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THIS SUPPLEMENT contains the remaining proofs of theorems and lemmas.

APPENDIX S.A: AN EXPONENTIAL INEQUALITY FOR PARTIAL SUMS OF WEAKLY
DEPENDENT RANDOM MATRICES

We develop a stochastic order for a matrix partial sum. Closely related results can
be found in Theorems 4.1 and 4.2 of Chen and Christensen (2015), who establish such
bounds for full matrix sums as opposed to partial sums. Our first theorem is a Fuk–
Nagaev-type inequality, using a coupling approach similar to Dedecker and Prieur (2004),
Chen and Christensen (2015), and Rio (2017).

THEOREM ST.A.1: Let {ξi}i∈Z be a β-mixing sequence with support X and rth mixing
coefficient β(r) and let �i�n = �n(ξi), for each i, where �n : X → R

d1×d2 is a sequence of
measurable d1 × d2 matrix-valued functions. Assume E(�i�n) = 0 and ‖�i�n‖ ≤ Rn, for each
i, set

s2
n = max

1≤i�j≤n
max

{∥∥E(
�i�n�

′
j�n

)∥∥�∥∥E(
�′

i�n�j�n

)∥∥}
�

and define Sk = ∑k

l=1 �l�n. Then, for any integer q such that 1 < q ≤ n/2 and � ≥ qRn,

P
(

sup
1≤k≤n

‖Sk‖ > 4�
)

≤
([

n

q

]
+ 1

)
β(q) + 2(d1 + d2) exp

( −�2/2
nqs2

n + qRn�/3

)
�

The required stochastic order now follows by a choice of � in Theorem ST.A.1.

COROLLARY SC.A.1: Under the conditions of Theorem ST.A.1, if q is chosen as a function
of n such that (n/q)β(q) = o(1) and Rn

√
q log(d1 + d2) = o(sn

√
n) then

sup
1≤k≤n

‖Sk‖ = Op

(
sn

√
nq log(d1 + d2)

)

PROOF OF THEOREM ST.A.1: For i = 1� � � � � [n/q], define Ui = ∑iq

j=iq−q+1 �j�n and
U[n/q]+1 = ∑n

j=[n/q]q �j�n. Now, for an integer j that differs from an integer multiple of
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q by at most [q/2], we have sup1≤k≤n ‖Sk‖ ≤ 2[q/2]Rn + supj>0 ‖∑j

i=1 Ui‖. If q is even
(resp., odd) then q = 2k (resp., q = 2k + 1) for some positive integer k, implying
[q/2] = [2k/2] = k (resp., [q/2] = [(2k + 1)/2] = k) whence 2[q/2]Rn ≤ qRn (resp.,
2[q/2]Rn ≤ (q− 1)Rn). Thus, because � ≥ qRn,

P
(

sup
1≤k≤n

‖Sk‖ > 4�
)

≤ P
(
2[q/2]Rn > �

) + P

(
sup
j>0

∥∥∥∥∥
j∑

i=1

Ui

∥∥∥∥∥ ≥ 3�

)

= P

(
sup
j>0

∥∥∥∥∥
j∑

i=1

Ui

∥∥∥∥∥ ≥ 3�

)
� (SA.1)

so it suffices to prove that

P

(
sup
j>0

∥∥∥∥∥
j∑

i=1

Ui

∥∥∥∥∥ ≥ 3�

)
≤

([
n

q

]
+ 1

)
β(q) + 2(d1 + d2) exp

( −�2/2
nqs2

n + qRn�/3

)
�

Enlarging the probability space as needed, by Lemma 5.1 (Berbee’s lemma) of Rio (2017)
there is a sequence ξ∗

i , 1 ≤ i ≤ [n/q] + 1, such that:
(a) The random variable x∗

i is distributed as xi for each 1 ≤ i ≤ [n/q] + 1.
(b) The sequences ξ∗

2i, 1 ≤ 2i ≤ [n/q] + 1, and ξ∗
2i−1, 1 ≤ 2i − 1 ≤ [n/q] + 1, comprised

of independent random variables.
(c) P(ξi 
= ξ∗

i ) ≤ β(q+p) for 1 ≤ i ≤ [n/q] + 1.
Denote �∗

i�n = �n(ξ∗
i ), and define U∗

i in the obvious manner. Then we have

sup
j>0

∥∥∥∥∥
j∑

i=1

Ui

∥∥∥∥∥ ≤
[n/q]+1∑
i=1

∥∥Ui −U∗
i

∥∥ + sup
j>0

∥∥∥∥∥
j∑

i=1

U∗
2i

∥∥∥∥∥ + sup
j>0

∥∥∥∥∥
j∑

i=1

U∗
2i−1

∥∥∥∥∥� (SA.2)

