Quantitative Economics 4 (2013), 549-583 1759-7331/20130549

Minimum distance estimators for dynamic games

SORAWOOT SRISUMA
School of Economics, University of Surrey

We develop a minimum distance estimator for dynamic games of incomplete in-
formation. We take a two-step approach, following Hotz and Miller (1993), based
on the pseudo-model that does not solve the dynamic equilibrium so as to cir-
cumvent the potential indeterminacy issues associated with multiple equilibria.
The class of games estimable by our methodology includes the familiar discrete
unordered action games as well as games where players’ actions are monotone
(discrete, continuous, or mixed) in the their private values. We also provide con-
ditions for the existence of pure strategy Markov perfect equilibria in monotone
action games under increasing differences condition.

Keyworbps. Dynamic games, Markov perfect equilibrium, semiparametric esti-
mation with nonsmooth objective functions.
JEL crassiFicaTiON. C13, C14, C15, C51.

1. INTRODUCTION

We propose a new estimator for a class of dynamic games of incomplete information
that builds on the Markov discrete decision framework reviewed in Rust (1994). Our es-
timator adds to a growing list of methodologies to analyze empirical games discussed
in the surveys of Ackerberg et al. (2005) and Aguirregabiria and Mira (2010). Two well
known obstacles to structural estimation of dynamic games arise from multiple equilib-
ria and the computational value functions that represent future expected returns. More
specifically, for each structural parameter, the model may have nonunique equilibria
that predict different distributions of actions and even when there are no issues of equi-
librium selection, it is numerically demanding to evaluate the value functions that are
defined as fixed points of some nonlinear functional equations. We take a two-step ap-
proach that does not solve out the full dynamic optimization problem and is designed
to circumvent these issues.
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We begin with an assumption that pure strategy Markov perfect equilibria exist and
data are generated from a single equilibrium. Most two-step estimators in the literature,
following Hotz and Miller’s (1993) work in a single agent discrete choice problem, con-
sider the pseudo-model where the intractable value functions are replaced by easy to
compute policy value functions that can be constructed using beliefs observed from the
data. Each player’s pseudo-decision problem can then be interpreted as playing a single
stage game against nature. When the pseudo-decision problem has a unique solution
almost surely, each player’s best response is a pure strategy so that any candidate struc-
tural parameter is mapped into an implied distribution function that defines a com-
plete pseudo-model (as opposed to incomplete models, for instance, see Tamer (2003)).
Conditions for the existence of Markov perfect equilibria, as well as the uniqueness of
the solution to pseudo-decision problems, have been established for games where play-
ers actions are modeled to be (unordered) discrete and players’ private values enter the
payoff functions additively; see Aguirregabiria and Mira (2007, hereafter AM), Bajari et
al. (2009), and Pesendorfer and Schmidt-Dengler (2008, hereafter PSD).! In an indepen-
dent work, Schrimpf (2011) also recently proposed an estimator for continuous action
games. While the aforementioned papers make use of the pseudo-decision problem and
focus on games with a single type of actions, Bajari et al. (2007, hereafter BBL) took a dif-
ferent approach, using forward simulation, that can handle models with both discrete
and/or continuous decisions. BBL's methodology is versatile; in particular, it has been
applied to model games where players’ actions are monotone in their private values; for
some examples, see Gowrisankaran et al. (2010), Ryan (2012), and Santos (2010).

The main contribution of this paper is to provide an alternative estimator for a large
class of games that includes the models considered in BBL and their subsequent appli-
cations. A distinctive feature of BBLs methodology is the use of inequality restrictions
to construct objective functions. Since little guidance on how to select inequalities ex-
ists, we show that some popular classes of inequalities can lead to objective functions
that do not have unique (minimizing) solutions as the sample size tends to infinity, even
when the underlying model is actually point-identified. Our estimator is obtained by
minimizing the distance between distributions of actions observed from the data and
predicted by the pseudo-model. We provide a set of conditions to ensure our estimator
is consistent and asymptotically normal.

We also contribute by providing important foundations for the modeling of games
where players play monotone strategies. The existence of pure strategy Markov equi-
libria is often assumed in dynamic games where players employ monotone strategies
with respect to their private information; for examples, see BBL, Gowrisankaran et al.
(2010) (ordered discrete action), and Schrimpf (2011) (continuous action). We provide
primitive conditions based on increasing differences that ensure monotone pure strat-
egy Markov equilibria exist for dynamic games when the action variable can be discrete,
continuous, or a mixture of both. We also show that the same conditions are sufficient
for each player’s best response to the pseudo-decision problem to be a pure strategy al-
most surely. Therefore, the pseudo-model can bypass the issues associated with multiple
equilibria for this class of games.

1Bajari et al. (2009) also considered a one-step estimator.
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BBL defined their estimator using a system of moment inequality restrictions im-
plied by the equilibrium condition. Their estimator satisfies a necessary condition of
an equilibrium that the implied expected return from the optimal strategy is at least as
large as the returns from employing alternative strategies, where each alternative strat-
egy is represented by an inequality. To give an intuition of why inequality selection may
have a nontrivial implication, suppose the parameter of interest is uniquely identified
by the inequality restrictions implied by the equilibrium. However, the equilibrium im-
poses that inequalities must hold for all alternative strategies. If we restrict our attention
to certain classes of inequalities, for example, additive or multiplicative perturbations,
these inequalities may not be able to identify the parameter of interest in the sense that
there are other elements in the parameter space that also satisfy these less restrictive
sets of inequality restrictions. Our comment is closely related to the general issue of
consistent estimation in conditional moment models. Particularly, in a familiar instru-
mental variable framework, Dominguez and Lobato (2004) provided explicit examples
when there is a unique value in the parameter space that satisfies a conditional mo-
ment (equality) restriction, but the uniqueness is lost when the conditional moment
is converted into a finite number of unconditional moments. Dominguez and Lobato
(2004) and Khan and Tamer (2009) also showed how to construct objective functions
that preserve the identifying information content of conditional moment models com-
monly used in economics, with equality and inequality restrictions, respectively. How-
ever, their techniques are not applicable to BBLs estimation methodology. We show that
the loss of identifying information associated with BBLs inequality selection problem
can occur even without any conditioning variable.

Our estimator is motivated by a characterization of a Markov perfect equilibrium as
fixed points of an operator that maps beliefs into distributions of best responses. Thus,
our construction of the pseudo-model can be seen as a generalization of AM and PSD,
who provided analogous characterizations for unordered discrete games that also play
central roles in their estimation methodologies. We show that the game they consid-
ered is included in our general setup. We define a class of minimum distance estimators
from the characterization of the equilibrium. Our estimation methodology proceeds in
two stages. In the first stage, we use the distributions of actions from the data as the
nonparametric beliefs to simulate the distributions of the pseudo-model implied best
responses. We then compare the simulated distributions with the nonparametric distri-
butions in the second stage by minimizing some L? distance.

We prove our equilibrium existence results by closely following the arguments in
Athey (2001), who showed that pure strategy equilibria exist for static games of incom-
plete information under single crossing conditions. Athey’s results are amenable to the
dynamic games we consider once we restrict ourselves to players playing stationary
Markov strategies. The existence of Markov equilibria in other related games can be
found in AM and PSD for a class of unordered discrete action games, and in Doraszelski
and Satterthwaite (2010) for games with entry/exit decisions with investment decisions.

