|R= r ) = 1{−2 ≤ r < 0}
(r + 2)2

8
+ 1{0 ≤ r ≤ 2}

(
1 − (r − 2)2

8

)
.

In both DGPs, the propensity scores are continuous at the cut-off (i.e., Assumption 3
does not hold). Combined with FRD-validity (Assumptions 1 and 2), the distributions of
the observables are also continuous at the cut-off, implying that these DGPs correspond
to least favorable nulls in the context of our test. Size1 has a constant propensity score,
while in Size2, the left- and right-derivatives of the propensity scores differ at the cut-off.

For each DGP, we generate random samples of four sizes: 1000, 2000, 4000, and 8000
observations. We specify L∗ = Lcoarse withQ= 15.11 For each simulation design, we con-
duct 1000 repetitions with B̄ = 300 bootstrap iterations. We consider three data-driven
choices of bandwidths: Imbens and Kalyanaraman (2012, IK), Calonico, Cattaneo, and

10Alternatively, we may want to choose bandwidths so as to optimize a power criterion. We leave power-
optimizing choices of bandwidth for future research. Algorithm 1 provides some default choices for other
tuning parameters, ξ, an, and Bn, without claiming that these choices are optimal. According to our Monte
Carlo studies and empirical applications considered in Sections 4 and 5, the test results are not sensitive to
mild departures from the default choices.

11We note that our test exhibits similar results whenQ is greater than 10.
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Table 1. Rejection frequency at the 5% level.

US MSE-RBC CER-RBC

DGP n AI IK CCT AI IK CCT AI IK CCT

Size 1 1000 0.060 0.02 0.019 0.037 0.016 0.017 0.055 0.025 0.024
2000 0.071 0.025 0.034 0.058 0.018 0.022 0.076 0.022 0.024
4000 0.078 0.038 0.035 0.067 0.049 0.022 0.086 0.043 0.035
8000 0.065 0.045 0.033 0.066 0.051 0.037 0.057 0.045 0.036

Size 2 1000 0.063 0.014 0.012 0.039 0.008 0.015 0.067 0.015 0.014
2000 0.064 0.035 0.031 0.051 0.033 0.021 0.060 0.032 0.024
4000 0.064 0.041 0.038 0.077 0.040 0.037 0.060 0.042 0.039
8000 0.060 0.039 0.036 0.065 0.042 0.040 0.057 0.044 0.035

Titiunik (2014, CCT), and Arai and Ichimura (2016, AI). For each bandwidth, we impose
undersmoothing by multiplying n

1
5 − 1

c and the bandwidth, choosing c = 4.5.12 In addi-
tion, we also consider the MSE-optimal robust bias correction (MSE-RBC) implemen-
tation (see Calonico, Cattaneo, and Farrell (2018)) and the coverage error rate-optimal
(CER-RBC) implementation (see Calonico, Cattaneo, and Farrell (2020)). For the MSE-
RBC bandwidth, we implement the test by estimating the conditional means via local
quadratic regression using a bandwidth that is MSE-optimal for local linear regression
(AI, IK, or CCT), see Calonico, Cattaneo, and Titiunik (2014, Remark 7). For the CER-RBC
bandwidth, we multiply a MSE-optimal bandwidth (AI, IK, or CCT) by the rule-of-thumb
adjustment factor proposed in Calonico, Cattaneo, and Farrell (2020, Section 4).

Table 1 summarizes the results at the 5% nominal level. For the full set of results at
other significance levels, see Tables F.1 to F.3 in Appendix F of the Online Supplemental
Material. The results show that the proposed test controls size well for each of the speci-
fied designs and the various bandwidth choices. Although our test statistic (which takes
the supremum over a class of intervals) is different from those considered in Calonico,
Cattaneo, and Farrell (2020), and Calonico, Cattaneo, and Farrell (2020), the CER-RBC
and MSE-RBC implementations work well.

