Quantitative Economics 9 (2018), 521-540 1759-7331/20180521

A divide and conquer algorithm for exploiting policy function
monotonicity

GREY GORDON
Department of Economics, Indiana University

SHI Qru

Department of Economics, Indiana University

A divide and conquer algorithm for exploiting policy function monotonicity is
proposed and analyzed. To solve a discrete problem with » states and » choices,
the algorithm requires at most nlog,(n) + 5n objective function evaluations. In
contrast, existing methods for nonconcave problems require #? evaluations in the
worst case. For concave problems, the solution technique can be combined with a
method exploiting concavity to reduce evaluations to 14n + 2log,(n). A version of
the algorithm exploiting monotonicity in two-state variables allows for even more
efficient solutions. The algorithm can also be efficiently employed in a common
class of problems that do not have monotone policies, including problems with
many state and choice variables. In the sovereign default model of Arellano (2008)
and in the real business cycle model, the algorithm reduces run times by an or-
der of magnitude for moderate grid sizes and orders of magnitude for larger ones.
Sufficient conditions for monotonicity and code are provided.

Keyworps. Computation, monotonicity, grid search, discrete choice, sovereign
default.
JEL crassiFicaTION. C61, C63, E32, F34.

1. INTRODUCTION

Many optimal control problems in economics are either naturally discrete or can be dis-
cretized. However, solving these problems can be costly. For instance, consider a simple
growth model where the state k and choice &’ are restricted toliein {1, ..., n}. One way to
find the optimal policy g is to evaluate lifetime utility at every k’ for every k. The n? cost
of this brute force approach grows quickly in #. In this paper, we propose a divide and
conquer algorithm that drastically reduces this cost for problems with monotone pol-
icy functions. When applied to the growth model, the algorithm first solves for g(1) and

Grey Gordon: greygordon@gmail . com

Shi Qiu: shiqiu@indiana.edu

The authors thank Kartik Athreya, Bob Becker, Alexandros Fakos, Filomena Garcia, Bulent Guler,
Daniel Harenberg, Juan Carlos Hatchondo, Aaron Hedlund, Chaojun Li, Lilia Maliar, Serguei Maliar,
Amanda Michaud, Jim Nason, Julia Thomas, Nora Traum, Todd Walker, Xin Wei, and David Wiczer,
as well as the co-editor and three anonymous referees. We also thank participants at the Econo-
metric Society World Congress 2015 and the Midwest Macro Meetings 2015. The code is provided at
https://sites.google.com/site/greygordon/code. Any mistakes are our own.

© 2018 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE640

http://qeconomics.org/
mailto:greygordon@gmail.com
mailto:shiqiu@indiana.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE640

522 Gordon and Qiu Quantitative Economics 9 (2018)

g(n). Tt then solves for g(n/2) by only evaluating utility at £’ greater than g(1) and less
than g(n) since monotonicity of g gives g(n/2) € {g(1), ..., g(n)}. Similarly, once g(n/2)
is known, the algorithm uses it as an upper bound in solving for g(n/4) and a lower
bound in solving for g(3n/4). Continuing this subdivision recursively leads to further
improvements, and we show this method—which we refer to as binary monotonicity—
requires no more than nlog,(n) + 5n objective function evaluations in the worst case.

When the objective function is concave, further improvements can be made. For ex-
ample, binary monotonicity gives that g(n/2) is in {g(1), ..., g(n)}, but the maximum
within this search space can be found in different ways. One way is brute force, that is,
checking every value. However, with concavity, one may check g(1), g(1)+1, ... sequen-
tially and stop as soon as the objective function decreases. We refer to this approach
as simple concavity. An alternative, Heer and Maullner’s (2005) method, repeatedly dis-
carded half of the search space. We prove that this approach, which we will refer to as bi-
nary concavity, combined with binary monotonicity computes the optimum in at most
14n + 2log, (n) function evaluations.

For problems with nonconcave objectives like the Arellano (2008) sovereign default
model, binary monotonicity vastly outperforms brute force and simple monotonicity
both theoretically and quantitatively. Theoretically, simple monotonicity requires n?
evaluations in the worst case (the same as brute force). Consequently, assuming worst-
case behavior for all the methods, simple monotonicity is 8.7, 35.9, and 66.9 times slower
than binary monotonicity for n» equal to 100, 500, and 1000, respectively. While this worst-
case behavior could be misleading, in practice we find it is not. For instance, in the
Arellano (2008) model, we find binary monotonicity is 5.1, 21.4, and 40.1 times faster
than simple monotonicity for grid sizes of 100, 500, and 1000, respectively. Similar re-
sults hold in a real business cycle (RBC) model when not exploiting concavity. Binary
monotonicity vastly outperforms simple monotonicity because the latter is only about
twice as fast as brute force.

For problems with concave objectives like the RBC model, we find, despite its good
theoretical properties, that binary monotonicity with binary concavity is only the sec-
ond fastest combination of the nine possible pairings of monotonicity and concav-
ity techniques. Specifically, simple monotonicity with simple concavity is around 20%
faster, requiring only 3.0 objective function evaluations per state compared to 3.7 for bi-
nary monotonicity with binary concavity. While somewhat slower for the RBC model,
binary monotonicity with binary concavity has guaranteed O(n) performance that may
prove useful in different setups.

So far we have described binary monotonicity as it applies in the one-state-variable
case, but it can also be used to exploit monotonicity in two state variables. Quantita-
tively, we show a fwo-state binary monotonicity algorithm further reduces evaluation
counts per state (to 2.9 with brute force and 2.2 with binary concavity in the RBC exam-
ple above), which makes it several times faster than the one-state algorithm. Theoreti-
cally, we show for a class of optimal policies that the two-state algorithm—without any
assumption of concavity—requires at most four evaluations per state asymptotically. As
knowing the true policy and simply recovering the value function using it would require
one evaluation per state, this algorithm delivers very good performance.

Quantitative Economics 9 (2018) Divide and conquer algorithm 523

We also show binary monotonicity can be used in a class of problems that does
not have monotone policies. Specifically, it can be used for problems of the form
maxy u(z(i) — w(i’)) + W(i") where i and i’ are indices in possibly multidimensional
grids and u is concave, increasing, and differentiable. If z and W are increasing, one
can show—using sufficient conditions we provide—that the optimal policy is mono-
tone. However, even if they are not increasing, sorting z and W transforms the prob-
lem into one that does have a monotone policy and so allows binary monotonicity to be
used. We establish this type of algorithm is O(nlogn) inclusive of sorting costs and show
it is several times faster than existing grid search methods in solving a sovereign default
model with capital that features portfolio choice.