Throughout the paper, we treat the transition law of the observed states nonpara-
metrically since the transition law is a model primitive about which we often have little
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information. We also maintain a common assumption in this literature that the observ-
able states take finitely many values. Therefore, the estimation problem is semiparamet-
ric when the action variable is continuous. The effective rate of convergence of the non-
parametric estimator in our methodology is determined by a one-dimensional object,
which is consistent with the nature of a simultaneous-move game where each player
forms an expectation by conditioning only on her action. Therefore, our proposed esti-
mator does not suffer from the nonparametric curse of dimensionality with respect to
the number of players. This is in contrast to extending the forward simulation method of
BBL (Step 3, p. 1343) to estimate a semiparametric model, where future states are drawn
conditionally on the actions of all players.> We note that it is also possible to extend
our estimation procedure to allow for continuous states, as illustrated by Srisuma and
Linton (2012) when action is discrete, although this may be of limited practical interest
when the action is also continuous.

The rest of the paper proceeds as follows. Section 2 introduces the class of games
that are estimable by our two-step approach. We provide the details of our methodology
in Section 3. A general large sample theory is given in Section 4. Section 5 reports results
from Monte Carlo studies, where we also consider the performance of BBL estimators
when the objective functions used cannot identify the parameter of interest in the limit.
Section 6 concludes. The Appendices are available in a supplementary file on the journal
website, http://qeconomics.org/supp/266/supplement.pdf. Appendix A concerns the
issue of consistent estimation using the BBL methodology; it contains three parts (A.1-
A.3). In Appendix A.1, we give two examples where the inequality restrictions imposed
by the equilibrium are satisfied by a unique element in the parameter space, but the
uniqueness is lost when some well known subclasses of all inequalities are considered.
In Appendix A.2, we show that a simple class of inequalities can be used to construct ob-
jective functions that preserve the identifying information from the equilibrium in dis-
crete action games where players’ best responses are characterized by some cutoff rules,
that is, by choosing alternative strategies based on perturbing the cutoff values only in
the first period. The suggested inequalities are applicable for unordered and ordered
action games. Appendix A.3 provides some additional discussion. Appendix B contains
proofs of the theorems.

2. MARKOVIAN GAMES

This section introduces the class of estimable games for our methodology. We begin
by describing the elements of the general model and defining the equilibrium concept.
We then consider the players’ decision problems and show that when players’ best re-
sponses to any Markovian beliefs are pure strategies almost surely, then the equilibrium
can be characterized by a fixed point of an operator that maps beliefs into distributions
of best responses. We end the section by providing examples of Markovian games that
have been used in the literature. In particular, we study in detail the games where payoffs
satisfy an increasing differences condition.

2BBL only considered a fully parametric estimation framework.
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2.1 Model

We consider a dynamic game with I players, indexedbyi € 7T ={1, ..., I}, over an infinite
time horizon. The elements of the game in each period are as follows.

Actions. We denote the action variable for player i by a;; € 4;. Leta; = (ay;, ..., ay) €
A= A; x --- x A;. We will also occasionally abuse notation and write a; = (a;;, a_j),
where a_j; = (a1, ..., i—11, Aig1s, -+, a11) € A_j = A\ A;.

StaTEs. Player i’'s information set is represented by the state variables s;; € S;, where
sit = (xj, €ir) such that x;; € X; is common knowledge to all players and ¢;; € &; de-
notes private information only observed by player i. For notational simplicity, we set
xi; = x; for all i; this is without any loss of generality as we can define x; = (xy;, ..., xp;) €
X. We use s; and (x, ;) interchangeably. We define (s;, s_j¢, &, £, £) analogously to
(a;,a_j;, A) and denote the support ofs; by S = X x £.

StaTE TRANSITION. Future states are uncertain. Players’ actions and states today af-
fect future states. The evolution of the states is summarize by a Markov transition law
P(si1s, ar).

PER PERIOD PAYOFF FuNcTIONS. Each player has a payoff function, u;: A x §; — R, that
is time separable. The payoff function for player i can depend generally on (a;, x;, j¢),
but not directly on _;;.

DiscouNTING FacTor. Future period’s payoffs are discounted at the rate 3; € (0, 1) for
each player.

Every period, all players observe their state variables and then they choose their ac-
tions simultaneously. We consider a Markovian framework where players’ behavior is
stationary across time and players are assumed to play pure strategies. More specif-
ically, for some «;:S; — A;, ai; = a;(sjy) for all i, ¢, so that whenever s;; = s;;, then
a;(sir) = a;(s;;) for any 7. Next, we introduce three modeling assumptions that are as-
sumed to hold throughout the paper.

AssumpTiON M1 (Conditional Independence). The transitional distribution of the
states has the factorization P(x,,1, €,411X¢, &, &) = Q(&,41)G(x141|x¢, ar), where Q is the
cumulative distribution function of &€; and G denotes the transition law of x,,1 condi-
tioning on a, and x;.

AssumpTiON M2 (Independent Private Values). The private information is indepen-
dently distributed across players, that is, Q(g) = ]_[{=1 Qi(&;), where Q; denotes the cu-
mulative distribution function of ej;.

AssumpTiOoN M3 (Discrete Public Values). The support of x; is finite such that X =
{(x!,...,x'} for someJ < oco.
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Assumptions M1 and M2 generalize Rust’s (1987) conditional independence frame-
work to dynamic games. They are the key restrictions commonly imposed on the class
of games in this literature. Assumption M1 implies that &, is independent of x; and all
variables in the past, and &, is only correlated to x,,; through the choice variables a,.
It is conceptually straightforward to relax the former condition and allow for &, to be
conditionally independent of the past given x,, although this is rarely done in practice.
Assumption M2 rules out games with correlated private values. Assumption M3 is a sim-
plifying assumption that has an important practical implication, however it is not nec-
essary for a general estimation methodology; for examples, see Bajari et al. (2009) and
Srisuma and Linton (2012).

Under M1 and M2, player i’s beliefs, which we denote by oy, are a stationary distri-
bution of a; = («1(s1¢), - .., ar(sy;)) conditional on x; for some pure Markov strategies
(ai,...,ar). Then following Maskin and Tirole (2001), we define the equilibrium con-
cept as follows.

DerINITION 1 (Markov Perfect Equilibrium). A collection (e, o) = (a1, ..., a1, oy, ..
or) is a Markov perfect equilibrium if the following statements hold:

*

(i) Foralli, «; is a best response to a_; given the beliefs o; at almost all states x.
(ii) All players use Markov strategies.

(iii) For all i, the beliefs o; are consistent with the strategies a.

2.2 Players’ decision problems
To characterize the players’ optimal behaviors, we consider the decision problem faced
by player i for a given o;: for all s;,

max {Eq, [ui(air, a_ir, $;)|si = si, i = a;]
aieA,-

+ BiEo,[Vi(sit+1; 00)|Si = si, air = ai]}, (1)

o
where V;(s;; o) = Z B™ ' Eg,[ui(ar, sir)lsic = si].

