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APPENDIX A: MODEL APPENDIX

A.1. Construction of Qs(s′|ψ) and Proof of Lemma 1

LETG≡{0�1/K�2/K� � � � �1} BE a uniform discrete approximation of [0�1]. LetD= 1/K
denote the distance between adjacent (grid) points of G. Let S = {(s1� s2� � � � � sB)|si ∈
G and

∑B

i=1 si = 1} be the associated probability simplex.

LEMMA A.1: Let si ∈G for i= 1�2� � � � �B− 1. If
∑B−1

i=1 si < 1, then 1 − ∑B−1
i=1 si ∈G.

PROOF:
∑B−1

i=1 si < 1 ⇒ ∑B−1
i=1 (�i/K) < 1 ⇒ ∑B−1

i=1 �i < K, where the �i’s are integers be-
tween 0 and K. Since a sum of integers is an integer and a difference of two integers is
also an integer, K − ∑B−1

i=1 �i is a positive integer and it is less than K. Therefore, by the
definition of G, 1 − ∑B−1

i=1 �i/K ∈G. Q.E.D.

DEFINITION A.1: All elements of the matrix Qβ are strictly positive.

LEMMA A.2: Let ψ = (ψ1�ψ2� � � � �ψB) be any vector of type scores resulting from the
Bayesian update. Then, ψi ≥Q> 0.

PROOF: Let Q be the smallest element of Qβ. By Assumption 1, Q> 0.

ψi =
∑
j

Qβ(i|j) × posterior probability of j| actions

≥
∑
j

Q× posterior probability of j| actions =Q�
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The first equality follows from the definition of ψi, the inequality follows from Assump-
tion 1, and the last line follows from the fact that the sum of posterior probabilities
is 1. Q.E.D.

We now identify the elements of S that approximate any given type-score vector ψ
resulting from the Bayesian update. Let si�L = maxs∈G s ≤ψi and si�H = si�L +D. Consider
the collection of 2B−1 vectors:

Sψ =
{(
s1�l(1)� s2�l(2)� � � � �1 −

B−1∑
i=1

si�l(i)

)}
where for each i� l(i) ∈{L�H}�

LEMMA A.3: If D<Q/(B− 1), then Sψ ⊂ S .

PROOF: By construction, si�L ∈G. Next, observe that si�L cannot be 1 since that would
imply that ψi = 1 and, therefore, ψj 	=i = 0 in contradiction to Lemma A.2. Therefore,
si�H = si�L +D must belong in G for all i. To show that (s1�l(1)� s2�l(2)� � � � �1 − ∑B−1

i=1 si�l(i))
belongs in S , it is sufficient to show, by virtue of Lemma A.1, that

∑B−1
i=1 si�l(i) < 1:

B−1∑
i=1

si�l(i) ≤
B−1∑
i=1

si�H

≤
B−1∑
i=1

(ψi +D)

= (1 −ψB) + (B− 1)D

≤ 1 −Q+ (B− 1)D< 1�

The first inequality follows because si�l(i) ≤ si�H . The second inequality follows because
si�L = si�H +D and ψi ≥ si�L. The third equality follows because

∑B

i=1ψi = 1. The fourth
inequality follows from Lemma A.2, and the final inequality follows from the hypothesis
of the lemma. Q.E.D.

By Lemma A.3, we can take Sψ to be the collection of approximating vectors. Note that
for each member of this set, the first B− 1 components are within ψi ±D so, in this sense,
the vectors are close to ψ.

We now determine the probability assigned to each of these vectors. To this end, let

p(si�L) = si�H −ψi
D

and p(si�H) = ψi − si�L
D

for i= 1�2�3� � � � �B− 1� (27)

Since si�L ≤ψi < si�H and si�H − si�L =D, p(si�L) and p(si�H) are nonnegative and sum to 1.
We set

Pr

[(
s1�l(1)� s2�l(2)� s3�l(3)� � � � �1 −

B−1∑
i=1

si�l(i)

)]
=

B−1∏
i=1

p(si�l(i))�

l(i) ∈{L�H}� i= 1�2� � � � �B− 1�
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Then our assignment rule Qs(s′|ψ) : S → [0�1] is given by

Qs
(
s′|ψ) =

⎧⎪⎨
⎪⎩
B−1∏
i=1

p
(
s′i�l(i)

)
if s′ ∈ Sψ�

0 otherwise�

(28)

For this assignment rule, we can prove the following:

LEMMA 1: (i)
∑

s′∈S s
′
iQ

s(s′|ψ) = ψi, ∀i (consistency), (ii)
∑

s′∈S (s′i − ψi)2Qs(s′|ψ) ≤
2(B − 1)D2, ∀i (variance of the approximation error can be made arbitrarily small), and
(iii) Qs(s′|ψ) is continuous in ψ (continuity).

PROOF: (i) First, note that
∑

s′∈S s
′
iQ

s(s′|ψ) = ∑
s′∈Sψ s

′
iQ

s(s′|ψ) since (28) assigns pos-
itive probability only to vectors that are in Sψ. Let i ∈ {1�2� � � � �B − 1}. Now, group the
collection of vectors in Sψ into two: In the first group are all vectors for which s′i = si�L and
in the second group are all vectors for which s′i = si�H . Denote these groups as SLψ and SHψ .
Then, ∑

s′∈Sψ
s′iQ

s
(
s′|ψ) =

∑
s′∈SLψ

s′iQ
s
(
s′|ψ) +

∑
s′∈SHψ

s′iQ
s
(
s′|ψ)

= si�L
∑
s′∈SLψ

Qs
(
s′|ψ) + si�H

∑
s′∈SHψ

Qs
(
s′|ψ)

= si�Lp(si�L) + si�Hp(si�H) =ψi�
The third equality follows from the fact that the first and second sums in the second line
are the probabilities of selecting a vector from group L and group H, respectively. Since
the assignment of si�L or si�H for s′i is done independently of the assignments to the other
B− 2 components, the probability of selecting a vector in group L is p(si�L) and in group
H is p(si�H). The last equality follows from (27).

Next, let i= B. Then,∑
s′∈Sψ

s′BQ
s
(
s′|ψ) =

∑
s′∈Sψ

[
1 − s′1 − s′2 − · · · − s′B−1

]
Qs

(
s′|ψ)

=
∑
s′∈Sψ

Qs
(
s′|ψ) −

B−1∑
i=1

∑
s′∈Sψ

s′iQ
s
(
s′|ψ)

= 1 −
B−1∑
i=1

ψi =ψB�

(ii) Let i ∈{1�2� � � � �B− 1}:∑
s′∈Sψ

(
s′i −ψi

)2
Qs

(
s′|ψ) =

∑
s′∈SLψ

(
s′i −ψi

)2
Qs

(
s′|ψ) +

∑
s′∈SHψ

(
s′i −ψi

)2
Qs

(
s′|ψ)

=
∑
s′∈SLψ

(si�L −ψi)2Qs
(
s′|ψ) +

∑
s′∈SHψ

(si�H −ψi)2Qs
(
s′|ψ)
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≤D2
∑
s′∈SLψ

Qs
(
s′|ψ) +D2

∑
s′∈SHψ

Qs
(
s′|ψ)

=D2
(
p(si�L) +p(si�H)

) =D2�

Let i= B. Then,

∑
s′∈Sψ

(
s′B −ψB

)2
Qs

(
s′|ψ) =

∑
s′∈Sψ

(
1 −

B−1∑
i=1

s′i − 1 +
B−1∑
i=1

ψi

)2

Qs
(
s′|ψ)

=
∑
s′∈Sψ

(
B−1∑
i=1

(
s′i −ψi

))2

Qs
(
s′|ψ)

=
B−1∑
i=1

∑
s′∈Sψ

(
s′i −ψi

)2
Qs

(
s′|ψ) + expectations of cross-product terms

≤ (B− 1)D2�

The inequality in the final line follows from the bound on each of the variances and from
the fact that the assignments of s′i for i ∈ {1�2� � � � �B− 1} are independent of each other
so that the expectation of all the cross-product terms is zero.