Now, by (c), we have

P

(
[n/q]+1∑
i=1

∥∥Ui −U∗
i

∥∥ ≥ �

)
= P

(
[n/q]+1∑
i=1

∥∥Ui −U∗
i

∥∥ ≥
[

[n/q]+1∑
i=1

�/
(
[n/q] + 1

)])

≤
[n/q]+1∑
i=1

P
(∥∥Ui −U∗

i

∥∥ ≥ �/
(
[n/q] + 1

))
≤ (

[n/q] + 1
)
β(q+p)�

while for all 1 ≤ i ≤ [n/q] + 1 the matrices U∗
i = ∑iq

j=iq−q+1 �
∗
j�n satisfy ‖U∗

i ‖ ≤ qRn and

max
1≤j≤n

max

{∥∥∥∥∥E
(

j∑
i=1

UiU
∗′
i

)∥∥∥∥∥�
∥∥∥∥∥E

(
j∑

i=1

U∗′
i U

∗
i

)∥∥∥∥∥
}

≤ nqs2
n�

Furthermore, the sequence Uj = ∑j

i=1 U
∗
2i is a matrix martingale (because U∗

2i is an in-
dependent sequence and EUj = 0) with difference sequence Uj − Uj−1 = U∗

2j . Thus, by
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Corollary 1.3 of Tropp (2011),

P

(
sup
j>0

∥∥∥∥∥
j∑

i=1

U∗
2i

∥∥∥∥∥ ≥ �

)
≤ (d1 + d2) exp

( −�2/2
nqs2

n + qRn�/3

)
� (SA.3)

The third term on the RHS of (SA.2) is bounded similarly, whence the claim follows.
Q.E.D.

PROOF OF COROLLARY SC.A.1: In Theorem ST.A.1, take � = Csn
√
nq log(d1 + d2) for

a sufficiently large constant C. Then the claim follows by the condition (n/q)β(q) = o(1)
and because Rn

√
q log(d1 + d2) = o(sn

√
n). To verify that � satisfies that requirement

of Theorem ST.A.1, note that the latter condition implies Csn
√
n ≥ Rn

√
q log(d1 + d2)

for sufficiently large n, so � ≥ qRn log(d1 + d2) ≥ qRn for sufficiently large n, assuming
d1 + d2 ≥ e≈ 2�72. The latter condition fails only if the �i�n are scalar. Q.E.D.

APPENDIX S.B: FOR SECTION 3

We first present an initial approximation of Qn(γ).

THEOREM ST.B.1: Let Assumptions 1–3 hold, and

λ−4
n

√
p

(
λ−1
n κp + vp

) + λ−6
n p−1 → 0 as n → ∞� (SB.1)

Then Qn(γ) − (Rn(γ) −p)/
√

2p= op(1).

PROOF: Much of the details are delegated to Lemmas SL.B.2–SL.B.10. In particular,
we show in Lemma SL.B.6 that

Qn(γ) = nε′A(γ)′B(γ)−1A(γ)ε−p√
2p

+ op(1)� (SB.2)

Then note that (
X∗(γ)′MXX

∗(γ)
)−1 = n−1

(
I − M̂−1Ŝ(γ)

)−1
Ŝ(γ)−1� (SB.3)

and

X∗(γ)′MXε = X∗(γ)′ε− Ŝ(γ)M̂−1X ′ε� (SB.4)

because n−1X∗(γ)′X = Ŝ(γ). Using (SB.3) and (SB.4), we may write nε′A(γ)′B(γ)−1

A(γ)ε/
√

2p as

n−1R1(γ)′R2(γ)′B(γ)−1R2(γ)R1(γ)√
2p

� (SB.5)

where R1(γ) = Ŝ(γ)−1X ′∗(γ)ε − γ(1 − γ)−1M̂−1X ′ε and R2(γ) = (I − M̂−1Ŝ(γ))−1. By
adding and subtracting terms, we can decompose (SB.5) as