T=t
The subscript ¢; on the expectation operator makes explicit that present and future ac-
tions are integrated out with respect to the beliefs o;; in particular, player i forms an
expectation for all players’ future actions including herself and for today’s actions of op-
posing players. The function V; is a policy value function since the expected discounted
return need not be an optimal value from an optimization problem since ¢; can be any
beliefs, not necessarily equilibrium beliefs. Note that the transition law for future states
is completely determined by the primitives and the beliefs.2 Thus, we can interpret each
player’s decision problem in (1) as a single stage game against nature that is determined

3First, note that the use of Markovian beliefs imply that Z(s,;, a;4+) = Z(S/17) and Z(Sjiyr, djr1r) =
Z(Sit++), where Z(-) denotes the information set of (-). For some random vectors X and Y, let fx y and
fx|y denote the joint density of (X, Y) and X given Y, respectively (components of X and Y can be either
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by Markov beliefs. Clearly, any strategy profile that solves the decision problems for all ,
and is consistent with the beliefs satisfies conditions in Definition 1 and is an equilib-
rium strategy. To avoid multiple predictions of best responses, the class of games es-
timable by our methodology requires (1) to have a unique solution almost surely. In this
subsection, we show that Markov equilibrium can be represented by a fixed point of a
particular mapping when the solution to the decision problem exists and is unique.

First we simplify the objective function of the decision problem by incorporating our
modeling assumptions. It is convenient to write }; recursively as

Vi(sis 07) = Eg,[ui(@y, sio)sic = 8i] + BiEo;[Vi(Sits1; ) Isic = si].

The ex ante value function can be obtained by taking the conditional expectation of V;
with respect to x;:

Eo,[Visi: 00)|x:] = Eq,[ui(@s, sio)1x¢] + BiEo;[Vi(Sir41; 00)|%:].

Under M1, by the law of iterated expectation, Eq,[V(si1+1: 01)|X/] = Eq,[Eq,[Vi(Sit41; 07)]
x;11]]x¢], so that the ex ante value can be written as a solution to the linear equation

m;(o;) =ri(0y) + L 5;m;(0y),

where m;(0y) = Eq;[Vi(sir; 09)|xs = -1, ri(0y) = Eg,[ui(ay, sit)|x, = -1, and L; 4, is a condi-
tional expectation operator so that £; ;¢ = BiEy,[¢ (x,41)|x, = -]forany ¢ : X — R. Note
that m;(o;) exists and is unique under great generality since £, ,, is typically a contrac-
tion map.* Also, under M1, the choice-specific expected future return under beliefs o;
satisfies Eq,[Vi(sir+15 00)8it» @il = Eq;[E;[Vi(Sit41: 01)|X14111%¢, a;¢], which can be repre-
sented by g;(o;) so that

8i(gi) =Hjg;mi(07),
continuous, discrete, or a mixture). Then, for a one-step-ahead transition, by M1,

fSH—]\Sihair = fxt+175r+l|xt»511»ait
= f£t+1fx1+l|xl,aii’

where fe,,, and fy,,|x,q;, can be deduced from the model primitives given any beliefs o;. For two periods
ahead, note that fs, ,(s;.a;, = J fsi12.80115,a @S:+1, using the same line of arguments as above:

fsz+z,sz+1\sn,au = fst+z\sz+1,sn,anfsz+1\Siz,an
= f51+2fxt+2‘xr+lsat+lf5t+lfxr+l‘xtaan'

Similar arguments can be applied recursively for any future periods.

4Let X be some compact subset of RLx and let B be a space of bounded real-valued functions defined
on X. Consider a Banach space (B, || - ||) equipped with the sup-norm, that is, ||¢|| = sup,.x |¢(x)| for any
¢ eB.Forany x € X, L; 5;¢(x) = BiEg,[¢(x:41)]1x, = x], then it follows that |£; s, ¢ (x)| < Bisup,cy [ (xX)].
In other words, ||£; +; ¢|l < B;ll¢|l, hence the operator norm || Z; || is bounded above by ;. Since B; € (0, 1),
L;, s, is a contraction. Therefore, the inverse of I — £, , exists. Furthermore, it is a linear bounded operator
and admits a Neumann series representation > L], (see Kreyszig (1989)).
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where H; ,, is a conditional expectation operator so that H; ¢ = Eq,[¢d(x:41)|x; =
-,ajy = -] for any ¢ : X — R. Since, under M1 and M2, a;; and ¢;, has no additional infor-
mation on a_;; given x;, then the objective function in (1), which we henceforth denote
by A;, can be written as

Ai(ai, si; 0) = Eg;[uiaj, a_ip, x¢, €)|x, = x| + Bigi(ai, x; o).
The corresponding set of best responses is defined as
BR;(s;; 03) = {ai € A;:Aj(a;, si; 07) > Ai(a;-, Si; 0'1') for all a;- € A,’}.

A pure strategy best response is a particular selection from the best response that satis-
fies a;(-; 0;) € BR;(+; 0), that is, for all s;,

Ai(ei(sis 07), 813 07) = Ai(a], si 07)  fora) e A;. )

Since we assume that BR;(s;; ;) is a singleton for all s;, o}, there is no need for a selection
from the best response set. Thus, there is a single-valued map ¥; such that

F;=Y;(07), where F;(aj|x; o) = Pr[ai(si;; oi) <ajlx;= x] forall a;, x. 3)

Under independence (Assumption M2), information on all marginal distributions of ac-
tions provides equivalent information for the joint distribution of actions, so that any
equilibrium beliefs must satisfy condition (2) and the beliefs are consistent with the ac-
tions according to (3), where each o; can be represented by ]_[le F; = ]—[f:1 V(o) for
all i. We can, therefore, summarize the necessary condition that the equilibrium be-
liefs must satisfy by a fixed point of a map ¥ that takes any vector F = (Fy, ..., Fy) into
W(F) = (11’1(]_[{:1 Fp,..., 1I’I(]_[f:1 F))), that is, the condition

F=W(F). 4)

The fixed point of ¥ fully characterizes the equilibrium since any F that satisfies equa-
tion (4) can be extended to construct a Markov perfect equilibrium, as «;(s;; ]_[1[=1 F) =
argmax, . 4, Ai(ai, si; ]_[f=1 F)) is the best response that is consistent with the beliefs by
construction.

Equation (4) forms the basis of our minimum distance estimator, where, in Section 3,
we look to minimize the distance between the distribution of actions from the data and
the implied distribution generated by the empirical version of W (F). The characteriza-
tion of an equilibrium as a fixed point to equation (4) is very similar to the approach
taken by AM (Representation Lemma) and PSD (Proposition 1), who considered a par-
ticular class of unordered discrete choice game (see Assumption D below).”

5Equation (4) can also be useful for proving the existence of a Markov perfect equilibrium when ¥ is
known to satisfy regularity conditions to ensure that a fixed point exists, as well as providing an alternative
numerical calculation of equilibrium probabilities; see Pesendorfer and Schmidt-Dengler (2008) for further
discussions.
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2.3 Games under increasing differences

In many economic applications it is natural to model players’ best responses to be
monotone in their private values. The action space can be finite, for example, in in-
vestment models where firms purchase or rent goods in discrete units, or the action
variable can have a continuous contribution (with or without a discrete component),
as in the traditional investment and pricing models. The source of the monotonicity
can often be derived from an intuitive restriction imposed on the interim payoff differ-
ences when player i chooses action a; over a;, which we denote by Au;(a;, aj,a_;, x, &;) =
ui(a;,a_;, x, &) —u;(a;,a_;, x, &), thatincreases with ¢;. Increasing differences have nu-
merous applications in economics; see the monograph by Topkis (1998) for examples.
We consider games that satisfy the following conditions.

