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Indirect Inference (I-I) estimation of structural parameters θ requires matching
observed and simulated statistics, which are most often generated using an aux-
iliary model that depends on instrumental parameters β. The estimators of the
instrumental parameters will encapsulate the statistical information used for in-
ference about the structural parameters. As such, artificially constraining these
parameters may restrict the ability of the auxiliary model to accurately replicate
features in the structural data, which may lead to a range of issues, such as a loss
of identification. However, in certain situations the parameters β naturally come
with a set of q restrictions. Examples include settings where β must be estimated
subject to q possibly strict inequality constraints g(β) > 0, such as, when I-I is
based on GARCH auxiliary models. In these settings, we propose a novel I-I ap-
proach that uses appropriately modified unconstrained auxiliary statistics, which
are simple to compute and always exists. We state the relevant asymptotic theory
for this I-I approach without constraints and show that it can be reinterpreted as
a standard implementation of I-I through a properly modified binding function.
Several examples that have featured in the literature illustrate our approach.

Keywords. Inequality restrictions, constrained estimation, parameters on the
boundary, indirect inference, stochastic volatility.

JEL classification. C10, C13, C15.

1. Introduction

The indirect estimation procedures of Gourieroux, Monfort, and Renault (1993) (here-
after, GMR), Smith (1993), and Gallant and Tauchen (1996) (hereafter, GT) provide con-
venient estimation methods when efficient estimation of a fully parametric structural
model is a daunting task due to the intractability of the likelihood function. GMR mo-
tivate Indirect Inference (I-I) by arguing that in such cases a natural procedure is to re-
place the likelihood function by another criterion based on some convenient auxiliary
(or naive) model that is simpler but possibly misspecified. The overall aim of I-I is then
to conduct correct inference “based on this incorrect criterion.”
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As described by Jiang and Turnbull (2004), the “essential ingredients” of I-I are as
follows:

(i) A parametric model for data generation, with distribution Pθ that depends on
an unknown vector θ ∈ Θ ⊂ R

dθ of parameters of interest. This model is the so-called
structural model and θ is the vector of structural parameters.

(ii) An intermediate or auxiliary statistic, say β̂T , of dimension dβ ≥ dθ, which is a
functional of the observed sample {yt}Tt=1.

(iii) A bridge (or binding) relationship β = b(θ) defined between the true unknown
value θ0 of the structural parameters and β0 = plimT→∞ β̂T , where the unknown quan-
tity β0 = b(θ0) is referred to as the pseudo-true value of the auxiliary parameters.

(iv) With the auxiliary statistic β̂T replacing β, the bridge relationship is used to com-
pute an I-I estimator of θ by “inverting” b(θ).

Jiang and Turnbull (2004) acknowledge that “the choice of an intermediate statistic
β̂T is not necessarily unique,” however, the authors argue that “in any given situation
there is often a natural one to use.” Herein, we question this traditional interpretation
of I-I when it pertains to examples where the choice of “intermediate statistic” is am-
biguous due to the fact that the parameters of the auxiliary model used in I-I must be
estimated subject to a vector of inequality constraints.

In this commonly encountered situation, the choice of appropriate intermediate
statistics for I-I can be ambiguous for several reasons: first, as noted by Calzolari, Fioren-
tini, and Sentana (2004) (hereafter, CFS), the pseudo-likelihood function of the auxil-
iary model may not be well behaved when certain parameter restrictions are violated,
and hence, without these additional restrictions β̂T cannot be obtained; second, if the
pseudo-true valueβ0 is on (or near) the boundary of the parameter space defined by the
inequality constraints, the intermediate statistic β̂T may be insufficient to identify θ0;
lastly, even if identification of θ0 is possible, if β0 is on (or near) the boundary of the pa-
rameter space defined by the constraints, pseudo-maximum likelihood (hereafter, PML)
estimation will lead to an intermediate statistic that is not well suited for I-I because it is
not asymptotically normal (see Andrews (1999) and CFS for details).

The question then is how to choose the intermediate statistics so as to guarantee
consistent and asymptotically normal I-I estimators of θ0 even though β0 can lie on (or
near) the boundary of the parameter space defined by these inequality constraints? One
approach, which is proposed by CFS, is to consider as our intermediate statistic a “well-
behaved” linear combination of the constrained PML estimates of β, say β̂rT , and the
Kuhn–Tucker (hereafter, KT) multipliers, say λ̂T , corresponding to the inequality con-
straints. CFS demonstrate that one can use these linear combinations as intermediate
statistics to produce I-I estimators of θ0 with asymptotically Gaussian limits. In addition,
CFS show that imposing additional inequality restrictions on the auxiliary model will
never decrease the efficiency of the resulting I-I estimator, so long as the corresponding
KT multipliers are included in the vector of intermediate statistics. While correct, until
now the reason behind this phenomena has not been completely understood.
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Our first contribution is to demonstrate that the asymptotic normality of the CFS I-I
estimator is not due to the information brought by the constraints but is a direct conse-
quence of the relationship between β̂rT and λ̂T . In particular, we demonstrate that the
“well-behaved” linear combinations of β̂rT and λ̂T put forward by CFS as new “auxil-
iary parameters” is asymptotically equivalent to a new feasible unconstrained PML esti-
mator of the auxiliary model, which is always well-defined and asymptotically normal.
Therefore, adding constraints to an auxiliary model does not increase the information
about the structural parameters because this information was already contained in the
(unconstrained) auxiliary model.1

Using this new feasible unconstrained estimator, we propose a computationally
simple unconstrained I-I estimation strategy that does not enforce the inequality con-
straints on the auxiliary model. Even though our new I-I estimators do not enforce the
inequality constraints on the auxiliary parameters, our I-I estimators are asymptotically
equivalent to the constrained I-I estimators proposed by CFS. Moreover, we demon-
strate that the standard asymptotic Gaussian distribution of our I-I estimators remains
valid, even if the pseudo-true value of the auxiliary parameters, β0, is on or near the
boundary of the parameter space.

Our second contribution is to make rigorous the notion of pseudo-true values of the
auxiliary parameters on or near the boundary of the auxiliary parameter space. While
the approach of CFS treats the case of β0 on the boundary, their approach is dichoto-
mous: β0 is either on the boundary, in which case β̂rT is not asymptotically normal, or
it is not on the boundary, in which case β̂rT is asymptotically normal. This binary treat-
ment of parameters near the boundary cannot capture cases where β0 is close enough
to the boundary of the parameter space to render standard asymptotic approximations
unreliable. In such cases, modeling the pseudo-true value as a sequence that is close to
but not on the boundary, for any finite sample size, can provide more reliable asymptotic
approximations.

Following, among others, Moon and Schorfheide (2009), Andrews and Cheng (2012),
and Ketz (2018), we consider a drifting sequence of true data generating processes
(DGPs), which, in turn, admits a sequence of drifting pseudo-true values for the aux-
iliary parameters. This sequence of pseudo-true auxiliary parameters is then employed
to make rigorous the notion of parameters on or near the boundary within I-I estima-
tion. This treatment requires us to revisit the limit theory of Andrews (1999) to accom-
modate cases where the drifting pseudo-true values cause a “boundary bias” that re-
sults in the score of the auxiliary model losing its asymptotic mean-zero property; we
refer the reader to Section 2 for precise details and discussion. However, even in the case
where boundary bias occurs, our proposed I-I estimator still displays standard Gaussian
asymptotics. The intuition behind this result is simple: I-I, by generating simulated data
that mimics the observed data, carries out an implicit bias correction that alleviates the
impact of the auxiliary parameters being close to the boundary.

1However, we must acknowledge that there are cases where equality constraints on the auxiliary pa-
rameters are indeed necessary to obtain a well-defined inverse of the binding function (see Gospodinov,
Komunjer, and Ng (2017) for a recent example).
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We apply this new I-I approach to a range of examples that have featured in the I-I
literature: a stochastic volatility model with a GARCH(1�1) auxiliary model (see, e.g.,
CFS); α-stable models with a skewed Student-t auxiliary model (see, e.g., Garcia, Re-
nault, and Veredas (2011)); and continuous-time jump-diffusion models for returns with
a Student-t GARCH auxiliary model. In each example, we require that the auxiliary pa-
rameters satisfy a vector of inequality constraints, and, in each example, we demon-
strate that empirically plausible values of the structural parameters lead to estimates of
the auxiliary parameters that are near the boundary of the parameter space. We then
demonstrate that our I-I approach can easily be applied to obtain estimators of the
structural parameters that have good finite-sample performance.

The remainder of the paper is organized as follows. In Section 2, we discuss con-
strained auxiliary models and give three classes of empirically relevant examples from
the I-I literature where the constraints imposed on the auxiliary model are known to
bind, at least in some cases. In addition, we present the particular drifting DGP frame-
work considered in this paper, which generalizes the approach of Andrews (1999) to
consider drifting pseudo-true values that can capture boundary affects for any finite-
sample size. Within this particular setup, we demonstrate that a well-defined uncon-
strained auxiliary parameter estimator, which contains the same amount of information
as the linear combinations of constrained auxiliary estimates and KT multipliers used in
CFS as auxiliary parameters, always exists and can be readily used for the purpose of
I-I. Section 3 uses this unconstrained auxiliary estimator to propose novel I-I estimators
and demonstrates that this unconstrained estimator is asymptotically equivalent to the
constrained I-I approach proposed in CFS. In Section 4, we consider a series of Monte
Carlo examples and an empirical application that demonstrates the performance of this
approach and makes clear the empirical relevance of our approach. Section 5 concludes
and all proofs are relegated to the Appendix.

2. Inequality constraints on the auxiliary model

We observe a sample {yT : T ≥ 1} generated from a strictly stationary and ergodic
probability model Pθ depending on an unknown parameter θ ∈ Θ ⊂ R

dθ , with Θ com-
pact. Conditional on observed data Yt−1 = {yt−1� yt−2� � � �}, the model admits the condi-
tional density p(yt |Yt−1;θ). We are interested in conducting inference on θ in situations
where maximum likelihood estimation based on p(yt |Yt−1;θ) is infeasible or otherwise
unattractive, but simulation from p(yt |Yt−1;θ) is relatively simple.

I-I proposes to estimate θ by targeting consistent parameter estimates of a simpler
auxiliary model f (yt |Yt−1;β), with auxiliary parameters β ∈ B ⊂ R

dβ , with B compact,
and where dβ ≥ dθ. LetQT(β) denote the sample auxiliary objective function associated
with f (yt |Yt−1;β) and the observed sample {yt}Tt=1.

We concern ourselves with situations where, to ensure estimates obtained from
QT(β) are well behaved, β must be estimated subject to a vector of inequality restric-
tions:

g(β)≥ 0�
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The constraint function g : B̆ → R
q, with B̆ ⊂ R

dβ an open set containing B, is known
and continuously differentiable on B̆. Throughout the remainder the notation, g(β)≥ 0
is taken to mean gj(β) ≥ 0, j = 1� � � � � q. From the inequality constraints, we define a
restricted, or constrained, parameter space as

Br := {
β ∈ B : g(β)≥ 0

}
�

Throughout, we allow the number of constraints (q) to be greater than or less than the
number of parameters (dβ).

We assume throughout that Br has a nonempty interior, which precludes equality
constraints. However, this assumption is immaterial since, up to an abuse of notation, if
the problem originally featured a mix of equality constraints, say {gl(β)= 0 : 1 ≤ l ≤ q1},
and inequality constraints, say {gk(β) ≥ 0 : 1 ≤ k ≤ q2}, with q1 + q2 = q, we could al-
ways redefine g(β)≥ 0 to be only the inequality constraints {gk(β)≥ 0 : 1 ≤ k≤ q2} that
remain active after imposing the equality constraints and eliminating some correspond-
ing components of β.

Subsequently, we can define the constrained estimator of the auxiliary parameters
as

β̂rT := arg max
β∈B

QT(β) s.t. g(β)≥ 0�

:= arg max
β∈Br

QT (β)�

Consistent I-I estimation requires that β̂rT be a consistent estimator of an appropri-
ately defined pseudo-true parameter value, generically denoted by β0 and satisfying
g(β0)≥ 0. As discussed by CFS, if these inequality constraints bind at β0, in the sense
that for at least one j,

gj
(
β0) = 0� 1 ≤ j ≤ q�

I-I based on β̂rT may result in estimators with a non-Gaussian limit distribution.
In certain examples, such as those considered in the following section, in order for

estimators based on QT(β) to be well behaved, certain inequalities must be strict, in
that gj(β) > 0 for some 1 ≤ j ≤ q. We will ensure that β̂rT satisfies this property, at least
with probability one for T large enough, by assuming that we have a drifting DGP where,
for any finite T , the pseudo-true value of the optimization program belongs to Int(Br).
In so doing, when some constraints are actually binding, this precisely means that the
pseudo-true value is then “near the boundary”; we refer to, for example, Andrews and
Cheng (2012) and Ketz (2018) for a similar use of this terminology.

Before going further with the precise mathematical framework, we first give exam-
ples where constraints on the auxiliary models used within I-I estimation feature in the
empirical literature.

Example 1 (Stochastic Volatility). We begin with the classic example of a log-normal
stochastic volatility (SV) model and a GARCH(1�1) auxiliary model with Gaussian or
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Student-t innovations.2 The log-normal stochastic volatility model is defined as follows:

yt =
√
htet� t = 1� � � � �T � (1)

ln(ht) = α+ δ ln(ht−1)+ σvvt�

where |δ| < 1, σv > 0, (et� vt)′ ∼i.i.d. N(0� Id2) and we denote the structural parameters
as θ= (α�δ�σv)

′. We observe a series {yt}Tt=1 from the SV model in (1) and our goal is to
conduct inference on θ.

We follow CFS and consider as our auxiliary model the GARCH(1�1)model:

yt =
√
htεt� (2)

ht = ψ+ϕy2
t−1 +πht−1�

Common specifications for the errors εt in (2) are εt ∼i.i.d. N(0�1) or, for v(η) :=
[(1/η− 1/2)/1/η], εt ∼i.i.d. v(η)

1/2t1/η, where t1/η denotes the Student-t distribution
with 1/η degrees of freedom, so that v(η)1/2t1/η denotes a Student-t with unit vari-
ance (which requires that η < 1/2). We denote the auxiliary parameters as β, with
β= (ψ�ϕ�π)′ if εt ∼i.i.d. N(0�1) andβ= (ψ�ϕ�π�η)′ otherwise. The GARCH(1�1)model
is very useful as an auxiliary model as it can capture many of the structural ideas asso-
ciated with (1), such as thick tails and volatility clustering, while yielding closed form
formulas for the score and Hessian based on the pseudo-log-likelihoodQT(β).