(iii) Let ψn be a sequence converging toψ∗. Consider first the case whereψ∗
i /∈G. Then,

for n >N , N sufficiently large, ψni ∈ (s∗i�L� s
∗
i�H) and, so,

pn(si�L) = s∗i�H −ψni
D

and pn(si�H) = ψni − s∗i�L
D

�

It follows that limn→∞pn(si�L) = p∗(si�L) and limn→∞pn(si�H) = p∗(si�H). Next consider the
case where ψ∗

i ∈G. Then, by construction,

s∗i�L =ψ∗
i � s∗i�H = s∗i�L +D and p∗(s∗i�L) = 1�

Then, for n > N , N sufficiently large, either ψni ∈ (s∗i�L −D�s∗i�L) or ψni ∈ (s∗i�L� s
∗
i�L +D).

Therefore, pn(s∗i�L) converges to 1 = p∗(s∗i�L) as ψni converges to ψ∗
i . Q.E.D.

Note that by reducing the distanceD between adjacent points ofG, or, equivalently, in-
creasing the number of (uniformly-placed) grid points K approximating the unit interval,
the dispersion of s′ around ψ can be made arbitrarily small.

A.2. Proof of Theorem 1 (Existence of the Value Function)

THEOREM 1: Given f , there exists a unique solutionW (β�z�ω|f ) to the decision problem
in (3)–(8).

PROOF: The proof relies on the contraction mapping theorem. However, since the ex-
treme value shocks ν and ε can take any value on the real line, it is mathematically more
convenient to seek a solution to (3), (4), (12), and (13) since the extreme value shocks
do not appear in these. Define the operator (Tf )(W ) : RB+Z+|
| → R

B+Z+|
| as the map
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that takes a vector W in R
B+Z+|
| and returns a vector (Tf )(W ) via (4), (12), and (13)

using (3). We may easily verify that Tf satisfies Blackwell’s sufficiency condition for a con-
traction map (with modulus βρ). Since R

B+Z+|
| is a complete metric space (with, say,
the uniform metric ρ(W�W ′) = max1≤i≤B+Z+|
| ‖Wi −W ′

i ‖), by Theorem 3.2 of Stokey and
Lucas (1989), there exists a unique W (β�z�ω|f ) satisfying (Tf )(W ) =W . Q.E.D.

A.3. Proof of Lemma 2 (Existence of the Invariant Distribution)

LEMMA 2: There exists a unique invariant distribution μ(·|f ) and {μ0T
n} converges to

μ̄(·|f ) at a geometric rate for any initial distribution μ0.

PROOF: We will use Theorem 11.4 in Stokey and Lucas (1989) to establish this result.
To connect to that theorem, let i be a typical element of the finite state space B ×Z ×
.
Let the transition matrix� in their theorem correspond to T in (19) and let πij denote the
probability of transitioning to j from i. Further, let εj = mini πij and ε= ∑

j εj . Then it is
sufficient to establish that ε > 0. To this end, consider the state ĵ = (β̂� ẑ� ê�0�Fβ) with the
property that Fβ(β̂)H(ẑ)Fe(ê) > 0. Then, (19) implies πiĵ ≥ (1 − ρ)Fβ(β̂)H(ẑ)Fe(ê) > 0
for all i. Hence εĵ ≥ (1 − ρ)Fβ(β̂)H(ẑ)Fe(ê) > 0. Since εj ≥ 0 for all other j, it follows
that ε > 0. Q.E.D.

A.4. Proof of Lemma 3 (Value Continuity) and Theorem 2 (Equilibrium Existence)

The fact that there are zero profits in equilibrium implies q(0�a′) (ω|f ) = ρ

1+r for a′ ≥ 0
(i.e., the price on savings is a function only of parameters). In what follows, we take F∗ ⊂ F
to contain only those f1 for which f1(a′�ω) = ρ

1+r for a′ ≥ 0.

LEMMA 3: W (β�z�ω|f ) is continuous in f , and for any (d�a′) ∈F (z�ω|f ), σ (d�a′) (β�z�
ω|f ) is continuous in f .

PROOF: We first show that the operator Tf defined in Theorem 1 is continuous in f
(meaning that for any given W , small changes in f lead to small changes in Tf (W )).
Inspection of (6) and (8) shows that this will be true if the conditional value functions
v(d�a′) (β�z� e�a� s|f ) in (4) are continuous in f . Let f̄ ∈ F∗ and let (d̂� â′) ∈ F (z�ω|f̄ ).
Let f n ∈ F∗ be a sequence converging to f̄ . By Assumption 1, (0�0) and (1�0) are
feasible choices regardless of the value of any inherited debt (i.e., a < 0), so all debt
choices (a′ < 0) and the default choice belong in F (z�ω|f n). Furthermore, if an as-
set choice (i.e., a′ ≥ 0) is feasible for f̄ , that asset choice remains feasible for f n since
the price of any asset is the same in f̄ and f n (namely, ρ/(1 + r)). Therefore, (d̂� â′) ∈
F (z�ω|f n) and so v(d̂�â′) (β�z� e�a� s|f n) is well-defined for all n. Observe that f n affects
v(d�a′) (β�z� e�a� s|f n) in (4) via how qn affects the feasible set given in (3) and how ψn

affects Qs(s′|ψn) in (4). Since limn→∞ c(d̂�â′) (z�ω|f n) = c(d̂�â′) (z�ω|f̄ ), the continuity of
u gives limn→∞ u(c(d̂�â′) (z�ω|f n)) = u(limn→∞ c(d̂�â′) (z�ω|f n)) = u(c(d̂�â′) (z�ω|f̄ )). From
Lemma 1, limn→∞Qs(s′|ψ(d�a′)

β′ (ω|f n)) = Qs(s′|ψ(d�a′)
β′ (ω|f̄ )). It follows that v(d�a′) (β�z� e�

a� s|f ) is continuous in f and hence limn→∞ Tfn = Tf̄ . Since F is a Banach space and Tf
is a contraction map, we may apply Theorem 4.3.6 in Hutson and Pym (1980) to con-
clude that W is continuous in f . The continuity of σ (d�a′) (β�z�ω|f ) in f follows directly
by continuity of σ in W . Q.E.D.
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THEOREM 2: There exists a stationary recursive competitive equilibrium.

PROOF: The proof of existence uses Brouwer’s fixed point theorem (Theorem 17.3 in
Stokey and Lucas (1989)). To connect to that theorem, we reinterpret the function f
as a point in a unit (hyper)cube in high-dimensional Euclidean space. To this end, let
G = {((d�a′)�β� z�ω) : (d�a′) ∈ Y�β ∈ B� z ∈ Z�ω ∈ 
} ⊂ Y × B × Z × 
, where Y =
{(d�a′) : (d�a′) ∈ {0} × A or (d�a′) = (1�0)}. Let M and K be the cardinalities of G and
Y \{(1�0)}. Then, f ∈ F∗ can be thought of as a vector composed by stacking q ∈ [0�1]K

and ψ ∈ [0�1]B·M . Then f ∈ [0�1]K+B·M and F∗ ⊂ [0�1]K+B·M . Next, use (15) (with equality)
to construct the vector qa′

new(ω|f ) and use (16) to construct the vector ψ(d�a′)
new (ω|f ). Then,

let J be the mapping

fnew ≡ (
qa

′
new�ψ

(0�a′)
new �ψ(1�0)

new

) = J(f ) : F∗ → F∗�

Since σ (d�a′) (β�z�ω|f ) is a continuous function of f (Lemma 3), J is a continuous self-
map as (15) and (16) are continuous functions of σ (d�a′) (β�z�ω|f ). And since F∗ is a
nonempty, closed, bounded, and convex subset of a finite-dimensional normed vector
space, by Brouwer’s FPT there exists f ∗ ∈ F∗ such that f ∗ = J(f ∗). Q.E.D.

