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Robust inference in deconvolution
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Kotlarski’s identity has been widely used in applied economic research based on
repeated-measurement or panel models with latent variables. However, how to
conduct inference for these models has been an open question for two decades.
This paper addresses this open problem by constructing a novel confidence band
for the density function of a latent variable in repeated measurement error model.
The confidence band builds on our finding that we can rewrite Kotlarski’s identity
as a system of linear moment restrictions. Our approach is robust in that we do
not require the completeness. The confidence band controls the asymptotic size
uniformly over a class of data generating processes, and it is consistent against all
fixed alternatives. Simulation studies support our theoretical results.

Keyworbps. Deconvolution, measurement error, robust inference, uniform confi-
dence band.
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1. INTRODUCTION

Empirical researchers are often interested in recovering features of unobserved variables
in economic models. With an availability of repeated measurements or panel data, Kot-
larski’s identity (Kotlarski (1967), see also Rao (1992)) is one of the most popular tools
used to identify probability density functions of unobserved latent variables in additive-
error models. Examples of research topics that use Kotlarski’s identity include, but are
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not limited to, empirical auctions (e.g., Li, Perrigne, and Vuong (2000), Krasnokutskaya
(2011)), education and labor economics (e.g., Carneiro, Hansen, and Heckman (2003),
Cunha, Heckman, and Navarro (2005), Cunha, Heckman, and Schennach (2010), Arcidi-
acono, Aucejo, Fang, and Spenner (2011), Bonhomme and Sauder (2011), Kennan and
Walker (2011), Taber and Vejlin (2020)), and earnings dynamics (e.g., Bonhomme and
Robin (2010), Botosaru and Sasaki (2018), Hu, Moffitt, and Sasaki (2019)). In these appli-
cations, researchers are interested in identifying the probability density function fx of a
latent variable X among others. The variable X of interest is not observed in data, but
two measurements (Y7, Y>) are available in data with classical errors, U; = Y7 — X and
U, =Y, — X. Kotlarski’s identity is a nonparametric closed-form identifying restriction
for the probability density function fx of X implied by this setup.

The existing econometric literature on Kotlarski’s identity focuses on identification
and consistent estimation of fx and related objects (e.g., Li and Vuong (1998), Li (2002),
Schennach (2004a, 2004b), Schennach (2008), Bonhomme and Robin (2010), Evdoki-
mov (2010), Zinde-Walsh (2014), Song, Schennach, and White (2015), Firpo, Galvao, and
Song (2017)); also see surveys on this literature by Chen, Hong, and Nekipelov (2011)
and Schennach (2016). On the other hand, satisfactory inference methods for fx are
missing in this literature—in fact, even the sharp rate of convergence is unknown for the
estimators based on Kotlarski’s identity under unrestrictive assumptions,' and hence a
limit distribution result is unavailable under such assumptions. Indeed some empiri-
cal papers implement nonparametric bootstrap without a theoretical guarantee. Other
empirical papers, including many of those listed above, often consider parametric esti-
mation and parametric inference given the ill-posedness of the deconvolution problem
as well as the lack of available inference methods. In light of the current unavailabil-
ity of theoretically supported methods of inference, we propose a method of inference
for fx. Furthermore, we propose a method of inference that is robust against possible
identification failure.

This paper develops a confidence band for fx. Our construction of confidence bands
works as follows. First, we derive linear complex-valued moment restrictions by modi-
fying the proof of Kotlarski’s identity (Kotlarski (1967)); see also Rao (1992). Second, we
let the Hermite orthogonal sieve (cf. Chen (2007)) approximate unknown probability
density functions. Third, for a given sieve dimension and for a given class of probability
density functions, we compute a bias bound for the linear complex-valued moment re-
strictions, and slack the linear complex-valued moment restrictions by this bias bound.
Fourth, applying Chernozhukov, Chetverikov, and Kato (2019), we compute the supre-
mum of the self-normalized process of the slacked linear complex-valued moment re-
strictions as the test statistic for each point in a set of sieve coefficients. Fifth, inverting
this test statistic in the spirit of Anderson and Rubin (1949) yields a confidence set of
sieve approximations to possible probability density functions. Sixth, for a given sieve

1By the unrestrictive assumptions, we specifically mean assumptions that do not impose either known
error distribution or symmetric error distribution. Under such settings, the existing convergence rates are
not shown to be sharp to the best of our knowledge. A recent paper by Kurisu and Otsu (2019) obtains im-
proved convergence rates compared with those of Li and Vuong (1998) and Bonhomme and Robin (2010),
although they are not shown to be sharp either.
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dimension and for a given class for probability density functions, we compute a bias
bound for sieve approximations of probability density functions, and the desired confi-
dence band is obtained by uniformly enlarging the set of sieve approximations by this
bias bound.

The process of identifying fx in additive measurement error models is called decon-
volution—for solving convolution integral equations. There are a number of existing pa-
pers on nonparametric inference in deconvolution. Bissantz, Diimbgen, Holzmann, and
Munk (2007), Bissantz and Holzmann (2008), van Es and Gugushvili (2008), Lounici and
Nickl (2011), and Schmidt-Hieber, Munk, and Diimbgen (2013) developed uniform con-
fidence bands for fy under the assumption of known error distributions.? In most eco-
nomic applications, however, it is not plausible to assume that the error distributions are
known. More recently, Kato and Sasaki (2018) and Adusumilli, Kurisu, Otsu, and Whang
(2020) developed uniform confidence bands for fx and the distribution function, re-
spectively, without assuming that the error distributions are known, but they both as-
sume that at least one error distribution is symmetric.? Kotlarski’s identity is a power-
ful device for new identification results which require neither the known error distribu-
tion assumption nor the symmetric error distribution assumption. This useful feature
attracts many economic applications including those listed above, but no econometri-
cian has developed a method of inference in this framework for 20 years ever since its
first introduction by Li and Vuong (1998) until our present paper.

It is not surprising that such an inference method has been missing for long in the
literature, given the technical difficulties of the problem. Deconvolution is an ill-posed
inverse problem, and inference under this problem is known to be challenging; see Bis-
santz et al. (2007), Bissantz and Holzmann (2008), Lounici and Nickl (2011), Horowitz
and Lee (2012), Hall and Horowitz (2013), Schmidt-Hieber, Munk, and Diimbgen (2013),
Chen and Christensen (2018), Kato and Sasaki (2018), Babii (2019), Kato and Sasaki
(2019), Adusumilli et al. (2020) for existing papers developing confidence bands in ill-
posed inverse problems for example. We take a robust inference approach ala Anderson
and Rubin (1949), and directly work with the moment restrictions based on Kotlarski’s
identity. A positive side product of taking this approach is that we do not need to assume
the nonvanishing characteristic functions (i.e., we do not need the completeness), which
is commonly assumed for nonparametric identification or inversion.

It is also worth mentioning that we chose to use the Hermite orthogonal sieve among
other sieves in this paper. The Hermite orthogonal sieve has been in fact already known
in the literature to be useful to approximate “smooth density with unbounded support”
(Chen (2007)); also see her discussion of Gallant and Nychka (1987) therein. In addition
to this known advantage, we also find this sieve particularly useful for the deconvolu-
tion problem. Note that the deconvolution problem involves applications of the Fourier

2These papers are based on the literature on deconvolution under known error distribution (e.g., Car-
roll and Hall (1988), Stefanski and Carroll (1990), Fan (1991b), Carrasco and Florens (2011)). Fan (1991a)
develops a pointwise asymptotic inference result in this framework.

3These papers are based on the literature on deconvolution under unknown error distribution with auxil-
iary data or symmetric error distributions (e.g., Diggle and Hall (1993), Horowitz and Markatou (1996), Neu-
mann and Hossjer (1997), Efromovich (1997), Delaigle, Hall, and Meister (2008), Johannes (2009), Comte
and Lacour (2011), Delaigle and Hall (2015)).



112 Kato, Sasaki, and Ura Quantitative Economics 12 (2021)

transform operation and the inverse Fourier transform operation. To our convenience,
the Hermite functions are eigenfunctions of the Fourier transform operator. While we
deal with simultaneous restrictions in terms of density and characteristic functions, we
can use the Hermite orthogonal sieve to approximate both the density and characteristic
functions without having to apply the Fourier transform or the Fourier inverse because
of the eigenfunction property. This convenient property saves computational time and
resources as costly numerical integration within each iteration of a numerical optimiza-
tion routine would be necessary if any other sieve were used.