However, the GARCH(1�1) auxiliary model must be estimated subject to inequality
constraints to ensure that the pseudo-maximum likelihood estimator of β is well be-
haved. The set of inequality constraints for the auxiliary model can be stated as

ψ≥ 0� ϕ≥ 0� π ≥ 0� ϕ+π ≤ 1� (3)

with the added constraint 0 ≤ η ≤ 1/2 when εt is distributed as Student-t with 1/η de-
grees of freedom. Moreover, we stress that the quasi-likelihood is not even well-defined
when all the parameters, (ϕ�ψ�π)′ are simultaneously on the boundary, since the con-
ditional variance must be strictly positive. More generally, Francq and Zakoian (2007)
stress that to establish asymptotic normality of the QMLE for the GARCH parameters,
a key regularity condition is that “the true parameter must lie in the interior of the pa-
rameter space.” This statement can obviously be extended to the pseudo-true value of
the GARCH parameters. To enforce the above strict inequalities on the auxiliary param-
eters, CFS require (see their footnote five on p. 960) that the GARCH parameters in their
auxiliary model satisfy

ϕ≥ 0�025� η≤ 0�499� (4)

However, such constraints are effectively arbitrary and do not necessarily reflect the true
nature of the constraints in (3).

2Several authors consider I-I estimation for this model using GARCH(p�q) models and we refer the
reader to Engle and Lee (1996), Monfardini (1998), Pastorello, Renault, and Touzi (2000), and CFS for exam-
ples.
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Example 2 (α-Stable Random Variables). The class of α-stable distributions is often
used to capture random variables that display heavy-tailed features, such as stock re-
turns data. The distribution of a random variable, yt , from the α-stable class is charac-
terized by four parameters: α—the tail index, which captures the “heavyness” of the tail;
γ—the skewness parameter; μ—the location parameter; and σ—the scale parameter.
Denoting θ= (α�γ�μ�σ)′, we have that

Θ := (0�2)× (−1�1)×R× [0�∞)�

We note here that values of α < 2 ensure that the variance of the random variable is not
finite, while if α≤ 1 both the mean and the variance are not finite. We refer the reader to
Samoradnitsky (2017) for a book length treatment on α-stable random variables.

An interesting feature of the α-stable class is its lack of a closed-form density func-
tion, which makes the application of maximum likelihood methods to estimate θ dif-
ficult (see, e.g., Garcia, Renault, and Veredas (2011) for a discussion). The difficulty of
maximum likelihood estimation has led to the development of I-I estimators for θ that
first postulate an auxiliary model with parametersβ that can roughly match the parame-
ters of the α-stable distribution and for which consistent estimators of these parameters
can easily be obtained.

Following Garcia, Renault, and Veredas (2011), one such class of auxiliary models is
the skewed Student-t (hereafter, skew-t) distribution developed by Fernandez and Steel
(1998):

f (y;β)=

�

(
ν

2
+ 1

2

)
�(ν/2)√

ν

1

�

(
η+ 1

η

){
1 + 1

ν

(
y −ω
�

)2[ 1

η2 1[y ≥ω] +η21[y <ω]
]}− ν+1

2
�

The degree of freedom parameter ν captures tail thickness, η captures skewness, and
ω and � denote the location and scale parameters. Clearly, the parameters θ and β are
closely related. Moreover, the close match between the parameters of the α-stable and
skew-t distributions should lead to well behaved and nearly efficient I-I estimators.

In many empirical applications, estimates of α are often near 2; recall that a value
of α < 2 implies that the unconditional variance is not finite. This feature is potentially
troubling for I-I estimation since Garcia, Renault, and Veredas (2011) demonstrate that
when α is larger than about 1�9, the parameter ν in the skew-t auxiliary model, and by
association the α parameter in the structural model, becomes poorly identified. In par-
ticular, Garcia, Renault, and Veredas (2011) argue that “for α close to 2, we may expect
that observed data will give the spurious feeling that variance is finite, which would im-
ply a normal distribution corresponding to ν = +∞ in a Student framework. This is why
we will constrain the auxiliary parameter.” Since the authors assume that α < 2, the au-
thors constrain the skew-t auxiliary model in a similar fashion and impose the inequal-
ity constraint ν ≤ 2 on the auxiliary parameter. Numerical results presented in Garcia,
Renault, and Veredas (2011) demonstrate that a constrained version of I-I, which uses
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the inequality constraint ν ≤ 2, produces estimators that are better behaved than those
where the constraint on the auxiliary parameter ν is not maintained. A similar I-I estima-
tion strategy has also been employed by Lombardi and Calzolari (2009) for estimation of
α-stable stochastic volatility models and by Calzolari and Halbleib (2018) for estimation
of α-stable factor models.

Example 3 (Stochastic Volatility Jump-Diffusion (SVJD) Models). The stylized facts of
time-varying and autocorrelated volatility, allied with non-Gaussian return distribu-
tions, are now extensively documented in the literature on financial returns. However, it
is often the case that standard volatility models, such as the one treated in Example 1,
cannot completely capture the variability of daily returns in periods of extreme volatility,
such as during the 2008–2009 financial crisis. A common approach to address this issue
is to consider the inclusion of so-called “jump” processes within existing volatility mod-
els. The inclusion of the jump process allows volatility models to exhibit periods of high
volatility without significantly altering the interpretation of the model. The literature on
modeling returns under the assumption of nonnegligible jumps is now extensive, and
we refer the reader to Ait-Sahalia and Jacod (2014) for a textbook treatment.

An important class of widely used continuous-time stochastic volatility models in
finance is the mean reverting stochastic volatility jump diffusion (SVJD) model. Let Pt
denote the asset price at time t > 0, and letpt := ln(Pt). In the SVJD model, the evolution
of pt follows a bivariate jump diffusion process, with a representative example of the
SVJD model being

dpt = μdt + exp(Vt/2)dW
p
t + dJt�

dVt = κ(η− Vt)dt + σv dW v
t � (5)

where dW v
t , dW p

t are independent standard Brownian motion processes, dJt is a jump
component with dJt := Zt dNt , Zt denotes the jump size and dNt is a Poisson process
with constant jump intensity. The SVJD model captures two important empirical fea-
tures of asset prices: one, return volatility exhibits strong serial dependence; two, price
jumps exist due to the arrival of unanticipated market news.

The SVJD model is a workhorse of empirical finance, where nonparametric ap-
proaches are commonly used to obtain high-frequency measures of variability, such as
integrated volatility and quadratic variation (we refer the reader to Andersen, Boller-
slev, and Diebold (2010) for a discussion of volatility measures in this model, and its
many generalizations). On the other hand, inference on the unknown parameters is hin-
dered by the latent nature of the volatilities, which ensures that estimation techniques
based on the likelihood are computationally demanding. Luckily, simulation-based pro-
cedures, such as I-I, can bypass the calculation of the likelihood by simulating directly
from the process in (5); for empirical applications of the SVJD model using simulation-
based inference techniques; see, for example, Eraker (2001), Andersen, Benzoni, and
Lund (2002), Creel and Kristensen (2015).

For the purpose of I-I estimation, a useful class of auxiliary models for capturing the
behavior in (5) would be the GARCH model class in equation (2). As discussed in Exam-
ple 1, the use of GARCH auxiliary models requires imposing several inequality restric-
tions. However, even for this simple version of the SVJD model in equation (5), GARCH
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auxiliary models can often yield estimates of the auxiliary parameters for which the in-
equality constraints in (3) bind. For example, GARCH-based estimators ofϕ+π are often
very close to unity.3 Therefore, as argued in CFS, additional information about the aux-
iliary parameters would be required to successfully identify the structural parameters.

2.1 Parameters near the boundary

Before presenting our new approach to I-I with constraints, we clarify what is meant by
auxiliary parameters on the boundary of the parameter space. Recall the definition

Br := {
β ∈ B : g(β)≥ 0

}
�

We say that auxiliary parameters are on the boundary if β0, the pseudo-true value of the
auxiliary parameters, is on the boundary of Br .

We rely on a drifting DGP to capture the behavior of extremum estimators when β0

is on the boundary of Br . In particular, we consider that the DGP of the structural model
is indexed by a sequence of drifting “true” values {θT } := {θT : T ≥ 1} that satisfy4

{θT } ∈Θ[
N

+] :=
{
{θT ∈Θ : T ≥ 1} : lim

T→∞
θT = θ0 ∈ Int(Θ)

}
�

The population objective function for the auxiliary model, calculated under this DGP, is
denoted by Q(θT �β). Using Q(θT �β), we define the sequence of pseudo-true auxiliary
parameters

b(θT ) := arg max
β∈Br

Q(θT �β)� where {θT } ∈Θ[
N

+]
�

The notation θT �→ b(θT ) clarifies that this map depends on the sequence {θT }. To main-
tain notational simplicity, when no confusion is likely to result, we denote these pseudo-
true auxiliary parameters as β0

T := b(θT ).
The drifting sequences {θT } and {β0

T } allow us to capture auxiliary parameters near
the boundary of Br using the set:

�
(
θ0�β0) :=

{
{θT } ∈Θ[

N
+] : β0

T ∈ Int
(
Br

)
� lim
T→∞

β0
T := β0 ∈ Br

}
�

and by restricting our analysis to DGPs satisfying

{θT } ∈ �(
θ0�β0)� (6)

This construction enforces that β0
T belongs to the interior of Br but allows β0 to lie on

the boundary of Br .5

3We refer the reader to the Monte Carlo section for numerical evidence of this statement as it pertains to
the GARCH auxiliary model in equation (2).

4Formally, this assumption implies that the observed data, viewed as a triangular array {yt�T : T ≥ 1�
t = 1� � � � �T }, comes from a stationary process depending on T .

5We note that, when β0 is in the interior of the parameter set, the concept of a drifting DGP is hardly
useful; one can then assume b(θT )= β0 for all T sufficiently large. For instance, in the illustrative stochastic
volatility example, a drifting true value for ψ0 is not necessary; when ϕ0 is on the boundary (ϕ0 = 0), ψ0

must be strictly positive and its constrained estimator (the sample mean of y2
t ) will automatically fulfill this

inequality constraint.
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Our need to consider a drifting DGP partly arises because we have in mind cases
when β must satisfy some strict inequalities in order for QT(β) to be well behaved in
finite-samples, but where the population analogue Q(θT �β) remains well behaved for
all β ∈ Br . The definition of �(θ0�β0) ensures this by requiring that β0

T ∈ Int(Br), so that
QT(β

0
T ) remains well-defined, while limT Q(θT �β0

T ) is well-defined under standard con-
tinuity assumptions. As an illustration of why we require this drifting DGP, consider the
stochastic volatility example, and recall that the auxiliary parameter ϕ must be strictly
positive to ensure that the pseudo-true value ofβ is identified. To enforce this condition,
CFS require the ad hoc condition (4), while we enforce this condition by imposing the
high-level condition (6).

It is worth noting that we maintain the assumption that b(θT ) always fulfills the con-
straints, and, by continuity, β0 must also fulfill them, while it may violate the strict in-
equality constraints we implicitly need to maintain in finite samples. However, we may
expect that all KT multipliers still converge to zero, in contrast to the setting considered
in the asymptotic theory of CFS.

2.2 Standard auxiliary estimators

I-I with constrained auxiliary parameters relies on the constrained estimator β̂rT which
satisfies

QT
(
β̂rT

) ≥ sup
β∈Br

QT (β)+ oP(1/T)�

which we can obtain through the Lagrangian function

LT (β�λ) :=QT(β)+ g(β)′λ
for λ ∈ R

q a vector of KT multipliers. Under differentiability conditions, β̂rT and the as-
sociated KT multipliers λ̂T solve the first-order conditions

∂QT
(
β̂rT

)
∂β

+ ∂g′(β̂rT )
∂β

· λ̂T = 0� (7)

with the slackness conditions

λ̂j�T · gj
(
β̂rT

) = 0 for all j = 1� � � � � q� (8)

g
(
β̂rT

) ≥ 0� λ̂T ≥ 0�

Building on the theory of constrained estimation discussed in Andrews (1999), under
the following sufficient conditions, the estimators β̂rT and λ̂T are

√
T -consistent estima-

tors of β0
T and 0, respectively.6

Assumption A0. Under {θT } ∈ �(θ0�β0): (i) supβ∈Br |QT(β)− Q(θT �β)| = oP(1); (ii) for

all ε > 0, lim infT {Q(θT �β0
T )− supβ∈Br :‖β−β0

T ‖>εQ(θT �β)}> 0.

6These assumptions are similar to those given in CFS (see their Assumptions 1 and 3), but are adapted
to accommodate our drifting DGP setting.



Quantitative Economics 11 (2020) Indirect inference with(out) constraints 123

Assumption A1. Under {θT } ∈ �(θ0�β0):

(i) β �→QT(β) has continuous partial derivatives of order two on Int(Br) with prob-
ability one.

(ii) For J 0 a nonstochastic (dβ × dβ) positive-definite matrix, and for any γ > 0:

sup
β∈Br :‖β−β0

T ‖≤ γ√
T

∥∥∥∥∂2QT(β)

∂β∂β′ +J 0
∥∥∥∥ = oP(1)�

(iii) For some δ0 ∈R
dβ , and for I0 a nonstochastic (dβ × dβ) positive-definite matrix,

√
T∂QT

(
β0
T

)
/∂β→d ℵ(

δ0�I0)�
(iv) (a) g(β) is continuously differentiable for β ∈ B̆, for B̆ open and B ⊆ B̆; (b) there

exists a 0 ≤ q̃ ≤ min{q�dβ} and a function g̃ : B̆ → R
q̃, a q̃-dimensional subvector of

g(β), such that, for all T large enough, g̃(β0
T ) contains all the zero entries of g(β0

T ) and
rank(∂g̃(β0

T )
′/∂β)= q̃.

Assumption A2. Consider the quadratic expansion:

QT(β)=QT
(
β0
T

) + ∂QT
(
β0
T

)
∂β′

(
β−β0

T

) + 1
2
(
β−β0

T

)′ ∂2QT
(
β0
T

)
∂β∂β′

(
β−β0

T

) +RT (β)�

Under {θT } ∈ �(θ0�β0): for any sequence γT = o(1),

sup
β∈Br :‖β−β0

T ‖≤γT

{ ∣∣RT (β)∣∣[
1 + √

T
∥∥β−β0

T

∥∥]2

}
= oP(1/T)�

The above assumptions are similar to those employed by Andrews (1999) to deduce
his Theorem 1. However, Assumption A1(iii) is novel and is maintained to accommodate
our drifting DGP. In particular, Assumption A1(iii) allows for the drifting behavior of β0

T

to contaminate the limiting distribution of the scaled pseudo-score
√
T∂QT (β

0
T )/∂β. In

particular, Assumption A1(iii) can capture cases where the proximity ofβ0
T to the bound-

ary causes a “boundary bias,” whereby the pseudo-score looses its asymptotic mean-
zero property, typically because

√
T(β0

T − β0) is O(1) and not o(1). This framework is
often used when one wishes to accurately capture the behavior of estimators when the
estimated parameter values are close to, but potentially not on, the boundary of the pa-
rameter space; while we have suggested several examples where this phenomena may
be in evidence, we refer the interested reader to Ketz (2018) for further examples and
discussion. Assumption A1(iv) deals with the behavior of the constraint function g(β).
Part (a) is standard, while part (b) is required since we allow the number of inequality
constraints to be larger than the number of auxiliary parameters (i.e., q > dβ). Indeed,
one particularly important example of this phenomena is the GARCH auxiliary model
discussed in Section 2. Intuitively, g̃(β) includes all the constraints that are active at β0

T .
Under the above assumptions, the following result holds.
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Lemma 1. For {θT } ∈ �(θ0�β0), under Assumptions A0–A2,
√
T(β̂rT − β0

T ) = OP(1) and√
T λ̂T =OP(1).