AssumMPTION S1 (Increasing Differences). For any a; > a; and &; > ¢}, Au;(a;, a},a_;,
x, &) >Aui(a;,a,,a_;,x,¢) foralli,a_;, x.

AssumPTION S2. The distribution of &, is absolutely continuous with respect to the
Lebesgue measure with a bounded density on & = [g;,€;] C R for all .

Assumptions S1 and S2 are versions of the conditions used in Athey (2001) to study
the equilibrium properties in static games. Importantly, increasing differences of u; in
(a;, ;) imply that the incremental return satisfies the single crossing condition in (a;, ;)
(see Definition 1 in Athey). Our increasing differences condition is strict and holds uni-
formly over (a_;, x), which, although generally not necessary for pure strategy equilibria
to exist, will be convenient for modeling games where players employ pure strategies al-
most surely. When ; is differentiable in (a;, ¢;), the increasing differences condition has
a simple characterization: #Zaiui(ai, a_;,x,&;)>0forall a_;, x. We also comment that
compactness of &; is assumed here only for the purpose of establishing the existence of
equilibria. In an econometric application, &; can have full support on R. Next, we show
that existence theorems for equilibria in static games under the single crossing condi-
tion of Athey (2001) can be applied to our dynamic games.

For the first case, we restrict the support of the action variable to be discrete and
impose an integrability condition.

AssuMPTION S3. The variable A; is finite for all i and [ |u;(a;,a_;, x, &;)|dQi(g;) < 00
foralli, a;,a_;, x.

Under Assumptions M1, M2, M3, S2, and S3, all expected returns, particularly A;, ex-
istand BR;(s;; 07) is nonempty by the finiteness of A4; for all s;, o;. Let AA;(a;, a}, s;; 07) =
Ai(a;, si; i) — Ai(a}, s;; 07). Then we have the following results.

Lemma 1 (Increasing Differences in Expected Returns). Under M1, M2, M3, S1, S2, and
S3, forany a; > a; and &; > €}, AA;(a;, aj, x, &;; 0;) > AA;(a;, a;, x, &}; o) foralli, x, o;.
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Proor. Under M1 and M2, g;(o;) does not depend on ¢;. Therefore, we have
AA;(a;, d}, x, &;; 07) — AA(a;, d), x, €); 0y)
= ED',' [Aui(aia a;') aA_jt, Xt 8i) - Aui(ai) a;’a aA_jt, Xt 8;) |xl = x]

>0,

where the inequality follows from Assumption S1. O

LEMMA 2 (Pure Strategy Best Response). Under M1, M2, M3, S1, S2, and S3, BR;(sjs; 07)
is a singleton set almost surely for all i, o;.

Proor. For any o, let «;(-; 0;) and «}(-; 0;) denote distinct selections from BR;(-; o)
so that for some x, there exists & > & such that (without any loss of generality)
ai(x, &}; 07) > aj(x, &;; 0;). By definition of a best response, AA;(«;(x, €; 0y), a(x, & 0y),
x, &5 00) = 0 > AA(ai(x, &} 07), aj(x, &i; 07), X, &;; 07). However, this contradicts the
strict increasing difference condition in the expected returns (Lemma 1). O

Notice that finiteness of A; does not play any role in proving Lemmas 1 and 2 be-
yond ensuring A; exists and BR; is nonempty. An implication of Lemma 1 is that every
selection from BR;(-; 07) is nondecreasing in ¢; for all i, x, o; (by the monotone selection
theorem of Milgrom and Shannon (1994, Theorem 4)). Together with Lemma 2, they en-
sure that, for any given beliefs, each player’s best response is a monotone pure strategy
almost surely. The existence of an equilibrium then follows immediately from results
developed in Athey (2001).

ProrosiTION 1. Assume M1, M2, M3, S1, S2, and S3. Then a pure strategy Markov per-
fect equilibrium exists where each player’s equilibrium strategy «;(x, €;) is nondecreasing
ineg;foralli, x.

Proofr. Under S2 and S3, the regularity assumption Al in Athey is satisfied with A; as
player’s i objective function. Lemmas 1 and 2 imply that each player’s best response to
any Markov beliefs is a monotone pure strategy almost surely. Therefore, A; satisfies the
single crossing condition for games of incomplete information in Definition 3 of Athey.
The proof then follows from Theorem 1 in Athey. O

Although we consider a dynamic game, by restricting the equilibrium concept to
players using stationary Markov beliefs under the conditional independence and private
values framework, the arguments used for static games in Athey are directly applicable.®
Athey also showed that finiteness of 4; can be replaced by compactness when the payoff

6The objective function (see the first display on p. 865) of the decision problem studied in Athey appears
in a slightly different form than ours, where, instead of using a distribution of actions, she uses the strategy
functions of opposing players as beliefs. However, the two approaches are analogous since any conditional
distribution, o;, of a, given x, uniquely determines monotone strategies «;(s;) = («;(si¢), @—;(s_;;)) for all
x up to null sets on &;.
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function is continuous in the players’ actions. To apply her result in a dynamic setting,
we also need to impose some continuity condition on the transition law of the states.
Let a; = inf A; and a@; = sup A4;, and let G(x41/x,, a,) be the transition law of x,,; condi-
tioning on a; and x;.

AsSUMPTION S4. Foralli,
i) A;=la;,a;]
(i) wui(a;,a_;, x, &) is continuous in (a;, a_;, &;) for all x

(iii) G(x’|x, a;,a_;) is continuous in (a;,a_;) forall x, x'.

Assumptions M1, M2, M3, S2, and S4 ensure that the regularity condition in Athey
(A1) is satisfied, and A; exists and is continuous in a;; hence BR;(s;; 07) is nonempty for
all s;, oy, since A; is compact (Weierstrass theorem). Each player’s best response for any
given beliefs is also a monotone pure strategy almost surely (by replacing S3 with S4 in
Lemmas 1 and 2). Then we have the following proposition.

ProprosITION 2. Assume M1, M2, M3, S1, S2, and S4. Then a pure strategy Markov per-
fect equilibrium exists where each player’s equilibrium strategy «;(x, €;) is nondecreasing
ing; foralli, x.