For problems exhibiting global concavity, many attractive solution methods exist.
These include fast and globally accurate methods such as projection (including Smolyak
sparse grid and cluster grid methods), Carroll’s (2006) endogenous gridpoints method
(EGM), and Maliar and Maliar’s (2013) envelope condition method (ECM), as well as fast
and locally accurate methods such as linearization and higher-order perturbations. Judd
(1998) and Schmedders and Judd (2014) provided useful descriptions of these methods
that are, in general, superior to grid search in terms of speed and usually accuracy, al-
though not necessarily robustness.!

In contrast, few computational methods are available for problems with noncon-
cavities, such as problems commonly arising in discrete choice models. The possibility
of multiple local maxima makes working with any method requiring first-order condi-
tions (FOCs) perilous, which discourages the use of the methods mentioned above. As
a result, researchers often resort to value function iteration with grid search. As binary
monotonicity is many times faster than simple monotonicity when not exploiting con-
cavity, its use in discrete choice models and other models with nonconcavities seems
particularly promising.

However, recent research has looked at ways of solving nonconcave problems us-
ing FOCs. Fella (2014) laid out a generalized EGM algorithm (GEGM) for nonconcave
problems that finds all points satisfying the FOCs and used a value function iteration
step to distinguish global maxima from local maxima. The algorithm in Iskhakov, Jor-
gensen, Rust, and Schjerning (2017) is qualitatively similar, but they identify the global
maxima in a different and way and show that addingi.i.d. taste shocks facilitates compu-
tation. Maliar and Maliar’s (2013) ECM did not necessitate the use of FOCs, and Arellano,
Maliar, Maliar, and Tsyrennikov (2016) used it to solve the Arellano (2008) model. How-
ever, because of convergence issues, they use ECM only as a refinement to a solution
computed by grid search (Arellano et al. (2016, p. 454)). While these derivative-based
methods will generally be more accurate than a purely grid-search-based method, bi-
nary monotonicity solves the problem without adding shocks, requires no derivative
computation, and is simple. We also show in the working paper (Gordon and Qiu (2017))

1For a comparison in the RBC context, see Aruoba, Ferndndez-Villaverde, and Rubio-Ramirez (2006).
Maliar and Maliar (2014) and a 2011 special issue of the Journal of Economic Dynamics and Control (see
Den Haan, Judd, and Juillard (2011)) evaluate many of these methods and their variations in the context of
a large-scale multicountry RBC model.

524 Gordon and Qiu Quantitative Economics 9 (2018)

that binary monotonicity can be used with continuous choice spaces to significantly im-
prove accuracy. Additionally, some of these methods either require (such as GEGM) or
benefit from (such as ECM) a grid search component, which allows binary monotonicity
to be useful even as part of a more complicated algorithm.

Puterman (1994) and Judd (1998) discussed a number of existing methods (beyond
what we have mentioned thus far) that can be used in discrete optimal control problems.
Some of these methods, such as policy iteration, multigrids, and action elimination pro-
cedures, are complementary to binary monotonicity. Others, such as the Gauss—Seidel
methods or splitting methods, could not naturally be employed while simultaneously
using binary monotonicity.? In contrast to binary monotonicity, most of these methods
try to produce good value function guesses and so only apply in the infinite-horizon
case.

Exploiting monotonicity and concavity is not a new idea, and—as Judd (1998)
pointed out—the “order in which we solve the various [maximization] problems is im-
portant in exploiting” monotonicity and concavity (p. 414). The quintessential ideas
behind exploiting monotonicity and concavity date back to at least Christiano (1990);
simple monotonicity and concavity as used here are from Judd (1998); and Heer and
Mauliner (2005) proposed binary concavity, which is qualitatively similar to an adaptive
grid method proposed by Imrohoroglu, Imrohoroglu, and Joines (1993). What is new
here is that we exploit monotonicity in a novel and efficient way in both one and two
dimensions, provide theoretical cost bounds, and show binary monotonicity’s excellent
quantitative performance. Additionally, we provide code and sufficient conditions for
policy function monotonicity.

The rest of the paper is organized as follows. Section 2 lays out the algorithm for
exploiting monotonicity in one state variable and characterizes its performance theo-
retically and quantitatively. Section 3 extends the algorithm to exploit monotonicity in
two state variables. Section 4 shows how the algorithm can be applied to the class of
problems with nonmonotone policies. Section 5 gives sufficient conditions for policy
function monotonicity. The conclusion is presented is Section 6. The Appendices within
this paper provide an additional algorithm, calibration, computation details. Additional
details, examples, and proofs may be found in the Supplemental Material on the journal
website, http://geconomics.org/supp/640/supplement.pdf.

2. BINARY MONOTONICITY IN ONE STATE

This section formalizes the binary monotonicity algorithm for exploiting monotonicity
in one state variable, illustrates how it and the existing grid search algorithms work, and
analyzes its properties theoretically and quantitatively.

2The operations research literature has also developed algorithms that approximately solve dynamic
programming problems. Papadaki and Powell (2002, 2003) and Jiang and Powell (2015) aimed to preserve
monotonicity of value and policy functions while receiving noisy updates of the value function at simulated
states. While they exploit monotonicity in a nontraditional order, they do so in a random one and do not
compute an exact solution.

http://qeconomics.org/supp/640/supplement.pdf

Quantitative Economics 9 (2018) Divide and conquer algorithm 525

2.1 Binary monotonicity, existing algorithms, and a simple example

Our focus is on solving

H@G)y=_ max (i, i) (1
i'e{l,...,n'}
forie{1,..., n}with an optimal policy g. We say g is monotone (increasing) if g(i) < g(j)

whenever i < j.

For a concrete example, consider the problem of optimally choosing next period
capital k' given a current capital stock £ where both of these lie in a grid £ = {k1, ..., k,}
having k; < k;;1 for all j. For a period utility function u, a production function F, a de-
preciation rate §, a time discount factor 3, and a guess on the value function 14, the
Bellman update can be written

Vi(ki)= pomax u(—ky + F(ki) + (1 = 8)k;) + BVy(kir))
with the optimal policy g(i) given in terms of indices. Then (2) fits the form of (1). Of
course, not every choice is necessarily feasible; there may multiple optimal policies;
there may be multiple state and choice variables; and the choice space may be con-
tinuous. However, binary monotonicity handles or can be adapted to handle all of these
issues.3

Our algorithm computes the optimal policy g and the optimal value IT using divide
and conquer. The algorithm is as follows:

1. Initialization: Compute g(1) and I1(1) by searching over {1, ...,n'}. If n =1, STOP.
Compute g(n) and II(n) by searching over {g(1),...,n'}. Leti=1and i=n.If n =2,
STOP.

2. At this step, (g(i), I1(i)) and (g(i), II(i)) are known. Find an optimal policy and
value forall i € {i, ..., i} as follows:

(@ Ifi=i+1,STOP:Forallie{i,...,i}={i,i}, g(i), and I1(i) are known.

(b) For the midpoint m = L%;J, compute g(m) and II(m) by searching over {g(i),

N {6)
(c) Divide and conquer: Go to (2) twice, first computing the optimum fori € {i, ..., m}
and thenfori € {m, ..., i}. Inthe first case, redefine i := m; in the second, redefine i := m.