A.5. Equivalence

Given an RCE, let P (e�a) = ⋃
s∈S{m : m = pā∗(e�a� s)} and 
̂ = {(e�a�m) : (e�a) ∈

E × A and m ∈ P (e�a)} with typical element ω̂ ∈ 
̂. An individual in state (β�z� ω̂)
chooses whether to default d and, conditional on not defaulting, chooses asset a′ taking
as given

• a price function qa′ (ω̂) :A× 
̂→ [0�1],
• credit-score transition functionsQ(0�a′)

m (m′|e′� ω̂) :P (e′� a′) ×D×A×E × 
̂→ [0�1]
and Q(1�0)

m (m′|e′� ω̂) :P (e′� a′) ×D ×A× E × 
̂→ [0�1].
As in (3), this implies that an individual of type β in state (z, ω̂) chooses (d�a′) ∈

F (z� ω̂) inducing consumption c(d�a′) (z� ω̂) satisfying

c(d�a′) (z� ω̂) =
{
y
(
e(ω̂)� z

) + a(ω̂) − qa′
(ω̂) · a′ if

(
d�a′) = (

0� a′)�
y
(
e(ω̂)� z

)
(1 − κ1) − κ if a < 0 and

(
d�a′) = (1�0)�

(29)

For all (d�a′) ∈ F (z� ω̂), the value functions given by equations (5), (7), (12), and (13)
and choice probabilities given by equations (9), (10), and (11) associated with the individ-
ual’s problem are unchanged in form after substituting ω̂ for ω except for equation (4)
now given by

v(d�a′) (β�z� ω̂)

= u(c(d�a′) (z� ω̂)
)

+βρ ·
∑

β′�z′�e′�m′
Qβ

(
β′|β)

Qe
(
e′|e)H(

z′)Q(d�a′)
m

(
m′|e′� ω̂

)
W

(
β′� z′� ω̂

)
� (30)
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Intermediaries issue a positive measure of contracts taking the price function qa′ (ω̂)
and probability of repayment function pa′ (ω̂) as given to maximize profits:

πa
′
(ω̂) =

⎧⎪⎪⎨
⎪⎪⎩
ρ · p

a′
(ω̂) · (−a′)

1 + r − qa′
(ω̂) · (−a′) if a′ < 0�

qa
′ · a′ − ρ · a′

1 + r if a′ ≥ 0�
(31)

If the intermediary issues a strictly positive measure of credit contracts, then zero profits
require

qa
′
(ω̂) =

⎧⎪⎨
⎪⎩
ρ ·pa′

(ω̂)
1 + r if a′ < 0�
ρ

1 + r if a′ ≥ 0�
(32)

which is the analogue of (15).
Consistency requires that the probability of repayment satisfy the analog of (17),

namely,

pa
′
(ω̂) =

∑
β′�z′�e′�m′

H
(
z′) ·Qe

(
e′|e) ·Q(d�a′)

m

(
m′|e′� ω̂

) ·Mβ′
(
ω̂′) · (1 −σ (1�0)

(
β′� z′� ω̂′))� (33)

Here, M(ω̂) : 
̂→ S , where M(ω̂) = (Mβ1 (ω̂)� � � � �MβB (ω̂)) with the function Mβ(ω̂)
mapping m to the probability an individual is of a given type β.

The transition function in equation (19) which tracks the probability that an individual
in state (β�z� ω̂) transitions to state (β′� z′� ω̂′) is now given by

T
(
β′� z′� ω̂′;β�z� ω̂)
= ρ ·Qβ

(
β′|β) ·H(

z′) ·Qe
(
e′|e) · σ (d�a′) (β�z�m) ·Q(d�a′)

m

(
m′|e′� ω̂

)
+ (1 − ρ) · Fβ

(
β′) ·H(

z′) · Fe
(
e′) · 1{a′=0} · 1{m′=pā∗(e1�0�Fβ)}� (34)

We can now give the definition of a stationary recursive competitive equilibrium with
credit scores.

DEFINITION 6—Stationary Recursive Competitive Equilibrium with Credit Scores:
A stationary Recursive Competitive Equilibrium with Credit Scores (RCECS) is a pric-
ing function qa′∗(ω̂), a credit-scoring function Q(d�a′)∗

m (m′|e′� ω̂), a choice probability func-
tion σ (d�a′)∗(β�z� ω̂), a repayment probability function pa

′∗(ω̂), a credit-score-to-type-
probability function M∗(ω̂), and a distribution μ∗(ω̂) such that:

(i) Optimality: Given qa′∗(ω̂) and Q(d�a′)∗
m (m′|e′� ω̂), σ (d�a′)∗(β�z� ω̂) satisfies (10) and

(11) for all (β�z� ω̂) ∈ B ×Z × 
̂ and (d�a′) ∈F (z� ω̂),
(ii) Zero Profits: Given Q(d�a′)∗

m (m′|e′� ω̂),M∗(ω̂), and σ (1�0)∗(β�z� ω̂), pa′∗(ω̂) satisfies
(33) for all ω̂ ∈ 
̂, and given pa′∗(ω̂), qa′∗(ω̂) satisfies (32) with equality for all
ω̂ ∈ 
̂,

(iii) Stationary Distribution: Given Q(d�a′)∗
m (m′|e′� ω̂) and σ (d�a′)∗(β�z� ω̂), μ∗(β�z� ω̂)

is a fixed point of μ′(β′� z′� ω̂′) = ∑
β�z�ω̂ T

∗(β′� z′� ω̂′|β�z� ω̂) ·μ(β�z� ω̂) for T ∗ in
(34).
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Note the difference between the RCE Definition 3 and the RCECS Definition 6: an
RCE requires the updating function to be consistent with Bayes’s Law (in (iii) of Defini-
tion 3), while Definition 6 simply postulates the existence of Q(d�a′)∗

m and M∗ and requires
that these be consistent with zero profits.

THEOREM 3: Given an RCE, let m = pā∗(e�a� s). Suppose that the inverse func-
tion s = (pā∗)−1(e�a�m) exists. Then an RCECS exists in which the choice probabilities
σ (d�a′)∗(β�z� e�a�m) = σ (d�a′)∗(β�z� e�a� s) for s= (pā∗)−1(e�a�m).

PROOF: Given an RCE and the existence of the inverse function s = (pā∗)−1(e�a�m),
set

(a) M∗(e�a�m) = (pā∗)−1(e�a�m),
(b) qa′ (e�a�m) = qa′∗(e�a�M∗(e�a�m)),
(c) Q(d�a′)∗

m (m′ = m̃|e′� e�a�m) = Qs(M∗(e′� a′� m̃))|ψ(d�a′)∗(e�a�M∗(e�a�m)), if m̃ ∈
P (e′� a′) and 0 otherwise,

(d) W (β�z� e�a�m) =W ∗(β�z� e�a�M∗(e�a�m)).
By (b), F (z� ω̂) = F (z�ω) in (29) and (3), and by (c) and (d), v(d�a′) (β�z� ω̂) in (30)
is identical to v(d�a′)∗(β�z�ω) in (4). Hence, σ (d�a′)∗(β�z� ω̂) = σ (d�a′)∗(β�z�ω), satisfying
condition (i) in Definition 6. If the choice probabilities are the same, then repayment
probabilities in (33) and (17) are the same since s′(β′) =M∗

β′ (ω̂′) and Q∗
m =Qs, thereby

satisfying the requirement on pa∗∗(ω̂) in (ii) in Definition 6. If the repayment probabilities
in (33) and (17) are the same, then prices in (32) and (15) are the same, thus satisfying
the requirement on qa′∗(ω̂) in (ii) in Definition 6. Since σ (d�a′)∗(β�z� ω̂) = σ (d�a′)∗(β�z�ω)
and Q∗

m =Qs, then (34) is the same as (19) so that (iii) in Definition 6 holds. Q.E.D.

APPENDIX B: COMPUTATIONAL APPENDIX

B.1. Computational Algorithm for the Baseline Model

In this subsection, we describe the algorithm used to compute the RCE stated in Defini-
tion 3. The model is calibrated by using the procedure below to solve the model for a given
set of parameters, and then updating parameters to minimize the distance between the
model moments and the data moments. This outer minimization is performed using the
Nelder–Mead simplex method over hundreds of (randomly chosen) initial conditions.

1. Specify all grids and parameters. Relevant details:
(a) Asset grid is log-spaced in both directions from 0 with 50 points between

[−0�15�−0�00001] and 130 points between [0�15].
(b) Type score grid is linearly spaced with 40 points between min{GβH�Q

β(β′
H |βL)}

and Qβ(β′
H |βH).

(c) Equilibrium convergence is on p and ψ functions with gradual updating; since
ψ is more sensitive, we use a relaxation parameter of θ ∈ (0�1) on p and ηθ on
ψ for η ∈ (0�1).