Proofr. Under S2 and S4, assumption Al in Athey is satisfied with A; as player’s i objec-
tive function. It is easy to see that conditions (i)—(iii) in Theorem 2 of Athey are satisfied
by our assumptions; in particular, for any finite A} x---x A} C Ay x--- x A;,amonotone
pure (Markov) strategy exists by Proposition 1. The proof then follows from Theorem 2
in Athey (2001). U

For modeling purposes, note that strict increasing differences do not imply that
a;(x, g;) is strictly increasing in ¢;. A sufficient condition for strict monotonicity is given
by Edlin and Shannon (1998), which in our case requires that (i) A;(a;, x, &;; 0;) is con-
tinuously differentiable in a;, &; and (ii) the best response satisfies the first order con-
dition. Thus an intermediate case exists between purely continuous and discrete action
games. For instance, when there are corner solutions, then the distribution of the action
variable has both continuous and discrete components. Proposition 2 (and Theorem 2
in Athey) accommodates mass points as long as the payoff function remains continuous
on the action space. However, the continuity requirement does exclude some interesting
games. For example, although continuity in payoffs over opponents’ mass points may
be reasonable in Cournot oligopoly games, it rules out Bertrand-type pricing problems.
A recent empirical study whose payoff structure satisfies the continuity requirement of
Assumption S4 is the dynamic milk quota trading case in Hong and Shum (2010), where,
an economic agent can have positive (negative) trade demand (supply), which is mod-
eled continuously, or she can produce using an existing quota (mass point at zero). For
further discussions of other games with discontinuities and the existence of their equi-
libria, see Athey (Section 4).
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In this subsection, we have shown that games under increasing differences have
a pure strategy equilibrium under weak primitive modeling conditions. Furthermore,
Lemmas 1 and 2 show that players’ decision problems also have unique solutions. The
consequences of the lemmas are particularly important for inference, since analogous
conditions ensure that the parameterized pseudo-decision problem gives a unique pre-
diction of an optimal behavior almost surely. However, without further restrictions,
games under increasing differences may also have multiple equilibria.” In this paper, we
only consider the estimation problem for games that either have a unique equilibrium
or have observed data that have been generated from a single equilibrium.

2.4 Other dynamic models

Note that a single agent Markov decision problem is a special case of a game when / =1,
where the player’s beliefs simplify to the Markov distribution of her own action given
the states. Indeed, a class of popular games that is included in our general framework is
built on the discrete decision problem studied in Rust (1987). These discrete games have
been extensively studied in this literature (see the surveys of Ackerberg et al. (2005) and
Aguirregabiria and Mira (2010)) and they impose the following assumptions to model
games with unordered discrete actions.

AssuMPTION D (Discrete Choice Game). Forall i,

i) A4;=10,...,K;}.
(i) & =RKit! so that eiy = (1(0), ..., gi:(K})).

(iii) The distribution of e;; is absolutely continuous with respect to the Lebesgue mea-
sure whose density is bounded on ;.

(V) wi(ai,a_, x, &) = ma;,a_;, x) + Yo' i(k)1a; = k] for alla_;, x.

Under M1, M2, M3, and D, it is easy to see that the event where A;(a;, si; o) =
Ai(d}, sir; o) has probability 0, so each player’s best response for any given beliefs is a
pure strategy almost surely; for further details, see AM and PSD, who characterized the
equilibrium by choice probabilities analogous to our equation (4). Specifically, note that
a vector of choice probabilities, (P;(0]x), ..., P;(K;|x)), is just a linear transformation of
a vector of conditional distributions,

P;(0]x) 1 o --- 0 F;(0]x)
_ . .. | : ’ (5)
Pi(Kilx) o .- -11 Fi(Ki|x)

“Recently, Mason and Valentinyi (2007) proposed some sufficient conditions for a unique equilibrium
under increasing differences; specifically, by employing a stronger version of increasing differences and
imposing a Lipschitz condition on the incremental return with respect to other players’ actions.
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where the transformation matrix has 1’s on the main diagonal, —1’s on the subdiagonal,
and 0’s everywhere else.

The general model discussed in this section can also be adapted to accommodate
games where players have more than one decision variable. This feature is useful for
many oligopoly games, for instance, where the economic agents endogenously choose
whether to participate in the market before deciding on the price or investment deci-
sions. One can model such decision problems where players make sequential choices
by combining the primitives from the games with a single action variable discussed pre-
viously; for a detailed discussion, see Arcidiacono and Miller (2008), BBL, and Srisuma
(2010).

3. ESTIMATION METHODOLOGY

We now parameterize {ui}{=1 by a finite-dimensional parameter 6 € ® C R? and update
the notation for the payoff functions with {ui,g}{zl. We take {Bi}{zl as known. We do
not impose any particular distribution on G as this is nonparametrically identified un-
der weak regularity conditions. To keep the notation as simple as possible, we assume
that the observed data are collected from games played over two periods across N mar-
kets. Specifically, we omit the time subscript and let {(a,, x,, x},, en)}f:’:l denote a ran-
dom sample generated from a particular equilibrium when 6 = 6y, where x), is the only
variable observed from the second period. We state this as an assumption that we main-
tain for the remainder of the paper.

AssumpTIiON E. The data are generated by a Markov perfect equilibrium (e, o) =
(a1,...,ar,01,...,07) for some 6 = 6 € 6.

The econometrician only observes {(a,, x,, x;)}nNzl. The goal is to estimate 6. As-
sumption E implies that a;, = «;(x,, &;,) for all i, n. We simply denote the conditional
distribution of the equilibrium actions for each player by F; and let F = (Fy, ..., Fy), so
that ¢; = ]_[{=1 F; is the same for all i. For any 6 € ®, we can then define the pseudo-
decision problems where players use o to construct the policy values. When each
pseudo-decision problem has a unique solution, then there is a map, analogous to the
previous section, that takes 6 into F; g, the implied best response distribution of ac-
tions given o;. By construction, the equilibrium condition requires that F; g, = F; for
all i, which is the condition that motivates our minimum distance estimator. Therefore,
our estimation strategy requires the construction of the distribution of the best response
mapping analogous to that found in Section 2.2. Section 3.1 gives the outline of our min-
imum distance estimator.

We provide details regarding practical implementation in Section 3.2. The section
ends with a brief discussion. In what follows, since we only consider the policy value
functions and associated pseudo-decision problems generated from o, henceforth we
suppress the dependence on beliefs.
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3.1 Minimum distance approach

To formally define F; 4, we need to construct the pseudo-decision problem. As in Sec-
tion 2.2, we begin by incorporating Assumptions M1-M3 to simplify the nature of future
expected returns under o. The (policy) value function, here written recursively, for any
0 is

Vio(Sin) = E[ui,6(@in, Sin)|Sin]| + BiE[Vi,0(5,)1Sin]-

Under M1 and M3, by the law of iterated expectation, the ex ante value, E[V; 4(sin)|Xx],
can be written as the solution to the matrix equation

mig=rig+ Limjg, (6)

where m;y and r;y are J-dimensional vectors whose jth entries are mi,g(xf ) =
EWVi.g(sin)xn = x/] and r; g(x/) = E[u; ¢(an, sin)|x, = x/], respectively, and £; is a J by
J matrix whose (j, k)th entryis B; x Pr[x), = x¥|x, = x/]. Since £; is the product between
Bi and a stochastic matrix, / — £; is invertible, ensuring the existence and uniqueness
of m; g for all (i, 6).2 Under M1, by the law of iterated expectation, the choice-specific
expected future return, E[V 4(s],)|Xn, ain], is a linear transform of the ex ante value,

gi,o =Him; g, (7

where, for all (a;,x), gio(a;,x) = E[Vo(s},)xn = x,ain = a;], and H;p(a;,x) =
Y vex P(XNGi(x'|x, a;) for any ¢: X — R, where G; is the transition law of x, condi-
tioning on (x,, a;,). Then, under M1 and M2, the parameterized objective function for
the pseudo-decision problem is given by