4.2 Power properties

To investigate the power properties, we consider the following four DGPs, Power1-
Power4, in which the conditional distribution of Y1 violates the local continuity con-
dition in different ways.13

Power1 Let R∼N(0, 1) truncated at −2 and 2. The propensity score is given by

P(D= 1|R= r ) = 1{−2 ≤ r < 0} max
{

0, (r + 2)2/8 − 0.01
}

+ 1{0 ≤ r ≤ 2} min
{

1, 1 − (r − 2)2/8 + 0.01
}

12We run simulations for other choices of the under-smoothing constant c ∈ [3, 5); the results are similar.
13Appendix F of the Online Supplemental Material provide examples where violation of the local mono-

tonicity assumption or the local continuity assumption results in distributions of observables similar to
those for Power1.
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Figure 1. Potential outcome densities at the cut-off.

Let Y |(D= 0, R= r ) ∼N(0, 1) for all r ∈ [−2, 2], and Y |(D= 1, R= r ) ∼N(0, 1) for
all r ∈ [0, 2]. Let Y |(D= 1, R= r ) ∼N(−0.7, 1) for all r ∈ [−2, 0).

Power2 Same as Power1 except thatY |(D= 1, R= r ) ∼N(0, 1.6752 ) for all r ∈ [−2, 0).

Power3 Same as Power1 except thatY |(D= 1, R= r ) ∼N(0, 0.5152 ) for all r ∈ [−2, 0).

Power4 Same as Power1 except that Y |(D = 1, R = r ) ∼ ∑5
j=1ωjN(μj , 0.1252 ) for all

r ∈ [−2, 0), where ω= (0.15, 0.2, 0.3, 0.2, 0.15) and μ= (−1, −0.5, 0, 0.5, 1).

Figure 1 plots the potential outcome density at the cut-off for each of Power1-
Power4, in which the testable implication of Theorem 1(i) is violated since the solid
curves and the dashed curves intersect. Table 2 reports simulation results for the power
properties of our test at the 5% level. Additional results are collected in Tables F.4 to F.6 in
Appendix F. Overall, our test has good power in detecting deviations from the null under
all choices of bandwidth. It is harder for our test to reject in Power4. From Figure 1, we
see that the violation of the null in Power4 occurs abruptly with many peaks over narrow
intervals, whereas in the other designs (e.g., Power1 and Power2) mild violation occurs
over relatively wide intervals. This phenomenon is consistent with what has been noted
in the literature: the Bierens (1982), and Andrews and Shi (2013) type methods that we
adopt in this paper are efficient in detecting the second type of violations.14

As the magnitude of the propensity score jump π+ −π− becomes smaller, we expect
that the inequalities of (2) and (3) become closer to binding. For instance, in the extreme
case of π+ − π− = 0, for a distribution satisfying the testable implication, inequalities
(2) and (3) must hold with equality, that is, the conditional distribution of (Y ,D)|R is
continuous at the cut-off. This means a joint distribution of potential outcomes and
selection type violating FRD-validity is more likely to violate the testable implications
as the magnitude of the jump in the propensity score becomes smaller. In the opposite

14See Chernozhukov, Lee, and Rosen (2013, footnote 10) for related discussion.
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Table 2. Rejection frequency at the 5% level.

US MSE-RBC CER-RBC

DGP n AI IK CCT AI IK CCT AI IK CCT

Power1 1000 0.215 0.174 0.111 0.103 0.081 0.050 0.225 0.143 0.090
2000 0.439 0.403 0.256 0.221 0.207 0.115 0.439 0.316 0.205
4000 0.753 0.744 0.604 0.476 0.459 0.305 0.749 0.629 0.486
8000 0.962 0.975 0.907 0.812 0.820 0.654 0.964 0.935 0.831