∑4
i=1 �i(γ) +Rn(γ), with

�1(γ) =
(
R1(γ) −R1(γ)

)′
R2(γ)′B(γ)−1R2(γ)R1(γ)

n
√

2p
�
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�2(γ) = R1(γ)′R2(γ)′B(γ)−1R2(γ)
(
R1(γ) −R1(γ)

)
n
√

2p
�

�3(γ) = R1(γ)′(R2(γ) − γ−1I
)′
B(γ)−1R2(γ)R1(γ)

n
√

2p
�

�4(γ) = R1(γ)′B(γ)−1
(
R2(γ) − γ−1I

)
R1(γ)

γn
√

2p
�

where we write R1(γ) = (1 − γ)−1M̂−1(γ
∑n

t=1 εtxt − ∑[nγ]
t=1 εtxt) and

Rn(γ) =

(
[nγ]∑
t=1

εtxt − γ

n∑
t=1

εtxt

)′

M̂−1B(γ)−1M̂−1

(
[nγ]∑
t=1

εtxt − γ

n∑
t=1

εtxt

)

γ2(1 − γ)2n
√

2p
� (SB.6)

By (SB.29), the term sandwiched between the parentheses in the numerator of (SB.6)
is (

M̂−1 −M−1
)
B(γ)−1M̂−1 +M−1B(γ)−1

(
M̂−1 −M−1

) + γ(1 − γ)�−1� (SB.7)

Substituting (SB.7) into (SB.6) yields three terms corresponding to the three terms in
(SB.7). The first of these, multiplied by the outside terms in the sandwich formula in
(SB.6), has modulus bounded by a constant times

n−1
(∥∥X ′ε

∥∥2 + ∥∥X∗(γ)′ε
∥∥2)‖M̂ −M‖∥∥B(γ)−1

∥∥∥∥M−1
∥∥∥∥M̂−1

∥∥2

√
p

=Op

(
λ−4
n

√
pκp

)
�

by Assumption 3 and Lemmas SL.B.2, SL.B.4, and also (SB.25), while the second is simi-
larly shown to be negligible also. By (SB.1), we conclude that

Rn(γ) =Rn(γ) + op(1)�

indicating that the theorem is proved if �i(γ) = op(1), i = 1�2�3�4. But by previously
used techniques and Lemmas SL.B.9 and SL.B.10, we readily conclude that(

�1(γ)��2(γ)��3(γ)��4(γ)
) =Op

(
λ−5
n

√
pκp

)
�

which are all negligible by (SB.1), proving the theorem. Q.E.D.

Write �̃(γ) = n−1
∑n

t=1 xt (γ)x′
t (γ)ε2

t .

LEMMA SL.B.1: Under Assumptions 1–3, and the conditions of Propositions B.2 or B.1 as
applicable,

sup
γ∈

∥∥�̂(γ) − �̃(γ)
∥∥ =Op

(
λ−2
n min

{
p3

n
�
ϑ2

pp

n

})
� (SB.8)

sup
γ∈

∥∥�̃(γ) − �̄(γ)
∥∥ =Op

(
p√
n

)
� (SB.9)
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PROOF OF LEMMA SL.B.1: The matrix inside the norm on the LHS of (SB.8) can be
decomposed as

∑5
i=1 Ui(γ), with

U1(γ) = n−1
n∑

t=1

xt (γ)x′
t (γ)

[
x′
t (γ)

(
δ− δ̂(γ)

)]2
�

U2(γ) = n−1
n∑

t=1

xt (γ)x′
t (γ)r2

t �

U3(γ) = 2n−1
n∑

t=1

xt (γ)x′
t (γ)

[
x′
t (γ)

(
δ− δ̂(γ)

)]
εt�

U4(γ) = 2n−1
n∑

t=1

xt (γ)x′
t (γ)

[
x′
t (γ)

(
δ− δ̂(γ)

)]
rt�

U5(γ) = 2n−1
n∑

t=1

xt (γ)x′
t (γ)rtεt�

Recall Lemma SL.B.3 for supγ∈ ‖δ− δ̂(γ)‖ =Op(λ−1
n

√
p/n). Now, since the maximum

eigenvalue of a nonnegative definite symmetric matrix is less than equal to the trace,