Ajg(ai, x, ;) = E[uj g(ai, a_in, Xn, &)Xy = x| + Bigi o(ai, X). (8)

For u;  that satisfies the modeling assumptions analogous to those in Sections 2.3 and
2.4, A;g(-, xpn, €in) has a unique maximizer on A4; almost surely. We denote its corre-
sponding best response function by «; g, so that

a;g(x, g;) =arg mf};(_/‘i,e(ahx’ ). 9)

a;i€A;

Then the pseudo-model implied distribution function can be written as an outcome of
the map (cf. equation (3))

I
Fi,e=‘1’i,a<l_[Fz>, (10)
1=1

where F; g(a;]x) = / l[ai,g(x, &) < a,'] dQi(e;) for all (a;, x).9

8This is a special case of footnote 2. The existence of (I — £)~! can also be seen to follow directly from
the dominant diagonal theorem since the sum of the (nonnegative) elements in each row of £; is B; < 1
(Taussky (1949)).
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By construction, the equilibrium condition implies that F; y = F; when 6 = 6). We
consider the limiting objective function that measures an L? distance between Fio(-1x)
and F;(-|x) over the support of A; for all i and x:

MO =23 [ (Fuotarv) - Ftai) pas(dan

i€l xeX

for some measures {u;, x};.‘[z’f .—x- The issues of identification and the choice of measures

are discussed in Section 4. For now, we suppose M (#) has a unique minimum at zero
when 6 = 6.

3.2 Implementation

In practice, ¥; ¢ and F are unknown, so we replace them by their empirical counter-
parts. Our estimator minimizes the sample analog of M (6). The estimation procedure
therefore proceeds in two stages. The first stage estimates the pseudo-model implied
distributions. The second stage chooses 6 to minimize their distance with the distribu-
tion of actions from the data. For the convenience of the reader, in Table 1 we tabulate
various elements and their possible estimators from equations (8) and (10) that are used
to define F; g.

The elements from the linear equations can be found in (6) and (7). We also let
E,[(wy)|x, = x] denote an empirical version of E[{(wy)|x, = x] for any function

TaBLE 1. List of variables with definitions and some possible estimators for any i, a;, x, x'.

Variable Definition Possible Estimator

From the data

px(x) Prix, = x] Px(x) =4 Yool xy =x]

px x(x',x) Prix), =x', xp = x] EX/,X(X/,X)= %ij:ll[x;l:x,xn:x]
Gi(X'|x, a;) Pr(x), = X'|x, = x, ain = a;] G, depends on a;,

Fi(a;|x) Pr{ai, < ailx, = x] Fiailx) = & YN Uain < a;, xp = x1/ Px (x)
Linear equations

rig(x) E[ui,e(aim A_jn, Xn, Ein)|Xn = X] ’Fi,ﬂ depends onai,

Lid(x) BiEl$ (x))|x, = x] see equation (12) below

Hi(aj, x) E[$(x})|xn =X, ajn = a;] H, depends on a;,

mip(x) E[V;,6(sin)|xn = x] g = (I — L)~ 'Tig

gi0(ai, x) EWV,o(si,) X0 = X, ain = a;] Zio=HiI—L) T

9For the discrete action games considered in Section 2.4 (under Assumption D), there is no need to solve
the pseudo-decision problem at all since the choice probabilities (hence distribution functions) have a one-
to-one relationship with the normalized expected returns (Hotz and Miller (1993)). In particular, when the
vectors of the unobserved states are also independent and identically distributed (i.i.d.) extreme values,
then Fj g(a;lx) — F;g(a; — 1|1x) = [ 1[e 9(x, &;) = a;1dQi(&;) has a closed form in the expected returns (for
instance, see AM).
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of w,, which can be any vectors from the sample. In particular, since x, is a discrete ran-
dom variable, a possible candidate of E,[{(w;)|x, = x] is simply % ZnN:1 P(wp)1[x, =
x1/Px (x).

First stage distribution of best responses A feasible estimator for F; 4 can be obtained by
estimating A; ¢ and simulating &;, as follows.

Step 1 Estimate the elements of A; 4. From (8), let

Aio(ai, x, &) = En[uio(ai, a_in, X, €)Xy = x| + Bigio(ai, x) forall (a;, x, &;).
Using equations (6) and (7), g; ¢ satisfies

gio ="Ml — L) 'rip. (11)

Therefore, g; y can be obtained from (7; ¢, £;, H;), estimators for (r; 9, £;, H;), which we
now consider.

Estimation of r; 9. The estimation of r; y is complicated by the fact that we do not observe
{sin},’:;l . Estimable games in this literature impose modeling assumptions that allow 7; g
to be nonparametrically identified for all 6. For examples, unordered discrete action
games (under Assumption D) make use of the well known Hotz and Miller (1993) in-
version theorem to identify and estimate r; 9, and for games with monotone actions, the
identification and estimation of r; ¢ rely on the quantile invariance between a;, and &;j,.
To illustrate, we consider the purely continuous and discrete action cases under mono-
tonicity.

ExaMPLE 1. Suppose «;(x, g;) is strictly increasing in ¢; almost everywhere on &; for
all i, x. Then the inverse of «; exists and we denote it by p;, which is defined by the
relation p;(«;(x, &), x) = g; for all i, x;, &;. It follows that F;(a;|x) = Q;(pi(a;, x)). Thus
gin = Qi’l(Fi(ain |x,)) and we can generate the private value g;;, by Ql.’1 (E(ain|xn)). Then
one candidate for 7; ¢(x) is En[u; ¢(@n, Xn, €in)|xn = x].

ExaMPLE 2. Suppose «;(x, ¢;) is weakly increasing in ¢; almost everywhere on &; for
all i, x. Let {af }kKL1 be an increasing sequence of possible actions for some K; < co.
Although the inverse of «; does not exists, by monotonicity, we have & = Ulkil Cr(x),
where Cy(x) = [Ql.’l(Fi(af."1 X)), Qi’l(Fi(afﬂx))] for k > 1. Therefore, the cutoff values
where the optimal action jumps to higher actions are identified. In particular,

K;
ri,o(x) = Zpr[ain = af|x, =x] / Eluio(af,a_in, xn, &)1xn = x] dQi(e)).
k=1 Cr(x)

Then, for instance, we can estimate r;4(x) by replacing Prla;, = af‘|xn = x]
with % 22[:1 1{a;, = af.‘,x,, = x]/px(x) and estimate fck(x)E[u,;g(af-‘, a_jy, Xn, &)lxn =
x1dQi(e;) by replacing [z ) Enltio(a¥,a in, x4, 8% = x1dQi(e;) with Cp(x) =
(0] ! (Fi(af " |x)), Q7' (Fi(ak|x)).
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The mixed continuous case can also be straightforwardly dealt with by using a com-
bination of the two techniques above, since we can write

c c
ri,o(x) = Pr[ai, € A7 |xy = x|E[u;,6(ain, a_in, Xn, £in)|Xn = X, ajp € Af ]
D D
+Pr[ajy € A7 |xp = X|E[ui 0(ain, a_in, Xn, €in)|Xn = X, ajn € A7 ],

where AID denotes the support of A4; that a;, has positive mass points and Al.C is the
complement set of AP with respect to A;.