Power2 1000 0.122 0.061 0.052 0.086 0.023 0.022 0.133 0.046 0.045
2000 0.271 0.194 0.140 0.135 0.099 0.052 0.266 0.156 0.097
4000 0.554 0.511 0.342 0.293 0.246 0.142 0.560 0.399 0.248
8000 0.885 0.888 0.732 0.624 0.622 0.391 0.889 0.793 0.598

Power3 1000 0.164 0.123 0.078 0.106 0.063 0.027 0.159 0.107 0.061
2000 0.299 0.257 0.170 0.174 0.154 0.079 0.306 0.209 0.128
4000 0.573 0.510 0.383 0.361 0.289 0.183 0.581 0.421 0.321
8000 0.883 0.870 0.734 0.694 0.640 0.466 0.888 0.781 0.640

Power4 1000 0.099 0.050 0.024 0.057 0.024 0.017 0.101 0.036 0.027
2000 0.172 0.123 0.060 0.118 0.060 0.042 0.175 0.092 0.074
4000 0.264 0.268 0.144 0.181 0.144 0.079 0.265 0.201 0.138
8000 0.550 0.540 0.326 0.341 0.326 0.201 0.545 0.438 0.283

direction, the testable implication of Theorem 1 loses screening power when the FRD
design is close to a sharp design.

We illustrate this point by modifying the propensity score of Power1 to

P(D= 1|R= r ) = 1{−2 ≤ r < 0} max
{

0, (r + 2)2/8 − d}
+ 1{0 ≤ r ≤ 2} min

{
1, 1 − (r − 2)2/8 + d}.

Here, 2d measures the jump size of the propensity score and d = 0.01 corresponds to
the results of Power1. In addition to the specification Y |(D= 1, R= r ) ∼N(−0.7, 1) for
r ∈ [−2, 0), we consider two additional specifications, Y |(D = 1, R= r ) ∼N(−1, 1) and
Y |(D = 1, R = r ) ∼ N(−1.5, 1) for r ∈ [−2, 0), which lead to larger deviations from the
null.

Figure 2 plots the rejection frequency as a function of π+ − π− = 2d for each of the
alternative distributions at the 5% level for a sample size of 8000 observations.15 At each
specification of Y |(D= 1, R= r ) for r ∈ [−2, 0), we see that the rejection frequency de-
creases as the jump size increases. As the jump size approaches one (the sharp design),
the rejection frequency falls to zero because inequalities (2) and (3) are never violated in
the sharp design. On the other hand, for a given jump size, a larger deviation from local
continuity leads to a larger rejection frequency, as expected.

15Here, we only report the results based on the under-smoothed IK bandwidth. Other choices produce
similar results.
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Figure 2. Power and propensity jump size.

5. Applications

To illustrate that implementing our test can provide new insights for empirical practice,
we assess FRD-validity in the designs studied in Angrist and Lavy (1999, AL hereafter),
and Miller, Pinto, and Vera-Hernández (2013, MPV hereafter).

5.1 Effect of class size on student performance

Israel has been implementing Maimonides’ rule in public schools since 1969. The rule
limits a class size to 40 students and so creates discontinuous changes in the average
class size as the total enrollment exceeds multiples of 40 students. For example, a public
school with 40 enrolled students in a grade can maintain one class, with a (average)
class size of 40 students; another public school with 41 enrolled students has to offer
two classes, and so the average class size drops discontinuously from 40 students to 20.5
students. Maimonides’ rule offers an example of FRD design since some schools in the
data do not comply with the treatment assignment rule.16

Recent empirical evidence suggests that the density of the running variable (enroll-
ment) is discontinuous near some cut-offs (Otsu, Xu, and Matsushita (2013), and Angrist
et al. (2019)). Along with the argument of Lee (2008), and McCrary (2008), this evidence
raises concerns about FRD-validity, but cannot be interpreted as direct evidence to re-
fute local continuity or local monotonicity.