Figure 1 illustrates how binary and simple monotonicity work. The blue dots repre-
sent the optimal policy of (2), and the empty circles represent the search spaces implied

3Beyond the two-state binary monotonicity algorithm in Section 3, the online appendix shows how mul-
tiple state or choice variables can be implicit in the i and i and exploits that fact. It also shows how addi-
tional state and/or choice variables, for which one does not want to or cannot exploit monotonicity, may
be handled. Further, the supplement shows that, under mild conditions, binary monotonicity will correctly
deliver an optimal policy (1) even if there are multiple optimal policies and (2) even if there are nonfeasible
choices. For the latter result, 7 (i, i) must be assigned a sufficiently large negative number when an (i, i’)
combination is not feasible. Moreover, continuous choice spaces can be handled without issue as discussed
in the working paper of Gordon and Qiu (2017).

526 Gordon and Qiu Quantitative Economics 9 (2018)

Simple monotonicity (n =n' = 20 Binary monotonicity (n = n’' = 20
p y Yy Yy
0000000000000 0000®®] [} [0 O 0099
00000000000000000@0 o] o) O 0800
0000000000000000@0 o) o) 00@0 ©
000000000000000@0 o] o) 00 O
0000000000000 0@0 o] O 000800 O
0000000000000 @0 o] O 00@0 o)
000000000000 ®0 o] O 0®00 o)
0000000000080 o] 50@0 O o)
0000000000 @0 o) o@0 © o)
. 00000000080 - |0 0O 000800 O o)
= 00000000 @0 = 10 O 00®@0 o)
0000000®0 o] O 0®00 o)
L s 2g83%s :
88888° g 288°° 8 8
9380 e Optimal policy (g) 9g809 S 9
90 900 © o) o)
3 O Search space €300 O 3 3
))
Simple monotonicity (n

100) Binary monotonicity (n = n’ = 100)

1 1

F1GuRE 1. A graphical illustration of simple and binary monotonicity.

by the respective algorithms. With simple monotonicity, the search for i > 1 is restricted
to {g(i — 1),...,n'}, which results in a nearly triangular search space. For binary mono-
tonicity, the search is restricted to {g(i), ..., g(i)} where i and i are far apart for the first
iterations but rapidly approach each other. This results in an irregularly shaped search
space that is large at the first iterations i = 1, n, and n/2 but much smaller at later ones.
For this example, the average search space for simple monotonicity, that is, the average
size of {g(i — 1), ..., n'}, grows from 10.6 for n = n’ = 20 to 51.8 for n = n’ = 100. This is
roughly a 50% improvement on brute force. In contrast, the average size of binary mono-
tonicity’s search space is 7.0 when n = n’ = 20 (34% smaller than simple monotonicity’s)
and 9.5 when n = n’ = 100 (82% smaller), a large improvement.

Binary monotonicity restricts the search space but does not say how one should find
a maximum within it. In solving max; ¢, .} 7(i, ') for a given i, a, and b, one can use
brute force, evaluating =(i, i’) atall i’ € {a, ..., b}. In Figure 1, this amounts to evaluating
7 at every empty circle and blue dot. However, if the problem is concave, simple, or
binary, concavity may be used. Simple concavity proceeds sequentially from i’ = ato i’ =
b but stops whenever (i, i’ — 1) > 7 (i, i'). In Figure 1, this amounts to evaluating (i, i’)
from the lowest empty circle in each column to one above the blue dot. In contrast,
binary concavity uses the ordering of 7 (i, m) and 7 (i, m + 1) where m = L#J to narrow

Quantitative Economics 9 (2018) Divide and conquer algorithm 527

the search space: If (i, m) < w(i, m 4+ 1), an optimal choice mustbe in {m +1,..., b}; if
(i, m) > w(i,m + 1), an optimal choice must be in {a, ..., m}. The search then proceeds
recursively, redefining the search space accordingly until there is only one choice left.
In Figure 1, this amounts to always evaluating (i, i’) at adjacent circles (m and m + 1)
within a column with the adjacent circles progressing geometrically toward the blue dot.
For our precise implementation of binary concavity, see Appendix A.

2.2 Theoretical cost bounds

We now characterize binary monotonicity’s theoretical performance by providing
bounds on the number of times 7 must be evaluated to solve for g and II. Clearly, this
depends on the method used to solve

max (i, i'). 3)

i'efa,...,a+y—1}
While brute force requires vy evaluations of (i, -) to solve (3), binary concavity requires
at most 2[log, ()1 evaluations, which we prove in the online appendix.
Proposition 1 gives the main theoretical result of the paper.

ProposiTION 1. Suppose n > 4 and n' > 3. If brute force grid search is used, then binary
monotonicity requires no more than (n' — 1)log,(n — 1) 4+ 31’ 4+ 2n — 4 evaluations of .
Consequently, fixing n = v/, the algorithm’s worst case behavior is O(nlog, n) with a hid-
den constant of one.

If binary concavity is used with binary monotonicity, then no more than 6n + 8n’ +
2log,(n' — 1) — 15 evaluations are required. Consequently, fixing n = n’, the algorithm's
worst case behavior is O(n) with a hidden constant of 14.

Note the bounds stated in the abstract and Introduction, nlog,(n) + 5n for brute
force and 14n + 2log,(n) for binary concavity, are simplified versions of these for the
casen=rn'.

These worst-case bounds show binary monotonicity is very powerful. To see this,
note that even if one knew the optimal policy, recovering II would still require » evalu-
ations of 7 (specifically, evaluating (i, g(i)) fori =1, ..., n). Hence, relative to knowing
the true solution, binary monotonicity is only asymptotically slower by a log factor when
n = n'. Moreover, when paired with binary concavity, the algorithm is only asymptoti-
cally slower by a factor of 14.

2.3 Quantitative performance in the Arellano (2008) and RBC models

We now turn to assessing the algorithm’s performance in the Arellano (2008) and RBC
models. First, we use the Arellano (2008) model to compare our method with existing
techniques that only assume monotonicity. Second, we use the RBC model to compare
our method with existing techniques that assume monotonicity and concavity. We will
not conduct any error analysis here since all the techniques deliver identical solutions.
The calibrations and additional computation details are given in Appendix B. For a de-
scription of how the Arellano (2008) and RBC models can be mapped into (1), see the
online appendix.

528 Gordon and Qiu Quantitative Economics 9 (2018)

Convergence time ratios
T T T T T T T T T

200

Brute force / binary
= = Simple / binary
150 | | ==©=— Brute force / simple |

Speedup

—
—
-

-

- e ! e ! ! ! ! a
100 250 500 750 1000 1250 1500 1750 2000 2250 2500

Evaluation count ratios
300 T T T T T T T T T

250 .
200 =

150 -]

Speedup

100 - J

50 - A

e e | | | | | a
100 250 500 750 1000 1250 1500 1750 2000 2250 2500
Grid size (n)

F1Gure 2. Cost comparison for methods only exploiting monotonicity.