Estimation of L;. The variable £; can be represented by a J by J matrix of conditional
probabilities. A simple estimator for £; is the frequency estimator whose (j, k)th ele-
ment satisfies

Bipx,x (¥, )/ Px (v/), if px(x)) >0,

12
0, otherwise. (12)

Li(j k) = {
An appealing feature of the frequency estimator is that (/ — Z;) ! necessarily exists as
discussed previously.

Estimation of 'H;. The variable H; is a conditional expectation operator defined by Gj,
the transition law of x), conditioning on a;, and x,. The nature of the nonparametric
estlmator of G; depends on whether a;, is continuous, dlscrete or mixed. For an esti-
mator G of G;, H, is defined as H; d(ai,x) =Y vex o (¥ )G (x'|x, a;) for any a;, x and
any function ¢: X — R.

ExamPLE 1 (Continued). There are many nonparametric estimators that can be used to
estimate a conditional expectation. One candidate is a Nadaraya—Watson type estimator,
where G;(x'|x, ;) = % Yon_y 11X}, = X', Xp = X1K(ain — ai)/ % Yomey 1xn = x1K (@i — a)
and K, () = %K (7) denotes a user-chosen kernel and 4 is the bandwidth.

ExampLE 2 (Continued). Since all variables are discrete, we can simply use the fre-
quencyestlmator G (x'|x, a;) = Zn x), =%, x, =x,a;, =a; /Zn 11xp, =x,a;, =
a;] whenever Zn 1 1[x, =x, a;, =a;] > 0 and define G i(x'|x, a;) to be zero otherwise.

For the mixed continuous case, a candidate for G,-(x’|x, a;) can be constructed in the
same way as one of the two examples above, depending on whether ¢, lies in the support
of A; that has positive mass.

Estimation of g; . This is simply the sample analog of equation (11), thatis, g; o = Hi(l —
Ei)_l’r},g, which can be obtained following equations (6) and (7). First, for any 7; g, 7, ¢
can be estimated by a matrix multiplication: m; g = (I — ,a)_l/l’\i,g. Then, for any q;, x,
gio(ai, X)=> cx r’ﬁi,g(x’)Gi(xﬂx, a;). Note that £; and H; do not depend on 6.

Step 2 Estimate F; 4. Having obtained the pseudo-objective function /’1\,-,9, the implied
best response and distributions are

a;g(x, s,)_argmafli{ i,e(ai,X,Si)} and
a;e

Fg(a;lx) =/1[ai,e(X, &) < a;|dQi(s),
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respectively. As shown in Section 2, the issue of the existence and uniqueness of solu-
tions to /’l\i,g(a,», x, €;) depends crucially on the modeling of u; ¢. It is easy to see that we
also have existence and uniqueness in the finite sample when conditions in Sections 2.3
and 2.4 hold for u; = u; 4 for all 6 with the examples given above.

Note that f,-,g(a,-|x) is a random distribution function of @; 4(s;,), conditioning on
the event that x,, = x. In particular, E,g is generally different from ﬁ,-, even when 0 = 6
since the randomness of the former comes from the construction of the pseudo-model,
while the latter is driven purely by the data. Although we know the distribution of ¢;;,, E 0
generally does not have a closed form and is generally infeasible; special cases do exist
for unordered discrete action games; see AM and PSD. We denote a feasible estimator for
F; g by F ; 6, which can be obtained by simulation. For instance, in our numerical studies,
we use

R
- 1 _
Fig(ajlx) = Ezl[ai,e(x&f) <ajl, (13)

r=1
where {&} }le denotes a random sample drawn from the known distribution of ¢;;,.

Second stage optimization Given the estimators (E,g, 1/7\,-) for (F; 4, F;), a class of L%
distance functions can be constructed from (potentially random) measures {u; x}ie7, xrex
defined on the support of A4;:

My0)=>">" fA (Fip(ailx) — Fi(ai0) pix(day).

i€l xeX ¢

When A; is finite, it is natural to choose each u;, to be a count measure, where M N
canthenbewrittenas) ;.7 ..y ZaieAi(E,g(aﬂx) - E(ai |x))2;u,~,x({ai}). Our minimum
distance estimator minimizes My (6). The statistical properties of the estimator depend
on the choice of {u; x}ie7, rex: We discuss the selection of these measures in Section 4.

A REMARK ON SEMIPARAMETRIC EsTiMATION. Our methodology naturally generalizes
to the case when x,, is a continuous random variable (or vector), where equation (6) be-
comes a linear integral equation of type II that has a well posed solution (see Srisuma
and Linton (2012)). In this case, regardless of whether a;,, is continuous or discrete, the
estimation problem is semiparametric since £; becomes an operator on an infinite-
dimensional space. Under Assumption M3, if a;, has a continuous component, then
estimating H; also leads to a semiparametric problem. However, the dimensionality of
an infinite-dimensional parameter is always 1, since each player forms an expectation
based only on her action in the pseudo-decision problem. This is in contrast to the for-
ward simulation method of BBL, where estimating value functions requires future states
to be sequentially drawn from the estimator of G (not G;) that is a conditional distribu-
tion conditioning on the actions of all players. In our case, the nonparametric dimen-
sionality problem is determined by the total number of continuous variables present in
a;, and x,,.
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3.3 Adiscussion

Having gone through our two-step procedure in detail, we can now put its practical ad-
vantages in relation to its full solution counterpart into perspective. In particular, an
analogous estimator can be defined by a two stage procedure similar to the one de-
scribed above, where Step 1, in the first stage, now requires the equilibrium beliefs to be
computed for each 6. Even if we have unlimited computational resources, multiple equi-
libria give rise to multiple beliefs, leading to more than one model implied distributions
of actions. Without the indeterminacy issue, solving for the equilibrium numerically is
also nontrivial: it typically involves fixed point iterations of some nonlinear functional
equation, for example, see Pakes and McGuire (1994). The additional numerical cost re-
quired to solve for the equilibrium of dynamic games repeatedly is generally considered
infeasible.

We use the insight from Hotz and Miller (1993) and its extension to dynamic games
(AM and PSD), where we only consider the beliefs observed from the data that leads
to the pseudo-model. As described in the previous section, there are no multiplicity is-
sues associated with the pseudo-decision problem for the two main classes of games
where players’ actions are modeled to be monotone in the unobserved states or to be
unordered discrete. Given the beliefs, the implied value functions and objective func-
tions for the pseudo-decision problem are also easy to compute for each 6. Particularly,
in Step 1 of the first stage, all the elements we require to estimate the continuation value
function, g; ¢, either have explicit functional forms or are nonparametrically identified,
hence they are easy to program (for instance, see Table 1).