16We define the treatment as whether the school “splits” (D = 1) or does “not split” (D = 0) a cohort
with an enrollment around the cut-off into smaller classes. Focusing on grade 4, with bandwidth equal to
3 and the cut-off at 80 students as an example, we first restrict the sample to classes if their schools’ grade
4 enrollment is R ∈ {78, 79, 80} ∪ {81, 82, 83} students. Then we assign D = 1 to a class if its school has
“three classes” and assign D= 0 to a class if its school has “two classes.” In the data, there are schools that
have an enrollment within {78, 79, 80} ∪ {81, 82, 83} students but that have either one or more than three
classes. They are very rare (about 0.2% of the total observations), and we exclude these observations from
our analysis.
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Figure 3. Histograms for enrollments by schools: Panel A of Figure 6 in Angrist et al. (2019).

Who manipulates class size?

As argued in AL, parents may selectively exploit Maimonides’ rule by either (a) register-
ing their children into schools with enrollments slightly above multiples of 40 students,
hoping that their children will be placed in smaller classes, or (b) withdrawing children
from those public schools with enrollments slightly below multiples of 40 students. In
either case, we expect to observe discontinuities of the density of the running variable
at the cut-offs, as we can observe most notably at the enrollment count of 40 students in
Figure 3. Class size manipulation by parents can be a serious threat to the local continu-
ity assumption if those parents who act according to (a) also more highly value a small
class-size education, and are more concerned with their children’s education. If children
with such parents perform better than their peers, the potential outcome distributions
of the students’ test scores violate local continuity.

On the other hand, AL defend FRD-validity by arguing that manipulation of class size
by parents is not likely. Concerning the possibility of (a), AL claim that: “there is no way
[for the parents] to know [exactly] whether a predicted enrollment of 41 [students] will not
decline to 38 [students] by the time school starts, obviating the need for two small classes.”
With respect to the possibility of (b), private elementary schooling is rare in Israel and
withdrawing their children is not a feasible option for most parents. Angrist et al. (2019)
reinvestigated Maimonides’ rule and argued that the manipulation is operated mainly
on the school board side, stating that: “A recent memo from Israeli Ministry of Education
(MOE) officials to school leaders admonishes headmasters against attempts to increase
staffing ratios through enrollment manipulation. In particular, schools are warned not
to move students between grades or to enroll those who are overseas so as to produce an
additional class.” This type of manipulation can lead to a density jump like that ob-
served in Figure 3, but is not necessarily a serious threat to FRD-validity depending on
the school board’s incentives to manipulate. If the main motivation of manipulation is
to increase their budget (an increasing function of the number of classes), as argued in
Angrist et al. (2019), and if the distributions of the students’ potential outcomes in those
schools where boards manipulate enrollment are the same as those in schools where
boards do not manipulate, any manipulation around the cut-off is independent of the
students’ unobserved talents. Then FRD-validity can hold even when the density of the
running variable is discontinuous at the cut-offs.
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Table 3. Testing results for Israeli school data: p-values, ξ= 0.00999.

3 5 AI IK CCT MSE-RBC CER-RBC

g4math
Cut-off 40 0.986 0.934 0.767 0.978 0.968 0.964 0.975
Cut-off 80 0.909 0.865 0.715 0.944 0.888 0.771 0.957
Cut-off 120 0.443 0.702 0.665 0.604 0.568 0.613 0.639

g4verb
Cut-off 40 0.928 0.627 0.465 0.648 0.529 0.564 0.463
Cut-off 80 0.911 0.883 0.185 0.906 0.720 0.284 0.842
Cut-off 120 0.935 0.683 0.474 0.730 0.186 0.228 0.143

g5math
Cut-off 40 0.876 0.282 0.488 0.631 0.609 0.901 0.265
Cut-off 80 0.516 0.446 0.930 0.482 0.765 0.808 0.726
Cut-off 120 0.939 0.827 0.626 0.883 0.838 0.842 0.772

g5verb
Cut-off 40 0.594 0.893 0.953 0.906 0.938 0.955 0.962
Cut-off 80 0.510 0.692 0.504 0.525 0.929 0.953 0.973
Cut-off 120 0.696 0.811 0.601 0.699 0.781 0.739 0.745

Test results

The testable implication assessed by our test focuses on the joint distribution of the
observed outcomes and treatment status, in contrast to the density continuity approach
that focuses only on the marginal distribution of the running variable. Hence, our test
can provide new empirical evidence that can contribute to the dispute about the FRD-
validity of Maimonides’ rule, reviewed above.