While β̂rT is
√
T -consistent, it has rightly been stressed in CFS that the constraints

g(β) ≥ 0 may produce some singularity (and nonnormality) in the asymptotic distri-
bution of β̂rT and, therefore, β̂rT may not be appropriate for I-I estimation. This is-
sue is exacerbated under our setup, since not only may the asymptotic distribution of√
T(β̂rT − β0

T ) be nonnormal, but under Assumption A1(iii), the asymptotic distribu-
tion of

√
T(β̂rT − β0

T ) may have a nonzero asymptotic mean. For the former reason,
that is, nonnormality, CFS search for a seemingly ad hoc linear combination of the con-
strained estimator β̂rT and the vector λ̂T of KT multipliers that is asymptotically normal
(see Proposition 2 in CFS, p. 950). To elucidate the implications of this statement, first
consider the following (infeasible) quadratic objective function based on the quadratic
expansion in Assumption A2:

MT(β)=QT
(
β0
T

) + ∂QT
(
β0
T

)
∂β′

(
β−β0

T

) + 1
2
(
β−β0

T

)′ ∂2QT
(
β0
T

)
∂β∂β′

(
β−β0

T

)
�

Since β0
T is in the interior of the parameter space,MT(β) is well-defined for any β ∈R

dβ

and is uniquely maximized by the solution of the first-order conditions,

β̈T = β0
T + J−1

T

∂QT
(
β0
T

)
∂β

� where JT = −∂
2QT

(
β0
T

)
∂β∂β′ �

Note that, with an abuse of language, β̈T could be dubbed an “unconstrained esti-
mator” since the constraints g(β)≥ 0 are never taken into account in its definition. The
advantage of this “estimator” is that it always exists, since β0

T is an interior point the
quadratic approximation always exists, while a general unconstrained estimator may
not even exist. However, calling β̈T an estimator is an abuse of language since it is not
feasible to computeMT(β) since the pseudo-true value β0

T is unknown.
Our first key result of this section is to demonstrate that, under our drifting DGP

setup, the linear combination of auxiliary parameters put forward in CFS is tightly re-
lated to this (potentially) infeasible unconstrained estimator.

Proposition 1. For {θT } ∈ �(θ0�β0), under Assumptions A0–A2:

JT
√
T

(
β̂rT −β0

T

) − ∂g′(β0
T

)
∂β

√
T λ̂T = JT

√
T

(
β̈T −β0

T

) + oP(1)� (9)

The remainder term oP(1) in (9) is identically zero when the criterion function QT(β) is
quadratic and the constraints g(β) are linear.

The LHS of equation (9) is identical to the so-called “linear combinations [of the con-
strained estimator and KT multipliers] that are asymptotically well behaved” in Propo-
sition 2 of CFS (p. 950). By “well behaved” CFS essentially mean asymptotically normal,
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whereas separately the constrained estimator and the KT multipliers may not be asymp-
totically normal when the parameters are close to or on the boundary of Br .7 Proposi-
tion 1 demonstrates that the linear combinations studied in CFS are well behaved, pre-
cisely because they correspond (asymptotically) to the unconstrained extremum esti-
mator; that is, equation (9) demonstrates that by combining the auxiliary parameters
and KT multipliers to create the well-behaved linear combinations, we are just back to
unconstrained estimation.

2.3 Asymptotically normal feasible unconstrained estimation

Proposition 1 demonstrates that the linear combinations of β̂rT and λ̂T that lead to
asymptotically normal auxiliary parameters are asymptotically equivalent to the infea-
sible unconstrained estimator β̈T . Therefore, a feasible version of β̈T would provide an
asymptotically equivalent alternative to the ad hoc combination of constrained estima-
tors and KT multipliers used in CFS. To deduce such an estimator, we first recall that β̈T
is actually the global maximizer of the quadratic objective function MT(β), which de-
pends on the infeasible β0

T . This suggests that a feasible unconstrained estimator can be
obtained by replacing β0

T in MT(β) by a consistent estimator. By Lemma 1, the con-
strained estimator β̂rT is a consistent estimator of β0

T , and we can replace β0
T in the

quadratic objective function MT(β) by β̂rT , and define the feasible unconstrained es-
timator

β̂T = arg max
β∈Rdβ

[
QT

(
β̂rT

) + ∂QT
(
β̂rT

)
∂β′

(
β− β̂rT

) + 1
2
(
β− β̂rT

)′ ∂2QT
(
β̂rT

)
∂β∂β′

(
β− β̂rT

)]
�

Interestingly, β̂T is obtained simply by taking a Newton-step away from β̂rT :

β̂T = β̂rT −
[
∂2QT

(
β̂rT

)
∂β∂β′

]−1 ∂QT
(
β̂rT

)
∂β

�

so that obtaining β̂T is extremely simple in practice. Throughout the remainder, we refer
to β̂T as the feasible unconstrained (FUNC) estimator of β0

T .
Before the FUNC estimator β̂T can be used for the purpose of I-I, we must under-

stand its asymptotic properties. The asymptotic behavior of β̂T can be determined by
analyzing the asymptotic behavior of the quadratic expansion in Assumption A2. We
now give the main result of this section: the FUNC estimator β̂T is asymptotically equiv-
alent to β̈T , and thus to the well-behaved linear combinations employed in CFS as aux-
iliary parameters.

Theorem 1. For {θT } ∈ �(θ0�β0), under Assumptions A0–A2,
√
T(β̂T − β̈T )= oP(1)�

7When the constraints g(·) are nonlinear, CFS actually consider more complicated linear combinations
involving the second derivatives of g(β). However, these additional terms will cancel out when working, as
we do in this section, under the assumption that the constraints are fulfilled in the population; in this case,
the vector of KT multipliers actually converge to zero, and kill the additional terms in CFS.
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Ketz (2018) has proven a similar result in the framework of a drifting true value simi-
lar to ours. For the sake of being self-contained, we provide our own proof of this result.
Before concluding, we note that, by the result of Theorem 1, the FUNC estimator β̂T
allows us to rewrite the decomposition (9) as follows:

JT
√
T

(
β̂rT −β0

T

) − ∂g′(β0
T

)
∂β

√
T λ̂T = JT

√
T

(
β̂T −β0

T

) + oP(1)� (10)

That is, by working with the computationally friendly FUNC estimator β̂T we convey
exactly the same information as the complicated linear combination of constrained es-
timators and KT multipliers considered by CFS. The implications of this remark for the
purpose of I-I are discussed in the subsequent sections.

3. Indirect inference with(out) constraints

The key input of I-I is a set ofH simulated paths {ỹ(h)t (θ)}Tt=1, h= 1� � � � �H. From this in-
put, there are several ways to perform I-I. Our focus of interest in this section is to com-
pare four strategies. The first two strategies are based on the score matching approach
of GT. The approach of CFS and the approach proposed in this paper will produce two
distinct, albeit asymptotically equivalent, variants of the score-matching approach. As
already mentioned in the comments of Theorem 1, we differ from CFS in that we will not
incorporate, explicitly, the KT multipliers as additional auxiliary parameters for I-I since
the FUNC estimator β̂T carries the same information.

The last two strategies are based on the GMR approach of minimum distance be-
tween auxiliary parameters. These two strategies differ regarding the parameters to
match: constrained estimators of β augmented by KT multipliers, as in CFS, or the user-
friendly FUNC estimator proposed in this paper.

By analogy with the trinity of tests, we will dub “Wald approach” the minimum dis-
tance approach while the score-matching approach will simply be called “Score ap-
proach.” Note that CFS dub CMD (Classical Minimum Distance) the Wald approach and
GMM (Generalized Method of Moments) the Score approach. GMR have shown that in
classical circumstances (I-I without constraints) the two approaches are asymptotically
equivalent. This equivalence will be revisited in the present context.

3.1 Score-based indirect inference with(out) constraints

Given H simulated paths {ỹ(h)t (θ)}Tt=1, h= 1� � � � �H, a simulated version of the auxiliary
criterion, denoted by QTH(θ�β), can then be constructed for use in I-I. To fix ideas, say
we have in mind auxiliary parameters β defined as M-estimators that maximize the cri-
terion

QT(β)= 1
T

T∑
t=1+l

q(yt� yt−1� � � � � yt−l;β)�
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The simulated auxiliary criterionQTH(θ�β) is then constructed by averaging over theH
paths8

QTH(θ�β)= 1
H

H∑
h=1

1
T

T∑
t=l+1

q
(
ỹ(h)t (θ)� ỹ(h)t−1(θ)� � � � � y

(h)
t−l (θ);β

)
� (11)

Given QTH(θ�β), under sufficient smoothness conditions, the gradient (w.r.t. β) for
the simulated version of the quadratic criterion functionMT(β) is given by

∂QTH
(
θ�β0

T

)
∂β

+ ∂2QTH
(
θ�β0

T

)
∂β∂β′

(
β−β0

T

)
�

Replacing the infeasible β0
T by β̂rT , and evaluating this gradient at β= β̂T , we can then

use the resulting estimating equations

m̄TH[θ; β̂T ] = ∂QTH
(
θ� β̂rT

)
∂β

+ ∂2QTH
(
θ� β̂rT

)
∂β∂β′

(
β̂T − β̂rT

)
= ∂QTH

(
θ� β̂rT

)
∂β

− ∂2QTH
(
θ� β̂rT

)
∂β∂β′

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1 ∂QT
(
β̂rT

)
∂β

(12)

to carry out a score-based I-I approach. In the absence of constraints for θ, this approach
yields the following I-I estimator:

θ̂sT�H(W )= arg min
θ∈Θ

m̄TH[θ; β̂T ]′ ·W · m̄TH[θ; β̂T ]� (13)

whereW is a positive-definite (dβ × dβ) weighting matrix.
In contrast to the I-I estimator in (13), the key idea of the CFS I-I strategy is to incor-

porate the KT multipliers by considering the modified estimating equations9

mCFS
TH [θ; λ̂T ] = ∂QTH

(
θ� β̂rT

)
∂β

+ ∂g′(β̂rT )
∂β

· λ̂T �

However, by plugging in the vector λ̂T of KT multipliers, as given by the first-order con-
ditions, (7), we obtain

mCFS
TH [θ; λ̂T ] = ∂QTH

(
θ� β̂rT

)
∂β

− ∂QT
(
β̂rT

)
∂β

� (14)

Then, for any positive-definite (dβ × dβ) weighting matrix W , CFS compute their so-
called “restricted” score-based I-I estimator as

θ̂CFS
T�H(W )= arg min

θ∈Θ
mCFS
TH [θ; λ̂T ]′ ·W ·mCFS

TH [θ; λ̂T ]� (15)

8Note that our use of QTH(·) is a slight abuse of notation since, in the case of a dynamic model, the
probability distribution of QTH(·) depends separately on T and H and not only on the product TH. This
abuse of notation is immaterial for first-order asymptotics.

9Note that CFS actually define this estimator only for “H = ∞.”
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CFS refer to their I-I estimator θ̂CFS
T�H(W ) as a restricted estimator, while we dub our I-I

estimator θ̂sT�H(W ) an “unrestricted” estimator since we employ the unrestricted esti-

mator β̂T .10

The first key result of this section is to demonstrate that the restricted terminology
employed by CFS is potentially misleading: both the restricted equations used by CFS
and our unrestricted equations are asymptotically equivalent to the estimating equa-
tions that would be used in an unconstrained (but infeasible) GT-type score-based I-
I approach. That is, the estimating equations used in both the CFS approach and our
approach are equivalent to the following unrestricted estimating equations that match
simulated data at the unconstrained, but infeasible, estimator β̈T :

∂QTH(θ� β̈T )

∂β
� where β̈T = β0

T + J−1
T ∂QT

(
β0
T

)
/∂β� (16)

Demonstrating equivalence between the three sets of estimating equations, (12),
(14), and (16), requires the following assumption.

Assumption A3. Under {θT } ∈ �(θ0�β0), the following are satisfied for any fixedH ≥ 1:

(i) For all θ ∈Θ, QTH(θ�β) has continuous partial derivatives (in β) of order two on
Int(Br)with probability one.

(ii) For δ0 and I0 defined in Assumption A1:√
T∂QTH

(
θ
T
�β0

T

)
/∂β→d ℵ(

δ0�I0/H
)
�

(iii) There exists a continuous matrix function θ �→ J (θ�β0) such that, for all θ ∈ Θ,
J (θ�β0) is positive-definite and for any γ > 0:

sup
θ∈Θ

sup
β∈Br :‖β−β0

T ‖≤ γ√
T

∥∥∥∥∂2QTH(θ�β)

∂β∂β′ +J
(
θ�β0)∥∥∥∥ = oP(1)�

While the contents of Assumption A3 are relatively straightforward, we would
like to point out that Assumption A3(ii) requires that, if we were to simulate un-
der the true value of the structural parameters, then asymptotically the behavior of√
T∂QTH(θT �β

0
T )/∂β and

√
T∂QT (β

0
T )/∂β must agree. Implicitly, such an assumption

requires that the models we are simulating data from be correctly specified, at least
asymptotically.

Under Assumptions A0–A3, we have the following result.

Proposition 2. For {θT } ∈ �(θ0�β0), under Assumptions A0–A3, for any givenH ≥ 1,

sup
θ∈Θ

∥∥m̄TH[θ; β̂T ] − ∂QTH(θ� β̈T )/∂β
∥∥ = oP(1/

√
T)

= sup
θ∈Θ

∥∥mCFS
TH [θ; λ̂T ] − ∂QTH(θ� β̈T )/∂β

∥∥�
and it follows that supθ∈Θ ‖mCFS

TH [θ; λ̂T ] − m̄TH[θ; β̂T ]‖ = oP(1/
√
T).

10We note here that both m̄TH [θ; β̂T ] and mCFS
TH [θ; λ̂T ] depend on the constrained estimator β̂rT . While it

is an abuse of notation to subsumed this dependence, we believe this avoids notational clutter and allows
us to easily differentiate between the two estimating equations.
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From Proposition 2, we conclude that both the restricted estimating equations con-
sidered by CFS, and the unrestricted estimating equations proposed herein, are equiv-
alent (uniformly over Θ, at first-order) to unrestricted GT-type estimating equations.
Therefore, the central message of Proposition 2 is that constraints on the auxiliary model
should have no effect on the choice of moments to match within score-based I-I estima-
tion.