We also comment on the prospect of solving equation (6), which we can think of as
inverting the estimate of the matrix / — £;. Although not all estimators of £; lead to a
nonsingular estimator of / — £;, a simple frequency estimator does. Importantly, since
we estimate £; nonparametrically, suppose I — L; is invertible; this inversion only has
to be done once. In addition, similar to Hotz et al. (1994) and BBL, we can also take
advantage of the linear structure of the (policy) value equation. Specifically, when the
parameterization of 6 in u; ¢ is linear, so thatu; g = OTu,-,o for some p-dimensional vector
u; 0, then r; y can be written as 0"r; 0, where ri,0 is a p-dimensional vector such that the
ri,0(x) = E[u;o(ay, sin)|x, = x] for all x. In matrix notation, r; = R;6, where R; isa J x
p matrix whose jth row is rl.TO(xf). Then m; ¢ equals (I — £,)~1R;6 and for the choice-
specific expected future return, g; ¢ in equation (11) simplifies to H;(/ — L£)"1R;0, where
H;(I — £;)"'R; does not depend on 6.

In practice, the researcher has the freedom to choose any estimators for r; g, £;, and
H;. Therefore, it is also straightforward to carry out our methodology in a fully paramet-
ric framework by parameterizing £; and ;. In particular, under the Markovian frame-
work, £; and H; can be estimated independently of the dynamic parameters; they can
then be used to transform the estimator of r; 4 as discussed in Step 1 and then all of the
above subsequent steps remain valid.

4. INFERENCE

Before we proceed to the asymptotic theorems, it is important to first consider whether
the minimum distance approach suggested in the previous section provides a sensible
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method to uncover 6, from the data. In particular, similar to other two-step estimators
in the literature, the extent of what we can learn about 6y is restricted to the pseudo-
best response functions {«; g}sc@ defined in (9). Therefore, it is appropriate to speak of
identification in terms of the pseudo-model generated by the data.

DEFINITION 2. The set Og = {a; o(x, €;n) = a;i(x, €jp) a.s. for all (i, x)} is called the iden-
tified set.

DerINITION 3. The variable 6 is said to be identified if @ is a singleton set.

In Section 4.1, we show that, for the class of games discussed previously, {F; g}gco
contains the same identifying information on the identified set in the sense that the
following two conditions are equivalent:

ai,g(x, gin) =ai(x,epy) a.s. for all (i, X) iff 0 € @(}, (14)
Fi,g(al-n|x) = Fi(a,-n|x) a.s. for all (i, X) iff 0 € @0. (15)

Section 4.2 then takes the identified set to be a singleton and provides conditions for our
minimum distance estimator to be consistent and asymptotically normal.

4.1 Equivalence of identification conditions

We consider the parameterized versions of games discussed in Section 2.3. Specifically,
let Assumptions S1’, S3’, and S4’ be identical to Assumptions S1, S3, and S4 everywhere
except that u; is replaced by u; ¢ and all conditions imposed on the former are assumed
to hold for the latter for all 6. In what follows, we denote the probability measure of ¢;,
by Q;. We begin with games that have finite actions.

ProPosITION 3. Assume M1, M2, M3, S1/, S2, and S3'. Then conditions (14) and (15) are
equivalent.

Proor. Suppose for each i, 4; = {a},...,alK"}. Then condition (15) only has to be
checked on A;.

Suppose (14) holds. The implication is immediate for 6 € @. Let D; ;o = {e; ¢(x,
gin) # ai(x, gin)}. When 0 ¢ 0, there exists some i, x, such that Q;(D; . ) > 0. Let
D; «.o(k) denote D;, g N {ai(x, &in) = af.‘}, and let k* = min{k: Q;(D; x ¢(k)) > 0}. By
Assumption S2 and the monotonicity of «; ¢(x,-) and «;(x,-), we have F;(a;|x) =
Fi(a;|x) for all a; < af.‘* and Q;({ajo(x, &in) = af.‘*}) # Qi({ai(x, &) = af.‘*}). Therefore,
Fig(al |x) # Fi(a¥ |x).

Suppose (15) holds. If 6 € 0y, then Q;({a; ¢(x, &in) = af.‘}) = Q;({aj(x, i) = af‘})
for all k; hence it follows from Assumption S2 and the monotonicity of «; ¢(x,-) and
a;(x, -) that Q;(D; y ) =0 for all i, x. If § ¢ Oy, let k* = min{k : F; g(a¥|x) — F; g(a¥|x) #
F,-(af.‘|x) - F,-(af.‘_1|x)}, where we define F,-’g(a?lx) = F,-(a?|x) = 0. By Assumption S2
and the monotonicity of «; ¢(x, ) and «;(x,-), it follows that {a; ¢(x, &;y) < a;} and
{a;(x, &in) < a;} may differ only on a Q; null set for a; < af.‘*. Therefore, Q;({a; ¢(x, €in) =
ak" VA {ai(x, ein) = ak"}) > 0.10 a

10For any sets 4, B, AAB=(AUB)\ (AN B) denotes the symmetric difference between A and B.



Quantitative Economics 4 (2013) Minimum distance estimators for dynamic games 569

An equivalence result is also available when the distribution of a;, is continuous,
that is, the best response is strictly monotone in ;.

PROPOSITION 4. Assume M1, M2, M3, S1/, S2, and S4', and for all i, x, 0, that o; ¢(x, &;)
is strictly increasing in ;. Then conditions (14) and (15) are equivalent.

Proor. The inverse of o; ¢(x, -) exists and is unique for all i, x, 6 by strict monotonicity.
We denote the inverse by p; (-, x), so that p; g(e; ¢(x, €;), x) = ¢; for all i, 6, x;, &;. Then,
for any a;, x,

Fig(ajlx) = Pr{ajo(x, €in) < ajlx, = x]
= Pr[&in < pi,o(ai, X)|xp = X]

= Qi(pi,o(ai, x)).

Since Q; is a bijection map, as it is strictly increasing (Assumption S2), the one-to-one
correspondence between «; ¢ and p; ¢ for all § completes the equivalence claim. O

We have an analogous result when the distribution of a;, has finite mass points as
well as a continuous contribution. For notational simplicity, we consider games where
each action variable has a single mass point at the lower boundary of the support.

ProprosITION 5. Assume M1, M2, M3, S1', S2, and S4’, and for all i, x, 0, that there exists
Eiv0€Ci such that a; ¢(x, €;) = a; for all e; < Eix.0 and a; ¢(x, &;) is strictly increasing in

giforei > g; , . Furthermore, g; , o = ¢, , > &; whenever 0 € 0. Then conditions (14) and
(15) are equivalent.

Proor. We only consider ¢ such that g; , , > &;. As seen previously, we repeatedly make
use of Assumption S2 and the monotonicity of «; ¢(x, -) and «;(x, -).

Suppose (14) holds. The implication is immediate for 6 € @y. If 6 ¢ O, then for
some i, x, either (i) §?,x,9 # &y SO that «; ¢(x, &;) and «;(x, ¢;) do not agree when ¢; €
(min{g) o, & .}, max{g) o, & ,}), in which case F; g(a;|x) # Fi(a;|x), or (ii) &), , = &; ,
so that strict monotonicity implies «; g(x, -) and «;(x, -) must have different inverses,
hence different implied distribution functions.

Suppose (15) holds. The implication is now obvious for 6 € 0. If 6 ¢ O, then ei-
ther (i) F; o(a;|x) # Fi(a;|x), in which case Q;({a; ¢(x, €in) = a;}) # Qi({a;(x, &in) = a;}),
or (ii) the one-to-one correspondence between the best responses and their implied dis-
tribution functions implies that {«; g(x, €in) # ai(x, €in)} has a positive measure. 