(d) Persistent and transitory earnings grids are 5- and 3-point discretizations of the
processes in Table I, respectively, yielding E = {−0�71�−0�27�0�0�27�0�71} and
Z ={−0�18�0�0�18}.

(e) All newborns have no assets, lowest e, and s = FβH . They are distributed across
β and z according to FβH and H(z), respectively.

(f) Given α, we set the mean of the ν shocks to be

ν = −α(γE + ln 2) =⇒ E
[
max{νD� νND}

] = 0� (35)
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(g) Compute consumption associated with all non-borrowing actions (since r is ex-
ogenous, these do not change iteration to iteration).
i. Savings: for each ω = (a� s� e) and z, compute the consumption associated

with each feasible action a′ ≥ 0 such that

c(0�a′) (z�ω) = y(e(ω)� z
) + a(ω) − ρ

1 + r a
′ > 0�

Let n(z�ω) denote the index of the largest budget feasible a′ for an agent
with (z�ω).

ii. Default: define the consumption for a defaulter to be

c(1�0)(z�ω) = y(e(ω)� z
)
(1 − κ1) − κ�

where κ is a fixed bankruptcy filing cost and κ1 is a cost that scales with earn-
ings.

2. Main equilibrium loop. Every iteration j starts with a value of: (i) fj = (qa′
j (ω)�

ψ
(0�a′)
j (ω)�ψ(1�0)

j (ω)); and (ii) the (ex ante) value function Wj(β�z�ω).47�48

(a) Compute consumption associated with all a′ < 0 given current prices:

c(0�a′) (z�ω|fj) = y(e(ω)� z
) + a(ω) − qa′

j (ω)a′�

Note that our Assumption 1 implies that all debt choices are always feasible,
which is critical for keeping our Bayesian updates well-defined.

(b) Compute mean of extreme value shock associated with each a′ ∈F (z�ω|fj):
i. For n= 1� � � � � n(z�ω), compute

c(0�ân) (z�ω|fj) = y(e(ω)� z
) + a(ω) − qânj (ω)ân

where â1 = a1 and ân = an−1 + an − an−1

2
for n= 2� � � � �N�

and qân (ω) is given by the linear interpolation of the q function:

q
â1
j (ω) = q

a1
j (ω) for a′ = a1�

qânj (ω) = q
an−1
j (ω) + qanj (ω)

2
for n= 2� � � � �N�

ii. Define the measure of consumption associated with choice a′ = an as

ηan (z�ω|fj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣c(0�ân) (z�ω|fj) − c(0�ân+1) (z�ω|fj)
∣∣

for n= 1� � � � � n(z�ω) − 1�∣∣c(0�ân) (z�ω|fj) − 0
∣∣

for n= n(z�ω)�

(36)

47While we index these functions by f = (qa′ (ω)�ψ(0�a′) (ω)�ψ(1�0) (ω))) to maintain consistency with nota-
tion in the text, the algorithm actually iterates on pa′ (ω) which directly yields qa′ (ω) via (15).

48Since the full information version of the model solves very quickly, for the initial j = 0 values, the value
functions and loan price schedules provide a good initial guess. For type scores, a consistent initial guess is
ψ(d�a′) (e�a� s) = sQβ(βH |βH) + (1 − s)Qβ(βH |βL).
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iii. The mean of εan for n= 1� � � � � n(z�ω) is taken to be

εan (z�ω|fj) = −λγE + λ lnηan (z�ω|fj)� (37)

where λ is the common scale parameter for all shocks.
(c) Iterate to convergence on the value function. Starting with Wj�k=1(β�z�ω) =

Wj(β�z�ω)
i. Compute the conditional value function in (4):

v
(d�a′)
k (β�z�ω|fj)

= u(c(d�a′) (z�ω|fj)
)

+βρ ·
∑

(β′�z′�e′�s′)
Qβ

(
β′|β)

Qe
(
e′|e)H(

z′)Qs
(
s′|ψ(d�a′)

j (ω)
)
Wj�k

(
β′� z′�ω′)�

ii. As in (12), let

W ND
k (β�z�ω|fj) = E

[
max

n=1�����n(z�ω)
v

(0�a′
n)

k (β�z�ω|fj) + εa′
n

]

= λγE + λ ln

(
n(z�ω)∑
n=1

exp
(
v

(0�a′
n)

k (β�z�ω|fj) + εa′
n (z�ω|fj)

λ

))

= λ ln

(
n(z�ω)∑
n=1

ηa
′
n (z�ω|fj) exp

(
v

(0�a′
n)

k (β�z�ω|fj)
λ

))
� (38)

Note that this step applies the definition in (37) from step (2(b)iii).
iii. As in (13), update

Wj�k+1(β�z�ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
W ND
k (β�z�ω|fj)
if a(ω) ≥ 0�

E
[
v

(1�0)
k (β�z�ω|fj) + νD�W ND

k (β�z�ω|fj) + νND
]

if a(ω) < 0�

For the a(ω) < 0 case, using ν from step (1f), we simply have

Wj�k+1(β�z�ω) = αγE + α ln
(

exp
(
W ND
k (β�z�ω|fj) + ν

α

)

+ exp
(
v

(1�0)
k (β�z�ω|fj) + ν

α

))

= −α ln 2 + α ln
(

exp
(
W ND
k (β�z�ω|fj)

α

)

+ exp
(
v

(1�0)
k (β�z�ω|fj)

α

))
�

iv. If sup |Wj�k+1(β�z�ω) − Wj�k(β�z�ω)| is less than desired tolerance, go to
step (2d); otherwise, go to step (2c) starting with Wj�k+1(β�z�ω).
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(d) Compute decision densities:
i. As in (9) in the text, the probability of choosing a′

n ∈ F (z�ω|fj) conditional
on not defaulting is 0 if a′

n /∈F (z�ω|fj); otherwise,

σ̃ (0�a′
n) (β�z�ω|fj) =

ηa
′
n (z�ω|fj) exp

(
v(0�a′

i) (β�z�ω|fj)
λ

)
n(z�ω|fj)∑
n=1

ηa
′
n (z�ω|fj) exp

(
v(0�a′

n) (β�z�ω|fj)
λ

) � (39)

ii. As in (10) in the text, the probability of default for a(ω) < 0 is 0 if a(ω) ≥ 0;
otherwise,

σ (1�0)(β�z�ω|fj) =
exp

(
v(1�0)(β�z�ω|fj)

α

)

exp
(
v(1�0)(β�z�ω|fj)

α

)
+ exp

(
W ND(β�z�ω|fj)

α

) �

iii. Combining these, we obtain the unconditional probability

σ (0�a′
n) (β�z�ω|fj) = (

1 − σ (1�0)(β�z�ω|fj)
)
σ̃ (0�a′

n) (β�z�ω|fj)�
(e) Given the decision probabilities σ (1�0)(β�z�ω|fj) and σ (d�a′) (β�z�ω|fj), com-

pute the new set of equilibrium functions, fj+1 = (qa′
j+1(ω)�ψ(0�a′)

j+1 (ω)�ψ(1�0)
j+1 (ω)):

i. Compute ψ(0�a′)
j+1 (ω) and ψ(1�0)

j+1 (ω) according to (16).
ii. Compute qa′

j+1(ω) according to (15) using pa′
j+1(ω) in (17).

(f) Assess equilibrium function convergence in terms of the sup norm metric

max
{
sup

∣∣ψ(d�a′)
j+1 (ω) −ψ(d�a′

j (ω)
∣∣� sup

∣∣qa′
j+1(ω) − qa′

j (ω)
∣∣�

sup
∣∣Wj+1(β�z�ω) −Wj(β�z�ω)

∣∣}�
If less than tolerance, proceed to step 3; otherwise, start step 2 with fj+1 and
Wj+1(β�z�ω).

3. Compute the stationary distribution.
(a) Given fj from step (2), compute μk+1(β�z�ω|fj) using the transition operator

T in (19) applied to μk(β�z�ω|fj).
(b) Assess convergence based on the sup norm metric sup |μk+1(β�z�ω|fj) −

μk(β�z�ω|fj)|. If less than tolerance, stop; otherwise, iterate on μk+1(β�z�ω|fj)
using T .