To understand the significance of this asymptotic equivalence, recall that if the aux-
iliary parameters are near the boundary, the traditional approach based on minimiz-
ing, overΘ, the estimating equations ∂QTH(θ� β̂rT )/∂βmay not deliver an asymptotically
Gaussian estimator of θ0. In contrast, an I-I approach based on the unconstrained (but
infeasible) GT-type estimating equations in (16) would deliver an asymptotically Gaus-
sian estimator of θ0: from a Taylor series expansion, under Assumptions A0–A3, we can
conclude that

√
T
∂QTH(θT � β̈T )

∂β
= √

T
∂QTH

(
θT �β

0
T

)
∂β

+ ∂2QTH
(
θT �β

0
T

)
∂β∂β′

√
T

(
β̈T −β0

T

) + oP(1)

= √
T
∂QTH

(
θT �β

0
T

)
∂β

+ ∂2QTH
(
θT �β

0
T

)
∂β∂β′

{
−∂

2QT
(
β0
T

)
∂β∂β′

}−1√
T
∂QT

(
β0
T

)
∂β

+ oP(1)

= √
T
∂QTH

(
θT �β

0
T

)
∂β

− √
T
∂QT

(
β0
T

)
∂β

+ oP(1)� (17)

By Assumptions A1(iii) and A3(ii), and the independence of the observed and simulated
data, the right-hand side term in equation (17) is asymptotically Gaussian with zero
mean. Therefore, a direct consequence of Proposition 2 and equation (17) is that our
unrestricted estimating equations m̄TH[θ; β̂T ], when evaluated at θT , are also asymp-
totically Gaussian even when the auxiliary parameters are near the boundary.

Given the asymptotic equivalence derived in Proposition 2, we would expect that
our I-I estimator θ̂sT�H(W ) will be asymptotically equivalent to the CFS I-I estimator

θ̂CFS
T�H(W ). To detail such an equivalence result, we must maintain the following standard

assumption for consistency of extremum estimators.

Assumption A4. Under {θT } ∈ �(θ0�β0), for anyH ≥ 1:

(i) For any β ∈ Int(Br), the function θ �→ ∂QTH(θ�β)/∂β is continuous onΘ.

(ii) There exists a vector function L(θ�β0) such that, for any γ > 0,

sup
θ∈Θ

sup
‖β−β0

T ‖≤ γ√
T

∥∥∥∥∂QTH(θ�β)∂β
−L(

θ�β0)∥∥∥∥ =OP(1/
√
T)�

(iii) L(θ�β0)= 0 ⇐⇒ θ= θ0.
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Assumption A4 is a standard identification assumption, and is implicitly maintained
in CFS. However, our explicit treatment of parameters near the boundary forces us to
be more cautious. To see that, let us discuss the content of the identification Assump-
tion A4 in the context of the stochastic volatility model example in Section 2. For sake
of expositional simplicity, let us consider an auxiliary model based on conditional nor-
mality, with β= (ψ�ϕ�π)′. CFS rightly recall that π becomes asymptotically underiden-
tified when ϕ= 0. CFS circumvent this issue by assuming ϕ≥ 0�025. In contrast, we pro-
pose in this paper an explicit treatment of parameters near the boundary, which may
allow the asymptotic true value β0 = (ψ0�ϕ0�π0)′ to be such that ϕ0 = 0. The reader
can easily check that this specific value does not prevent ∂QTH(θ�β0)/∂β from having a
well-defined probability limit L(θ�β0). Consider a trial true value θ0 = (α0� δ0�σ0

v )
′ with

δ0 = 0. Then, yt is homoskedastic and

L
(
θ0�β0) = 0�

with β0 = (ψ0�ϕ0�π0)′ and with

ψ0 = Var(yt)= α0 and ϕ0 = π0 = 0�

But, if θ= (α�δ�σv)′ with δ �= 0, then, yt is conditionally heteroskedastic and obviously:

L
(
θ�β0) �= 0�

From this toy example, we conclude that Assumptions A4 is sensible.11

Assumptions A0–A4 allow us to prove the following result.

Proposition 3. For {θT } ∈ �(θ0�β0), under Assumptions A0–A4, for any given H ≥ 1
and any positive-definite matrix W , plimT→∞ θ̂sT�H(W ) = plimT→∞ θ̂CFS

T�H(W ) = θ0, and

‖θ̂sT�H(W )− θ̂CFS
T�H(W )‖ = oP(1/

√
T).

Since our unrestricted I-I estimator θ̂sT�H(W ) is asymptotically equivalent to the re-

stricted I-I estimator θ̂CFS
T�H(W ), we will set the focus on the former. By doing so, we con-

firm the discussion given earlier and in Section 2: when it comes to the choice of the
moments to match, we do not really care about constrained estimation of the auxiliary
model.

To prove asymptotic normality of the resulting estimator, a local identification as-
sumption is required to complete the global Assumption A4(iii).

Assumption A5. The vector function θ �→ L(θ�β0) is continuously differentiable on
Int(Θ) and, for all T ≥ 1, rank(∂L(θT �β0)/∂θ′)= dθ = rank(∂L(θ0�β0)/∂θ′).

11The reader may wonder how to identify σv in the homoskedastic case. This actually requires matching
the kurtosis since in the general case the unconditional kurtosis is

Var(ht)[
E(ht)

]2 = exp
(

σ2
v

1 − δ2

)
− 1�

This kurtosis matching is implicitly performed when using a Student-t conditional distribution as an auxil-
iary model.
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Theorem 2. For {θT } ∈ �(θ0�β0), under Assumptions A0–A5, for any given H ≥ 1 and
any positive-definite matrixW

√
T

(
θ̂sT�H(W )− θT

) →d ℵ
(

0�
(

1 + 1
H

)
ΩW

)
�

where, recalling I0 = limT→∞ Var[√T∂QT (β0
T )/∂β],

ΩW =A−1
W BW A

−1
W �

AW = ∂L
(
θ0�β0)′

∂θ
W
∂L

(
θ0�β0)
∂θ′ � BW = ∂L

(
θ0�β0)′

∂θ
W I0W

∂L
(
θ0�β0)
∂θ′ �

The optimal weighting matrixW is given by

W ∗ = [
I0]−1

�

and leads to an optimal I-I estimator with asymptotic variance12

(
1 + 1

H

)
Ω∗ =

(
1 + 1

H

)(
∂L

(
θ0�β0)′

∂θ

[
I0]−1 ∂L

(
θ0�β0)
∂θ′

)−1
�

Theorem 2 demonstrates that even though, due to the boundary bias in Assump-
tion A2, the term

√
T(θT − θ0) may not converge to zero, the term

√
T(θ̂sT�H(W )− θT )

still converges to a zero-mean Gaussian random variable. This result comes about from
the structure of m̄TH[θ; β̂T ] and the results of Proposition 2, which imply that

√
Tm̄TH[θT ; β̂T ] = √

T
∂QTH

(
θT �β

0
T

)
∂β

− √
T
∂QT

(
β0
T

)
∂β

+ oP(1)�

Then Assumptions A1(iii) and A3(ii), together with the independence between the ob-
served and simulated data, ensure that {√T∂QTH(θT �β0

T )/∂β − √
T∂QT (β

0
T )/∂β} is

asymptotically Gaussian with zero mean. That is, even though
√
T∂QT (β

0
T )/∂β has a

nonzero asymptotic mean, because I-I seeks to simulate data so that the observed and
simulated scores agree, in the sense that their normed difference is small, this nonzero
asymptotic mean is “knocked out” and does not contaminate the asymptotic distribu-
tion of

√
T(θ̂sT�H(W )− θT ).

It is also important to note that the above formulas are identical to those given
in GMR, confirming that we actually perform I-I without constraints. To see this, let
QT(θ�β) denote the simulated auxiliary criterion function calculated using the single
simulated path (H = 1) {ỹt (θ)}Tt=1, that is, with reference to equation (11)

QT(θ�β) := 1
T

T∑
t=l+1

q
(
ỹ(h)t (θ)� ỹ(h)t−1(θ)� � � � � y

(h)
t−l (θ);β

)
�

12The reader may notice that the formula for Ω∗ given above differs from that given in Proposition 4
of CFS, denoted as Cr0 in their equation (8). However, it is simple to verify that the two coincide when the
constraints g(β)≥ 0 are satisfied at β0

T since the KT multipliers will be zero in the limit.
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and consider the constrained estimator

β̃rT (θ)= arg max
β∈Br

QT (θ�β)�

For sake of interpretation, let us consider the simplest case without boundary problems.
Then the constrained estimator β̃rT (θ) converges towards a (nondrifting) pseudo-true
value b(θ) that is in the interior of the parameter set. Then, while KT multipliers con-
verge to zero, we have

plim
T→∞

∂QT
(
θ� β̃rT (θ)

)
∂β

=L(
θ�b(θ)

) = 0� ∀θ ∈Θ�

In particular, by differentiating the above and assuming, following Assumption A1,

∂L
(
θ0�β0)
∂β′ = plim

T→∞
∂2QT

(
β0)

∂β∂β′ = −J 0

we obtain

∂L
(
θ0�β0)
∂θ′ + ∂L

(
θ0�β0)
∂β′

∂b
(
θ0)
∂θ′ = 0

and so

∂L
(
θ0�β0)
∂θ′ = J 0 ∂b

(
θ0)
∂θ′ �

This relationship between ∂L(θ0�β0)/∂θ′ and ∂b(θ)/∂θ′ allows us to rewrite the asymp-
totic variance of

√
T(θ̂sT�H(W )− θT ) as

ΩW =A−1
W BW A

−1
W �

AW = ∂b
(
θ0)′

∂θ
J 0′

W J 0 ∂b
(
θ0)
∂θ′ � BW = ∂b

(
θ0)′

∂θ
J 0′

W IW J 0 ∂b
(
θ0)
∂θ′ �

Therefore,

Ω∗ =
{
∂b′(θ0)
∂θ

J 0′[I0]−1J 0 ∂b
(
θ0)
∂θ′

}−1
�

and we recognize the familiar formula given by GMR (see their Proposition 4) for the
asymptotic variance of the optimal I-I estimator.

3.2 Wald-based indirect inference with(out) constraints

The aforementioned tight connection with the results of GMR suggest that it should
be possible to perform I-I without constraints in an alternative, albeit asymptotically
equivalent, manner using the Wald approach and our well-behaved unconstrained esti-
mator β̂T . The philosophy of the Wald approach to I-I would then amount to compute
an unconstrained estimator β̃TH(θ) on simulated data (for any given value θof the struc-
tural parameters) and then to minimize, in some norm, β̂T − β̃TH(θ). We show in this
section that this approach may work, but requires care in the definition of β̃TH(θ).
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3.2.1 A first solution: The CFS strategy The Wald-based I-I strategy of CFS, which uses
constrained auxiliary parameter estimates, can be reinterpreted as a minimum distance
I-I approach based on a vector of unconstrained auxiliary parameter estimates. To see
this, first define

β̃rTH(θ)= arg max
β∈Br

QTH(θ�β)�

and let λ̃TH(θ) be the vector of KT multipliers delivered by this constrained optimiza-
tion. The Wald-based estimator of CFS is then given by

θ̌CFS
T�H(W )= arg min

θ∈Θ

[
β̂rT − β̃rTH(θ)
λ̂T − λ̃TH(θ)

]′
Kr′0 ·W � ·Kr0

[
β̂rT − β̃rTH(θ)
λ̂T − λ̃TH(θ)

]
� (18)

where, since we are under the assumption that the constraints are fulfilled,

W � =
[
W O
O O

]
� Kr0 =

[
Kr0�1

O

]
� Kr0�1 =

[
−J 0 ���

∂g′(β0
T

)
∂β

]
�

Recall that we have simplified the exposition by considering only auxiliary param-
eter estimates β̃rTH(θ) defined as above. Alternatively, we could consider H auxiliary
parameters based on a single simulated paths of length T : for h= 1� � � � �H

β̃r(h)T (θ) = arg max
β∈Br

QT (θ�β)�

and then compute13

β̄rT�H(θ)= 1
H

H∑
h=1

β̃(h)T (θ)�

Note that the estimator β̄rT�H(θ) fulfills the constraints if Br is a convex set. A suf-
ficient condition for that is to assume that the set B is convex and the functions gj(·),
j = 1� � � � � q defining the constraints are concave. However, the satisfaction of this condi-
tion is immaterial for the validity of an I-I estimator based on β̄rT�H(θ).

It must be acknowledged that a more complicated definition forKr0�1 is given in CFS.
However, this complication is immaterial in our setting as we work under the assump-
tion that the constraints are fulfilled, and thus the population (resp., estimated) vector
of KT multipliers is zero (resp., OP(1/

√
T)). As a matter of fact, the above estimator be-

comes feasible only whenKr0�1 is replaced by a consistent estimator like

K̂r0�1�T =
[
∂2QT

(
β̂rT

)
∂β∂β′

���
∂g′(β̂rT )
∂β

]
=

[
−ĴT

���
∂g′(β̂rT )
∂β

]
�

13Extending the results of GMR, we can conclude that β̃rTH(θ) and β̄rT�H(θ) are asymptotically equivalent
and would lead to asymptotically equivalent I-I estimators of θ. However, the results of Gourieroux, Renault,
and Touzi (1999) suggest that an I-I estimator based on β̄rT�H(θ)will have better finite sample properties, at
the cost of performing H optimizations in the auxiliary model instead of only just one. This discussion is
beyond the scope of this paper.
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Hence, for the sake of feasibility, we should rather consider

θ̌CFS
T�H(W )= arg min

θ∈Θ

[
β̂rT − β̃rTH(θ)
λ̂T − λ̃TH(θ)

]′
K̂r′0�1�T ·W · K̂r0�1�T

[
β̂rT − β̃rTH(θ)
λ̂T − λ̃TH(θ)

]
� (19)

Since the two estimators (18) and (19) are obviously asymptotically equivalent, we sim-
plify the exposition by denoting them identically, even though only (19) is feasible.

Just as with the score-based approach to I-I, we can now interpret the Wald-based
I-I estimator of CFS as I-I without constraints. To do so, note that

K̂r0�1�T

[
β̂rT −β0

T

λ̂T

]
= ∂2QT

(
β̂rT

)
∂β∂β′

(
β̂rT −β0

T

) + ∂g′(β̂rT )
∂β

λ̂T

= −ĴT
(
β̂T −β0

T

) + oP(1/
√
T)�

where the second equality follows from equation (10). Therefore, an asymptotically
equivalent version of the CFS Wald-based I-I estimator could be computed as

θ̄CFS
T�H(W )= arg min

θ∈Θ
(
β̂T − β̃CFS

TH (θ)
)′
ĴTW ĴT

(
β̂T − β̃CFS

TH (θ)
)
�

where we define β̃CFS
TH (θ) as

β̃CFS
TH (θ)= β̃rTH(θ)+

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1 ∂g′(β̂rT )
∂β

λ̃TH(θ)� (20)

Note that the notation β̃CFS
TH (θ) is justified by analogy with the relationships

β̂T = β̂rT −
[
∂2QT

(
β̂rT

)
∂β∂β′

]−1 ∂QT
(
β̂rT

)
∂β

(21)

= β̂rT +
[
∂2QT

(
β̂rT

)
∂β∂β′

]−1 ∂g′(β̂rT )
∂β

λ̂T � (22)

This reinterpretation of the so-called “restricted” Wald approach to I-I, as dubbed
by CFS, is an unconstrained I-I approach based (through equation (19)) on our FUNC
estimator. Therefore, we have a similar message to the score-based approach. This is
confirmed by Propositions 5 and 6 of CFS, which yield the following insights.

(i) For any choice of the positive definite weighting matrix W (or more generally
for any sequence of sample dependent positive-definite weighting matrices WT with a
positive-definite limit), the score-based I-I estimator θ̂CFS

T�H(W ) and the Wald-based I-I

estimator θ̌CFS
T�H(W ) are asymptotically equivalent.