∥∥U1(γ)
∥∥ ≤ n−1

n∑
t=1

(
x′
t (γ)xt (γ)

)2(
δ− δ̂(γ)

)′(
δ− δ̂(γ)

)

≤ 2pn−1
n∑

t=1

p∑
j=1

x4
tj

∥∥δ− δ̂(γ)
∥∥2 = Op

(
λ−2
n p2

)
Op(p/n)�

uniformly in γ, by the fact that supt�j Ex
4
tj < ∞ and (SB.27). In a similar fashion,

E
∥∥U2(γ)

∥∥ ≤ 2En−1
n∑

t=1

x′
txtr

2
t ≤ 2

(
E

(
x′
txt

)2
Er4

t

)1/2 = O
(
λ−2
n p/

√
n
)
�

Similarly, and using the fact that E(|εt ||xt) ≤ √
E(ε2

t|xt) =O(1), we obtain

∥∥U3(γ)
∥∥ ≤ 4n−1

n∑
t=1

(
x′
txt

)2|εt |
∥∥δ− δ̂(γ)

∥∥2 =Op

(
λ−2
n p3/n

)
�

∥∥U4(γ)
∥∥ ≤ 4n−1

n∑
t=1

(
x′
txt

)3/2∥∥δ− δ̂(γ)
∥∥|rt |

≤ 4
∥∥δ− δ̂(γ)

∥∥(
n−1

n∑
t=1

(
x′
txt

)2

)3/4(
n−1

n∑
t=1

r4
t

)1/4

=Op

(√
p

n
p3/2 λ

−1
n

n1/4

)
�

∥∥U5(γ)
∥∥ = 2n−1

n∑
t=1

(
x′
txt

)|rtεt | = Op(p/
√
n)�

all uniformly in . Thus, (SB.8) is established.



6 A. GUPTA AND M. H. SEO

To show (SB.9), let xit , i = 1� � � � �p, be a typical element of xt . Then any element of
�̃(γ)−�̄(γ) is of the form n−1

∑n

t=1 xit (γ)xjt (γ)(ε2
t −σ2

t ), i� j = 1� � � � �p, and ε2
t −σ2

t is an
MDS by construction. Thus, it has mean zero and variance n−2

∑n

t=1 Ex
2
it (γ)x2

jt(γ)E((ε2
t −

σ2
t )2|Ft−1) = Op(n−1), by Assumption 1 and the boundedness of Ex4

it . Thus, E‖�̃(γ) −
�̄(γ)‖2 =O(p2/n), and the claim in (SB.9) follows by Markov’s inequality. Q.E.D.

We establish asymptotic normality of

Sn(γ) =
n−1

∑
s 
=t

gt (γ)′�−1gs(γ)εtεs

γ(1 − γ)
√

2p
� (SB.10)

recalling that gt (γ) = xt1{t/n≤ γ}− γxt .

THEOREM ST.B.2: Under Assumptions 1–5 and (SB.1), Sn(γ)
d→ √

VQ(γ)� as n → ∞,
pointwise in γ.

PROOF OF THEOREM ST.B.2: First, note that Sn(γ) equals [γ(1 − γ)
√

2p]−1 times

1
n

[nγ]∑
s�t=1
s 
=t

x′
t�

−1xsεtεs − 2γ
n

n∑
s=1

[nγ]∑
t=1

s 
=t

x′
t�

−1xsεtεs + γ2

n

n∑
s�t=1
s 
=t

x′
t�

−1xsεtεs�

and thus,

Sn(γ) =
√

2
γ(1 − γ)

[
An(γ) − γ

[
An(1) +An(γ) − Ān(γ)

] + γ2An(1)
]
�

= √
2
(An(γ)

γ
+ Ān(γ)

(1 − γ)
−An(1)

)
�

where

An(γ) = 1
n
√
p

[nγ]∑
s=2

s−1∑
t=1

ξ′
tξs�

Ān(γ) = 1
n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′
tξs�

and ξt ={ξti}
p
i=1 =�−1/2xtεt being an mds.