The rest of the paper is organized as follows. Section 2 derives linear complex-
valued moment restrictions based on Kotlarski’s identity. Section 3 presents how to con-
struct the confidence band for fx based on the Hermite orthogonal basis. Section 4
presents asymptotic properties of the confidence band. Section 5 applies our proposed
method to wildcat auctions, in which we investigate the distribution of the ex post val-
ues, exp(X), of the mineral rights. Section 6 illustrates simulation studies. The paper
concludes in Section 7. All mathematical derivations and details are collected in the Ap-
pendix.

2. LINEAR COMPLEX-VALUED MOMENT RESTRICTIONS

Consider the repeated measurement model

{YIZX'i‘U]’ 1)

Yo=X+ U,

where Y; and Y, are observed, but none of X, Uy, or U, is observed. We are interested in
making inference on the probability density function fx of X. We equip this model with
the following assumption.

ASSUMPTION 1.
(i) X, Uy, and U, are continuous random variables with finite first moments.

(ii) Uy has mean zero, and X, Uy, and U, are mutually independent.

This assumption is standard in the literature on identification and estimation based
on Kotlarski’s identity (e.g., Li and Vuong (1998)). In fact, the existing literature imposes
an additional assumption, namely the identification condition (nonvanishing charac-
teristic function or the completeness); see Lemma 1 ahead for a specific condition. We
do not invoke such an identification assumption for the purpose of identification-robust
inference; see Remark 1 ahead for further details. Note also that this assumption (or any
additional assumption that we make ahead) does not require a large support for either
X, Uy, or U,. This point reassures the identification-robustness.

We now fix basic notation. In what follows, Ep and Vp denote the expectation and
variance operators, respectively, with respect to a joint distribution P of (Y1, Y3). Analo-
gously, E, and V,, denote the expectation and variance operators, respectively, with re-
spect the empirical distribution of # independent copies of (Y7, Y>). We let i = «/—1 de-
note the imaginary unit. For the set of absolutely integrable functions, £!, we define the
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Fourier transform F on £! by [Ffl(t) = [ fooo exp(itx)f(x)dx, and its inverse transform is
[(Flpl(x) = % ffooo exp(—itx)(t)dt; see Folland (2007). In light of Assumption 1(i), we
let fx, fu,, and fy, denote the density functions of X, Uj, and U,, respectively. Fur-
ther, we denote the characteristic functions of them by ¢x = Ffx, ¢y, = Ffy,, and
¢u, = F fu,. We first review the existing result of the identification.

Lemma 1 (Kotlarski’s Identity). For every joint distribution P of (Y1, Y,) satisfying As-
sumption 1 for (1) and Ep[exp(itY,)] # 0 for all t € R, we have

t i]EP[Y] CXp(iTYz)] >
= dr). 2
ox( eXp</0 Ep[exp(itY2)] T ®

This lemma presents Kotlarski’s identity due to Kotlarski (1967); see also Rao (1992).
Since it is stated as alemma, Kotlarski’s identity is also known as Kotlarski’s lemma or the
lemma of Kotlarski in the econometrics literature. Li and Vuong (1998) first introduced it
into econometrics and statistics, followed by a series of extensions (Li (2002), Schennach
(2004a), Bonhomme and Robin (2010), Evdokimov (2010)). Some of these extensions re-
lax the assumptions for identification and estimation in various ways. We do not need to
rely on the prototypical assumptions for our purpose of inference, even though they are
stated in Lemma 1 for convenience of a concise review. Lemma 1 shows that the charac-
teristic function ¢ y of X is explicitly identified by the joint distribution of (Y7, Y3). Un-
der the additional assumption of absolutely integrable characteristic function ¢ x, the
formula fy = F~ ¢y in turn yields the identification of the probability density function
fX of X.

Uniform convergence rates for the estimator of fy based on Kotlarski’s identity are
discovered in the existing literature (Li and Vuong (1998), Li (2002), Schennach (2004a),
Bonhomme and Robin (2010), Evdokimov (2010)), but the sharp rates under unrestric-
tive assumptions are still unknown; see footnote 1. In particular, limit distribution re-
sults under such assumptions are still unknown in the existing literature. This paper
does not aim to derive a nondegenerate limit distribution for any estimator, but it aims
to conduct an inference on fy. With this said, our proposed inference approach does
not rely on an explicit identifying formula. We argue that rewriting Kotlarski’s identity in
terms of moment restrictions suffices and serves even more conveniently for the sake
of conducting inference. Here are the moment restrictions obtained from rewriting Kot-
larski’s identity.

THEOREM 1 (Linear Complex-Valued Moment Restrictions). For every joint distribution
P of (Y1, Y») satisfying Assumption 1 for (1),

Ep[(iY1dx (1) — ¢ (1)) exp(itY2)] =0 3)

holds for every real t.

A proof is provided in Appendix A.1.
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ReMARK 1. Taking a few more steps beyond the claim in Theorem 1 will lead us to
the identification result of Lemma 1 under the additional assumption of the invert-
ibility or nonvanishing characteristic functions (also known as the completeness); see
D’Haultfoeuille (2011).4 Specifically, under the completeness, (3) has the unique solu-
tion equal to (2). For the purpose of inference, however, it is not essential to solve the
inverse problem, and thus we stop short of obtaining the explicit formula (2), and only
use the moment condition (3). This idea is analogous to that of Santos (2011, 2012),
where robust inference for functional parameters is conducted without assuming the
completeness. Since the assumption of completeness is not testable in general (Canay,
Santos, and Shaikh (2013)), we propose the robust inference approach based on (3) in-
stead of (2).

REMARK 2. Inaddition to ¢ x, Kotlarski’s identity also identities ¢, and ¢y, by ¢y, /b x
and ¢v,/¢x, respectively. Analogously, we may augment the moment restriction (3)
in Theorem 1 with Ep[exp(itY1) — ¢x(H)¢py,(1)] = 0 to partially identify (bx, dy,)
jointly, and similarly, we may augment the moment restriction (3) in Theorem 1 with
Eplexp(itY2) — ¢ x (1) by, (t)] = 0 to partially identify (¢ x, ¢y,) jointly. These augmented
moment restrictions can be obtained without strengthening Assumption 1.

ReEMARK 3. For the rest of the paper, we focus on the moment restriction in (3). This
moment restriction is an implication from Assumption 1 for (1) and it holds for the true
characteristic function ¢ x of X. It is worth noting that this characterization may not be
sharp, that is, there could be other moment restrictions implied by Assumption 1.

3. CONFIDENCE BAND WITH THE HERMITE ORTHOGONAL BASIS

In this section, we introduce a confidence band for fx using the Hermite function basis.”
We consider a prespecified significance level « € (0, 1/2) throughout.

3.1 The Hermite orthonormal basis

We recommend the Hermite orthonormal basis in particular for its convenient proper-
ties and its nice compatibility with the deconvolution framework—a Hermite function
is an eigenfunction of the Fourier transform and the Fourier inverse.® The Hermite func-
tions take the form

Yi(x) = -exp(—x?/2) - Hj(x) 4)

1
V2T

4Evdokimov and White (2012) provided a relaxed assumption for the identification.

5We remark that our confidence band can be constructed using a different basis as well. For example, if
we know that fx has a bounded support, it is preferred to use a basis with a bounded support. For general
discussions on sieve basis, see Chen (2007).

6The Hermite orthonormal sieve is not location invariant, and hence we recommend to location and
scale normalize the observed data using the empirical moments.
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forj=0,1,..., where H; is the Hermite polynomial defined by

. d’
Hj(x) = (=1 - exp(x?) - — exp(—x?).
dx’
As emphasized earlier, the Hermite functions are the eigenfunctions of the Fourier trans-
form operator, and specifically, ¢; = Fi; = i/ /2w holds.