B.2. Model Moment Definitions

The bankruptcy rate is computed as the total fraction of the population who files
for bankruptcy within a given period. The probability of a given state is given by
μ(·), and the probability of bankruptcy given a state is σ (1�0)(·), and so the aggregate
bankruptcy rate is

∑
β�z�ω σ

(1�0)(β�z�ω) ·μ(β�z�ω). By type, we have
∑

ω σ
(1�0)(β�z�ω) ·

μ(β�z�ω)/
∑

ω̂ μ(β�z� ω̂). (Analogous type conditions hold for all other moments as
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well; we omit them here for brevity.) The fraction in debt is the share of the popula-
tion choosing a′ < 0 in a given period:

∑
β�z�ω�a′<0μ(β�z�ω)σ (0�a′) (β�z�ω). The debt-to-

income ratio is the ratio of average debt to average income:
∑
β�z�ω�a′<0 a

′σ (0�a′) (β�z�ω)μ(β�z�ω)∑
β�z�ω�a′<0 y(e(ω)�z)μ(β�z�ω) .

The average interest paid in the economy is the weighted average of the interest rates
paid, 1/q − 1, over the stationary distribution and decision probabilities:

∑
ω μ(ω) ·∑

β�z
μ(β�z�ω)∑
β̂�ẑ

μ(ω)

∑
a′

σ (0�a′) (β�z�ω)∑
ã σ

(0�ã) (β�z�ω)
( 1
qa

′ (ω)
− 1), where μ(ω) = ∑

β�z μ(β�z�ω). The standard

deviation is the square root of the second moment of this object.

B.3. Sensitivity Analysis: Implementation of Andrews, Gentzkow, and Shapiro (2017)

We begin by computing the 10 × 8 Jacobian matrix Ĝ of the 10-vector of model mo-
ments with respect to the 8-vector of internally estimated model parameters. We approx-
imate this matrix by taking numerical derivatives. Using a parameter step size of δp · θ̂p
for p = 1� � � � �8 (i.e., proportional scaling, where δp is the proportional increase and θ̂p
is the estimated parameter), we solve the model for the baseline calibration θ̂= {θ̂p}8

p=1,
obtaining moment vector m̂={m̂n}10

n=1, and for a sequence of 8 perturbations in which the
pth parameter is increased by the step size. We set δp = δ = 0�1% for all p. The entry
of the estimated Jacobian matrix Ĝ corresponding to moment n and parameter p is then
ĝnp = (m̂np − m̂n)/δθ̂p. The transpose of this matrix, Ĝ′, is presented in Table V.

Given our estimate of Ĝ′, we compute an estimate of Andrews, Gentzkow, and Shapiro
(2017)’s sensitivity matrix �̂ using equation (24) with the identity weighting matrix W =
I10. What is presented in Table IV is not �̂ directly, but a more easily interpretable trans-
formation which we now describe. Our goal is to answer the question: “by what percent
would the estimated parameter θ̂p change if target moment mn changed by δn percent?”
We assume a change in moment mn of δnm̂n; for ease of exposition, we choose δn = 1%
for all n. Then, the bias in the θ̂p associated with the perturbation to moment mn is
bpn = λ̂pnδnm̂n, where λ̂pn is the corresponding entry of the �̂ matrix. We then report
the implied percentage change relative to the estimated parameter, �̂pn = θ̂p−bpn

θ̂p
− 1. Each

cell of Table IV is the relevant �̂pn entry.

B.4. The Role of Extreme Value Preference Shocks

One of the key modifications in our model relative to standard consumer bankruptcy
models in macroeconomics is the inclusion of the additive, action-specific preference
shocks.49 The mean of these shocks is adjusted to ensure that the utility bonus scales with
the measure of feasible consumption rather than the density of the grid used for com-
putation (see Briglia, Chatterjee, Corbae, Dempsey, and Rios-Rull (2021) for details). In
contrast, we calibrate the scale parameters α and λ which govern the variance of the de-
fault and a′ shocks, respectively. How does behavior in the model change with respect to
these parameters? In this section, we address this question by computing actual decision
rules under different parameter combinations and describe the differences graphically.50

49Dvorkin, Sanchez, Sapriza, and Yurdagul (2021) have employed extreme value shocks to smooth out de-
cision rules in models of sovereign default.

50An analytical approach is contained in the Additional Material.
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FIGURE 12.—Impact of extreme value preference shocks. Notes: “Benchmark” refers to the parameteriza-
tion of the extreme value shock process from Table III. Low α (λ) is half the baseline value: α′ = α/2 (λ′ = λ/2).
All panels fix the state of an agent at (β� s� e� z) = (βH�FβH �0�0). In the top right panel, a modal choice of −1
corresponds to bankruptcy.

Figure 12 demonstrates the impact of changing α and λ on decisions in our base-
line model. Each figure contains three lines, corresponding to: (i) the baseline param-
eterization of Table III; (ii) a parameterization with low variance α on the bankruptcy
decision in which λ is held fixed; and (iii) a parameterization with low variance λ on
the a′ decision in which α is held fixed. All figures are presented for an agent with
(β� s� e� z) = (βH�FβH �0�0). In each parameterization, the equilibrium pricing function,
and therefore the conditional action values, are held fixed, and so the changes in response
shown here can be thought of as partial equilibrium in order to highlight the direct effects
on decisions.

Consider first the bankruptcy filing decision. The top left panel shows how this deci-
sion varies over a range of levels of debt. By lowering α, the slope of increase in filing
probability as the level of indebtedness increases is much sharper than in the baseline pa-
rameterization. This is because there is less chance for a high value shock to be realized
for an action with lower fundamental value, so the decision rule becomes more centered
at the mode for each level of a. By lowering λ, the expected value of repaying increases,
and so the bankruptcy filing probability shifts down.

The remaining three figures show how a′ decisions are affected by changes in the ex-
treme value parameters. The top right panel depicts the modal decision across each case
(with bankruptcy depicted as choosing a′ = −1 for simplicity). Conditional on repaying,
there is little change in the modal decision, but lowering either α or λ makes bankruptcy
the modal decision only for larger levels of debt. The bottom left and bottom right pan-
els show the mean and standard deviation of the savings decision rule, conditional on
repaying, respectively. Changing α has virtually no effect conditional on repaying. Mean
decisions are nearly linear in wealth for positive a given the low risk aversion, but there
is convexity in the decision rule when in debt since default risk changes the return on
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TABLE VIII

MODAL CHOICE METRICS.

Share for Whom
Action Type Is Modal

(%)

Share of Total Action
From Modal Agents

(%)

Share of Decisions w/in k Grid
Pts. of Mode (%)

Action Type k= 0 k= 1 k= 2

Default 2�72 5�25 - - -
Non-Default 99�8 99�8 49�5 83�1 93�3
Borrowing 8�10 86�6 34�7 80�3 93�8
Saving 91�6 99�9 50�8 83�4 93�2

Note: For the right three columns, the share is computed over the population of agents for whom the action type is modal.

borrowing relative to saving. Lowering λ lowers both the mean and standard deviation of
savings choices, with the latter effect being more pronounced. Finally, we note that these
changes in decision rules are similar (holding price and type-score functions fixed) in the
full information and no-tracking economies as well.