Next, we check the conditions of Corollary 3.1 in Hall and Heyde (1980) for An(γ), with
similar steps holding for Ān(γ) due to the symmetric nature of the processes. Writing
wns = ξ′

s

∑s−1
t=1ξt/

√
np (a heterogeneous martingale difference array), we first check the

second condition therein, namely∑
s

E
(
w2

ns|Gs−1

)
/n− V/2

p→ 0� (SB.11)
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Let �s = ϒs�s. Then we want to show n−2p−1
∑

s tr�s − V/2
p→ 0, but because

n−2p−1
∑

s E tr�s → V/2, it suffices to show

n−2p−1
∑
s

(tr�s −E tr�s)
p→ 0� (SB.12)

By Assumption 4, P{Zn ≤ nν} → 1, where Zn = max1≤t≤n λ(ϒt). Then, to prove (SB.12),
let dn = I{Zn ≤ nν} and Kn denote the LHS in (SB.12). Write Kn = Kndn +Kn(1−dn) and
note that Kn(1 − dn) = op(1) since P{‖ZnKn(1 − dn)‖ > 0}≤ P{dn 
= 1}→ 0.

Thus, it suffices to show (SB.12) for dn = 1. The LHS of (SB.12) has variance

n−4p−2
∑
s

E(tr�s −E tr�s)2

+ 2n−4p−2
∑
s1<s2

E
(
(tr�s1 −E tr�s1)(tr�s2 −E tr�s2)

)
� (SB.13)

The first term in (SB.13) is bounded by n−4p−2
∑

s E(tr2 �s), and observe that∑
s

E
(
tr2 �s

) =
∑
s

E
(
tr2(ϒs�s)

) ≤
∑
s

E
{
λ

2
(ϒs) tr2(�s)

}

≤ Cn2νE

(∑
s

tr2(�s)
)
� (SB.14)

The above inequalities are obtained as follows: first, the matrix �s = ∑
t1�t2<s ξt1ξ

′
t2

is
symmetric and positive semidefinite as it equals (

∑
t<s �

−1/2xtεt)(
∑

t<s �
−1/2xtεt)′. Be-

cause ϒs is also symmetric psd, Theorem 1 of Fang, Loparo, and Feng (1994) yields
tr(ϒs�s) ≤ λ(ϒs) tr(�s), whence the remaining inequality follows by Assumption 4.

Because tr(�−1/2xt1x
′
t2
�−1/2) = x′

t1
�−1xt2 , the right side of (SB.14) is

Cn2ν
∑
s

∑
t1�t2<s;t3�t4<s

E
(
x′
t1
�−1xt2εt1εt2x

′
t3
�−1xt4εt3εt4

)
� (SB.15)

The contribution to (SB.15) when t1 = t2 = t3 = t4 is

Cn2ν
∑
s

∑
t<s

E
((
x′
t�

−1xt

)2
ε4
t

) ≤ Cn2ν
∑
s

∑
t<s

p∑
i�j=1

E
(
x2
itx

2
jt

) = O
(
n2ν+2p2

)
�

by Assumptions 1 and 3. Thus, this case contributes O(n2ν−2) = o(1) to (SB.13). Next, the
contribution to (SB.15) from the case (t1 = t2) 
= (t3 = t4) is

Cn2ν
∑
s

∑
t1<t2<s

E
(
x′
t1
�−1xt1ε

2
t1
E

(
x′
t2
�−1xt2ε

2
t2
|Gt2−1

))

≤ Cn2ν
∑
s

∑
t1<s

E

(
x′
t1
�−1xt1ε

2
t1

∑
t2<s

trϒt2

)

≤ Cn2ν+1p
∑
t1≤n

E

(
x′
t1
�−1xt1ε

2
t1

∑
t2≤n

λ(ϒt2)
)
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≤ Cn3ν+2p
∑
t1≤n

tr
(
E

(
xt1x

′
t1
ε2
t1

)
�−1

)
=O

(
n3ν+3p2

)
�

by Assumption 4, and because trϒt2 ≤ pλ(ϒt2). Thus, this case contributes O(n3ν+3p2) to
(SB.14) and, therefore, O(n3ν−1) to (SB.13).