3.2 Basis expansion and approximation for the density function

Provided that fx belongs to the £? space, we have the basis expansion

]

fx =Y (fx,¥j)- v

j=0

with the Hermite functions {¢;}, where (-,-) denotes the inner product defined by
{fi, fr) = fR fi(x)f2(x) dx (cf. Blanchard and Bruening (2002), Theorem 16.3.1). Instead
of using all of the terms, we focus on the first (g + 1) terms. In other words, we use

q
(fx>¥)) - ¥,
-0

J

to approximate fy. We hereafter use 6 = (6, ..., Hq)T for a generic value for the un-
known parameter vector ((fx, #;):j=0,1,..., ¢)T. For any g € N, we consider the set
of sieve coefficients given by

@Il — HOERW 1165 SSUP|‘/fj(x)’}' ©)
xeR

In order to approximate fy well by finite terms from the Hermite orthonormal basis,
we impose the following restrictions on fy.

AssuMPTION 2. fx belongs to a known set, L, of probability density function f’s with
feL?and Ff e L' satisfying |(f, ¢j)| < j=> forevery j>q+ 1.

We impose f € £ to approximate £ by the Hermite orthonormal basis, whereas we
impose Ff e £! for applying the inverse Fourier transform. For the last part of the as-
sumption, we restrict the coefficient behavior for the Hermite basis expansion of the
density function fx. With this condition, we can bound the error from approximating
the functions, ¢ x and QS()}), which appear in the moment condition (3). This condi-
tion implies the differentiability of the density fx and, therefore, it excludes nondif-
ferentiable density functions such as the uniform distribution and the triangular dis-
tribution. When we can take a sufficiently large value of ¢, a sufficient condition for
(fx, ¥l < j73,Vj > g + 1 is that the function x* fy (x) and the first xth derivatives of
fx (t) are bounded and integrable for some integer k > 7.7

"Boyd (1984, p. 385) shows j*/2|(fx, ¥;)] = O(1) as j — oo. Since we can bound O(1) by j*~/2 for suffi-
ciently large j, we have |(f, ;)| < j=3 for every sufficiently large ;.
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3.3 Inequality constraints for ((fx, ;) :j=0,1,...,q)

The moment restrictions of the form (3) impose equality restrictions. With this said,
the finite-dimensional sieve approximation by @4+! entails a truncation bias. This bias
causes the equality restrictions into inequality restrictions with slackness by a uniform
bias bound that can be determined by the restriction in Assumption 2. In this section, we
present the resultant inequality restrictions and propose concrete choices of the slack-
ness parameters.

To construct a confidence set for ((fx, ;) : j=0,1,...,q), we are going to derive
the two types of inequality constraints about @, which are true when 0 = ((fx, ¢;) : j =
0,1,...,q)T. The first type derives from the moment restrictions (3) in Theorem 1, and
the second derives from natural restrictions on any density function.

First, using the moment restrictions of the form (3) in Theorem 1, we obtain the
moment inequality constraints of the form

q q
-84 < RE(EP[(iYI Z(fx, i) - j(t) — Z(fx, i) - ¢;~1)(t)) CXP(isz)iD <84, (6)

j=0 j=0

q q
—8g < Im(lEpKiY] D Ufxa W) i) =Y (fx ) - ¢>§-”(t>) exp(irm]) <84, (7)

j=0 j=0

where Re(-) (resp., Im(-)) denotes the real (resp., imaginary) part of a complex number.
Here, 8, is the uniform approximation bound for the truncation bias, and is defined in
(14) ahead. These inequalities are formally derived in Appendix A.2 as Lemma 2. Note
that there are 4L inequalities in total if we use L grid points #, ..., t;, of frequencies to
evaluate the moment restrictions—2L inequalities for the real part and 2L inequalities
for the imaginary part. We can choose #1, ..., f;, such that they are equally distributed in
the interval [-A~!, h~1] selected according to Appendix B.2.

To economize our writings for (6) and (7), we introduce additional notation. For ev-
ery function ¢ € £ and for every frequency ¢ € R, define

Ry, :(y1,y2)
= —cos(ty2) (y1Im(e (1)) +Re(¢p V(1)) — sin(ty2) (nRe(d (1)) — Im(¢ V(1)) (8)

and
Ly, (y1, y2)
= cos(ty2) (yiRe(¢ (1)) +Im (¢ (1)) — sin(ry2) (nIm(¢ (1)) —Re(¢ P (1)), (9
where ¢ = Fi. Further, stack these functions across ¢ € {, ..., 4} to in turn define

the random vector
T
Rl = (Rl/JQ,t(Yla YZ)’ s Rl//q,[(Yla YZ)) and (10)

T
Il:(Il[l(),l(YlaYZ)""all/}q,[(Yl7Y2)) . (11)
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With these notation, we now represent (6) and (7), respectively, by
[Ep[R 17 ((fx, ) :j=0,1,...,9)" | <8, and
(BRI, 1T ((fxs )= 0,1, q) 7| < 3.
Second, since Z}’io(fX’ ¥j) - [Yi(x)dx = [ fx(x)dx =1and Z,Qio(fXa i) Pi(x) =

fx(x) > 0 hold as natural restrictions on any density function, we obtain the additional
inequality constraints of the form

q
<mg and ) (fx.¢p) i) =z-ng (12

j=0

G )) '/w,(x)dx— 1

q
j=0

Here, 0, denotes the uniform approximation bound for the truncation bias, and is de-
fined in (13) ahead. The inequalities are formally derived in Appendix A.2 as Lemma 2.

With the coefficient conditions in Assumption 2, we can derive known
approximation-error bounds, n, and 8,4, used in (7)-(12), according to the following
rule:

xe

nqzmax{ Z j_3su£|l/fj(x)

Y j_3/|1/;j(x)|dx}, (13)
1

J=q+1 j=a+
oo
8=Y_ i (Ep[IY1l]sup|¢;(t)] +sup| i (1)]). a4
j=q+1 teR teR

where ¢; = Fy j.B The idea to obtain the approximation-error bounds from restrictions
on the function space (Assumption 2) is similar to those of in the preceding papers by
Armstrong and Kolesar (2020) and Schennach (2020).

The following lemma summarizes and formalizes the statements we made in this
subsection.

LEMMA 2. Under Assumptions 1 and 2, we have

T
‘(f«/:(x)dx) 0—1|<ng, (15)
inf ()"0 > —ng, (16)
|Ep(R,170] < 8, (17)
|EpI,17 0| < & (18)

when 0 = ((fx, ;) :j=0,1,...,q)7, where ¢s(x) = (Yo (x), ..., ¥q(x)T, and m, and 5,
are defined in equations (13)—(14).

8Note that Ep[|Y]|] needs to be estimated. For simplicity, we assume that Ep[|Y7|] is a known constant
when we define §,.
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A proofis provided in Appendix A.2.

We can also show that, under some conditions on g and #, ..., {7, the constraints in
Lemma 2 approximately characterize the moment condition (3). The following lemma
provides a mathematical statement of this approximation in a large sample.

LEMMA 3. Suppose that t;’s are equally distributed over [—h~ L, h‘l]for some positive in-
teger h. Consider a probability density function f € L which does not satisfy the moment
condition (3) for some t € [-h~!, h~']. When q and Lh are sufficiently large,

l_nllameax{\Ep[R,l]Toy, |EpI,17 0|} > 8.
where @ = ({f, ¢j) : j=0,1,..., T and 84 is defined in equation (14).
A proof is provided in Appendix A.3.