(ii) For T sufficiently large, the two estimators are numerically equal in the case of an
auxiliary model that just identifies the structural parameters because dβ = dθ.

Point (i) above revisits the results of GMR (see their Section 2.5, p. S91), demon-
strating that, for any choice of the weighting matrix W , the score-based approach
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with weighting matrix W is asymptotically equivalent to the Wald-based approach with
weighting matrix ĴTW ĴT as in the definition of θ̂CFS

T (W ). In the case of a just identified
auxiliary model, the choice of the weighting matrix is immaterial and point (ii) calls to
mind Proposition 4.1 in Gourieroux and Monfort (1996). Once more, this similarity to
the results of GMR and Gourieroux and Monfort (1996) confirms that we are actually
performing I-I without constraints. In addition, since our unrestricted score-based I-I
estimator θ̂sT�H(W ) is asymptotically equivalent to the restricted score-based estimator

θ̂CFS
T�H(W ) (see Theorem 2), it is also (by point (i) above) asymptotically equivalent to the

alternative aforementioned Wald-based estimators of CFS: θ̌CFS
T�H(W ) and θ̄CFS

T�H(W ).

3.2.2 A second solution: Back to the score The previous subsection revisited the Wald-
based CFS estimator by resorting to a definition of β̃TH(θ) that mimics, on simulated
data, the alternative definition of the FUNC estimator given in equation (22). We can
alternatively use a definition of β̃TH(θ) that mimics equation (21). To see this, recall that
our score-based approach was focused on minimizing, in some norm,

m̄TH[θ; β̂T ] = ∂QTH
(
θ� β̂rT

)
∂β

+ ∂2QTH
(
θ� β̂rT

)
∂β∂β′

(
β̂T − β̂rT

)
=

[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]{
β̂T − β̂rT +

[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]−1 ∂QTH
(
θ� β̂rT

)
∂β

}

=
[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]{
β̂T − β̃cT�H(θ)

}
�

where

β̃cTH(θ)= β̂rT −
[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]−1 ∂QTH
(
θ� β̂rT

)
∂β

� (23)

Let us acknowledge, however, an important difference of philosophy between the
definitions of β̃CFS

TH (θ) and β̃cTH(θ). In the former case, we make a Newton–Raphson im-
provement of β̃rTH(θ), while in the latter case we remain true to β̂rT . In this respect, we
obviously set the focus on score matching and, as a consequence, a comparison with
our score-based approach is straightforward. More precisely, if we define another Wald-
based I-I estimator, the solution of

θ̂cT�H(W )= arg min
θ∈Θ

(
β̂T − β̃cTH(θ)

)′
ĴTW ĴT

(
β̂T − β̃cTH(θ)

)
�

we see that, from the formulas above, this minimization program can be equivalently
written as

min
θ∈Θ

m̄TH[θ; β̂T ]
[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]−1
ĴTW ĴT

[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]−1
m̄TH[θ; β̂T ]� (24)

which is nothing but minimizing a certain norm of m̄TH[θ; β̂T ] exactly as in equation
(13).14 As observed by a referee, for the above Wald-based I-I estimator, the auxiliary

14It might be argued that we are not exactly minimizing a norm w.r.t. θ since the weighting matrix itself
depends on θ. However, it must be realized that this is immaterial, both for consistency and asymptotic
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parameters are never estimated on simulated data, only on the observed data, which
can be convenient if the chosen auxiliary model is computationally challenging in some
manner, and signifies that we are basically back to a “score-based” I-I approach.

The asymptotic distribution of θ̂cT�H(W ) obviously depends on the limit of the
weighting matrix sequence given by

plim
T→∞

[
∂2QTH

(
θT � β̂

r
T

)
∂β∂β′

]−1
ĴTW ĴT

[
∂2QTH

(
θT � β̂

r
T

)
∂β∂β′

]−1
=W �

We can then conclude that this Wald-based I-I estimator θ̂cT�H(W ) is asymptotically

equivalent to the score-based I-I estimator θ̂sT�H(W ) introduced in Section 3.1. In other
words, all I-I estimators discussed so far (for the same weighting matrix W ) are asymp-
totically equivalent, exactly as in GMR. Furthermore, as in Theorem 2 above, the optimal
choice ofW isW ∗ = [I0]−1.

Interestingly enough, our unconstrained view of I-I results in numerical equivalence
between this Wald-based I-I estimator and our score-based I-I estimator when the di-
mension of the auxiliary and structural parameters are equal.

Theorem 3. For T sufficiently large and in the case of a just identified auxiliary model
(dβ = dθ), the estimators θ̂sT�H(W ) and θ̂cT�H(W

∗) are numerically identical irrespective of
the choice of weighting matrix (i.e.,W �=W ∗).

To conclude this subsection, it is worth comparing, in more detail, the two defini-
tions of β̃TH(θ) that have delivered Wald-based I-I estimators (by calibration against
the FUNC estimator) that are asymptotically equivalent to the score-based approach:

β̃CFS
TH (θ)= β̃rTH(θ)+

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1 ∂g′(β̂rT )
∂β

λ̃TH(θ)�

β̃cTH(θ)= β̂rT −
[
∂2QTH

(
θ� β̂rT

)
∂β∂β′

]−1 ∂QTH
(
θ� β̂rT

)
∂β

�

Since β̃CFS
TH (θ) is based on constrained estimation on the simulated path, through the

computation of β̃rTH(θ) and λ̃TH(θ), one may wish to revisit β̃cTH(θ) by also using con-
strained estimators on the simulated path, that is by instead computing

β̃func
TH (θ) = β̃rTH(θ)−

[
∂2QTH

(
θ� β̃rTH(θ)

)
∂β∂β′

]−1 ∂QTH
(
θ� β̃rTH(θ)

)
∂β

= β̃rTH(θ)+
[
∂2QTH

(
θ� β̃rTH(θ)

)
∂β∂β′

]−1 ∂g′(β̃rTH(θ))
∂β

λ̃TH(θ)�

β̃func
TH (θ) is the FUNC estimator computed on the simulated path, and it seems

sensible to match it against the FUNC estimator β̂T computed on the observed data.

distribution, to replace the occurrence of θ in the weighting matrix by a first-step consistent estimator. This
argument is quite similar to the one of equivalence between continuously updated GMM (Hansen, Heaton,
and Yaron (1996)) and efficient two-step GMM.
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However, this approach will not deliver a consistent estimator of θ0 in general. To see
this, note that β̃CFS

TH (θ) and β̃func
TH (θ) both set the focus on the same linear combina-

tion of β̃rTH(θ) and λ̃TH(θ). However, while β̃CFS
TH (θ) is guaranteed to end up with a

consistent estimator for the coefficients of this linear combination, the coefficients in
β̃func
TH (θ) themselves depend on the unknown θ. As a consequence, setting the focus on

[β̂T − β̃func
TH (θ)] alone, or some norm thereof, can induce an additional perverse solution

in the limit; that is, the limiting estimating equations, because of their nonlinear depen-
dence on θ, can admit an additional solution θ̄with θ̄ �= θ0. As such, an I-I strategy based
on β̃func

TH (θ) above may not identify θ0.15

4. Illustrative examples

4.1 Stochastic volatility

In this section, we apply our score-based I-I approach to estimate the parameters of the
stochastic volatility (SV) model:

yt =
√
htet� (25)

ln(ht)= α+ δ ln(ht−1)+ σvvt� (26)

where 0 < δ < 1, σv > 0, (et� vt)′ ∼i.i.d. N(0� Id2) and θ = (α�δ�σv)
′. We observe a series

{yt}Tt=1 from the SV model in (25)–(26) and our goal is to conduct inference on θ.
Following the discussion in Section 2, we consider the GARCH(1�1) auxiliary model

yt =
√
htεt� (27)

ht =ψ+ϕy2
t−1 +πh2

t−1�

where the errors εt in (27) are εt ∼i.i.d. N(0�1). The auxiliary parameters are denoted by
β, with β = (ψ�ϕ�π)′. As mentioned in Section 2, to ensure the GARCH(1�1) auxiliary
model is well-behaved CFS require the following inequality constraint:

ϕ ≥ 0�025�

Unlike the approach of CFS, by considering drifting sequences of auxiliary parameters,
we allow the constrained estimator to fully reach the boundary of constrained space, in
the limit. That is, instead, we assume the true auxiliary parameters satisfy the inequality

ϕ0
T ≥ o(1)�

4.1.1 Monte Carlo design To assess the performance of our proposed I-I estimation
strategy, we follow the Monte Carlo design of Jacquier, Polson, and Rossi (1994) (JPR,
hereafter), also used in CFS. In particular, we consider two sets of structural parameters:
θ0�1 = (−0�736�0�90�0�363)′ and θ0�2 = (−0�147�0�98�0�0614)′. These particular values for

15Frazier and Renault (2017) gave additional examples of settings where such perverse roots can arise in
nonlinear econometric models.
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θ0 are related to the unconditional coefficient of variation κ for the unobserved level of
volatility ht , where

κ2 = Var(ht)(
E[ht]

)2 = exp
(
σ2
v

1 − δ
)

− 1�

In the first design, we have κ2 = 1, which roughly represents lower-frequency returns
(say, weekly or monthly returns); for the second design, we set κ2 = 0�1, which roughly
corresponds to higher-frequency returns (say, daily returns).

As noted in CFS, the choice of the Gaussian auxiliary model, in conjunction with
the constraints, means that the GARCH(1�1) model is not well equipped to handle the
thick-tailed behavior exhibited by series generated from the log-normal SV model. Intu-
itively, this means that the constraints on the auxiliary parameters are likely to be bind-
ing since this auxiliary model is a crude approximation of the structural model. However,
it is not certain if the inadequacy of the Gaussian GARCH(1�1) auxiliary model in this
case, which was originally noted in Kim, Shephard, and Chib (1998), is due to the model
itself, the bindings constraints or a mixture of both issues. In this way, the FUNC based
auxiliary estimator may be able to mitigate these issues since it captures, in some sense,
the impact of the constraints.

The score based I-I objective function does not require a weighting matrix as we are
in the just identified setting; that is, we choose W = I. For computational simplicity, we
fix the number of data replications to be H = 10 across all Monte Carlo designs.16 We
illustrate the performance of our proposed I-I estimator across three different sample
sizes, T = 500�1000�2000, and consider 1000 Monte Carlo replications for each sample
size/parameter specification, leading to six separate specifications in total.

4.1.2 Monte Carlo results

Simulation design one: θ0�1 = (−0�736�0�90�0�363)′ To understand the difference be-
tween the constrained and unconstrained auxiliary estimators, Table 1 contains the fre-
quency of binding constraints for the GARCH(1�1) auxiliary parameter estimates when
we allow the boundary of the constrained space to drift, which replicates the behavior of
a drifting DGP. Recalling that, in their assessment, CFS employ the constraint ϕ≥ 0�025.
We choose a drifting boundary of ϕ ≥ ϕ̄T so that the drifting pseudo-true value β0

T lies
in the interior of the constrained space, but β0 can lie on the boundary. To ensure that
our approach is comparable to the approach of CFS, we set ϕ̄T := T−0�5, which ensure
that, at least for T = 2000 the two constraints are comparable.

For each replication, we calculate the auxiliary estimator β̂rT subject to the con-
straints in (3), where we require the constraint ϕ ≥ ϕ̄T , and calculate β̂T by taking a
Newton-step from β̂rT . While no constraints are used in the calculation of β̂T , it is in-
formative to ascertain the number of times this estimator would have caused the con-

16Optimization is carried out using an iterative Gauss–Seidel grid search approach. Starting values were
obtained by first running a crude grid search over Θ and choosing the corresponding grid values that min-
imized the I-I objective function. Only one iteration of the minimization procedure was carried out and
more efficient estimates could be obtained by considering multiple iterations.
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Table 1. Binding constraints for auxiliary estimators β̂rT and β̂T in design one: θ0�1 =
(−0�736�0�90�0�363)′. All terms are in percentages. For β̂T , the values represent the percentage
where the FUNC estimator would have caused the constraint to bind or be violated.

T = 500 T = 1000 T = 2000

β̂rT β̂T β̂rT β̂T β̂rT β̂T

ψ≥ 0 0�00% 1�20% 0�00% 0�20% 0�00% 1�50%
ϕ≥ T−0�5 11�10% 1�20% 4�50% 0�20% 0�60% 0�20%
π ≥ 0 3�80% 0�80% 0�40% 1�90% 0�70% 1�10%
ϕ+π ≤ 1 1�10% 1�90% 0�30% 0�50% 0�00% 0�20%

straints to bind or be violated, as this will tell us, to some extent, what using the uncon-
strained β̂T buys us, at least in comparison with β̂rT .

Table 1 demonstrates that under the first design, the constraints for the auxiliary
model are binding in a nonnegligible portion on the replications. Interestingly, the
FUNC estimator violates the constraint ϕ ≥ ϕ̄T less frequently than the constrained
estimator. This is important given the results of Francq and Zakoian (2009), which
demonstrate that the constraint ϕ > 0 is misleading, suggesting to conclude “that the
GARCH(1�1) model is sufficient for financial data,” while additional ARCH lags would
be relevant. As clearly explained by Francq and Zakoian (2009), this misleading conclu-
sion is due to the fact that “as a result of the positive constraints, it is possible that the
fitted GARCH(1�1) models” deliver a zero constrained estimator for the second ARCH
lag while the score at this value is strongly positive. By construction, the FUNC estimator
makes a Newton correction to take this positive score into account. Note that, in con-
trast, the FUNC estimator violates the stationarity constraint ϕ+π < 1 more frequently
than this constraint binds for the constrained estimator. It is worth realizing that this
constraint may be irrelevant since, when the GARCH(1�1) model is misspecified, the
fact that the pseudo-true value violates the stationarity constraint does not imply that
the process is nonstationary. This finding actually confirms a point made by Kim, Shep-
hard, and Chib (1998): when the data generating process is stochastic volatility (with true
volatility persistence of δ0 = 0�90), estimating the pseudo-true value for a GARCH(1�1)
model can often deliver estimates of volatility persistence with ϕ+π > 0�90.

Summary statistics for the resulting score-based I-I parameter estimates are col-
lected in Table 2. The results show that this I-I approach behaves well in finite samples,
regardless of the constraints for the auxiliary model. To further understand the finite-
sample properties of these estimators, in panels A and B of Figure 1 we plot the sam-
pling distributions of the δ and σv estimators across the three different sample sizes.17

The results in Figure 1 are similar to those reported on p. 963 in CFS.

Simulation design two: θ0�2 = (−0�141�0�98�0�0614)′ Analyzing the frequency of bind-
ing constraints for the second Monte Carlo design, we find a very similar story to the

17To ensure that all plots adequately represent the various sampling distributions and neatly fit in the
same figure, we have thrown out 1�5% of the lower tail observations for each series.
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Table 2. Summary statistics for I-I estimates based on the proposed score approach in de-
sign one: θ0�1 = (−0�736�0�90�0�363)′. STD—Monte Carlo standard deviation of the replications.
RMSE—root mean squared error of the replications. M. Bias—mean bias of the replications.