2.3.1 Exploiting monotonicity in the Arellano (2008) model Figure 2 compares the run
times and average -evaluation counts necessary to obtain convergence in the Arellano
(2008) model when using brute force, simple monotonicity, and binary monotonicity.
The ratio of simple monotonicity’s run time to binary monotonicity’s grows virtually lin-
early, increasing from 5.1 for a grid size of 100 to 95 for a grid size of 2500. The speedup
of binary monotonicity relative to brute force also grows linearly but is around twice as
large in levels. This latter fact reflects that simple monotonicity is only about twice as
fast as brute force irrespective of grid size. For evaluation counts, the patterns are simi-
lar, but binary monotonicity’s speedups relative to simple monotonicity and brute force
are around 50% larger.

Binary monotonicity is faster than simple monotonicity by a factor of 5 to 20 for grids
of a few hundred points, which is alarge improvement. While these are the grid sizes that
have been commonly used in the literature to date (e.g., Arellano (2008) uses 200), the
cost of using several thousand points is relatively small when using binary monotonicity.
For instance, in roughly the same time simple monotonicity needs to solve the 250-point
case (1.48 seconds), binary monotonicity can solve the 2500-point case (which takes 1.51
seconds). At these larger grid sizes, binary monotonicity can be hundreds of times faster
than simple monotonicity.

Quantitative Economics 9 (2018) Divide and conquer algorithm 529

TaBLE 1. Run times and evaluation counts for all monotonicity and concavity techniques.

n =250 n=>500
Monotonicity Concavity Eval./n Time (s) Eval./n Time (s) Increase
None None 250.0 8.69 500.0 29.51 34
Simple None 127.4 3.43 253.4 13.29 3.9
Binary None 10.7 0.40 11.7 0.85 2.1
None Simple 125.5 4.39 249.6 17.28 3.9
Simple Simple 3.0 0.14 3.0 0.26 1.9
Binary Simple 6.8 0.30 7.3 0.60 2.0
None Binary 13.9 0.58 15.9 1.27 2.2
Simple Binary 12.6 0.43 14.6 0.95 2.2
Binary Binary 3.7 0.20 3.7 0.36 1.8

Note: The last column gives the run time increase from n = 250 to 500.

2.3.2 Exploiting monotonicity and concavity in the RBC model To assess binary mono-
tonicity’s performance when paired with a concavity technique, we turn to the RBC
model. Table 1 examines the run times and evaluation counts for all nine possible com-
binations of the monotonicity and concavity techniques.

Perhaps surprisingly, the fastest combination is simple monotonicity with simple
concavity. This pair has the smallest run times for both values of 7 and the time increases
linearly (in fact, slightly sublinearly). For this combination, solving for the optimal pol-
icy requires, on average, only three evaluations of 7 per state. The reason for this is that
the capital policy very nearly satisfies g(i) = g(i — 1) + 1. When this is the case, sim-
ple monotonicity evaluates = (i, g(i — 1)), 7w(i, g(i — 1) + 1), and 7 (i, g(i — 1) + 2); finds
w(i,g(i—1)+1) > w(i, g(i — 1) 4+ 2); and stops. The second fastest combination, binary
monotonicity with binary concavity, exhibits a similar linear (in fact, slightly sublinear)
time increase. However, it fares worse in absolute terms, requiring 3.7 evaluations of =
per state. All the other combinations are slower and exhibit greater run time and evalu-
ation count growth.

While Table 1 only reports the performance for two grid sizes, it is representative.
This can be seen in Figure 3, which plots the average number of 7 evaluations per state
required for the most efficient methods. Simple monotonicity with simple concavity and
binary monotonicity with binary concavity both appear to be O(n) (with the latter guar-
anteed to be), but the hidden constant is smaller for the former. The other methods all
appear to be O(nlogn).

3. BINARY MONOTONICITY IN TWO STATES

In the previous section, we demonstrated binary monotonicity’s performance when ex-
ploiting monotonicity in one state variable. However, some models have policy func-
tions that are monotone in more than one state. For instance, under certain conditions,
the RBC model’s capital policy k’(k, z) is monotone in both k and z. In this section, we
show how to exploit this property.

530 Gordon and Qiu Quantitative Economics 9 (2018)

Average evaluation count over n

16 T T T T ——
— - - -~
14 b - - .
N - ==@-— Simple monotonicity, simple concavity
2L, = = Binary monotonicity, no concavity |
/ —O6— Binary monotonicity, simple concavity
! Binary monotonicity, binary concavity
w0
g oy)
e)
E = |
<
> . -
s 8
6 i
4 71

g
(]

- ®
(]

) T
4
1 1 1

2
0 1000 2500 5000 7500 10000
Grid size (n)

FiGure 3. Empirical O(n) behavior.

3.1 The two-state algorithm and an example

Our canonical problem is to solve

13, j) = , max 7r(i, Js i’) 4)
i ey

forie{l,...,n} and j € {1,..., ny}, where the optimal policy g(i, j) is increasing in

both arguments. The two-state binary monotonicity algorithm first solves for g(-, 1) us-

ing the one-state algorithm. It then recovers g(-, n;) using the one-state algorithm but

with g(-, 1) serving as an additional lower bound. The core of the two-state algorithm

assumes g(-, j) and g(-, j) are known and uses them as additional bounds in computing

g, j) for j= L%J. Specifically, in solving for g(i, j), the search spaced is restricted to
integers in [g(i, j), g(i,)H1N[g(i,), g(i, j)] instead of just [g(i, j), g(i, j)] as the one-state
algorithm would. Appendix A giv_es the algorithm in full detail.

Figure 4 illustrates how the two-state binary monotonicity algorithm works when
applied to the RBC model using capital as the first dimension. The figure is analogous
to Figure 1, but the red lines indicate bounds on the search space coming from the pre-
vious solutions g(-, j) and g(-, j). At j = n, (the left panel), g(-, 1) has been solved for,
and hence provides_a lower bound on the search space as indicated by the red, mono-
tonically increasing line. However, there is no upper bound on the search space other
than n'. At j = L"z—;lj (the right panel), g(-, 1) and g(-, np) are known, and the bounds
they provide drastically narrow the search space.

Quantitative Economics 9 (2018) Divide and conquer algorithm 531

j=1%31]

® Optimal policy (g)
O Search space
s Bounds from j, j

1 7
FiGURE 4. Example of binary monotonicity in two states.

TABLE 2. Run times and evaluation counts for one-state and two-state binary monotonicity.

Monotonicity Concavity Eval Time Eval Speedup Time Speedup
k only None 10.7 0.42 - -

k only Simple 6.8 0.29 - -

k only Binary 3.7 0.19 - -

kand z None 29 0.18 3.7 24

k and z Simple 2.4 0.16 2.8 1.8
kand z Binary 22 0.16 1.7 1.2

Note: Time is in seconds; the speedups give the two-state algorithm improvement relative to the one-state; grid sizes of
nq =n' =250 and np =21 are used.