3.4 Confidence region for ((fx,¢;):j=0,1,...,q)

In light of the inequality conditions (17) and (18) involving the population moments, we
construct a test statistic and a critical value based on their sample counterparts.® We
define our test statistic by

{ [E.[R,)70| -8, [Enll,1" 6] -5,

T(0) = /n max max ,
! \/ 0"V,(R,)0 \/ 0"V, (1,)0

<I<L

for each 0 € @971, We define the critical value c(e, 0) of this statistic 7(0) by the condi-
tional (1 — «)-th quantile of the multiplier bootstrap statistic

+/n max max{ |En[€(th - En[Rtl])]T0| iE”[e(IU _ En[ltl])]T0| }
1<i<L OTVn(Rt,)O 0TVn(It1)0

9The underlying idea of our test statistic and critical value is to discretize the continuum of moment
conditions (3) into a set of finite but many moment inequalities on the sieve coefficients 0, and to calibrate
critical values by the multiplier bootstrap for the maximum statistic as in Chernozhukov, Chetverikov, and
Kato (2019). A natural question would be whether we could directly use the continuum of the moment con-
ditions (3) without discretization, similarly to, for example, Andrews and Shi (2013, 2017). One difficulty,
however, is that the moment functions corresponding to the moment condition (3) at given fx, that is,
{1, y2) = Rpy iV, ¥2), Ipy (31, 2) « £ € R}, is not likely to be Donsker, in view of the fact that, for example,
the function class {y; — cos(ty,) : t € R} is non-Donsker as soon as Y, has a density (which is the case under
our assumption), so that the “manageability” condition in Andrews and Shi (2013, 2017) would not be satis-
fied in our case. Indeed, the preceding function class is not Glivenko—Cantelli from the Riemann-Lebesgue
lemma and discreteness of the empirical distribution; see Feuerverger and Mureika (1977) for details. An-
other potential approach would be to apply the method of continuum of moment conditions developed in
Carrasco and Florens (2000). Their analysis relies on point-identification of the parameter of interest and,
more importantly, focuses on a finite dimensional parameter of interest (so the convergence rate of their
estimator is the parametric rate), so that their approach is not directly applicable to our problem.
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given the data, where €1, ..., €, are independent standard normal random variables in-
dependent of the data. As a more conservative yet simpler alternative following Cher-
nozhukov, Chetverikov, and Kato (2019, equation (19)), we may also employ the critical
value defined by

P! (1—a/(4L))
1— @ (1—a/(4L))/n

cla) =

where ® is the cumulative distribution function of the standard normal distribution.
We can construct the confidence region for ((fx, ¢;): j=0,1,..., q) as the set of @’s
satisfying the three conditions

q
Zej.f¢j(x)dx—1

j=0

T(0) =c(a, 0),

q
<my and igﬂgz 0 ¥j(x) = —mnq.
X ]=0
We denote this set by C((ry,y):j=0.1.....q)(@)-

3.5 Confidence band for fx

Given the confidence region for ({fx,¥;) : j = 0,1,...,q) provided by
C((fx,wj):j=0,1,...,q) (a), we can in turn construct a confidence band for fx by

q
FO =)0 ¢(x)

j=0

Ch(a) = {f € L:sup < gy for some 0 € C((fx,wj);jzg,l,m,q)(a)}. (19)
xeR

The following algorithm describes a concrete practical procedure for constructing this
confidence band.!?
ArcoriTHM 1. 1. For each x € R, compute
fE(x)= min ¥(x)70 subjectto T(0) <c(a, ),
0cOI+1

z/;(x)T() >—n4 forallx eR,

10We denote by diag(1,0, —1,0...) the diagonal matrix whose (j + 1)th diagonal element is i/ - 1{; is even)}
forevery j=0,1,..., q. Namely, the main diagonal of diag(1,0, —1,0...) repeats 1,0, —1, 0. The constraint
|2 (0)T diag(1,0,-1,0...)0 — 1| < 14 follows from combining

q
Zej~/¢,(x)dx—1
j=0

=MNgq

and

~2myj(0)  if the remainder from dividing j by 4 is 0,
0 if the remainder from dividing j by 4 is 1,
Juiwan={" — . eI
—~27yj(0) if the remainder from dividing j by 4 is 2,
0 if the remainder from dividing j by 4 is 3.

The calculations of f ;(x) dx use the fact that ¢;’s are the Hermite functions.
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|V2mp(0)T diag(1,0,—1,0...)0 — 1| < n,.

2. For each x € R, compute

fY(x)= max (x)’@ subjectto T(0) <c(a,0),

0c@it!

$(x)'0>—n, forallxeR,
|V2mgp(0)T diag(1,0,—1,0...)0 — 1| < n,.

3. The confidence band is set to [fX(x) — ng, fY(x) + nq4l, x € 1.

3.6 Discussion on sieve dimension q

The sieve dimension g can be chosen by adapting a bandwidth selection method sug-
gested in Bissantz et al. (2007) in density deconvolution with known error distribu-
tion; similar bandwidth selection rules are also used in Kato and Sasaki (2018) and
Adusumilli et al. (2020) in the deconvolution literature. Given g, choose tolerance lev-
els n, and 6, depending on ¢, and then construct the upper and lower functions
fUx) = qu(x) and fL(x) = qu(x) according to Algorithm 1. Then use the midpoint
fq(x) = {fé](x) + f[f(x)}/2 as a surrogate of a point estimate of f(x). Realizing that
a sieve dimension corresponds to the reciprocal of a bandwidth, we suggest the fol-
lowing rule to choose g. Construct a candidate set for g as {¢min, - - - » gmax}, and com-
pute the L°°-distance between the density estimates with adjacent sieve dimensions,
d;ix;irl = Sup,c/ | fg+1(x) — fy(x)]. Then we choose the smallest ¢ such that d{(;”zzrl is larger

than p - d;ﬁ,qmm 4y for sor?e)p > 1 (or alternatively we can choose the largest g such that
o8]

(c0)
d, .1 issmallerthan p-dg o g 1

information on how d;Ole behaves as g decreases when determining the sieve dimen-
sion.

). In practice, it is recommended to make use of visual

4. PROPERTIES OF THE CONFIDENCE BAND

In this section, we present theoretical properties of the confidence band (19) with » i.i.d.
observations of (Y7, Y;). Let P denote a given space to which the joint distribution of
(Y1, Y») belongs. For every P € P, define the identified set

Lo(P)y={feLl:p=FfandEp[(iY1(1)— d)(l)(t)) exp(itY;)] =0 for every t e R} (20)

as the set of density functions for which the linear complex-valued moment restriction
(3) is satisfied.

4.1 Size control

We make the following assumption for a uniform size control.
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ASSUMPTION 3. (i) ]EP[le] < oo for all P € P. (ii) There are constants 0 < c; < 1/2 and
C1 > 0 such that

(M3 ,5(0.P)v M2, (8, P)V BL (0, P))’log”%(4Ln) < Cyn'/>-1
forall P e P and 6 € O+, where

(R, —Ep[R,])" 6

VOTVr(R,)O

My, 4.x(0, P) = max maX{IEp[
’ 1<I<L

kT/k,lEpH (1, —Epl1,])" 0

ki|1/k}
VO Vp(L,)0

and

(R, —Ep[R,]) 0"

VOTVh(R,)O

REMARK 4. When IEP[Y]4 ] < 0o, Assumption 3(ii) holds if

b

(I, —Epl1,]) 0 * }1/4

VOTVe(1,)0

Bp,4(0,P)= ]Ep[ max max{

1<I<L

(g+1)/ %niTnT]min{eigmin(Vp(R,)),eigmin(Vp(It))} =0(n'/%"1P1og""/%(4Ln)). (21)
tel—1,

A derivation of this condition is in Appendix A.7. Equation (21) restricts how fast g and T
can increase to infinity.!’ On the other hand, equation (21) does not restrict the choice
of L in the sense that, as long as L grows at a polynomial rate of r, the term log="/%(4Ln)
is negligible on the right-hand side.

The following theorem states the uniform size control by our proposed inference
method.

THEOREM 2 (Size Control). Suppose that Assumptions 2 and 3 hold. Then there exist pos-
itive constants c and C depending only on ¢y and C; such that

inf inf Pp(feCu(a))>=1—a—Cn "
PeP feLly(P)

4.2 Power

We introduce the following shorthand notation for the random variable defined as the
maximum deviation of the sample variance from the population variance:

By = sup max max{0” (V,(R,) — Vp(Ry))0, 07 (V,(I,) — Vp(1,))0}.
oqu-H,nq(f) I=1,...,.L

The following theorem shows a power property of our proposed inference method.
1 oosely speaking, the term (g + 1)/ min;c(_7,7) min{eig;, (Vr(Ry)), €igi, (Vp (1))} is increasing in ¢

and T. When q increases, the numerator increases and the minimum eigenvalues of the (¢ + 1) square
matrices, Vp(R;) and Vp(I;), can be smaller. Moreover, when T increases, the denominator decreases.
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THEOREM 3 (Power). Define
By1.n, (/) = {0 €07 :sup|Fx) — )" 6] < .
xel
Forevery P € P,every f € L, everyv > 0, and everyb € (0, 1), ifthereis t, € {t,, ..., 11} such
that at least one of the following statements holds:

Ep[R;, 170 — & GnlR,170
> pR;,] a Z%‘EP[ sup |GnlR,,] |}

\/,_Z L R
OEBq-%—lmq (f) OTVP(Rt*)o +v GEBq+1,77q ) GTV,,(R;*)G

++/2log(4L) + /2log(1/a), (22)
—EpR.1T0-5, 1 GalR,1"0
i -, rlR:, ] a5 - ‘EP|: sup M}
0€Bq+1,nq(f) BTVP(Rt* Y0 + v OEBq+1,T)q ) OTQIn(Rtjk )0
+/2log(4L) + v/2log(1/a), (23)
Bl 170 — 5 1 Gull. 176
N if plls,] (I = ‘EP|: sup M]
ﬂqu_,_l,—,,q ) OTVP(It* Y0 + v OEBq+1,nq ) GTVn(It* )0
+V/2log(4L) + /2log(1/a), (24)
. Tg_ .17
Vi 0 1 ,EP[ up M]
Bqu_,_l,»,,q(f) OTVP(Iz* Y0 + v OEBq+1,nq ) GTVn(It* )0
+/2log(4L) + /2log(1/a), (25)

where G,f = /n(E, — Ep)f denotes the empirical process evaluated at f, then
Pp(f ¢ Cu(a)) = Pp(By <v) —b.