T = 500 T = 1000 T = 2000

θ STD RMSE M. Bias STD RMSE M. Bias STD RMSE M. Bias

α 0�2849 0�2854 0�0178 0�1996 0�1996 −0�0052 0�1439 0�1439 −0�0011
δ 0�1299 0�1397 −0�0503 0�0857 0�0897 −0�0266 0�0381 0�0392 −0�0092
σv 0�0945 0�0961 −0�0178 0�0447 0�0477 −0�0003 0�0333 0�0336 0�0047

first Monte Carlo design. Under this design, there are an even larger number of repli-
cations where the constraint ϕ ≥ ϕ̄T binds for the constrained estimator and is vio-
lated for the FUNC estimator. As discussed by CFS, a small unconditional coefficient
of variation for volatility creates a more challenging estimation problem, which seems
to have had an impact on the frequency of binding constraints in this GARCH(1�1) aux-
iliary model. The aforementioned work of Francq and Zakoian (2009) may suggest that
a GARCH(1� q), q > 1, would have provided more informative parameters to match for
I-I. Again, the fact that the FUNC estimator appears to be much less impacted by this

Figure 1. Sampling distribution for the I-I estimator of δ and σv under Monte Carlo designs
one, θ0�1 = (−0�736�0�90�0�363)′, and two, θ0�2 = (−0�141�0�98�0�0614)′. The thick line corre-
sponds to a sample size of T = 2000, the thick dashed line corresponds to T = 1000, and the thin
dashed line corresponds to T = 500. The vertical line represents the true value in the simulation.
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Table 3. Binding constraints for auxiliary estimators β̂rT and β̂T in design two: θ0�2 =
(−0�141�0�98�0�0614)′. All terms are in percentages. For β̂T , the values represent the percentage
where the FUNC estimator would have caused the constraint to bind or be violated.

T = 500 T = 1000 T = 2000

β̂rT β̂T β̂rT β̂T β̂rT β̂T

ψ≥ 0 0�00% 6�10% 0�00% 2�40% 0�00% 0�30%
ϕ≥ T−0�5 29�50% 6�10% 20�70% 2�40% 10�90% 0�30%
π ≥ 0 0�00% 6�40% 0�00% 2�50% 0�00% 0�50%
ϕ+π ≤ 1 0�30% 6�50% 0�00% 2�60% 0�10% 0�30%

constraint (five fewer times for a sample size of 500, and ten less times for larger sam-
ple sizes) is good news regarding its ability to capture the relevant information in the
data. In addition, we find that there are a relatively large number of replications where
the FUNC estimator does not satisfy the constraint ϕ+π ≤ 1: in about seven percent of
the samples the FUNC estimator violates this constraint (at the sample size of T = 500).
This is not surprising since, as explained above, as discussed in Kim, Shephard, and Chib
(1998), we would expect the estimator of ϕ+ π to be larger than 0�98 (the true value of
the volatility persistence, δ, under this design).

Summary statistics for the resulting score-based I-I parameter estimates are col-
lected in Table 4, with the results reflecting the same conclusions as those obtained in
the first Monte Carlo design. The sampling distributions of the δ and σv estimators in
the second Monte Carlo design are contained in panels C and D of Figure 1. Again, the
figures demonstrate that this approach works well.

4.2 α-Stable model

In this section, we apply our I-I approach to data generated i.i.d. from the α-stable dis-
tribution. We recall that the α-stable distribution is characterized by four parameters:
α—the tail index; γ—the skewness parameter; μ—the location; and σ—the scale. To

Table 4. Summary statistics for I-I estimates based on the proposed score approach in de-
sign two: θ0�2 = (−0�141�0�98�0�0614)′. STD—Monte Carlo standard deviation of the replications.
RMSE— root mean squared error of the replications. M. Bias—mean bias of the replications.

T = 500 T = 1000 T = 2000

θ STD RMSE M. Bias STD RMSE M. Bias STD RMSE M. Bias

α 0�5576 0�5576 0�0037 0�3857 0�3860 −0�0171 0�2822 0�2822 0�0018
δ 0�0592 0�0657 −0�0287 0�0303 0�0321 −0�0107 0�0096 0�0102 −0�0034
σv 0�0804 0�0805 0�0054 0�0358 0�0359 0�0030 0�0097 0�0097 0�0008
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simplify the analysis, we assume that the location parameter μ is known and fix its value
at μ= 0.18

The α-stable distribution has no closed-form density representation, and thus max-
imum likelihood estimation of the unknown parameters is difficult, which has led sev-
eral authors to apply I-I to estimate the unknown parameters. Following the discussion
in Section 2, we take as our auxiliary model the skewed Student-t (hereafter, skew-t) dis-
tribution of Fernandez and Steel (1998):

f (y;β)=

�

(
ν

2
+ 1

2

)
�(ν/2)√

ν

1

�

(
η+ 1

η

){
1 + 1
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(
y −ω
�

)2[ 1

η2 1[y ≥ω] +η21[y < ω]
]}− ν+1

2
�

where ν captures tail thickness, η captures skewness, and the location and scale param-
eters are ω and �, respectively.

4.2.1 Monte Carlo design We consider a Monte Carlo design that is similar to Garcia,
Renault, and Veredas (2011). We fix (μ�σ�γ)′ at (0�0�5�0)′ and consider two different
true values for α0: (1) α0 = 1�90 and (2) α0 = 1�95. We consider two sample sizes, T = 500
and T = 1000, and generate 1000 Monte Carlo replications for each sample size.

As noted in Section 2, when α is close to, or larger than, 1�9, the parameter ν in the
skew-t auxiliary model can become poorly identified in small samples and can result in
I-I estimators with poor behavior.19 Simulation results in Garcia, Renault, and Veredas
(2011) demonstrate that, for data generated from the α-stable distribution with α < 2
but close to 2, the unconstrained PMLE for ν is non-Gaussian and numerically unstable
in small samples. To circumvent this issue, the authors impose ν ≤ 2 within the skew-t
auxiliary model, and then use as auxiliary statistics for I-I inference the auxiliary PMLE
for β and the corresponding KT multiplier λ associated with the inequality constraint
on ν. We refer the interested reader to Section 2 for further discussion on the need for
this constraint.

Instead of imposing an arbitrary constraint on the auxiliary model, which may
limit its identifying power, we propose to use the FUNC estimator. In this context, the
FUNC estimator does not display the same numerical instability observed in the un-
constrained estimator for ν: the calculation of the FUNC estimator is based on the nu-
merically stable constrained estimator. Therefore, we argue that the FUNC estimator
represents a practically useful medium between the fully unconstrained, and numeri-
cally unstable, auxiliary estimator and the standard constrained auxiliary estimator.

4.2.2 Monte Carlo results Under both Monte Carlo designs, the constraint on the aux-
iliary estimator (β̂rT ) for ν binds across all the replications, which implies that if one
were to use the constrained I-I approach suggested by CFS, identification of α0 is com-
pletely determined by the KT multiplier associated with the constraint. Likewise, across
all replications and both Monte Carlo designs, the FUNC estimator (β̂T ) would have

18This is not overly restrictive as reliable estimators of the location parameter exist that can easily be
employed before the analysis.

19A value of α< 2 implies that the unconditional variance of the random variable is not finite.
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caused the constraints to bind or be violated for both Monte Carlo designs estimator.
Therefore, we can conclude that the constrained version of this auxiliary model is un-
able to identify α0 by itself, and instead must rely on additional auxiliary statistics that
are not associated with the auxiliary model; that is, the KT multiplier in this case.

In contrast, the FUNC estimator only uses the information contained in the (uncon-
strained) auxiliary model. Since the FUNC estimator is unconstrained, it is not surpris-
ing that this estimated auxiliary parameter always violates the constraint ν ≤ 2. Given
the above results for the constrained and FUNC-based auxiliary estimators, it is clear
that the pseudo-true value defined by this constrained optimization program is on the
boundary of the parameter space. As such, an alternative strategy would be to consider
a skew-t auxiliary model that imposes the equality constraint ν = 2.

Before presenting the Monte Carlo results, we remark that if the pseudo-true value
of the auxiliary parameters were to violate the constraint ν ≤ 2, the auxiliary score (eval-
uated at this pseudo-true value) would not be zero in the limit, and, as such, this case
would be outside the scope of our theoretical analysis. While such scenarios could be
accommodated by extending our theoretical framework, at the cost of additional nota-
tion and technical arguments, this extension is not germane to the main message of the
paper. Therefore, for the sake of brevity, we do not consider such cases further.

Table 5 reports the standard deviation (STD), root-mean-squared error (RMSE) and
mean bias (M. Bias) associated with the parameter estimates from our unconstrained
I-I estimation approach; namely, α, γ, σ . The results demonstrate that our approach
produces estimates with reliable finite-sample properties across both sample sizes.

In addition, Figure 2 contains kernel density estimates of the standardized param-
eter estimates across the Monte Carlo replications for the case of α0 = 1�95, the corre-
sponding results for the design where α0 = 1�90 are very similar and are not reported
for the sake of brevity. The results demonstrate that the standardized estimators have
a roughly Gaussian shape, even though they are computed from α-stable random vari-

Table 5. Summary statistics for Monte Carlo estimators across both sample sizes for design one
(α0 = 1�90) and two (α0 = 1�95), denoted as D1 and D2 in the table. STD—Monte Carlo standard
deviation of the replications. RMSE—root mean squared error of the replications. M. Bias—mean
bias of the replications. Across both designs γ0 = 0 and σ0 = 0�5. Under both designs, the con-
strain ν ≤ 2 was binding in all Monte Carlo replications for both β̂rT and β̂T .

T = 500 T = 1000

α γ σ α γ σ

D1
STD 0�0817 0�0003 0�0295 0�0612 0�0002 0�0210
RMSE 0�0819 0�0003 0�0295 0�0611 0�0003 0�0210
M. Bias −0�0060 0�0002 −0�0016 −0�0016 0�0001 0�0007

D2
STD 0�0637 0�0002 0�0272 0�0471 0�0002 0�0195
RMSE 0�0646 0�0003 0�0272 0�0474 0�0003 0�0195
M. Bias −0�0108 0�0002 −0�0007 −0�0058 0�0001 0�0005
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Figure 2. Sampling distribution for the standardized I-I estimator of θ in the α-stable Monte
Carlo experiments: θ0 = (α0�γ0�σ0)′ = (1�95�0�0�0�5)′. The results under the Monte Carlo exper-
iment with θ0 = (1�90�0�0�0�5)′ are similar and, therefore, not presented for brevity.

ables. We refer the reader to Garcia, Renault, and Veredas (2011) for theoretical justifica-
tion of this phenomena.

4.3 Stochastic Volatility Jump Diffusion (SVJD) model

Motivated by the now well-established empirical findings of time-varying volatility and
the existence of jumps in returns data, we explore here a continuous-time specifica-
tion for financial returns. We consider that returns evolve in continuous-time according
to a mean reverting stochastic volatility model, which follows an Ornstein–Uhlenbeck
process, and where returns themselves exhibit random jumps. We first demonstrate, via
Monte Carlo results, that in this empirically relevant model, the class of GARCH auxil-
iary models will often deliver estimated auxiliary parameters that are near the boundary
of the parameter space. We then demonstrate that our I-I approach delivers reliable es-
timators of the corresponding structural parameters even though the original auxiliary
parameters are near the boundary of the parameter space. Lastly, we use our I-I ap-
proach to conduct inference on the parameters of the SVJD model to determine whether
or not there exists significant evidence of jumps in daily S&P500 returns.

For Pt denoting the asset price at time t > 0, and pt := ln(Pt), assume that pt evolves
according to the bivariate diffusion process

dpt = μdt + exp(Vt/2)dW
p
t + dJpt �

dVt = κ(η− Vt)dt + σv dW v
t �

dJ
p
t =Zt dNt� Zt ∼N

(
μj�σ

2
j

)
�Pr[dNt = 1] = λ̄j dt + o(t)� (28)

where dW v
t and dW p

t are correlated Brownian motion processes, with correlation ρ, and
dNt is a Poisson process with intensity λ̄j , and Zt ∼N(μj�σ

2
j ). We collect the unknown

parameters into θ= (μ�κ�η�σ2
v � λ̄j�μj�σ

2
j � ρ)

′ and consider inference on θ using I-I.
Following the analysis in Example 1, we take as our auxiliary model the GARCH

model with Student-t errors: for rt := pt −pt−1 denoting log-returns,

rt = μa +
√
htεt�

ht =ψ+ϕ(rt−1 −μa)2 +πht−1�
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where, for v(η) := [(1/η− 1/2)/1/η], εt ∼i.i.d. v(η)
1/2t1/η, and v(η)1/2t1/η denotes a

Student-t with unit variance. The auxiliary GARCH model is unable to identify the jump
parameters in (28), and so we supplement the auxiliary GARCH model with additional
summary statistics based on both bipower variation and realized jump variation: for rt�i
denoting the ith, out of M , equally-spaced intraday returns observed on day t, bipower
variation is defined as

BVt := π

2

(
M

M − 1

) M∑
i=2

|rt�i||rt�(i−1)|�

and jump-variation is defined as

JVt := max{RVt − BVt �0}� RVt =
M∑
i=1

r2
t�i�

where RVt denotes realized volatility. For I-I estimation, we then consider the additional
summary statistics: for JV := 1

T

∑T
t=1 JVt ,

S1 := 1
T

T∑
t=1

sign(rt)
√

JVt � S2 := 1
T

T∑
t=1

(JVt − JVt )2�

S3 := 1
T

T∑
t=2

(JVt − JVt )(JVt−1 − JVt )

which correspond to the mean, variance and covariance of the realized jump variation.
We note here that Frazier, Maneesoonthorn, Martin, and McCabe (2019) have used these
statistics to help identify the jump-process parameters in a discrete-time version of this
SVJD model for daily S&P500 returns data.

Estimating GARCH models on daily data can often lead to estimated values of ϕ and
π such that the constraint ϕ+ π ≤ 1 is very close to binding. To ensure numerical sta-
bility of the optimization procedure, in practice this constraint is often implemented as
ϕ+π ≤ 1 − c, for c > 0 and small.

With this point in mind, and similar to the α-stable example, there is every reason
to suspect that a lack of variation in the estimated constrained auxiliary parameters of
ϕ and π, due to the need to satisfy the constraint ϕ + π ≤ 1, may cause identification
issues for the I-I estimator of the structural parameters; that is, if there are many pa-
rameter combinations for θ that yield estimated constrained auxiliary parameters close
to the boundary of the constraints, then those simulated data sets may be difficult for
the I-I objective function to distinguish. Therefore, we argue that an appropriate ap-
proach to the use of GARCH models in such settings is to employ our FUNC-based II
approach.