3.2 Quantitative performance in the RBC model

Table 2 reports the evaluation counts and run times for the RBC model when using the
two-state algorithm with the various concavity techniques. We again treat the first di-
mension as capital, so n; = n’ but n; does not necessarily equal n;. For ease of refer-
ence, the table also reports these measures when exploiting monotonicity only in k. The
speedup of the two-state algorithm relative to the one-state algorithm ranges from 1.7
to 3.7 when considering evaluation counts and 1.2 to 2.4 when considering run times.
Exploiting monotonicity in k£ and z, even without an assumption on concavity, brings
evaluation counts down to 2.9. This is marginally better than the “simple-simple” com-
bination seen in Table 1, which had a 3.0 count for these grid sizes. However, when com-
bining two-state binary monotonicity with binary concavity, evaluations counts drop
to 2.2. This significantly improves on the simple-simple 3.0 evaluation count and is only
around twice as slow as knowing the true solution.

How the two-state algorithm’s cost varies in grid sizes can be seen in Figure 5, which
plots evaluations counts per state as grid sizes grow while fixing the ratio n; /n; and forc-
ing ny = n’ (for this figure, concavity is not exploited). The horizontal axis gives the num-
ber of states in log, so that a unit increment means the number of states is doubled.
In absolute terms, the evaluations per state are below 3 for a wide range of grid sizes.

532 Gordon and Qiu Quantitative Economics 9 (2018)

Evaluation count per state for different n;/ng ratios

3 T T T T T T T T
nl/n2=1/8
2.8 - = ny/ng=1/4
—O—nl/n2:1/2
2.6 g
o nl/nzzl
s 2.4 —_—— 1 /Ny = 2
o 4. 4
n — 711/7L2:4
—
2 2.2 —A—ni/ny =8 | |
\
=
g2 2 i
O
g
S 1s — .
E I T
g 1.6 - =
€3]
1.4+
12> o P]
1 Il Il Il Il Il _I — _I == T =
10 11 12 13 14 15 16 17

Base 2 log of number of states, logy(nins)

FiGure 5. Two-state algorithm’s empirical O(nn;) behavior for ny = n’ and ny/n, in a fixed ratio.

While the overall performance depends on the n1/n, ratio with larger ratios implying
less efficiency, in all cases the evaluation counts fall and appear to asymptote as grid
sizes increase.

3.3 Theoretical cost bounds

While Figure 5 suggests the two-state algorithm is in fact O(nyny) as ny, ny, and »’ in-
crease (holding their proportions fixed), we have only been able to prove this is the case
for a restricted class of optimal policies.*

PrRoPOSITION 2. Suppose the number of states in the first (second) dimension is ny (ny)
and the number of choices is n' with ny,ny,n’ > 4. Further, let A € (0,1] be such that
for every j € {2,...,np, — 1} one has g(ni,j) — g(1,j) + 1 < Agn,j+ 1) —g(l,j —
1) 4+ 1). Then the two-state binary monotonicity algorithm requires no more than (1 +
A Dlogy (n)n'n§ + 3(1 + A~Yn'nk + 4niny + 2n'logy(ny) + 6n' evaluations of w where
k =logy(1+ A).

For ny = n' =: n and ny/n, = p with p a constant, the cost is O(niny) with a hidden
constant of 4 if (g(n, j) —g(1,)+ 1)/(g(n,j+ 1) —g(1,j—1)+ 1) is bounded away from
1 for large n.

4We abuse notation in writing O(n;n,) to emphasize the algorithm’s performance in terms of the total
number of states, nyn,. Formally, for ny/n; = p and n; = n’ =: n, O(n1n;) should be O(nz/p).

Quantitative Economics 9 (2018) Divide and conquer algorithm 533

For any function monotone in i and j, the restriction g(ny,j) — g(1,j) + 1 <
Ag(ny, j+1)—g(,j—1)+1)issatisfied for A = 1. However, for the algorithm’s asymp-
totic cost to be O(nyn;), we require, essentially, A < 1. When this is the case, the two-
state algorithm—without exploiting concavity—is only four times slower asymptot-
ically than when the optimal policy is known. In the RBC example, we found that
(g(n, H—g, p+1)/(g(n, j+1)—g(1, j—1)+1) was small initially but grew and seemed
to approach one. If it does limit to one, the asymptotic performance is not guaranteed.
However, the two-state algorithm has shown itself to be very efficient for quantitatively-
relevant grid sizes.

4. EXTENSION TO A CLASS OF NONMONOTONE PROBLEMS

In this section, we briefly describe how the model can be applied to a class of prob-
lems with potentially nonmonotone policies. Our canonical problem is to solve, for
i=1,...,n,

V(i) = max u(c)+ w(i),

s.t.c=z(i) — w({’),

where v’ > 0, u” < 0 with an associated optimal policy g. Here, as before, i and i can
be thought of as indices in possibly multidimensional grids. While this is a far narrower
class of problems than (1), it is broad enough to apply in the Arellano (2008) and RBC
models, as well as many others.

If z and W are weakly increasing, then one can show (using the sufficient conditions
given in the next section) that g is monotone. Our main insight is that binary mono-
tonicity can be applied even when z and I are not monotone by creating a new problem
where their values have been sorted. Specifically, letting z and W be the sorted values of
z and W, respectively, and letting w be rearranged in the same order as W, the trans-
formed problem is to solve, foreach j=1, ..., n,

" . T ./

V(j)= oo hax u(e) +W(j),
(6)
st.c=z(j) —w(j)

with an associated policy function g. Because W and are increasing, binary mono-
tonicity can be used to obtain g and . Then one may recover g and V' by undoing the
sorting. Evidently, this class of problems allows for a cash-at-hand reformulation with z
as a state variable, so the real novelty of this approach lies in the sorting of .

Theoretically, this algorithm is asymptotically efficient when an efficient sorting
algorithm is used. Specifically, the sorting for z can be done in O(nlogn) operations
and the sorting for W and w in O(n’logn’) operations. Since binary monotonicity is
O(n'logn) + O(n) as either n or n’ grows, the entire algorithm is O(nlogn) + O(n'logn’)
as either n or n’ grows. Fixing n’ = n, this is the same O(nlogn) cost seen in Proposi-
tion 1. Additionally, the online appendix shows these good asymptotic properties carry
over to commonly-used grid sizes in a sovereign default model with bonds and capital
that entails a nontrivial portfolio choice problem.

534 Gordon and Qiu Quantitative Economics 9 (2018)

5. SUFFICIENT CONDITIONS FOR MONOTONICITY

In this section, we provide two sufficient conditions for policy function monotonicity.
The first, due to Topkis (1978), is from the vast literature on monotonicity.5 The second
is novel (although an implication of the necessary and sufficient conditions in Milgrom
and Shannon (1994)) and applies to show monotonicity in the Arellano (2008) model
and sorted problem (6), whereas the Topkis (1978) result does not.