We apply the test proposed in Section 3 for each of the four outcome variables (grade
4 math and verbal test scores, and grade 5 math and verbal test scores) by treating the
three cut-offs of 40, 80, and 120 students, separately. We consider the bandwidths (h+ =
h− = 3 and h+ = h− = 5) used in AL, as well as the three data-driven bandwidth choices
(AI, IK and CCT).17 We also report p-values using the RBC bandwidth choices based
on CCT with MSE-Optimal and CER-Optimal criteria, respectively. We set the trimming
constant to ξ= 0.00999, as described in Algorithm 1 of Section 3.18

Table 3 displays the p-values of the tests. For all the cases considered, we do not
reject the null hypothesis at a 10% significance level. The results are robust to the choice
of bandwidths and the choice of trimming constants (see Tables G.2 to G.4 in Appendix G
of the Online Supplemental Material). Despite the fact that the density of the running
variable appears to be discontinuous at the cut-off, “no rejection” by our test suggests
empirical support for the argument of “manipulation by the school board”—the type of
manipulation that is relatively innocuous for AL’s identification strategy. As discussed
in Section 4.2 and illustrated in Figure 2, it is, however, important to acknowledge that

17See Table G.11 in Appendix G of the Online Supplemental Material for the obtained bandwidths and
the number of observations therein.

18We try different choices for the trimming constant ξ ∈ {0.0316, 0.1706, 0.5} and obtain similar results.
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the statistical power of our test might be limited by the large jumps in the propensity
score that occur in this application, ranging from 0.3 to 0.7 (see Table G.1 in the Online
Supplemental Material).

5.2 Colombia’s subsidized regime

MPV study the impact of “Colombia’s Régimen Subsidiado (SR),” a publicly financed
insurance program targeted at poor households, on financial risk protection, service
use, and health outcomes. SR subsidizes eligible Colombians to purchase insurance
from private and government-approved insurers. Program eligibility is determined by
a threshold rule based on a continuous index called Sistema de Identificacion de Bene-
ficiarios (SISBEN) ranging from 0 to 100 (with 0 being the most impoverished, and those
below a cut-off being eligible). SISBEN is constructed by a proxy means-test using four-
teen different measurements of a household’s well-being. It is, however, well known that
the original SISBEN index used to assign the actual program eligibility was manipulated
by either households or the administering authority (see MPV and the references therein
for details). To circumvent this issue of manipulation, MPV simulate their own SISBEN
index for each household using a collection of survey data from independent sources.
MPV then estimate a cut-off of the simulated SISBEN scores in each region by maximiz-
ing the performance of in-sample prediction for the actual program take-up. Using these
estimated cut-offs, MPV estimate the compliers’ effects of SR on 33 outcome variables
in four categories: (i) risk protection, consumption smoothing, and portfolio choice, (ii)
medical care use, (iii) health status, and (iv) behavior distortions; see Table G.5 of the
Supplemental Material and Table 1 of MPV for details.

Although the density of the simulated SISBEN score passes the continuity test (see
MPV’s online Appendix C), it does not necessarily imply FRD-validity, for example, the
conditional distributions of the potential outcomes given the simulated SISBEN score
may not be continuous at the cut-off.