A proofis provided in Appendix A.5. According to this theorem, for any density func-
tion f € £ such that at least one of the moment inequalities violated at some frequency
point ¢, in the grid {#, ..., 7}, then the probability that this density function does not
belong to the confidence band is bounded below by Pp(B), < v) —b. Choosing sequences
of v and b so that Pp(By <v) —b — 1 asn — oo, therefore, this theorem implies the con-
sistency against all fixed alternatives as formally stated in the corollary below. For the
following corollary, let ¢ and L depend on » such that ¢ — oo and L — oo as n — oo. Let

AP (1) = sup max{07Vp(R)0,07Vp(1,)0},

0€@q+1

nR T nI T
"5“)=maX{EP[ up AC R0 ],IEP[ sup M“.

00411 /0T, (R,)0 00411 10TV, (1,)0

For two sequences of positive numbers a, and b,, we write a, > b, if a,,/b, — co. The
next corollary states the consistency against all fixed alternatives.
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CoroL1rARY 1 (Consistency). Pick any P € P and f € L such that for some sequence t, =
l*(n) E {t]’ M lL})

Vo inf  max{|Ep[R, 170 — &, [Ep[l;,170 — 54|}

0By 1,m4(f)

> max{af(z*),/)\gax(t*), Jlog(1 +L)}.
ThenPp(f ¢ Cy()) — 1 provided that

sup  max max{0” (V,(R,) — Vp(R))0, 07 (V,(;) — Vp(1,))0} = op(A5 . (£2)).

00,1 I=1,...,

A proof is provided in Appendix A.6.

5. APPLICATION TO WILDCAT AUCTIONS

In this section, we present an empirical application of our proposed method to wildcat
auctions. The data set that we use is the Outer Continental Shelf (OCS) Auction Data.
This data set records bids for mineral rights on oil and gas on offshore lands off the coasts
of Texas and Louisiana in the gulf of Mexico. We refer interested readers to Hendricks,
Porter, and Boudreau (1987), for example, for details of this data set.

Among other types of sales, we focus on wildcat sales, that is, sales of rights for oil
and gas tracts whose geological or seismic characteristics are unknown to bidding firms.
The sales follows the first-price sealed-bid auction mechanism. In this mechanism, bid-
ding firms simultaneously submit sealed bids. The bidder with the highest bid pays the
price which they submitted to receive the right for the tract.

Prior to an auction, firms which are planning to participating in the auction can carry
out a seismic investigation to estimate the value of the rights. Results of these seismic
investigation provide firm 1 (resp., firm 2) with the ex ante value Y (resp., Y>) of the
mineral right in the logarithm of US dollars per acre. These ex ante values, Y7 and Y, are
two measurements of the ex post value X, also known as the common component, in the
logarithm of US dollars per acre, with ex ante assessment errors, U; and U,, respectively,
also known as the private components, in the logarithm of US dollars per acre.

In this setting, we obtain the system of repeated measurement error equations

Yi=X+Uy,
Yo=X+U,,

as is the case with the main equation (1) of our model framework. We assume that the ex
post value X and the two firms’ ex ante assessment errors, Uy and U,, are continuously
distributed and are mutually independent. Furthermore, we also assume the rational
expectations, thatis, E[U;] = 0. These conditions satisfy our Assumption 1.

Li, Perrigne, and Vuong (2000) applied the method of Li and Vuong (1998) to this
setup and this data set in order to estimate fx, but they do not conduct a statistical
inference. Krasnokutskaya (2011) similarly estimated the density function fx in a differ-
ent framework, and draws its confidence intervals via nonparametric bootstrap. They
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first recover firms’ ex ante values (Y7, Y>) from bid data through the method of Guerre,
Perrigne, and Vuong (2000) based on an equilibrium restriction (Bayesian Nash equi-
librium) for the first-price sealed-bid auction mechanism. Following their approach, we
also directly take these ex ante values (Y7, Y;) as the data to be used as an input for
our analysis, in light of the faster convergence rate of the preliminary estimation than
the convergence rate of the deconvolution estimation. The sample consists of 169 tracts
with 2 firms in each tract.

Applying our proposed method, we draw the 95% confidence band C,(0.05) for the
density function fx of the ex post values X on I = [4.16, 6.16] as follows. Following the
settings for our simulations to be presented in Section 6, we set L = 50 for the grid size of
frequencies, and ¢ = 2 such that the dimensionality of @ is 3.2 The frequency domain of
integration for the Fourier transform is set to be the interval [—h~1, h~1], where h = 0.289
is chosen based on the procedure outlined in Appendix B.2. In other words, we construct
R, asin (10) and I, as in (11) at each of the 50 equally spaced grid points ¢, ..., 50 from
—1/0.289 to 1/0.289. With these R;, and I, for 1, ..., t59, we construct the test statistic

T(0) = /n max max

1<i<L

{ |E[R,170| — 8, [Eall,170| -3, }
JOTV.RO 0TV, (1,0
where L = 50 and (14) yields the approximation bound &, = 0.139 for the current ap-

plication. Let ¢(0.05) denote the critical value obtained by setting « = 0.05, L = 50, and
n=169 in

O (1 —a/(4L))
1-® ' (1—a/(4L))/n

cla) =

Finally, using (13), we obtain the approximation error bound of n, = 0.048 for the density
function. With these settings, the lower bound of the confidence band C,,(¢ os) is f L(x)—
nq Where

fE(x)= min ¥(x)7@ subjectto T(0) < c(0.05)
0cOI+1
Y(x)'o> —ng forallx eR
|V2mgp(0)T diag(1,0,-1,0...)0 — 1| < g4
for all x € 1, and the upper bound of it is U (x) + n4 where
fY(x)= max (x)70 subjectto T(0) < c(a)
0cO9+!

Y(x)'0>—-n, forallxeR

12Given that our sample size in this section is small, we use a small value of the sieve dimension and
control the magnitude of the variance at the expense of the bias. In fact, the area of the light gray shade
representing the bias is already much smaller than that of the dark gray area representing the stochastic
part even with this small sieve dimension in Figure 1 to be discussed ahead.



Quantitative Economics 12 (2021) Robust inference in deconvolution 125

<
™~

15

10

05

0.0

1 1 1 1
45 5.0 55 6.0
X

FIGURE 1. 95% confidence band C,(0.05) of the density function fx of the ex post values X of
the mineral right in the logarithm of US dollars per acre. The dark gray shade represents the band
based on the stochastic part, and the light gray shade represents the uniform bias bound 7.

|V2m(0)T diag(1,0,—1,0...)0 — 1| < nq

for all x € 1.3 We numerically solve these constrained optimization problems via New-
ton’s method with the penalty factor of 1000 and the penalty exponent of 2 for the con-
straints. Note that the test statistic 7(0) in the constraint derives from objects in the
frequency domain, and evaluation of it in general would require a numerical integra-
tion for Fourier transform within each iteration of the numerical optimization routine.
We recommend to use the Hermite orthogonal sieve to substantially reduce this com-
putational burden. Since the Hermite functions are the eigenfunctions of the Fourier
transform and inverse operators, we only need to multiply by the eigenvalues, and thus
do not need to conduct a numerical integration within each iteration thanks to the Her-
mite orthogonal sieve. Figure 1 depicts the resultant confidence band C,(0.05).