The cases (t1 = t3) 
= (t2 = t4) and (t1 = t4) 
= (t2 = t3) similarly contribute a constant
times

n2ν
∑
s

∑
t1 
=t2

E
(
x′
t1
�−1xt2εt1εt2

)2

≤ n2ν
∑
s

∑
t1 
=t2

(
E

(
x′
t1
�−1xt1ε

2
t1

)2)1/2(
E

(
x′
t2
�−1xt2ε

2
t2

)2)1/2

= O
(
n2ν+3p2

)
� (SB.16)

to (SB.15), using the Cauchy–Schwarz inequality. This ensures a negligible contribution
of O(n2ν−1) to (SB.13). Finally,

Cn2ν
∑
s


=∑
t1�t2<s;t3�t4<s

E
(
x′
t1
�−1xt2εt1εt2x

′
t3
�−1xt4εt3εt4

)

=O

(
n2ν

∑
s


=∑
t1�t2<s;t3�t4<s

p∑
i�j=1

∣∣E(xt1�iεt1xt2�iεt2xt3�jεt3xt4�jεt4)
∣∣)

=O

(
n2ν+1p2 max

s


=∑
t1�t2<s;t3�t4<s

max
i�j=1�����p

∣∣E(xt1�iεt1xt2�iεt2xt3�jεt3xt4�jεt4)
∣∣)� (SB.17)

where
∑
=

t1�t2<s;t3�t4<s excludes all cases, which were considered before. Therefore, in view
of (SB.14) and (SB.17), to establish negligibility of the first term in (SB.13) it suffices to
show

n2ν−3 max
s

max
i�j=1�����p


=∑
t1�t2<s;t3�t4<s

∣∣E(xt1�iεt1xt2�jεt2xt3�kεt3xt4�lεt4)
∣∣ = o(1)� (SB.18)

The summand on the LHS above is bounded by∣∣E(xt1�iεt1xt2�iεt2)
∣∣∣∣E(xt3�jεt3xt4�jεt4 )

∣∣ + ∣∣E(xt1�iεt1xt3�jεt3)
∣∣∣∣E(xt2�iεt2xt4�jεt4 )

∣∣
+ ∣∣E(xt1�iεt1xt4�jεt4)

∣∣∣∣E(xt2�iεt2xt3�jεt3)
∣∣

+ ∣∣cumiijj(xt1�iεt1�xt2�iεt2�xt3�jεt3�xt4�jεt4)
∣∣

= ∣∣cii(t1 − t2)
∣∣∣∣cjj(t3 − t4)

∣∣ + ∣∣cij(t1 − t3)
∣∣∣∣cij(t2 − t4)

∣∣
+ ∣∣cij(t1 − t4)

∣∣∣∣cji(t2 − t3)
∣∣

+ ∣∣cumiijj(x0�iε0�xt2−t1�iεt2−t1�xt3−t1�jεt3−t1�xt4−t1�jεt4−t1)
∣∣� (SB.19)
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Because
∑

t1�t2
|cij(t1 − t2)| ≤ n

∑∞
t=−∞ |cij(t)|, by Assumption 5 and (SB.19) the LHS of

(SB.18) is O(n2(ν+1)−3) = O(n2ν−1) = o(1), as desired. Thus, the first term in (SB.13) is
negligible, and by Assumption 4 we conclude the proof of (SB.12).

We now check the conditional Lindeberg condition

For all η> 0�
∑
s

E
(
(wns/

√
n)21

(|wns|>η
)|Gs−1

) p→ 0� (SB.20)

in Hall and Heyde (1980), Corollary 3.1, for which we verify the sufficient Lyapunov con-
dition ∑

s

E
(
(wns/

√
n)4|Gs−1

) p→ 0� (SB.21)

The LHS of (SB.21) is positive and, by the law of iterated expectations, has mean

n−2
∑
s

Ew4
ns ≤ n−1 max

s
Ew4

ns = o(1)�

the final bound coming due to a calculation similar to the proof of (SB.11). Specifically,

n−1 max
s

E|wns|4 ≤ max
s

E

(
E

((
ξ′
sξs

)2
|Gs−1

)( ∑
t1�t2<s

ξ′
t1
ξt2

)2)
n−3p−2

= O
(
nω+ν−1

)
� (SB.22)

by Assumption 4 and because the steps involved in showing (SB.11) imply that
E(

∑
t1�t2<s ξ

′
t1
ξt2 )2 =O(nν+2p2). Thus, because Assumption 4 also implies that O(nω+ν−1) =

o(1), (SB.20) is established. A similar proof holds for the asymptotic normality of Ān(γ).
We finally derive the limiting covariance of (An(γ)� Ān(γ))′. Using Assumption 4, we

first compute

E
∣∣An(γ)