For each of the 33 outcome variables, we implement our test using MPV’s simulated
SISBEN score as the running variable and the actual program enrollment as the treat-
ment status. We consider the three bandwidths (h+ = h− = 2, 3, and 4) used in MPV as
well as the three data-driven bandwidth choices (AI, IK, and CCT).19 We use the same
set of trimming constants ξ as in the AL application and find that the results are insensi-
tive to a choice of ξ. We find robust evidence to reject the testable implications of FRD-
validity for the following three outcome variables: “household education spending,” “to-
tal spending on food,” and “total monthly expenditure.” Their p-values are reported in
Table 4 (results for all other outcome variables and other choices of ξ are collected in
Tables G.5–G.8 in Appendix G of the Online Supplemental Material).

A few remarks are in order. First, the three outcome variables giving the robust re-
jections all belong to the first category: “risk protection, consumption smoothing, and
portfolio choice.” For other outcome variables, we do not find evidence against FRD-
validity. The low p-values for these three outcomes remain significant even when we

19See Table G.12 in Appendix G of the Online Supplemental Material for the obtained bandwidths and
the number of observations contained therein.
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Table 4. Testing results for Columbia’s SR data: p-values (ξ= 0.00999).

MPV Bandwidths Other Bandwidth Choices

Outcome variables 2 3 4 AI IK CCT MSE RBC CER RBC

Household education spending 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total spending on food 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total monthly expenditure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

take into account multiple-testing of a group of outcome variables with familywise er-
ror rate (FWER) control.20

Second, it is possible to figure out which observations cause the rejection of FRD-
validity. Take the choice of L∗ = Lcoarse with Q = 15 and bandwidth h+ = h− = 2, and
focus on the outcome variable “total spending on food” as an example. The supremum
in the test statistic is achieved at d = 0 and [y, y ′] = [0.5948, 0.6527]. Figure 4 draws the
kernel smoothed (pseudo) densities of the normalized outcome variable, where the blue
curve should be underneath the red curve under FRD-validity. The two density curves in
the top-right panel indeed cross in this interval. The histograms and Table 5 show that
there are 45 observations with D = 0, R ∈ (r0 − 2, r0 ) and Y ∈ [0.5948, 0.6527], which
are about 6.73% of all observations with R ∈ (r0 − 2, r0 ) and D = 0. On the other hand,
there are 31 observations with D = 0, R ∈ [r0, r0 + 2) and Y ∈ [0.5948, 0.6527], which is
about 2.06% of all observations with R ∈ [r0, r0 + 2) andD= 0. See Figures G.1, G.2, and
Tables G.13, G.14 in the Online Supplemental Material for similar analysis on the other
two outcome variables in Table 4.

Third, we also condition on each of the six regions in Colombia when implementing
the test. The results are collected in Table G.9 in the Online Supplemental Material. We
obtain strong rejections in the “Atlantica,” “Oriental,” “Central,” and “Bogota” regions,
and no rejection in “Pacifico” and “Territorios Nacionales.” Taking into account the rel-
ative sample sizes across the regions (Table G.10 of the Online Supplemental Material),
the Bogota sample seems to drive the test results of Table 4. Notice that the magnitude
of the propensity score jump for the Bogota sample is relatively small compared with
the samples in the regions giving no-rejections (see Figure 5). This observation is in line
with Figure 2 and the discussion of Section 4.

There are several possible reasons why FRD-validity fails in this application. First,
violation of local continuity may arise as a byproduct of estimating the cut-off using the
simulated SISBEN score. For instance, if there is some household characteristic that is
not included in the construction of the simulated SISBEN score but has strong predictive
power for program enrollment, the estimated cut-off may pick up a value of the simu-
lated SISBEN score across which the distribution of the excluded characteristic differs
most. If the distribution of household consumption variables depend on such an ex-
cluded characteristic, the result is a violation of local continuity. Second, there could be

20The results shown in Table G.5 of Appendix G of the Online Supplemental Material imply that, for the
first category of 10 outcome variables, the multiple testing procedure of Holm (1979) concludes that the
joint null hypothesis of FRD-validity holding for the 10 outcomes is rejected for the control of FWER at 1%.
With all the outcomes (33 hypotheses), the joint null hypothesis is rejected for the control of FWER at 5%.
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Figure 4. Estimated complier’s outcome density: Total spending on food.

other unobserved programs using the same SISBEN index with similar cut-offs. If such

programs significantly affect a household’s budget, we can expect the distribution of

potential household consumption to be quite different on each of the two sides of the

cut-off, again leading to a violation of local continuity.21

Table 5. Obs. in the maximizer interval (h+ = h− = 2): total spending on food.