4.3.1 Monte Carlo design The observed data is generated from the model in equation
(28) using an Euler discretization scheme with step size 1/δ. Log-prices are then gener-
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ated according to the recursive scheme

pt�(i+1)/δ = pt�i/δ +μ1
δ

+ exp(Vt�i/δ/2)ε
p
t�i

1
δ

+Zt�i�Nt�i/δ�

Vt�(i+1)/δ = Vt�i/δ + κ(η− Vt�i/δ)1
δ

+ σv

δ

(
ρε
p
t�i +

√
1 − ρ2εvt�i

)
�

where (εpt�i� ε
v
t�i)

′ is bivariate standard normal, Zt�i ∼i.i.d. N(μj�σ
2
j ) and �Nt�i/δ is drawn

from a Poisson distribution with intensity λ̄j/δ.
We simulate data from the above Euler approximation at the (approximate) 1 minute

frequency, δ = 400, and record daily returns, and 10 minute intraday returns. The re-
maining simulations are discarded. We retain T = 500 trading days for the Monte
Carlo, which amounts to approximately 2 years of daily returns. For the intraday re-
turns, we use 10-minute returns to calculate our measures of realized volatility RV10

t :=∑M
t=1 r

2
t�i, M = 40, and our corresponding realized jump measure JVt . For the data sim-

ulation, we consider an initialization period of 400 periods, or one trading day. Fol-
lowing the design of Creel and Kristensen (2015), we set the unknown parameters to
θ0 = (0�00�0�02�0�25�0�20�0�10�0�00�0�50�−0�10)′.

For I-I estimation, we also consider a Euler discretization scheme at the one-minute
sampling frequency, although finer-sampling schemes may lead to estimators with bet-
ter properties. Since this scheme already requires simulating a large number of data
points, to ease the computational burden of the I-I estimator, we limit the analysis to
consider only a single simulated path, that is, H = 1. This will induce some efficiency
loss in the resulting estimators, however, that is the price to pay for computational con-
venience.

4.3.2 Monte Carlo results First, we analyze the frequency at which the estimated aux-
iliary parameters cause the constraint ϕ + π ≤ 1 to bind. From Table 6, we see that in
26% of the simulations the constraint was binding for the constrained auxiliary estima-
tors, while the FUNC estimator either led to a value of the estimated parameters that
was greater than or equal to one. As explained in Section 4.1, a true daily volatility per-
sistence exp(−κ) ≈ 0�98 leads us to expect an estimator of ϕ+ π even larger than 0�98.

Table 6. Summary statistics for Monte Carlo estimators for the SVJD example. The sample size
is T = 500. STD—Monte Carlo standard deviation of the replications. RMSE—root mean squared
error of the replications. M. Bias—mean bias of the replications. For this Monte Carlo example,
the constraint on ϕ + π ≤ 1 was binding in 26% of the Monte Carlo replications, for both the
constrained estimator β̂rT and the FUNC estimator β̂T .

θ μ κ η σv λ̄j μj σ2
j ρ

θ0 0�0000 0�0200 0�2500 0�2000 0�1000 0�0000 0�5000 −0�1000

STD 0�0010 0�0068 0�1005 0�1193 0�0195 0�0010 0�1099 0�0204
RMSE 0�0010 0�0068 0�1006 0�1193 0�0197 0�0010 0�1098 0�0204
M.Bias 0�0000 −0�0002 0�0062 −0�0048 0�0027 0�0000 −0�0005 −0�0014
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Moreover, this behavior is amplified in the presence of jumps, and leads to an uncon-
strained estimations of ϕ+π that if frequently larger than unity.

While this behavior of the FUNC estimator may seem counterintuitive, recall that
the condition ϕ+ π < 1 is required for stationarity in the GARCH model, under the ex-
plicit assumption that the true DGP is GARCH. Therefore, in this example the constraint
ϕ+ π < 1 is meaningless since the true DGP is not GARCH. Indeed, the process in this
simulation is stationary even though the estimated values can satisfy ϕ+ π ≥ 1 in any
finite-sample. This example clearly demonstrates that if we simply used the constrained
GARCH auxiliary estimators, we could artificially limit the identifying power of this aux-
iliary model.

Using our FUNC-based I-I approach, we estimate the structural parameters of the
SVJD model and report the results in Table 6. The corresponding estimators display low
mean bias and reasonable values for the RMSE, especially given that we have used only a
single simulated path for I-I. Similar to the previous two examples, the results of this sec-
tion demonstrate that our approach is able to achieve identification without the need to
resort to an I-I approach that utilizes the KT multipliers associated with the constraints
for the auxiliary model.

4.3.3 Empirical illustration: S&P500 data To further illustrate our approach, we apply
our method to the SVJD model with leverage effects based on demeaned S&P500 returns
observed at the daily frequency, between 3 January 2017 and 3 January 2019, which con-
sists of 501 daily observations. High-frequency intraday returns are used to build real-
ized volatility and bi-power variation estimators at the 5-minute sampling frequency. We
source the data from the Oxford-Man Institutes “realised library,” which contains daily
returns on several important financial indices, and nonparametric volatility measures
(Gerd, Lunde, Shephard, and Sheppard (2009)).

The auxiliary model is again taken to be the GARCH model with standardized
Student-t errors (and unit variance): for rt := pt − pt−1 denoting log-returns on the
S&P500 index, with t = 1� � � � �501 denoting the daily frequency,

rt = μa +
√
htεt�

ht =ψ+ϕ(rt−1 −μa)2 +πht−1�

Again, for JV := 1
T

∑T
t=1 JVt , we augment this model with the summary statistics

S1 := 1
T

T∑
t=1

sign(rt)
√

JVt � S2 := 1
T

T∑
t=1

(JVt − JV)2�

S3 := 1
T

T∑
t=2

(JVt − JV)(JVt−1 − JV)

that capture the jump components of the SVJD model. While this simple SVJD model
has now been generalized in several directions, for example, with the inclusion of auto-
correlated jumps (Fulop, Li, and Yu (2014), Ait-Sahalia, Cacho-Diaz, and Laeven (2015),
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and Maneesoonthorn, Forbes, and Martin (2017)), this simpler SVJD model is still em-
pirically relevant since, if the corresponding jumps components are not statistically sig-
nificant, it is highly unlikely that these more complicated modeling approaches are nec-
essary.

Maximum likelihood-based inference on the full set of static parameters in this SVJD
model,

θ= (
κ�η�σ2

v � λ̄j�μj�σ
2
j � ρ

)′
�

is challenging, due to the existence of the latent volatilities.20 In contrast, I-I is straight-
forward due to our ability to cheaply simulate data from this model. Therefore, we con-
sider estimation of the model in (28) using our I-I approach base on the GARCH auxil-
iary model, and where the statistics (S1� S2� S3)

′ yield auxiliary moments that enable us
to identify the jump components. Similar to the Monte Carlo example, the I-I procedure
uses a simulation frequency of 1 minute.

The estimated values of θ obtained using this setup and the daily S&P500 data are
given in Table 7, along with the corresponding standard errors. The standard errors are
calculated using a block bootstrap approach, with 999 bootstrap replications and with
a block length of twenty-five observations. Given the relatively short length of the time
series, we believe these bootstrap standard errors are likely more reliable than those ob-
tained from the asymptotic formula presented in Section 3.

Before analyzing the results in the table, we first note that the estimated auxiliary
parameters for the GARCH model are such that ϕ+ π ≈ 1 for both the constrained and
FUNC-based auxiliary estimators. Recall that, even though in this example the FUNC
and constrained auxiliary estimators are similar, the FUNC estimator is guaranteed to be
asymptotically normal, whereas the constrained estimator will in general not be asymp-
totically normal. Therefore, we contend that, even though the two estimators are similar
in this small scale example, the use of the FUNC estimator for I-I is a safer choice than
the constrained estimator.

Analyzing the results for θ in Table 7, we see that the majority of the coefficients are
statistically significant and have the correct signs and magnitudes, with the majority of
the results being similar to those obtained elsewhere; see, for example, Creel and Kris-
tensen (2015). In particular, the results suggest that the jump process has a significant
jump frequency, but that the resulting jump sizes are small, negative, and have large

Table 7. Estimators (Est) and standard errors (STD) for the SVJD S&P500 exercise. For this data
set, the constraint onϕ+π ≤ 1 was binding for both the constrained estimator β̂rT and the FUNC
estimator β̂T .

θ κ η σv λ̄j μj σ2
j ρ

Est 0�2876 0�5945 0�1166 0�1278 −0�0034 1�2650 −0�6131
STD 0�0836 0�0539 0�0366 0�0383 0�0203 0�2902 0�1717

20Since the data is demeaned before hand, we do not estimate μ in this example.
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variability. In addition, these results also suggest that the resulting jump components
(μj�σ

2
j ) are difficult to accurately measure.

5. Conclusion

The overall message of this paper can be summarized as follows: application of the I-I
methodology may require the imposition of certain constraints on the auxiliary parame-
ters, however, one must bear in mind that the behavior of I-I estimators for the structural
parameters can be adversely affected by the constraints placed on the auxiliary parame-
ters. In place of these constrained auxiliary parameters, our proposed strategy is to use,
for the purpose of I-I, a FUNC (Feasible UNConstrained) estimator of the auxiliary pa-
rameters, which in spite of being unconstrained, is always well-defined.

This FUNC estimator leads to simple score and Wald-based I-I approaches, which
have been shown to be asymptotically equivalent, at least to first order, with the ap-
proach based on constrained auxiliary parameters proposed by CFS. Several Monte
Carlo studies demonstrate the good finite-sample properties of this approach, and doc-
ument that our I-I estimator can deliver robust estimators of the corresponding struc-
tural parameters, even in cases where the pseudo-true value of the auxiliary parameters
is on the boundary of the parameter space.

Appendix A: Proofs of main results

Proof of Lemma 1. We first prove that ‖β̂rT − β0
T ‖ = oP(1). The argument follows the

standard approach. Under {θT } ∈ �(θ0�β0),
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where the oP(1) follows from the fact thatQT(β̂rT )≥QT(β0
T )+ oP(1). From the uniform

convergence in Assumption A0(i), we can conclude

0 ≤ Q
(
θT �β

0
T

) −Q
(
θT � β̂

r
T

) ≤ oP(1)�

The result then follows from the identification condition in Assumption A0(ii).
We next show

√
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T )=OP(1). The quadratic expansion
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T

) +RT (β)�

can be rewritten as

QT
(
β̂rT

) =QT
(
β0
T

) + 1
T
κ′
T J

−1/2
T

√
T
∂QT

(
β0
T

)
∂β

− 1
2T

‖κT ‖2 +RT
(
β̂rT

)
� (29)
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where

JT = −∂
2QT

(
β0
T

)
∂β∂β′ � κT = J1/2

T

√
T

(
β̂rT −β0

T

)
�

From the definition of β̂rT , applying the quadratic expansion in (29)

oP(1) ≤ T · [QT (
β̂rT

) −QT
(
β0
T

)]
= κ′

T J
−1/2
T

√
T
∂QT

(
β0
T

)
∂β

− 1
2
‖κT ‖2 + T ·RT

(
β̂rT

)
�

However, by Assumption A2, since ‖β̂rT −β0
T ‖ = oP(1), we have that∣∣T ·RT

(
β̂rT

)∣∣ ≤ (
1 + ∥∥√

T
(
β̂rT −β0

T

)∥∥)2
oP(1)�

Applying the above, we have

κ′
T J

−1/2
T

√
T
∂QT

(
β0
T

)
∂β

− 1
2
‖κT ‖2 + T ·RT

(
β̂rT

)
=OP

(‖κT ‖) − 1
2
‖κT ‖2 + (

1 + ∥∥J−1/2
T κT

∥∥)2
oP(1)

=OP
(‖κT ‖) − 1

2
‖κT ‖2 + oP

(‖κT ‖) + oP
(‖κT ‖2) + oP(1)�

so that we may rewrite the above as

‖κT ‖2 ≤ 2‖κT ‖[oP(1)+OP(1)
] + oP(1)�

Defining ζT := [oP(1)+OP(1)] ≡OP(1) and xT := ‖κT ‖, we end up with the inequality

x2
T − 2xT ζT + oP(1)≤ 0�

which is satisfied for xT in the interval ζT ±
√
ζ2
T + oP(1); that is, for xT in the interval

[0�2ζT + oP(1)]. Hence, ζT =OP(1) implies that

xT = ‖κT ‖ = ∥∥J1/2
T

√
T

(
β̂rT −β0

T

)∥∥ =OP(1)
which implies that

√
T

(
β̂rT −β0

T

) =OP(1)�
Now, we prove

√
Tλ̂T =OP(1). First, consider the case where q > dβ. By assumption,

at most there are q̃ dimensions of g(β0
T ) that are precisely zero, which are all contained

in the vector g̃(β0
T ). As shown above,

√
T(β̂rT −β0

T )=Op(1), and we can then be sure that
asymptotically, with probability one, all zero entries of g(β̂rT ) are also included in g̃(β̂rT ).
Define λ̃T to be the q̃-dimensional subvector of λ̂T that corresponds to the entries of
g that are in g̃. By the slackness conditions of the Kuhn–Tucker optimization problem,
asymptotically, with probability one, since g̃(β̂rT ) contains all the zero entries of g(β̂rT ),
λ̃T contains all the possible nonzero entries of λ̂T .



Quantitative Economics 11 (2020) Indirect inference with(out) constraints 151

With these definitions, the Kuhn–Tucker first-order conditions can be stated as

√
T
∂QT

(
β̂rT

)
∂β′ + ∂g̃′(β̂rT )

∂β

√
T λ̃T = 0�

For some intermediate value β̄T , a first-order expansions gives

√
T
∂QT

(
β0
T

)
∂β′ + ∂2QT

(
β̄T

)
∂β∂β′

√
T

(
β̂rT −β0

T

) + ∂g̃′(β0
T

)
∂β

√
T λ̃T + oP(

√
T λ̃T ) = 0�

where the oP(
√
T λ̃T ) term follows by the first part of Lemma 1 and the continuity of

∂g(β)/∂β′ in Assumption A1(iv). Since ∂g̃′(β0
T )/∂β is full column-rank, we have, for some

intermediate value β̄T ,

√
T λ̃T = −

[
∂g̃

(
β0
T

)
∂β′

∂g̃′(β0
T

)
∂β

]−1 ∂g̃
(
β0
T

)
∂β′

√
T
∂QT

(
β̂rT

)
∂β

+ oP(
√
T λ̃T )

= −
[
∂g̃

(
β0
T

)
∂β′

∂g̃′(β0
T

)
∂β

]−1 ∂g̃
(
β0
T

)
∂β′

[√
T
∂QT

(
β0
T

)
∂β

+ ∂2QT(β̄T )

∂β∂β′
√
T

(
β̂rT −β0

T

)]
+ oP(

√
T λ̃T )

= OP(1)+ oP(
√
T λ̃T )�

where the last line follows from Assumption A1(iii) and
√
T(β̂rT −β0

T )=OP(1).
In the case where q ≤ dβ, the above arguments remain valid if we take q̃ = q,

g̃(β)= g(β), λ̃T = λ̂T , and note that ∂g̃′(β0
T )/∂β has full column-rank q.