Density functions per se are often of research interest in the auction literature (e.g.,
Li, Perrigne, and Vuong (2000), Krasnokutskaya (2011)). With this said, many parameters
of economic interest can be also obtained as functionals of the density function fx. We
next use C,(0.05) to obtain confidence intervals for parameters of economic interest as
functionals of the density function fx. Specifically, we are interested in the average ex
post values of the mineral rights in US dollars per acre. Note that X is the logarithm of
the pecuniary unit, and hence, parameters of more economic interest would be statis-
tics about exp(X). (If the average of X were the parameter of interest, one could simply
estimate its mean by E[X] = E[Y7] and obtain its confidence interval without relying on

138ee footnote 10 for the definition of diag(1,0, —1,0...).
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TABLE 1. 95% confidence intervals of the mean and quantiles of the ex post values of mineral
rights on oil and gas on offshore lands off the coasts of Texas and Louisiana in the Gulf of Mexico
in US dollars per square acre. The first column shows the 95% confidence interval for the mean.
The remaining five columns show the 95% confidence intervals for the 0.1-th, 0.3-th, 0.5-th, 0.7-
th, and 0.9-th quantiles.

Mean Quantiles
Elexp(X)] 7=0.1 7=03 7=0.5 7=0.7 =09
Upper bound 219 114 150 190 267 362
Lower bound 146 81 100 131 166 218

the deconvolution approach.) We obtain the 95% confidence interval for the average ex
post values, E[exp(X)], of mineral rights in US dollars per acre by

{/exp(x)f(x) dx|feC,1(0.05)}.

Similarly, we can obtain the 95% confidence interval for the 7th quantile of the ex post
values exp(X) of mineral rights in US dollars per acre by

{inf{exp(xﬂ /_;f(x/) dx' > 7}

Table 1 summarizes the 95% confidence interval for the mean E[exp(X)] and the
95% confidence interval for the quantile Qexp(x)(7) with 7 =0.1,0.3,0.5,0.7,0.9. The
95% confidence interval for the average ex post value E[exp(X )] in US dollars per acre is
[146, 219]. This is close to, but a little above the 95% confidence interval for the median,
which is [131, 190]. The 95% confidence intervals for the five quantile points highlight a
large variation of the ex post values of the mineral rights across tracts.

f eCn(0.0S)}.

6. SIMULATION STUDIES

In this section, we present and discuss finite-sample performance of the proposed
method by simulation studies. Simulation outcomes that we present include the size
under the null of the true distribution, the power under alternative distributions, and
the lengths of confidence bands. The lengths will be further decomposed into the bias
bound 74 and the remaining lengths due to the stochastic part.

6.1 Simulation setting

We employ three distribution families to generate the latent variable X—the normal
distribution, the skew normal distribution, and the ¢ distribution. We employ the skew
normal distribution and the ¢ distribution to see whether our method is effective for
asymmetric distributions and super-Gaussian tails, respectively. Specifically, we gener-
ate a random sample of (X, U;, U;) mutually independently according to the marginal
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laws:
Model 1: X ~ N (&, &), Uy\*N(O,(Tg/l), U2~N(0,a,2]2),
Model 2: X ~SN(&, &, &), U1~N(0,a%]1), U2~N(0,o§,2),
Model3: X ~t;, U ~N(0,07), Uy~N(0,07,).

Here, N (&1, f%) denotes the normal distribution with mean &; and variance fg, SN (&4,
&, &€3) denotes the skew normal distribution with location &1, scale &5, and shape &3, and
t¢, denotes the ¢ distribution with &4 degrees of freedom. The distribution parameters
for the latent variable X are set to (&1, &) = (0, 1) for Model 1, (&1, &, &€3) = (0,1, 1) for
Model 2, and &4 = 10 for Model 3. The choice of the normal error distribution, which is
an instance of supersmooth distributions, imposes a difficult case in deconvolution; see
Li and Vuong (1998). The error variance parameters are set to oy, = oy, = 0.5 in each
of the three models. We conduct experiments with three sample sizes n = 250, 500, and
1000, and run 2500 Monte Carlo iterations for each set of simulations.

In the simulation studies, we use g = 2. We have experimented with alternative sieve
dimensions g € {4, 6}, but the results are qualitatively similar. The number of frequency
grid points is set to L = 50. The interval on which the confidence band is formed is
set to [ = [E[X] — 2+/Var(X), E[X] + 2./Var(X)], where E[X] and Var(X) are the the-
oretical mean and the theoretical variance, respectively, of X under the relevant model.
Throughout, we use the critical value c(«, #) based on 1000 multiplier bootstrap itera-
tions. The level is set to « = 0.05 throughout.

6.2 Simulation results

Figure 2 (A) shows the simulated frequencies that the confidence band formed under
Model 1 covers alternative probability density functions for N (&1, §%) indexed by loca-
tion parameter values &; € [0.0, 1.0] while the scale parameter is fixed at the true value
&> =1.0. The coverage frequency under £; = 0.0 indicates (the complement of) the size,
whereas the coverage frequencies under ¢; € (0.0, 1.0] indicate (the complement of) the
power. Similarly, Figure 2 (B) shows the simulated frequencies that the confidence band
formed under Model 1 covers alternative probability density functions for N (&, gg) in-
dexed by scale parameter values &, € [1.0,2.0] while the location parameter is fixed at
the true value £; = 0.0. These results show the correct size and increasing power. The
size entails overcoverage, which is still consistent with our theory on size control. Al-
though we present these coverage and power results only for Model 1, we observe similar
qualitative patterns for Models 2 and 3.

We display instances of confidence bands in Figure 3. The gray shades indicate the
confidence bands including the bias bound and the stochastic parts together. The in-
ternal dark gray shades include only the stochastic parts. We also plot the true density
functions and Li-Vuong estimates (with the choice of tuning parameter according to Ap-
pendix B.2) as solid and dashed curves, respectively. While such instances of confidence
bands will not tell us any evidence on the statistical properties, they at least inform how
a confidence band may look in applications.
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(A) Coverage frequencies under location alternatives in Model 1
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(B) Coverage frequencies under scale alternatives in Model 1
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FiGure 2. The simulated frequencies that the confidence band formed under Model 1 covers
alternative probability density functions for N (¢, §§). Panel (A) runs across alternative location
parameter values &; € [0.0, 1.0] while the scale parameter is fixed at the true value &, = 1.0. Panel
(B) runs across alternative scale parameter values ¢&; € [1.0, 2.0] while the location parameter is
fixed at the true value &; = 0.0.

7. CONCLUSION

Since its introduction to econometrics by Li and Vuong (1998), Kotlarski’s identity (Kot-
larski (1967)) (see also Rao (1992)) has been widely used in empirical economics. Ex-
amples include applications to empirical auctions (e.g., Li, Perrigne, and Vuong (2000),
Krasnokutskaya (2011)), education and labor economics (e.g., Carneiro, Hansen, and
Heckman (2003), Cunha, Heckman, and Navarro (2005), Cunha, Heckman, and Schen-
nach (2010), Arcidiacono et al. (2011), Bonhomme and Sauder (2011), Kennan and
Walker (2011), Taber and Vejlin (2020)), and earnings dynamics (e.g., Bonhomme and
Robin (2010), Botosaru and Sasaki (2018), Hu, Moffitt, and Sasaki (2019)). Despite its
popular use in applications, a method of inference based on Kotlarski’s identity has long
been missing in the literature. After 20 years since Li and Vuong (1998), we now propose
a method of inference based on Kotlarski’s identity. Specifically, we develop confidence
bands for the probability density function fx of X in the repeated measurement model
where two measurements (Y7, Y,) of unobserved variable X are available in data with
additive independent errors, Uy =Y; — X and U, = Y, — X.

Our construction of confidence bands can be summarized as follows. First, we derive
linear complex-valued moment restrictions based on Kotlarski’s identity. Second, we
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FiGuRre 3. Instances of confidence bands. The gray shades indicate the confidence bands. The
internal dark gray shades indicate the stochastic parts of the confidence bands. The solid and
dashed curves indicate the true density functions and Li-Vuong estimates, respectively.

let the Hermite orthogonal sieve approximate unknown probability density functions.
Third, for a given sieve dimension and for a given class for probability density functions,
we compute a bias bound for the linear complex-valued moment restrictions, and slack
the linear complex-valued moment restrictions by this bias bound. Fourth, we compute
the uniform norm of the self-normalized process of the slacked linear complex-valued
moment restrictions as the test statistics for each point in a set of sieve coefficients. Fifth,
inverting this test statistic yields a confidence set of sieve approximations to possible
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probability density functions. Sixth, for a given sieve dimension and for a given class
for probability density functions, we compute a bias bound for sieve approximations of
probability density functions, and the desired confidence band is obtained by uniformly
enlarging the set of sieve approximations by this bias bound.