# of observations

Subsample of All {0.5948 ≤ Y ≤ 0.6527} Ratio

{0 ≤R< h+} ∩ {D= 0} (N ∪ C) 1502 31 2.06%
{h− <R< 0} ∩ {D= 0} (N) 669 45 6.73%

21MPV suggest that the second channel is less likely to be the cause of rejection of FRD-validity for the
relevant three outcome variables. See Table 2 in MPV for evidence that the enrollment rates for other pro-
grams do not change across the estimated cut-offs.



Quantitative Economics 13 (2022) Testing identifying assumptions in FRD 23

Figure 5. Enrollment probability by regions (from MPV Figure 2).

6. Conclusion

In this paper, we propose a specification test for the key identifying conditions in fuzzy
regression design. We characterize the set of sharp testable implications for FRD-validity
and propose an asymptotically valid test for it. Our approach makes use of not only the
information conveyed by the running variable but also that conveyed by the outcome
and treatment status. As illustrated in our empirical applications, our specification test
provides empirical evidence for or against FRD-validity, which is overlooked if only the
continuity of the running variable’s density at the cut-off is assessed.

Appendix A: Calculating the test statistics

We describe how to compute the proposed test statistic. LetmP ,d(�, r ) = EP[g�(Y )Dd(1−
D)1−d|R = r] and mP ,d,+(�) = limr↓r0 mP ,d(�, r ) and mP ,d,−(�) = limr↑r0 mP ,d(�, r ) for
d = 1, 0, then we can estimate νP ,1(�) and νP ,0(�), respectively by equation (9), which
we restate below:

ν̂1(�) = m̂1,−(�) − m̂1,+(�),

ν̂0(�) = m̂0,+(�) − m̂0,−(�),

where the right-hand side terms m̂d,�(�), for d = 1, 0 and �= +, −, are local linear esti-
mators. They can be constructed by the intercept estimates âd,+(�) and âd,−(�) in the
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local regressions,

(
âd,+(�), b̂d,+(�)

)
= argmin

a,b

1
nh+

n∑
i=1

1{Ri ≥ r0} ·K
(
Ri − r0
h+

)[
g�(Yi )D

d
i (1 −Di )1−d − a− b ·

(
Ri − r0
h+

)]2

,

(
âd,−(�), b̂d,−(�)

)
= argmin

a,b

1
nh−

n∑
i=1

1{Ri < r0} ·K
(
Ri − r0
h−

)[
g�(Yi )D

d
i (1 −Di )1−d − a− b ·

(
Ri − r0
h−

)]2

,

where K(·) is a kernel function and (h+, h− ) are the bandwidths specified above and
below the cut-off, respectively. In particular, we express h+ = c+h and h− = c−h, with
(c+, c− ) being positive constants and h being a sequence converging to zero as n→ ∞.
For simplicity of analysis and implementation, we specify the bandwidths h+ and h− to
be the same over {g� : � ∈ L}.

We can write the local linear estimators in the following form: for d = 1, 0 and � =
+, −

m̂d,�(�) =
n∑
i=1

w�n,i · g�(Yi )Ddi (1 −Di )1−d , (11)

where the weights are defined as
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1
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)[
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+
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1
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1
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·
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(
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−
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and for j = 0, 1, 2,

ϑ̂+
j = 1
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)(
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)j
,

ϑ̂−
j = 1
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)(
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