Proof of Proposition 1. A first-order expansions of the first-order conditions (7) give

√
T
∂QT

(
β0
T

)
∂β′ + ∂2QT

(
β0
T

)
∂β∂β′

√
T

(
β̂rT −β0

T

) + ∂g′(β0
T

)
∂β

√
T λ̂T = oP(1)� (30)

Recalling the definition of the infeasible unconstrained estimator β̈T , we can rewrite the
LHS of the above equation as follows (while the RHS is exactly zero when the function
QT is quadratic and the constraints are linear):

JT
√
T

(
β̈T −β0

T

) − JT
√
T

(
β̂rT −β0

T

) + ∂g′
T

(
β0
T

)
∂β

√
T λ̂T = oP(1)�

By Lemma 1, and Assumption A1, all three terms of the LHS of the above equality are all
OP(1). We deduce that

JT
√
T

(
β̂rT −β0

T

) − ∂g′(β0
T

)
∂β

√
T λ̂T = JT

√
T

(
β̈T −β0

T

) + oP(1)� (31)

Moreover, as already noted above, the remainder term oP(1) in (31) is zero when the
criterion functionQT is quadratic and the constraints are linear.
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Proof of Theorem 1. By definition,

√
T
∂QT

(
β̂rT

)
∂β

+ ∂2QT
(
β̂rT

)
∂β∂β′

√
T

(
β̂T − β̂rT

) = 0�

Therefore, by a Taylor expansion of the first term around the true value β0
T :

√
T
∂QT

(
β0
T

)
∂β

+ ∂2QT
(
β0
T

)
∂β∂β′

√
T

(
β̂rT −β0

T

) + ∂2QT
(
β̂rT

)
∂β∂β′

√
T

(
β̂T − β̂rT

) = oP(1)

and then, since
√
T(β̂rT −β0

T )=OP(1), we can obviously simplify the above decomposi-
tion to obtain

√
T
∂QT

(
β0
T

)
∂β

= −∂
2QT

(
β̂rT

)
∂β∂β′

√
T

(
β̂T −β0

T

) + oP(1)�

Since by Assumption A1, we know that

plim
T→∞

∂2QT
(
β̂rT

)
∂β∂β′ = −J 0

we can conclude that
√
T(β̂T −β0

T )=OP(1) and

√
T

(
β̂T −β0

T

) = [
J 0]−1√

T
∂QT

(
β0
T

)
∂β

+ oP(1)�

By comparison with the definition of β̈T ,

√
T

(
β̈T −β0

T

) = [JT ]−1
√
T
∂QT

(
β0
T

)
∂β

we have the announced equivalence between estimators.

Proof of Proposition 2. Forβ∗
T a component-by-component intermediate value be-

tween β0
T and β̂rT , by Assumption A1(ii), we deduce that∥∥∥∥∂2QT

(
β∗
T

)
∂β∂β′

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1
− Iddβ

∥∥∥∥ = oP(1)�

where Iddβ denotes the dβ × dβ identity matrix. Moreover, this bound does not depend
on θ. We apply the fact that this bound remains uniformly valid on Θ when quantities
are multiplied by continuous functions of θ over compactΘ.

For all θ ∈Θ,

√
Tm̄TH[θ; β̂T ] = √

T
∂QTH

(
θ�β0

T

)
∂β

− ∂2QTH
(
θ� β̂rT

)
∂β∂β′

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1√
T
∂QT

(
β0
T

)
∂β

+
{
∂2QTH

(
θ�βT (θ)

)
∂β∂β′ − ∂2QTH

(
θ� β̂rT

)
∂β∂β′

}√
T

(
β̂rT −β0

T

) + oP(1)�
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where βT (θ) is a component-by-component intermediate value between β0
T and β̂rT ,

and where the bound oP(1) does not depend on θ. By Assumption A3(iii),

sup
θ∈Θ

∥∥∥∥∂2QTH
(
θ�βT (θ)

)
∂β∂β′ − ∂2QTH

(
θ� β̂rT

)
∂β∂β′

∥∥∥∥ = oP(1)�

so that, by Assumption A3(iii) and Assumption A1(ii), we have

sup
θ∈Θ

∥∥∥∥∂2QTH
(
θ� β̂rT

)
∂β∂β′

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1
− Iddβ

∥∥∥∥ = oP(1)�

Therefore, we can conclude that

sup
θ∈Θ

∥∥∥∥√
Tm̄TH[θ; β̂T ] −

{√
T
∂QTH

(
θ�β0

T

)
∂β

− √
T
∂QT

(
β0
T

)
∂β

}∥∥∥∥ = oP(1)�

A similar argument would allow us to prove

sup
θ∈Θ

∥∥∥∥√
TmCFS

TH [θ; λ̂T ] −
{√
T
∂QTH

(
θ�β0

T

)
∂β

− √
T
∂QT

(
β0
T

)
∂β

}∥∥∥∥ = oP(1)�

Now, revisiting the definition of ∂QTH(θ� β̈T )/∂β, for all θ ∈Θ,

√
T
∂QTH(θ� β̈T )

∂β
= √

T
∂QTH

(
θ�β0

T

)
∂β

+ ∂2QTH
(
θ�βT (θ)

)
∂β∂β′

√
T

(
β̈T −β0

T

)
= √

T
∂QTH

(
θ�β0

T

)
∂β

+ ∂2QTH
(
θ�βT (θ)

)
∂β∂β′

{
−∂

2QT
(
β0
T

)
∂β∂β′

}−1√
T
∂QT

(
β0
T

)
∂β

�

where βT (θ) is a component-by-component intermediate value between β0
T and β̈T .

Applying a similar argument to the one above, and using the fact that
√
T(β̈T − β0

T ) =
OP(1), we have

sup
θ∈Θ

∥∥∥∥√
T
∂QTH(θ� β̈T )

∂β
−

{√
T
∂QTH

(
θ�β0

T

)
∂β

− √
T
∂QT

(
β0
T

)
∂β

}∥∥∥∥ = oP(1)�

Therefore, the three estimating equations
√
Tm̄TH[θ; β̂T ], √

TmCFS
TH [θ; λ̂T ] and√

T ∂QTH(θ�β̈T )∂β are each asymptotically equivalent to {√T ∂QTH(θ�β0
T )

∂β − √
T
∂QT (β

0
T )

∂β },
and the result follows.

Proof of Proposition 3. (i) We first prove that θ̂CFS
T�H(W ) is consistent. By Assump-

tion A4(ii),mCFS
TH [θ; λ̂T ] converges in probability, uniformly on θ ∈Θ, toward

plim
T→∞

{
∂QTH

(
θ� β̂rT

)
∂β

− ∂QT
(
β̂rT

)
∂β

}
=L(

θ�β0) −L(
θ0�β0) =L(

θ�β0)�
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The identification Assumption A4(iii), jointly with compactness ofΘ and the continuity
assumption (Assumption A4(i)), then yields

plim
T→∞

{
θ̂CFS
T�H(W )

} = θ0�

(ii) By comparing (12) and (14), we have

m̄TH[θ; β̂T ] −mCFS
TH [θ; λ̂T ] = ∂2QTH

(
θ� β̂rT

)
∂β∂β′

(
β̂T − β̂rT

) + ∂QT
(
β̂rT

)
∂β

=
{

Iddβ − ∂2QTH
(
θ� β̂rT

)
∂β∂β′

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1}∂QT (
β̂rT

)
∂β

�

By Assumptions A1(ii) and A3(iii), this difference converges, uniformly on θ ∈Θ, toward

−J
(
θ�β0)[J 0]−1

L
(
θ0�β0) +L(

θ0�β0) = 0�

where J 0 = J (θ0�β0). Then, by a standard argument (see, e.g., Pakes and Pollard (1989,
p. 1038)), we deduce that

plim
T→∞

{
θ̂sT�H(W )

} = plim
T→∞

{
θ̂CFS
T�H(W )

} = θ0�

(iii) By Assumptions A1(ii) and A3(iii),

sup
‖θ−θ0‖≤γ/√T

∥∥∥∥−∂
2QTH

(
θ� β̂rT

)
∂β∂β′

[
∂2QT

(
β̂rT

)
∂β∂β′

]−1
+ Iddβ

∥∥∥∥ = oP(1)�

Then deduce from the above decomposition that

sup
‖θ−θ0‖≤γ/√T

∥∥m̄TH[θ; β̂T ] −mCFS
TH [θ; λ̂T ]∥∥ = oP

(∥∥∥∥∂QT
(
β̂rT

)
∂β

∥∥∥∥)
= oP

(
1√
T

)
�

which in turn implies that

sup
‖θ−θ0‖≤γ/√T

∣∣Sunr
T (θ)− Sres

T (θ)
∣∣ = oP(1/T)�

for Sunr
T (θ) and Sres

T (θ), respectively, the objective functions minimized in (13) and (15)
to define the estimators θ̂sT�H(W ) and θ̂CFS

T�H(W ), respectively.
It is then a standard argument (see, e.g., Pakes and Pollard (1989, p. 1040)) to de-

duce that, using the asymptotic normality in Assumption A1(iii), the corresponding ex-
tremum estimators are asymptotically equivalent: ‖θ̂sT�H(W ) − θ̂CFS

T�H(W )‖ = oP(1/
√
T).

Proof of Theorem 2. We first show that
√
T(θ̂sT�H(W ) − θT ) = OP(1). Let θ̂T :=

θ̂sT�H(W ) and define, for a vector x, ‖x‖W = √
x′W x. By the triangle inequality,∥∥L(

θ̂T �β
0
T

) −L(
θT �β

0
T

)∥∥
W

≤ ∥∥L(
θ̂T �β

0
T

) −L(
θT �β

0
T

) − m̄TH[θ̂T ; β̂T ]∥∥
W

+ ∥∥m̄TH[θ̂T ; β̂T ]∥∥
W
� (32)
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Consider the first term in (32). Recall the definition of m̄TH[θ̂T ; β̂T ], and apply the defi-
nitions of β̂T , β̂rT , and the uniform convergence in Assumption A3(iii), to deduce

m̄TH[θ̂T ; β̂T ] = ∂QTH
(
θ̂T � β̂

r
T

)
∂β

+ ∂2QTH
(
θ̂T � β̂

r
T

)
∂β∂β′

(
β̂T − β̂rT

)
= ∂QTH

(
θ̂T � β̂

r
T

)
∂β

−J
(
θT �β

0
T

)[
J 0]−1 ∂QT

(
β̂rT

)
∂β

+ oP(1/
√
T)� (33)

Applying equation (33) and the triangle inequality, we obtain

∥∥L(
θ̂T �β

0
T

) −L(
θT �β

0
T

) − m̄TH[θ̂T ; β̂T ]∥∥
W

≤ sup
θ∈Θ�‖β−β0

T ‖≤ γ√
T

∥∥∥∥∂QTH(θ�β)∂β
−L(

θ�β0
T

)∥∥∥∥
W

+
∥∥∥∥∂QT

(
β̂rT

)
∂β

−L(
θT �β

0
T

)∥∥∥∥
W

� (34)

In (34), the first term is OP(1/
√
T) by Assumption A4(ii), and the second term is

OP(1/
√
T) by Assumption A1(iii) and Lemma 1. Analyzing the second term in equation

(32), note that, by definition∥∥m̄TH[θ̂T ; β̂T ]∥∥
W

≤ ∥∥m̄TH[θT ; β̂T ]∥∥
W
�

Apply the same decomposition in (33) to the term m̄TH[θT ; β̂T ], and the triangle in-
equality to obtain

∥∥m̄TH[θ̂T ; β̂T ]∥∥
W

≤ ∥∥m̄TH[θT ; β̂T ]∥∥
W

≤
∥∥∥∥∂QTH

(
θ0
T �β

0
T

)
∂β

∥∥∥∥
W

+OP(1/
√
T)�

From Assumption A3(ii), we have ‖∂QTH(θ0
T �β

0
T )/∂β‖ =OP(1/

√
T), which yields∥∥m̄TH[θ̂T ; β̂T ]∥∥

W
≤OP(1/

√
T)� (35)

Applying the results in (34) and (35) into (33), we arrive at ‖L(θ̂T �β0
T )− L(θ�β0

T )‖W =
OP(1/

√
T). From the local identification Assumption A5, we then have that, for some

constant C > 0,

C‖θ̂T − θT ‖ ≤ ∥∥L(
θ̂T �β

0
T

) −L(
θT �β

0
T

)∥∥
W

=OP(1/
√
T)�

Having proven
√
T(θ̂T − θT ) = OP(1/

√
T), the remainder of the proof proceeds

through a standard first-order Taylor series of the first-order conditions. First, apply the
result of Proposition 2 to obtain

0 =
[
∂2QTH

(
θ̂T � β̂

r
T

)
∂β∂θ′

]′
W

√
Tm̄TH[θ̂T ; β̂T ] + oP(1)

=
[
∂2QTH

(
θ̂T � β̂

r
T

)
∂β∂θ′

]′
W

√
T
∂QTH(θ̂T � β̈T )

∂β
+ oP(1)�
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Now, disregarding terms of smaller order than OP(1/
√
T), a Taylor series expansion of√

T∂QTH(θ̂T � β̈T )/∂β around θT yields

0 =
[
∂L

(
θT �β

0
T

)
∂θ′

]′
W

√
T

{
∂QTH(θT � β̈T )

∂β
+ ∂QTH(θT � β̈T )

∂β∂θ′ (θ̂T − θT )
}

+ oP(1)�

Expanding
√
T∂QTH(θT � β̈T )/∂β as in equation (17), and making use of the uniform

convergence in Assumption A3(iii), we obtain (up to an oP(1) term)

0 =
[
∂L

(
θT �β

0
T

)
∂θ′

]′
W

√
T

{
∂QTH

(
θT �β

0
T

)
∂β

− ∂QT
(
β0
T

)
∂β

}

+
[
∂L

(
θT �β

0
T

)
∂θ′

]′
W

[
∂L

(
θT �β

0
T

)
∂θ′

]√
T(θ̂T − θT )�

Rearranging terms and making use of Assumption A5,

√
T(θ̂T − θT )= −

{[
∂L

(
θT �β

0
T

)
∂θ′

]′
W

[
∂L

(
θT �β

0
T

)
∂θ′

]}−1

×
[
∂L

(
θT �β

0
T

)
∂θ′

]′
W

√
T

{
∂QTH

(
θT �β

0
T

)
∂β

− ∂QT
(
β0
T

)
∂β

}
�

By Assumptions A1(iii) and A3(ii), the term in brackets is an asymptotically Gaussian
mean-zero random variable. The stated result then follows.

Proof of Theorem 3. The result follows from the following sequence of arguments:
(i) θ̂cT�H solves β̂T = β̃cTH(θ); (ii) θ̂sT�H solves 0 = m̄TH[θ� β̂T ]; (iii) from (ii) and the struc-

ture of m̄TH[θ� β̂T ] we have, re-arranging 0 = m̄TH[θ̂sT � β̂T ] and solving for β̂T ,

β̂T = β̂rT −
[
∂2QTH

[
θ̂sT � β̂

r
T

]
∂β∂β′

]−1 ∂QTH
[
θ̂sT � β̂

r
T

]
∂β

= β̃cTH
(
θ̂sT

)
�

where the last equality follows from the definition of β̃cTH(θ). Therefore, from (i) we have
β̂T = β̃cTH(θ̂cT ) and from (iii) we have β̂T = β̃cTH(θ̂cT )= β̃cTH(θ̂sT ).
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