B.5. Modal Choice Metrics

This section describes a series of metrics which quantify the dispersion in decisions
implied by extreme value shocks. These results are summarized in Table VIII, but we
first describe the construction of the metrics. Let x = (β�z�ω) be the state variable of
an agent, let σ (d�a′) (x) denote her decision rule, and let μ(x) be the stationary distribu-
tion over individual states in the baseline economy. We want to get a sense of dispersion
around the highest value (or modal) choice, which may be defined as

y∗(x) ≡ arg max
(d�a′)∈F (x)

σ (d�a′) (x)�

Let Y ⊆ {(1�0)�{(0� a′)}|a′ ∈ A} denote a set of possible actions. The share of agents for
whom an action in set Y is modal is

m(Y) =
∑
x

μ(x)1
[
y∗(x) ∈Y

]
� (40)

where 1[S] is an indicator function which takes on the value 1 if S is true. The total
mass of agents choosing an action in the set Y includes those for whom the action is not
modal, and so we can compute the share of the actions in this set accounted for by “modal
agents,” those for whom an action in this set is the mode, via∑

x�(d�a′)∈Y
μ(x)σ (d�a′) (x)1

[
y∗(x) ∈Y

]
∑

x�(d�a′)∈Y
μ(x)σ (d�a′) (x)

� (41)

Last, for agents whose modal action is not default, we can compute the share of deci-
sions within k grid points of the mode. For a given individual (whose mode is not default),
let i∗(x) denote the grid index of the mode y∗(x). Then let a k-band of actions around
the mode be defined by

Yk(x) = {
i∗(x) − k� � � � � i∗(x)� � � � � i∗(x) + k}

�
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Finally, define the total weight on decisions in the k-band of the mode for agent x via

ζk(x) =

∑
(0�a′)∈Yk(x)

σ (0�a′) (x)

1 − σ (1�0)(x)
�

where the denominator normalizes to exclude default. We can aggregate over any group
of actions Y :

ζ(Yk) =

∑
{x|y∗(x)∈Yk}

ζk(x)μ(x)

m(Y)
� (42)

B.6. Details of Alternative Economies

B.6.1. No Tracking (NT)

The key formal difference in this economy relative to the baseline comes from the
separation of the type-score updates (which follow individuals) and the static assessment
of types (relevant for pricing). An individual’s type score updates based only on exogenous
transition probabilities, and so there is no incentive to acquire reputation. As a result, s′
evolves from s according toψ1

NT�β′ (s) = ∑
β Q

β(β′|β)s(β). In the two-type case we employ
in our quantitative model, we have

ψ1
NT(s) = sQβ(βH |βH) + (1 − s)Qβ(βH |βL)� (43)

In this version of the model, lenders perform intraperiod updating of type assessments
based on the a′ chosen by the borrower. That is, the lenders compute

ψ2
NT�β′

(
a′� s� e

) ≡ Pr
(
β′|a′� s� e

) =
∑
β

Qβ
(
β′|β)

Pr
(
β|a′� s� e

)
�

All of the action is in the last term of the expression above, and so we analyze it here:

Pr
(
β|a′� s� e

) = Pr
(
β�a′� s� e

)
Pr

(
a′� s� e

) =

∑
z�a

Pr
(
β�a′� s� e� z�a

)
∑
β̃�z�a

Pr
(
β̃� a′� s� e� z�a

)

=

∑
z�a

σ (0�a′) (β�e� z�a� s)μ(β�e� z�a� s)

∑
β̃�z�a

σ (0�a′) (β̃� e� z�a� s)μ(β̃� e� z�a� s)
�

where the first line uses Bayes’s rule, the second sums over unobserved idiosyncratic
states, and the third once more applies Bayes’s rule via

Pr
(
a′�β�e� z�a� s

) = Pr
(
a′|β�e� z�a� s)Pr(β�e� z�a� s)

= σ (0�a′) (β�e� z�a� s)μ(β�e� z�a� s)�
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Therefore, we obtain

ψ2
NT�β′

(
a′� s� e

) =
∑
β

Qβ
(
β′|β)

∑
z�a

σ (0�a′) (β�e� z�a� s)μ(β�e� z�a� s)

∑
β̃�z�a

σ (0�a′) (β̃� e� z�a� s)μ(β̃� e� z�a� s)
� (44)

What the lender must compute is the probability that a′ is repaid tomorrow given s,
e observed today. For each choice of a′, the lender revises the borrower’s assessed type
today via (44). At the same time, though, due to the implicit “anonymity” assumption in
this economy, they recognize that the borrower’s type score tomorrow (which is relevant
for tomorrow’s default decision) will be determined via (43). Therefore, the p(·) function
in this economy is

p
(
a′� s� e

)
= Pr

(
repay a′|s� e)

= Pr
(
repay a′� s� e

)
Pr(s� e)

=

∑
β′�e′�z′�s′

Pr
(
repay a′|β′� e′� z′� s′� a′� s� e

)
Pr

(
β′� e′� z′� s′|a′� s� e

)
∑
β�a�z

Pr(β�e� z�a� s)

=

∑
β′�e′�z′

[
1 − σ (1�0)

(
β′� e′� z′� a′�ψ1

NT(s)
)]

Pr
(
β′� e′� z′|a′� s� e

)
∑
β�a�z

μ(β�e� z�a� s)

=

∑
β�β′�e′�z′

[
1 − σ (1�0)

(
β′� e′� z′� a′�ψ1

NT(s)
)]
Qe

(
e′|e)H(

z′)Qβ
(
β′|β)

Pr
(
β|a′� s� e

)
∑
β�a�z

μ(β�e� z�a� s)

=ψ2
NT

(
a′� s� e

)∑
e′�z′

[
1 − σ (1�0)

(
βH�e

′� z′� a′�ψ1
NT(s)

)]
Qe

(
e′|e)H(

z′)

+ (
1 −ψ2

NT

(
a′� s� e

))∑
e′�z′

[
1 − σ (1�0)

(
βL�e

′� z′� a′�ψ1
NT(s)

)]
Qe

(
e′|e)H(

z′)� (45)

where the last line once more applies the two-type implementation from our quantitative
model.

Figure 13 shows the percentage differences between the price menus faced by some
agents in the NT economy relative to the BASE economy in comparable states (specif-
ically the lowest persistent earning state e = −0�71 since they are the likely to borrow).
For newborns (i.e., 20-year-olds in our mapping to the data), the comparison is easy, as
all newborns begin life in the same observable state in both economies (and it is common
knowledge they do), that is, they all have zero assets, are in the low earnings class, and
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FIGURE 13.—Loan price comparison between BASE and NT economies. Notes: Let sj denote the average
type score for an agent of age j, and let aNTj be the average wealth of an agent of age j in the NT economy.
Each line in each panel represents 100 · (qa

′
NT (j� e)/qa

′
BASE (e�aNTj � sj) − 1). The black lines in the left and right

panels are the same by construction. The “alternative” NT line in the right panel replaces σ in equation (44)
with σBASE , the decision rules from the BASE economy. All price schedules are for the lowest e= −0�71.

are high types with probability 0.32. The price difference comes only from the different
probabilities of repayment across the two economies owing to differences in dynamic in-
centives. Prices are comparable up to a loan size of 0.01, and for larger loans the prices
are lower in NT, reflecting higher default probabilities at each loan size. This is due to the
lower incentives to repay in the NT economy. These incentive effects, though mitigated,
are present even at older ages.

A Decomposition Exercise. In order to highlight the role of dynamic reputational in-
centives, we construct an alternative price schedule for the NT economy by replacing
the decision rule σ (·) in the definition of the static inference function ψ2

NT(·) defined in
equation (44) with the decision rule from the baseline economy, σBASE(·). Having ob-
tained this alternative ψ̃2

NT(·), we then compute repayment probabilities (and therefore
prices) according to (45) with ψ2

NT(·) replaced by ψ̃2
NT(·). The alternative price schedule

is depicted—relative to the analogous price schedule for the baseline economy—for the
youngest cohort in the red dashed line in the right panel of Figure 13.51 For convenience,
we also present the standard NT price schedule (solid black line) in this figure. The alter-
native price schedule is virtually indistinguishable from the baseline price schedule, while
the NT prices differ significantly from the baseline. What drives this? In the alternative,
the static inference of type reflects the dynamic reputational incentives of the baseline
model by construction. The fact that the alternative and baseline so closely resemble each
other while the NT and baseline differ markedly highlights the role of dynamic reputa-
tional incentives.

B.6.2. Full Information (FI)

Since there is no incentive to infer one’s type, there is no type score in this model.
Therefore, an agent’s full state is (β�e� z�a), and the set of equilibrium functions does

51We choose the youngest cohort to avoid integrating over a given the assumption across all models that
all individuals start with no wealth and the different arguments to the pricing functions in the NT and BASE
economies.
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not include ψ. For comparability, and since it is purely i.i.d. and contains no information
for inference, we maintain the assumption that z is unobservable. Therefore, the lender
can observe ωFI = (β�e�a) for each individual.