We not only provide a method that is guaranteed to work theoretically, but also care
for its practicality. The Fourier transform and the inverse Fourier transform operations
are known to be computationally costly in the deconvolution literature. By exploiting the
property of the Hermite functions as eigenfunctions of the Fourier transform operator,
we propose to let the Hermite orthogonal sieve approximate both the density and char-
acteristic functions without having to implement numerical integrations within each
iteration of a numerical optimization routine. This convenient feature of the proposed
method saves computational resources. Simulation studies indeed conclude reasonably
fast with informative inference results. The results evidence the efficacy of the proposed
method. Since latent-variable models with repeated measurements and panel data are
of use in a number of applied fields, including empirical auctions, income dynamics,
and labor economics, we hope that our method will contribute to the practice of eco-
nomic analyses in these and other topics.

We conjecture that the proposed methodology can be extended to related models.
For example, Cunha, Heckman, and Schennach (2010) considered a nonlinear factor
model for the evolution of unobserved multidimensional skills. Our current methodol-
ogy is not readily applicable to their model because we focus on the univariate analysis
for X. We speculate that our proposed strategy will work for the inference in a more
complicated model, such as that of Cunha, Heckman, and Schennach (2010). Namely,
as in this paper, it could be possible to construct a confidence set for the sieve coeffi-
cient of the unknown functions and use a bias bound (7, in this paper) to enlarge the
confidence set. Since it is beyond the scope of this paper, we leave such extensions for
future work.

APPENDIX A: PROOFS FOR THE RESULTS IN THE MAIN TEXT
A.1 Proofof Theorem 1 (linear complex-valued moment restrictions)

Proor. By Assumption 1(ii), we have the following three equations:

Ep[iX exp(itX)exp(itUs)] = Ep[iX exp(itX))|Ep[exp(itUy)],

Ep[iUy exp(itX ) exp(itUs)] = Ep[iEp[U; | X, Uzl exp(itX) exp(itU,)] =0,

Ep[exp(itX)exp(itUy)] = Ep[exp(itX)|Ep[exp(itUs)],
for every real ¢, where we use E[U; | X, U;] =0 and the independence between X and
U,. By (1),
Ep[(iY1x () — ¢ (1)) exp(itY2)]
=Ep[iX exp(itX)exp(itUp) ]| b x (1)
+ Ep[iUr exp(itX) exp(itUs) ] x (1)
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— Ep[exp(itX) exp(itUs)] Yy (1)
=Ep[iX exp(itX))|Ep[exp(itUs) ]| x (1)
— Ep[exp(itX)]Ep[exp(itUn)]¢ Y (1)
=0

for every real ¢, where the last equality follows from d)()}) (1) =Ep[iX exp(itX))]. O

A.2 Proofof Lemma 2

Proor. Regarding the first statement, the Hermite basis expansion for the pdf fy =

Y- 20lfx, ¥)) - ¥j(x) implies

‘(/“’(x)dxyﬂ—l'=‘(/¢(x>dx)Ta_/fX(x)dx

By the triangle inequality, Assumption 2, and the definition of 7,

= |/ D fxo W) - (e dx

j=q+1

T 0 00
‘(/np(x)dx) 0-1< > !<fx,¢,->|/|¢,-<x>|dxs > j—3f|¢,-<x>\dxan.
j=q+1 J=q+1

Regarding the second statement, the Hermite basis expansion implies

inf ()0 > inf ()70 fr(0) =—sup D (s ) - ().

xeRj=q+1

By the triangle inequality, Assumption 2, and the definition of 7,

ifelﬂgl!’(X)TO > — Z |(fx, )] 'Su§|l/fj(X)| > — Z J 73 sup|gj(x)] = —nq.

j=q+1 j=q+1 ¥R

Regarding the last two statements, Ep[(iY1¢x (¢) — q’)&? (1)) exp(itY,)] = 0 implies

JIERRIT6] + [EplL, 170

q q
EP|:<iY1 Z(fx, i) bj(t) — Z(f)a i) ¢7;1)(I)> CXP(isz)} ‘

=0 j=0

EPKin Y Uxaw) b= Y <fx,w,->~¢§-”<z>) exp(ith)”.

j=q+1 j=q+1

By the triangle inequality, Assumption 2, and the definition of 5,

JIEPRI76] + [EplL, 170
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<]EP|:<|Y1| Z \(Fx, ¥j)| i (O] + Z |(Fx, )] - |¢;1)(t)|>|exp(itY2)|:|

j=q+1 J=q+1

P[IY11] Z [(fxs )| (D) + Z [P IRG]

j=q+1 j=q+1
< > @[]0+ 6P 0)])
J=q+1
<8y O

A.3 Proofof Lemma 3

Proor. There is some constant ¢ > 0 such that

[Ep[(iY1¢(D) — ¢ (D) exp(it Y2) ]| > 2e,

where ¢ = Ff. Suppose g and L# are sufficiently large so that

= Y i *(Ep[vl)supla; (0] +suplof (0)]) =

j=q+1

and that

2
&> (su£|¢(2)(t)| +Ep[|Y1] + V2] +1] sup|¢<1>(t)| +Ep[|V1]+ |Y1Y2|])—h.
te

Note that sup,g [¢V (¢)| and sup,g [¢? (1) are finite by Assumption 2. By the second
inequality, we have

J
EEP[(iYms(t) — ¢ (1)) exp(itY)]

< (Ep[IM11] + 1) ][0 (1))
+Ep[IV11] + |6 (1)
+Ep[IY1Y2l] +Ep[IY2l]|¢™ (1))

=[6@ ()] +Ep[|Y1] + Y2l +1]|¢P ()| + Ep[1Y1] + Y1 V2]
Lh

< —ce.
Since |f; — f| <2/(Lh) forsomel=1,..., L, we have

|Ep[(iY19 (1) — &V (1)) exp(ity Vo) ||
> [Ep[(iY1¢() — V(D) exp(ifY2)]|
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J -
= sup| ZE[(iY1(1) — ¢V (D) explir¥)] 1
te

A.4 Proof of Theorem 2 (size control)

PrROOF. Let P € P and f € Lo(P). Let 0 = ({f,¢) : j=0,1,...,9). By Lemma 2 and
Assumption 3, Chernozhukov, Chetverikov, and Kato (2019, Theorem A.1) implies
Pp(T(0) < c(a, 0)) > 1 — a — Cn¢ for some positive constants ¢ and C depending on
c1 and (. It suffices to show T'(0) < ¢(a, 0) =— f € C,(@). The condition 7'(0) < c(«, 0)
implies 0 e C((fX,d/,-):j:O,l,‘..,q)(a)' Since

q o0 4 >
sup f(x)—ZBj-¢j(x) =sup Z(f, l/’j)'l/fj(x)—zej"/’j(x) =Ssup Z (o)),
xeR j=0 xeR| o j=0 YR | j=g 1

by the triangle inequality, Assumption 2, and the definition of ,, we have

q o] o0
FO =0y < > i w,~>}suﬂ§|w,~<x>|s > j‘3su§|¢j<x>|an.

sup
xeR j=0 j=q+1 j=q+1 xe
By the definition of C,(«), we have f € C,(«). O

A.5 Proof of Theorem 3 (power)

Proor. This proof focuses on the case in (22). The proofs for the cases of (23)-(25) are
similar. By the definition of C, («), we can write

Pp(f ¢ Ca(@)) =Pp(T(0) > c(c, 0) for every 0 € Byi1.m, N)
>Pp(T(0) > /2log(4L) + /2log(1/a) for every 0 e Bq+1,nq(f))