The Topkis (1978) sufficient condition has two main requirements. First, the objec-
tive function must have increasing differences. In our simplified context, this may be
defined as follows.

DEFINITION 1. Let § ¢ R2. Then f : § — R has weakly (strictly) increasing differences
on S if f(x2,y) — f(x1,y) is weakly (strictly) increasing in y for x, > x; whenever
(x1,¥), (x2,y) €.

For smooth functions, increasing differences essentially requires that the cross-
derivative fi, be nonnegative. However, smoothness is not necessary, and we include
many sufficient conditions for increasing differences in the online appendix found in
the Supplemental Material.

The second requirement is that the feasible choice correspondence must be ascend-
ing. For our purposes, this may be defined as follows.

DEerFINITION 2. LetZ,Z’ c Rwith G : Z — P(Z’) where P denotes the power set. Leta, b €
Z with a < b. G is ascending on T if g € G(a), g2 € G(b) implies min{gy, g2} € G(a) and
max{gi, g2} € G(b). G is strongly ascending on T if g € G(a), g2 € G(b) implies g| < g».

One way for the choice set to be ascending is for every choice to be feasible. An alter-
native we establish in the online appendix is for feasibility to be determined by inequal-
ity constraints such as 4(i, i) > 0 with 4 increasing in i, decreasing in i/, and having
increasing differences.

Now we can state Topkis’s (1978) sufficient condition as it applies in our simplified
framework.

ProposiTioN 3 (Topkis (1978)). Let Z,7' Cc R, I' : T — P(Z"), and w : T x 7' — R. If
I' is ascending on T and w has increasing differences on 7 x 7', then G defined by
G (i) := argmax; p; (i, i") is ascending on {i € Z|G(i) # @}. If w has strictly increasing
differences, then G is strongly ascending.

5This literature includes Athey (2002), Hopenhayn and Prescott (1992), Huggett (2003), Jiang and Powell
(2015), Joshi (1997), Majumdar and Zilcha (1987), Milgrom and Shannon (1994), Mirman and Ruble (2008),
Mitra and Nyarko (1991), Puterman (1994), Quah (2007), Quah and Strulovici (2009), Smith and McCardle
(2002), Stokey and Lucas Jr. (1989), Strulovici and Weber (2010), Topkis (1998); and others. The working pa-
per Gordon and Qiu (2017) gives additional discussion on these papers and how they relate to the sufficient
conditions here.

Quantitative Economics 9 (2018) Divide and conquer algorithm 535

Note that a requirement is that the feasible choice correspondence is ascending
while the result is that the optimal choice correspondence is ascending. If the opti-
mal choice correspondence is strongly ascending, then every optimal policy is neces-
sarily monotone. However, for simple and binary monotonicity to correctly deliver op-
timal policies, the weaker result that the optimal choice correspondence is ascending is
enough, which we prove in the online appendix.

While the Topkis (1978) result is general, it cannot be used to show monotonicity
in the Arellano (2008) model or the sorted problem because their objective functions
typically do not have increasing differences.® Proposition 4 gives an alternative sufficient
condition that does apply for these problems.

PROPOSITION 4. LetZ,T' C R. Define G(i) := argmax; ¢z o(; >0 4(c(i, i')) + W (i) where
u is differentiable, increasing, and concave.

If c is increasing in i and has increasing differences and W is increasing in i, then G is
ascending (on i such that an optimal choice exists). If, in addition, c is strictly increasing
in i and W is strictly increasing in i, or if ¢ has strictly increasing differences, then G is
strongly ascending.

While the objective’s functional form is restrictive, it still applies in many dynamic
programming contexts with u o ¢ as flow utility and W as continuation utility. The online
appendix shows how Propositions 3 and 4 may be used to establish monotonicity in the
RBC and Arellano (2008) models, respectively.

6. CONCLUSION

Binary monotonicity is a powerful grid search technique. The one-state algorithm is
O(nlogn) and an order of magnitude faster than simple monotonicity in the Arellano
(2008) and RBC models. Moreover, combining it with binary concavity guarantees O(n)
performance. The two-state algorithm is even more efficient than the one-state and, for
a class of optimal policies, gives O(n1n;) performance without any assumption of con-
cavity. Binary monotonicity is also widely applicable and can even be used in a class of
nonmonotone problems. While binary monotonicity should prove useful for concave
and nonconcave problems alike, its use in the latter—where few solution techniques
exist—seems especially promising.

APPENDIX A: ADDITIONAL ALGORITHM DETAILS

This appendix gives our implementation of binary concavity and the two-state algo-
rithm. The working paper Gordon and Qiu (2017) contains a nonrecursive implementa-
tion of the one-state binary monotonicity algorithm.

6For instance, in the sorted problem, the objective function u(z(j) — w(j’)) + W(j’) does not necessarily
have increasing differences because, loosely speaking, the cross-derivative u”z;w; is negative if w is strictly
decreasing.

536 Gordon and Qiu Quantitative Economics 9 (2018)

A.1 Binary concavity

Below is our implementation of Heer and Mauliner’s (2005) algorithm for solving
max;e(q,.. by 7(i, i"). Throughout, n refers to b — a + 1.

1. Initialization: If n = 1, compute the maximum, 7 (i, a), and STOP. Otherwise, set
the flags 1, = 0 and 1, = 0. These flags indicate whether the value of 7 (i, a) and 7 (i, b)
are known, respectively.

2. If n > 2, go to 3. Otherwise, n = 2. Compute 7(i, a) if 1, = 0 and compute (i, b) if
1, = 0. The optimum is the best of a, b.

3. If n > 3, go to 4. Otherwise, n = 3. If max{1,, 1} =0, compute (i, a) and set 1, = 1.

Define m = ﬂzb, and compute 7 (i, m).

(a) If 1, =1, check whether 7 (i, a) > @ (i, m). If so, the maximum is a. Otherwise, the
maximum is either m or b; redefine a = m, set 1, =1, and go to 2.
(b) If 1, =1, check whether (i, b) > 7(i, m). If so, the maximum is b. Otherwise, the

maximum is either a or m; redefine b = m, set 1, = 1, and go to 2.

4. Here, n > 4. Define m = L#J and compute (i, m) and 7(i, m + 1). If w(i,m) <
7(i,m+ 1), amaximumisin {m+1,...,b}; redefinea=m + 1, set 1, =1, and go to 2.
Otherwise, a maximum isin {a, ..., m}; redefine a = m, set 1, = 1, and go to 2.

A.2 The two-state binary monotonicity algorithm

We now give the two-state binary monotonicity algorithm in full detail. To make it less
verbose, we omit references to I1, but it should be solved for at the same time as g.