The household problem and equilibrium stationary distribution are exactly the same as
in the main text, with the state variable s removed. The only substantial change is in the
pricing and repayment probability equations. The repayment probability function in this
case is p(0�a′)

FI (ωFI) = Pr(repay a′|ωFI). Since ωFI directly includes β and z is i.i.d., there is
no further inference to be done. Therefore, a has no impact on pricing, and we obtain

pa
′

FI(β�e) =
∑
β′�e′�z′

[
1 − σ (1�0)

FI

(
β′� e′� z′� a′)]Qβ

(
β′|β)

Qe
(
e′|e)H(

z′)� (46)

The loan pricing function, qa′
FI(β�e), adjusts for the interest rate as in the baseline model.

In Figure 14, we compare the prices that individuals of a given age face in the FI econ-
omy with their counterpart in the BASE economy who has the average type score for that
age and the FI economy’s average asset holdings for that age. Since we use the average
type score for a given age, the price comparison does take into account the learning that
naturally occurs in the Base economy (i.e., type H (L) have a higher (lower) type score
than the average type score for their given age).

As one might expect, Figure 14 shows that for each age, type L in the FI economy face
lower loan prices (higher interest rates) and type H face higher prices (lower interest
rates) than the BASE economy where there is some cross-subsidization. The figure also
shows that these price differences change with age. Recall that current asset holdings do
not affect debt prices in the FI model but do in the BASE model. As individuals age
and accumulate assets, this has an impact on q(0�a′)

BASE. Any type in the BASE economy who
borrows by age 30 having accumulated precautionary assets is very likely assessed to be
type βL. Thus, there is not much difference between the economies for a 30-year-old
type βL, which explains the imperceptible price difference, but since type βH is pooled

FIGURE 14.—Loan price comparison between full information and baseline economies. Notes: Let sj and
aFIj denote the average type score for an age-j agent in BASE and FI, respectively. Each line in the figure
represents 100 · (qa

′
FI (β�e)/q

a′
BASE (e�aFIj � sj) − 1). All price schedules are for the lowest e.
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with type βL by their borrowing, hence facing much lower q(0�a′)
BASE, the price difference is

magnified.

APPENDIX C: DATA APPENDIX

This appendix describes the construction of the data underlying the life-cycle credit
ranking moments reported in Table II and Figures 1, 2, and 3. We begin with a 2 percent
random sample of the FRBNY CCP/Equifax anonymized panel containing an individual’s
birth year and an individual’s credit score in each quarter of 2003, 2004, and 2005. The
credit-score measure is the Equifax Risk Score (hereafter Risk Score), which is a propri-
etary credit score similar to other risk scores used in the industry. We consider only living
individuals who were between the ages of 21 and 60 years in 2004 and had a Risk Score
value in each quarter of the three years. This yields our base sample.

For this sample, we compute the within-quarter percentile ranking of the individual’s
Risk Scores in each quarter. We call this the individual’s credit ranking—it is a number
that gives the fraction of people who had Risk Scores not exceeding the individual’s score
in that quarter. We then placed individuals in 5-year age bins according to their age in
2004. We compute the mean and standard deviations of the credit rankings in each bin,
averaged over the four quarters of 2004. These moments were used in the regressions
that determine the coefficients in the first four rows of the middle panel of Table II. To
obtain the autocorrelations, we computed, for each quarter of 2004, the changes in an
individual’s credit ranking from the same quarters in 2003 and 2005. For each age bin, we
then computed the correlation between these pairs of individual changes for each quarter
of 2004.

Turning next to the default event study in Figure 3, we first isolated individuals 26 years
or older who filed for Chapter 7 bankruptcy in 2004 in our base sample. This yielded our
base sample of bankrupts. For each individual in this sample, we recorded birth year and
Risk Score in the filing quarter and in the 16 quarters preceding and following the filing
quarter. We converted each Risk Score into a credit ranking by computing the percentile
of each Risk Score in the overall distribution of Risk Scores. We then placed each individ-
ual in the appropriate 5-year age bin based on her age in 2004. We computed the average
credit ranking (percentile) in each age bin for each of the 33 quarterly observations.

APPENDIX D: DELINQUENCY

Default can arise either through delinquency, whereby agents neither repay their debts
nor file for bankruptcy, as well as bankruptcy. Here we modify our model to include this
option. In our modified model, the unobservable income loss from default can depend
on one’s type by a factor of proportionality τ(β), where τ(βH) ≥ τ(βL) = 1 so that a
default can be weakly more costly for high types than low.52 Under the former choice,
the household’s income net of any costs associated with delinquency (which we take to
be y(e� z)(1 − κ2 · τ(β)) with κ2 < κ1 so there are lower costs than in bankruptcy) is used
for consumption and its obligation next period is the face value of its current debt plus
a penalty specified in the contract that we take to be a factor η > 0 of the debt. Upon
becoming delinquent, a household can pay back its debts, file for bankruptcy, or become
delinquent again. Lenders with delinquent debt are required (by law) to remove (charge

52Corbae and Glover (2018) provided an adverse selection labor matching model with pre-employment
credit screening which generates a larger income loss for type βH than type βL.
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off) such debts from their books which they do by selling delinquent debt to third-party
collectors. For simplicity, we assume all delinquent debt is pooled and sold to third-party
collection agencies at an equilibrium price q̄δ to be described below. Buyers of delinquent
debt operate at a per-unit cost γ and are competitive.

D.1. The Household Problem

We modify the problem in Section 3.1 by expanding the set D = {0�1�2} where d = 2
signifies delinquency. Delinquency adds a new option and allows a household to avoid
repaying its debt without incurring a bankruptcy fee but saddling it with more debt next
period. In this case, (3) becomes

c(d�a′) (z�ω|f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y
(
e(ω)� z

) + a(ω) − qa′
(ω) · a′

if
(
d�a′) = (

0� a′)�
y
(
e(ω)� z

)(
1 − κ1 · τ(β)

)
) − κ

if a(ω) < 0 and
(
d�a′) = (1�0)�

y
(
e(ω)� z

)(
1 − κ2 · τ(β)

)
if a(ω) < 0 and

(
d�a′) = (

2� a(ω)(1 +η) ≥ a1

)
�

(47)

The addition is the last line of (47). For any a(ω) ∈ [a1�0) such that a(ω)(1 + η) < a1

(i.e., a delinquency would take the agent past the lowest grid point), we assume the agent
cannot go delinquent and must choose either bankruptcy or repayment (both of which are
feasible by Assumption 1). These assumptions imply that delinquency can only happen a
finite number of times in a row.53

Recall that earlier a household first chose whether to file for bankruptcy or not, and if
not, how much to save. We now pose that the household chooses whether to default or
not and the mode of default. If the household chooses to default, it also chooses whether
to file for bankruptcy or to become delinquent; if it does not, it chooses how much to save,
receiving a vector of shocks ε attached to each a′ choice exactly as in the baseline model
according to (22). To allow for correlation between the shocks associated with the default
actions, we posit a nested logit structure for the shocks no default/bankruptcy/delinquency
shocks. That is, rather than the independent draws from (21) as in the baseline, the vector
ν is now drawn from

Fν(ν) = exp
{
−exp

(
−ν

d=0 − ν
α

)
−

[
exp

(
−ν

d=1 − ν
φα

)
+ exp

(
−ν

d=2 − ν
φα

)]φ}
� (48)

where the new parameter φ specifies the correlation between the shocks associated with
bankruptcy (d = 1) and delinquency (d = 2).54 The value functions conditional on each
one of the choices in the feasible set F (z�ω) follow trivially.

53When a(ω)(1 +η) is not on the grid A, similarly to what we did with type scores, we distribute a(ω)(1 +
η) ∈ [aj�aj+1] with probabilityw to aj and probability 1−w to aj+1 wherew= (aj+1 −a(ω)(1+η))/(aj+1 −aj).

54The adjustment to kill the bonus associated with debtors’ extra options in this setting is now ν = −αγE −
α ln(1 + 2φ).



A QUANTITATIVE THEORY OF THE CREDIT SCORE 21

D.2. Pricing

All that remains is to determine how lenders price debt given the two types of default.
Regulation requires that banks charge off loans that are severely past due.55 Hence, unlike
Athreya, Mustre-del-Rio, and Sanchez (2019) where delinquent debt is held on a lender’s
balance sheet as long as the individual is delinquent, we assume all delinquent debt is
pooled after a period and sold at price q̄δ per unit. Competition ensures that debt collec-
tors obtain zero profits net of the transaction (collection) costs to the lending process.