- IP’p( inf  T() > y/2log(4L) + \/210g(1/a)),

0qu+1,nq (f)

where the inequality follows from

c(a, 0) < /2log(4L) + /2log(1/a);

see Chernozhukov, Chetverikov, and Kato (2019, Lemma D.4). If By < v, then

E,[R.170 -6
inf 7> inf  Jaoel 97 0%
0€By 1,7, (F) 0By 11,94 (f) OTVn(Rz )0

G,R.170 Ep[R. 170 -5
- inf n[ t*] + inf \/ﬁ P[ t*] q

- 06Bq+1,nq<f) OTV//[(R[*)O 06Bq+1,‘flq (f) OTV}‘Z(Rt*)O
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GnlR.176 Ep[R,1760 -6
-~ |GulRy,] |+ inf o riR.] q
0Byi1.00() 0TV, (RO BertndD JoTyo(R, )0+
GnlR.176
> — sup M—i—\/ZlogMLH—\/ﬂog(l/a)
0<Bgi100 () \/OTV,(R,,)0O
1 [ |Gn[Rt*]T0|}
+E~EP sup —_—

0eBy.10e(H) /0T V,(R,,)0

by (22). Thus, we obtain

’Gn[Rt*]T0|
sup T
Pp(f ¢ Ca(@) = P 0Bt D OV, (RO 1 {By <v)
p(f ¢ Cale) > P({ <_}m VEV)
’ E [ sup Sa[R. [0 ] ’
P |GulR. 17 6]
06Bq+1,nq (f) GTVn(Rt*)O
0By 1,m,(f) OTVn(Rt* )0 1
ZIP’P( Tl 7~ _) ~{1=Pe(By <)
[ |Gn[Rt*] 0\ ] b
Ep| sup —————=

0€Bq+l,nq 03] oTVn(Rt*)a

>1-b—(1-Pp(By <v)),

where the last inequality is due to Markov’s inequality. Therefore, the statement of the
theorem follows. O

A.6 Proofof Corollary 1 (consistency against all fixed alternatives)

ProOF. Pick v = AP (t.). With this choice of », under our assumption, one of (22)—-(25)

holds for large n for some b = b, — 0 sufficiently slowly. The conclusion then follows
since Pp(By <v)— 1. |

A.7 Derivation of equation (21) (a sufficient condition for Assumption 3(ii))

Proor. Note that

|(Rt_EP[Rt])T0|§ sup  |Ry,i(Y1, Y2) —Ep[Ry, (Y1, Y2)]| - 0]

Y=0,....¥¢
< sup  (2Yi]+2Ep[IY1] + 4|6 @)]) - 16]
Y=i,....Pq

= (211 +28p[1Yi]+4  sup [P (0)])- 101

l//:‘l’o 7777 q
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and

(L~ EplL)) 0] < (2111 + 2Bp[ V11 +4  sup [oD0)])- 16l
q

b=iho,.... P

because
|Ry, (Y1, Y2)|
= |—cos(tY2)(Y1Im(¢ (1)) +Re(pV (1)) — sin(tY2) (YiRe(¢ (1)) — Im(o ™ (1)))]
<|Y1|+ [Re(pV (1)1 + 11| + [Im(oD ()|
<2|Y1|+2|6P ).
Also note that, for the Hermite functions, we have
7" [ =[iV2mu|
=2m |y
=27Vl =G+ D2
<2 (Vi2lp$2 |+ VG + D2l )
< V27 (\/j/2+V(j +1)/2) x 1.0864357~1/4
<4j+1.

Since 87Vp(R,)0 > ||0]eig,,;,(Vp(R,)) and 07 Vp(I,)0 > |0]eig,,;,(Vp (1)), we have

max max{Ep[| (R, — Er[R, )" 0]]"" Ep[|(1, ~Ep11,1) 0]
My 4.1x(0,P) < —

minL min{07 Vp(R,)0, 07Vp(1,)0)

1<i<

4Ep[IV11F]V* + 4Ep[1V1]+8  sup |V (0)]

te%rfli%}T] min { €igin (VP (Rf)) ; igmin (VP (If)) }

4EP[|Y1|k]1/k +4Ep[|Y1]] +32V/g +1

tegi;}n min{eig ;. (Vr(R)), eigi, (VP(1))}

and

4
b

1/4
Ep| max max{|(R, — Ep[R; )" 6|, |(1, — Ep(1,1)"6]'}]

B 4(0,P) <
min min{07Vp(R,)0, 07 Vp(1,)0}

1<I<L
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4Bp[IV1 1] +4Bp[IV1I] 48 sup |60

:l//(),m,l//q

IA

te[rEiTr,lTJ min{eig, i, (Vr(R)), €ignin (V) }

1/4

4Ep[1V1 14 +4ER[IY1I] +32Vg + 1

zeEiTI}T] min{eig,i,(Vr(R)), eigni, (VPI))}

Since ]Ep[Yl“] < 00, we have

2
(M}, 30, P)V M} , ,(0,P)V By 4(0,P))

=o(( L ))
min_ min{eig,;. (Vp(Ry)), eigi, (Vp1))}

te[-T,T]

=0(n'*=1og~"*(4Ln)). O

APPENDIX B: IDENTIFICATION AND ESTIMATION FROM THE PREVIOUS LITERATURE

This Appendix section presents the identification and estimation for the characteristic
function ¢ x and the density function fx of X based on Li and Vuong (1998). Moreover,
a choice of the tuning parameter based on (Delaigle and Gijbels (2004)) is also reviewed.
Although the main text of this paper is focused on inference, one would also want to
present estimates along with confidence bands as we presented in Figure 3. This Ap-
pendix section provides a method of obtaining estimates for convenience of readers.

B.1 Identification and estimation of the characteristic functions

For a joint distribution P of (Y7, Y>), Li and Vuong (1998) showed that the characteristic
functions of X and U; are identified by

LiEp[Yie'™?]
QDX(I)ZCXP(/O W(i?’) and
Ep[e™1] (26)

LiEp[Y1e™2]
——d
ol [ S )

respectively, under the assumption of nonvanishing characteristic function of Y, in ad-
dition to Assumption 1. The sample-counterpart estimator of (26) reads

ox(t) = (/I iEn[) 1eiTY2] ) 27)
exp Vv d7 . 27
X 0 En[e”YZ]

oy, (1) =
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Similarly,
E, [ ity ]

t E Y iTYz :
exp (/ M dT)
0 En[e'™?]

B.2 Tuning parameter

oy, (1) =

To estimate the probability density function fx of X using the characteristic function
estimator (26), we need to impose a regularization by limiting the integration for the
Fourier transform to a compact interval [—4~!, h~!] for some “bandwidth” 4. Finite-
sample choice methods of choosing the limit frequency /4 are proposed in the literature
of deconvolution kernel density estimation. One of the most widely used approaches
is to minimize the MISE (Stefanski and Carroll (1990)) or its asymptotically dominating
part (Delaigle and Gijbels (2004)):

2 n

dt—i—Z uzK(u)dw/f)((z)(x)zdx,

_ 1 i (1)
AMISE(h) = 5— /‘@Ul(l/h)

where ¢k, supported on [—1, 1], is FK for some kernel function K.
There are alternative ways to compute | f )((2) (x)? dx. Based on Parseval’s identity, De-

laigle and Gijbels (2004) suggested

2 2
/f;((z)(x)zdxz L sz“‘”“/h)’ “PKZ(”’ d.
2mh leu, (t/ 1)

Combining the above two equations together yields

2 b 2
dt+quzK(u)du./t4|""X(’/h)| |<P1<2(f)| "
s lew, 1/ 1)

bk (1)
ey, (t/h)

AMISE(h) = 5 1nh /
n

With this formula, one may choose /4 to minimize the plug-in counterpart of AMISE (%),
replacing the unknown characteristic functions ¢ x and ¢y, by the sample counterparts
¢x and @y, , respectively, in Appendix B.1.

Since the set [-h~ !, h~1] of frequencies is used for estimation, it is also a natural
idea to use this set [-4~!, h~1] of frequencies for inference as well, although our theory
for inference does not require such a finite limit unlike the estimation which requires
regularization.

B.3 Estimation of the density function

With the estimated characteristic function (27) and the bandwidth parameter / chosen
in Section B.2, the density function may be estimated by

- 1 . _
fx(x)=E/é’_”xQDK(th)(Px(l)dt-
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The “Li-Vuong estimates” shown in Section 6 are based on the above formula together
with the tuning parameter chosen according to the procedure outlined in Appendix B.2.
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