1. Solve for g(-, 1) using the one-state binary monotonicity algorithm. Define I(-) :=
g, D, u):=n, j=1 and j := n,.

2. Solve for g(-, j) as follows:

(a) Solve for g(1, j) on the search space {/(1), ..., u(1)}. Define g := g(1, j) and i := 1.

(b) Solvefor g(n1, j) on the search space {max{g, [(n1)}, ..., u(ny)}. Define g := g(ny,)
andi:=n,.

(c) Consider the state as (i, i, g, g). Solve for g(i, j) forall i € {i, ..., i} as follows:

i. Ifi = i+ 1, then this is done, so go to Step 3. Otherwise, continue.

ii. Let m; = L%;J and compute g(mi,j) by searching {max{g, I(mp)}, ...,
min{g, u(mi)}}.

iii. Divide and conquer: Go to (c) twice, once redefining (i, g) := (my, g(m, j)) and

once redefining (i, g) := (my, g(m1, j)).

3. Here, g(,) and g(, /) are known. Redefine /(-) := g(-, j) and u(-) := g(-, j). Com-
pute g(-, j) forall j € {j, ..., j} as follows:

Quantitative Economics 9 (2018) Divide and conquer algorithm 537
(@) If j=j+1,STOP: g(-, j) isknown forall j € {j, ..., j}.

(b) Define mj := L%J. Solve for g(-, m;) by essentially repeating the same steps as in
2 (but everywhere replacing j with m;). Explicitly,

i. Solve for g(1,m;) on the search space {/(1),...,u(1)}. Define g =g, my) and
i:=1.

ii. Solve for g(nj,my) on the search space {max{g, [(n)}, ..., u(ny)}. Define g :=
g(ny, my) and i := ny.

iii. Consider the state as (i, i, g, g). Solve for g(i, my) forall i € {i, ..., i} as follows:

A. Ifi =i+ 1, then this is done, so go to Step 3 part (c). Otherwise, continue.

B. Let m; = L%ZJ and compute g(mi,mp) by searching {max{g, I(m)}, ...,
min{g, u(my)}}.

C. Divide and conquer: Go to (iii) twice, once redefining (i, g) := (m1, g(my, my)) and
once redefining (i, §) := (my, g(m1, ma)).

(c) Go to Step 3 twice, once redefining j := my and once redefining i =my.

While one could “transpose” the algorithm, that is, solve for g(1, -) in Step 1 rather than
g(-, 1) and so on, this has no effect. The reason is that the search space for a given (i, j)
is restricted to [g(i, j), g(i,)1 N [g(i,)8, 1. In the transposed algorithm, the search
for the same (i, j) pair would be restricted to [g(i, j), g(i,)] N [g(i,), g(i, j)]. Evidently,
these search spaces are the same as long as i, i, j, j are the same in both the original and
transposed algorithm. This is the case because—in both the original and transposed
algorithm—:i is reached after subdividing {1, ..., n;} in a order that does not depend on
g and similarly for ;.

APPENDIX B: CALIBRATION AND COMPUTATION DETAILS

This appendix gives additional calibration and computation details.

For the growth and RBC model, we use u(c) = ¢!=7/(1 — o) with ¢ =2, a time dis-
count factor 8 = 0.99, a depreciation rate 6 = 0.025, and a production function zF (k) =
zk9-36, The RBC model’s TFP process, log z = 0.95log z_; 4+ 0.007¢ with & ~ N (0, 1), is dis-
cretized using Tauchen’s (1986) method with 21 points spaced evenly over +3 uncon-
ditional standard deviations. The capital grid is linearly spaced over +20% of the steady
state capital stock. The growth model’s TFP is constant and equal to 1, and its capital grid
is {1, ..., n}. A full description of the RBC model may be found in Aruoba, Ferndndez-
Villaverde, and Rubio-Ramirez (2006).

For the Arellano (2008) model, we adopt the same calibration as in her paper. For n
bond grid points, 70% are linearly spaced from —0.35 to 0 and the rest from 0 to 0.15. We
discretize the exogenous output process logy = 0.945log y_1+0.025¢ with e ~ N (0, 1) us-
ing Tauchen’s (1986) method with 21 points spaced evenly over £3 unconditional stan-
dard deviations.

538 Gordon and Qiu Quantitative Economics 9 (2018)

All run times are for the Intel Fortran compiler version 17.0.0 with the flags
-mkl=sequential -debug minimal -g -traceback -xHost -03
-no-wrap-margin -gopenmp-stubs on an Intel Xeon E5-2650 processor with a clock
speed of 2.60 GHz. The singly-threaded jobs were run in parallel using GNU Parallel as
described in Tange (2011). When the run times were less than 2 minutes, the model was
repeatedly solved until 2 minutes had passed and then the average time per solution
was computed.

REFERENCES

Arellano, C. (2008), “Default risk and income fluctuations in emerging economies.”
American Economic Review, 98 (3), 690-712. [521, 522, 523, 527, 528, 533, 534, 535, 537]

Arellano, C., L. Maliar, S. Maliar, and V. Tsyrennikov (2016), “Envelope condition method
with an application to default risk models.” Journal of Economic Dynamics and Control,
69, 436-459. [523]

Aruoba, S. B,, J. Ferndndez-Villaverde, and J. E Rubio-Ramirez (2006), “Comparing so-
lution methods for dynamic general equilibrium economies.” Journal of Economic Dy-
namics and Control, 30 (12), 2477-2508. [523, 537]

Athey, S. (2002), “Monotone comparative statics under uncertainty.” The Quarterly Jour-
nal of Economics, 117 (1), 187. [534]

Carroll, C. D. (2006), “The method of endogenous gridpoints for solving dynamic
stochastic optimization problems.” Economics Letters, 91 (3), 312-320. [523]

Christiano, L.]J. (1990), “Solving the stochastic growth model by linear-quadratic approx-
imation and by value-function iteration.” Journal of Business & Economic Statistics, 8 (1),
23-26. [524]

Den Haan, W.J,, K. L. Judd, and M. Juillard (2011), “Computational suite of models with
heterogeneous agents II: Multi-country real business cycle models.” Journal of Economic
Dynamics and Control, 35 (2), 175-177. [523]

Fella, G. (2014), “A generalized endogenous grid method for non-smooth and non-
concave problems.” Review of Economic Dynamics, 17 (2), 329-344. [523]

Gordon, G. and S. Qiu (2017), “A Divide and Conquer Algorithm for Exploiting Policy
Function Monotonicity.” CAEPR Working Paper 2017-006, Indiana University. https://
ssrn.com/abstract=2995636. [523, 525, 534, 535]

Heer, B. and A. MaulBner (2005), Dynamic General Equilibrium Modeling: Computa-
tional Methods and Applications. Springer, Berlin, Germany. [522, 524, 536]

Hopenhayn, H. A. and E. C. Prescott (1992), “Stochastic monotonicity and stationary
distributions for dynamic economies.” Econometrica, 60 (6), 1387-1406. [534]