Turning first to the new pricing equation of loans by the financial intermediary, the
probability of repayment on a new loan of size a′ is altered from that given in equation
(17) to

pa
′
(ω) =

∑
β′�z′�e′�s′

H
(
z′) ·Qe

(
e′|e) ·Qs

(
s′
(
β′)|ψ(0�a′)

β′ (ω)
) · s′(β′)

· [1 − σ (1�0)
(
β′� z′� e′� a′� s′

) − σ (2�(1+η)a′)(β′� z′� e′� a′� s′
)]
� (49)

The probability of delinquency on that new loan is

δa
′
(ω) =

∑
β′�z′�e′�s′

H
(
z′) ·Qe

(
e′|e) ·Qs

(
s′
(
β′)|ψ(0�a′)

β′ (ω)
) · s′(β′)

· σ (2�(1+η)a′)(β′� z′� e′� a′� s′
)
� (50)

Consequently, the competitive price of a new loan offered by lenders is altered from (15)
to

qa
′
(ω) = ρ

(1 + r)
[
pa

′
(ω) + δa′

(ω) · q̄δ · (1 +η)
]
� (51)

where the second term on the right is the recovery from selling the delinquent debt to a
collector.

Turning next to the value of debt held by a collection agency, the probability of repay-
ment on delinquent debt a of a household in state ω held by a collector is

p
(1+η)a
δ (ω) =

∑
β′�z′�e′�s′

H
(
z′) ·Qe

(
e′|e) ·Qs

(
s′
(
β′)|ψ(2�(1+η)a)

β′ (ω)
) · s′(β′)

· [1 − σ (1�0)
(
β′� z′� e′� (1 +η)a� s′

)
− σ (2�(1+η)2a)

(
β′� z′� e′� (1 +η)a� s′

)]
� (52)

noting the key differences between (49) and (52) are the type updates ψ(d�a′)
β′ and the

future debt obligations a′. Equation (52) makes clear that punishment associated with
delinquency arises from being saddled with penalties augmenting what is owed and delin-
quency’s impact on type score.

We assume a collector does not need to discharge its own debt holdings if a person be-
comes delinquent again, but it pays collection costs γ each period. Denoting by q(1+η)a

δ (ω)

55From https://en.wikipedia.org/wiki/Charge-off, in the United States, federal regulations require creditors
to charge off installment loans after 120 days of delinquency, while revolving credit accounts must be charged
off after 180 days.

https://en.wikipedia.org/wiki/Charge-off
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the value per unit of delinquent debt a of a person in state ω held by a collector, we have

q
(1+η)a
δ (ω) = ρ

(1 + r)(1 + γ)

[
p

(1+η)a
δ (ω)

+
∑

β′�z′�e′�s′
H

(
z′) ·Qe

(
e′|e) ·Qs

(
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(
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β′ (ω)
) · s′(β′)

· σ (2�(1+η)2a)
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)
· q(1+η)2a

δ

(
e′� (1 +η)a� s′

) · (1 +η)
]
� (53)

The zero profit condition for debt collectors is then

q̄δ =

∑
β�z�ω

q
(1+η)a
δ (ω) · a · σ (2�(1+η)a)(β�z�ω) ·μ(β�z�ω)

∑
β�z�ω

a · σ (2�(1+η)a)(β�z�ω) ·μ(β�z�ω)
� (54)

Substituting (53) into (54) yields γ residually given an observed q̄δ. We require that γ ≥ 0.

D.3. Parameterization

To illustrate our model with both bankruptcy and delinquency, we supplement the esti-
mated parameters from the BASE model with parameters chosen to approximate certain
moments like credit card recovery rates, delinquency rates and penalties, and certain re-
strictions implied by the model on the data. We set the recovery rate qδ to 0.22 as in
Chatterjee and Gordon (2012). We set the penalty rate in delinquency η to 30% con-
sistent with industry averages.56 The extreme value parameter φ = 0�2 and variable cost
in delinquency κ2 = 0�03 are set to be roughly consistent with the bankruptcy and delin-
quency rate (measured as being delinquent for four quarters in a row consistent with our
annual model period). The collection cost γ = 2�07 satisfies (54) given (53). Finally, the
proportional income loss from default τ(βH) is 25% higher for type βH than βL.

D.4. How Does a Delinquency Option Change Equilibrium Outcomes?

In Table IX, we provide the moments from our delinquency extension of the BASE
model (adding the 4-quarter delinquency rate that was absent from Table II). While there
are some differences, perhaps the most noteworthy result is that the addition of the delin-
quency option yields model moments not very different from their data counterparts de-
spite not re-estimating the model.

As in the BASE model, type βL default (i.e., choose either delinquency or bankruptcy)
more than typeβH as evident in the top right panel of Figure 15 since their likelihood ratio
for default exceeds 0.5 (similar to the earlier results in Figure 4). The novel aspects stem
from the fact that, as evident in the budget sets of equation (47), delinquency provides
a low current resource cost way to default at the expense of incurring more future debt

56See for example, https://www.thebalancemoney.com/credit-card-default-and-penalty-rates-explained-
960643.

https://www.thebalancemoney.com/credit-card-default-and-penalty-rates-explained-960643
https://www.thebalancemoney.com/credit-card-default-and-penalty-rates-explained-960643
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TABLE IX

TARGET MOMENTS, DELINQUENCY VERSUS BASELINE.

Moment (%) Data Baseline Delinquency

Aggregate credit market moments
Bankruptcy rate 1�00 1�02 0�74
Average interest rate 11�9 11�5 16�6
Interest rate dispersion 7�00 7�08 2�76
Fraction of HH in debt 7�92 9�16 11�4
Debt-to-income ratio 0�40 0�26 0�36
Delinquency rate 1�54 N.A. 1�11

Credit ranking age profile moments
Intercept, mean credit ranking 0�278 0�325 0�394
Slope, mean credit ranking 0�038 0�037 0�022
Intercept, std. dev. credit ranking 0�215 0�219 0�267
Slope, std. dev. credit ranking 0�011 0�010 0�003
Average autocorrelation of change in credit ranking −0�220 −0�204 −0�238

Note: Our model is yearly, so we classify delinquency as for 4 consecutive quarters of delinquency.

FIGURE 15.—Bankruptcy and delinquency choice probabilities. Notes: The individual state for the top pan-
els of this figure is s = 0�48 and e= z = 0. The left panel presents the probability of either type of default for
each type while the right panel presents the likelihood ratio for each type of default. The bottom left panel
The bottom right panel plots the share of agents from a simulated panel who file for bankruptcy in year 0
who are delinquent in year t. This share is zero in the year of the bankruptcy (declaring bankruptcy precludes
delinquency) and the year after (bankruptcy in year 0 implies a= 0 in year 1, so delinquency is infeasible).
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and lowering one’s future reputation. Since type βL care less about the future and more
about current consumption than type βH and have lower costs of default, they are more
likely to choose delinquency and bankruptcy. This difference is clearly evident in the top
row of Figure 15. Since type βL is more likely to go delinquent and bankrupt, the bottom
left panel of Figure 15 shows that such default decisions lead to a fall in their type scores
similar to the earlier results in Figure 6.57 It also shows that a bankruptcy leads to a bigger
downward revision of type score than a delinquency.58 As one might expect, the bottom
right panel of Figure 15 shows that bankruptcies often follow delinquencies; a little more
than 20% of the individuals who choose bankruptcy are already delinquent (for a model
period of one year).59

The extended model provides testable predictions. For example, the top left panel
shows that both types are more likely to choose delinquency for low debt levels and more
likely to choose bankruptcy for high debt levels (for a given earnings and type score).
This generates a pattern where, for both types, as debt grows, they substitute out of delin-
quency into bankruptcy as a form of default. This is intuitive as the future debt cost of
delinquency is more severe with higher debt. If one integrates across all individuals who
default, this provides a prediction that those who go bankrupt have higher debt levels than
first-time delinquents. Our model generates a 17% higher level of debt held by bankrupts
than first-time delinquents, while the data generate a 37% higher level.60
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