Huggett, M. (2003), “When are comparative dynamics monotone?” Review of Economic
Dynamics, 6 (1), 1-11. [534]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/arellano08&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/arellanoetal16&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/aruobaetal06&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/athey02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/carroll06&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/christiano90&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/denhaanetal11&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/fella14&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
https://ssrn.com/abstract=2995636
https://ssrn.com/abstract=2995636
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/heeretal05&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/hopenhaynetal92&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/huggett03&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/arellano08&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/arellanoetal16&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/arellanoetal16&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/aruobaetal06&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/aruobaetal06&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/athey02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/carroll06&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/christiano90&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/christiano90&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/denhaanetal11&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/denhaanetal11&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/fella14&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/heeretal05&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/hopenhaynetal92&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/huggett03&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W

Quantitative Economics 9 (2018) Divide and conquer algorithm 539

Imrohoroglu, A., S. Imrohoroglu, and D. H. Joines (1993), “A numerical algorithm for
solving models with incomplete markets.” International Journal of High Performance
Computing Applications, 7 (3), 212-230. [524]

Iskhakov, E, T. H. Jorgensen, J. Rust, and B. Schjerning (2017), “The endogenous grid
method for discrete-continuous dynamic choice models with (or without) taste shocks.”
Quantitative Economics, 8, 317-365. [523]

Jiang, D. R. and W. B. Powell (2015), “An approximate dynamic programming algorithm
for monotone value functions.” Operations Research, 63 (6), 1489-1511. [524, 534]

Joshi, S. (1997), “Turnpike theorems in nonconvex nonstationary environments.” Inter-
national Economic Review, 38 (1), 225-248. [534]

Judd, K. L. (1998), Numerical Methods in Economics. Massachusetts Institute of Technol-
ogy, Cambridge, MA. [523, 524]

Majumdar, M. and I. Zilcha (1987), “Optimal growth in a stochastic environment: Some
sensitivity and turnpike results.” Journal of Economic Theory, 43 (1), 116-133. [534]

Maliar, L. and S. Maliar (2013), “Envelope condition method versus endogenous grid
method for solving dynamic programming problems.” Economics Letters, 120, 262-266.
[523]

Maliar, L. and S. Maliar (2014), “Numerical methods for large-scale dynamic economic
models.” In Handbook of Computational Economics, Vol. 3 (K. Schmedders and K. L.
Judd, eds.). Elsevier Science. Chapter 7. [523]

Milgrom, P. and C. Shannon (1994), “Monotone comparative statics.” Econometrica, 62
(1), 157-180. [534]

Mirman, L.]J. and R. Ruble (2008), “Lattice theory and the consumer’s problem.” Mathe-
matics of Operations Research, 33 (2), 301-314. [534]

Mitra, T. and Y. Nyarko (1991), “On the existence of optimal processes in non-stationary
environments.” Journal of Economics, 53 (3), 245-270. [534]

Papadaki, K. P and W. B. Powell (2002), “Exploiting structure in adaptive dynamic pro-
gramming algorithms for a stochastic batch service problem.” European Journal of Op-
erational Research, 142 (1), 108-127. [524]

Papadaki, K. P and W. B. Powell (2003), “A Discrete Online Monotone Estimation Algo-
rithm.” Working Paper LSEOR 03.73, Operational Research Working Papers. [524]

Puterman, M. L. (1994), Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York. [524, 534]

Quabh, J. K.-H. and B. Strulovici (2009), “Comparative statics, informativeness, and the
interval dominance order.” Econometrica, 77 (6), 1949-1992. [534]

Quah, J. K. H. (2007), “The comparative statics of constrained optimization problems.”
Econometrica, 75 (2), 401-431. [534]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/imrohorogluetal93&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/iskhakovetal16&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:15/jiangetal15&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/joshi97&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/majumdaretal87&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:19/maliaretal13&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/milgrometal94&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/mirmanetal08&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/mitraetal91&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/papadakietal02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:26/puterman94&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:27/quahetal09&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/quah07&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/imrohorogluetal93&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/imrohorogluetal93&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/iskhakovetal16&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/iskhakovetal16&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:15/jiangetal15&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/joshi97&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/majumdaretal87&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:19/maliaretal13&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/milgrometal94&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/mirmanetal08&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/mitraetal91&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/papadakietal02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/papadakietal02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:26/puterman94&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:27/quahetal09&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/quah07&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W

540 Gordon and Qiu Quantitative Economics 9 (2018)
Schmedders, K. and K. L. Judd (2014), Handbook of Computational Economics, Vol. 3.
Elsevier Science. [523]

Smith, J. E. and K. E McCardle (2002), “Structural properties of stochastic dynamic pro-
grams.” Operations Research, 50 (5), 796-809. [534]

Stokey, N. L. and R. E. Lucas Jr. (1989), Recursive Methods in Economic Dynamics. Har-
vard University Press, Cambridge, MA and London, England. [534]

Strulovici, B. H. and T. A. Weber (2010), “Generalized monotonicity analysis.” Economic
Theory, 43 (3), 377-406. [534]

Tange, O. (2011), “GNU parallel—The command-line power tool.” ;login: The USENIX
Magazine, 36 (1), 42-47. [538]

Tauchen, G. (1986), “Finite state Markov-chain approximations to univariate and vector
autoregressions.” Economics Letters, 20 (2), 177-181. [537]

Topkis, D. M. (1978), “Minimizing a submodular function on a lattice.” Operations Re-
search, 26 (2), 305-321. [534, 535]

Topkis, D. M. (1998), Supermodularity and Complementarity. Princeton University Press,
Princeton, NJ. [534]

Co-editor Karl Schmedders handled this manuscript.

Manuscript received 16 November, 2015; final version accepted 2 October, 2017; available on-
line 23 October, 2017.

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:30/smithetal02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/stokeyetal89&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/strulovicietal10&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/tange11&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/tauchen86&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/topkis78&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/topkis98&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:30/smithetal02&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/stokeyetal89&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/strulovicietal10&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/tange11&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/tauchen86&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/topkis78&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/topkis98&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%3C521%3AADACAF%3E2.0.CO%3B2-W

	Introduction
	Binary monotonicity in one state
	Binary monotonicity, existing algorithms, and a simple example
	Theoretical cost bounds
	Quantitative performance in the Arellano (2008) and RBC models
	Exploiting monotonicity in the Arellano (2008) model
	Exploiting monotonicity and concavity in the RBC model

	Binary monotonicity in two states
	The two-state algorithm and an example
	Quantitative performance in the RBC model
	Theoretical cost bounds

	Extension to a class of nonmonotone problems
	Sufﬁcient conditions for monotonicity
	Conclusion
	Appendix A: Additional algorithm details
	Binary concavity
	The two-state binary monotonicity algorithm

	Appendix B: Calibration and computation details
	References