∣∣2 = 1
n

[nγ]∑
s=1

Ew2
s

= 1
n2

[nγ]∑
s=1

s

(
1
sp

tr
s−1∑

t1�t2=1

E
(
ξsξ

′
sξt1ξ

′
t2

))

=
(
[nγ] + 1

)
[nγ]

2n2 lim
s�p→∞

(
1
sp

tr
s−1∑

t1�t2=1

E
(
ξsξ

′
sξt1ξ

′
t2

)) + o(1)

= γ2V
2

+ o(1)�

where V is given in (3.2). Next,

E
∣∣Ān(γ)

∣∣2 =E

∣∣∣∣∣ 1
n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′
tξs

∣∣∣∣∣
2
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=E

∣∣∣∣∣ 1
n
√
p

n−[nγ]∑
s=1

s−1∑
t=1

ξ′
t+[nγ]ξs+[nγ]

∣∣∣∣∣
2

= (1 − γ)2V
2

+ o(1)�

Finally,

E
(
An(γ)Ān(γ)

) = 0�

Therefore, we conclude that

(
An(γ)
Ān(γ)

)
d→

√
V
2

(
W (γ)
W̄ (γ)

)
�

pointwise in γ ∈ .
Finally, apply the continuous mapping theorem to get, pointwise in γ,

Sn(γ) = √
2
(An(γ)

γ
+ Ān(γ)

(1 − γ)
−An(1)

)

d→ √
V

(
W (γ)
γ

+ W̄ (γ)
(1 − γ)

−W (1)
)

= √
VQ(γ)�

where Q(γ) has a standard normal distribution for this given γ. Q.E.D.

We record some preliminary calculations useful for the sequel. Note that

δ̂2(γ) = A(γ)y = δ2 +A(γ)e= δ2 +A(γ)ε+A(γ)r�

Because δ2 = 0 under H0, we have

Wn(γ) = n(ε+ r)′A′(γ)B̂(γ)−1A(γ)(ε+ r)� (SB.23)

where we recall that B̂(γ) =RM̂(γ)−1�̂(γ)M̂(γ)−1R′.

LEMMA SL.B.2: Under the conditions of Theorem ST.B.1, for all sufficiently large n,

sup
γ∈

∥∥M̂(γ)
∥∥ =Op(1)� sup

γ∈

∥∥M̂(γ)−1
∥∥ = Op

(
λ−1
n

)
�

PROOF: Note that, by the triangle inequality,

∥∥M̂(γ)−1
∥∥ ≤ ∥∥M̂(γ)−1

∥∥∥∥M̂(γ) −M(γ)
∥∥∥∥M(γ)−1

∥∥ + ∥∥M(γ)−1
∥∥�

so ∥∥M̂(γ)−1
∥∥(

1 − ∥∥M̂(γ) −M(γ)
∥∥∥∥M(γ)−1

∥∥) ≤ ∥∥M(γ)−1
∥∥�
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using the triangle inequality. Taking limits of the last displayed expression as n → ∞ and
using Assumption 3, the rate condition (SB.1) yields ‖M̂(γ)−1‖ = Op(λ−1

n ). Next, noting
that ∥∥M̂(γ)

∥∥ ≤ ∥∥M̂(γ) −M(γ)
∥∥ + ∥∥M(γ)

∥∥�
the lemma follows by using Assumption 3. Q.E.D.

It is useful to first establish the stochastic order of ‖δ− δ̂(γ)‖.

LEMMA SL.B.3: Under the conditions of Theorem ST.B.1, supγ∈ ‖δ − δ̂(γ)‖ =
Op(λ−1

n

√
p/n).

PROOF: Note that δ− δ̂(γ) = M̂(γ)−1n−1
∑n

t=1 xt (γ)et and that

∥∥δ− δ̂(γ)
∥∥2 =Op

(∥∥M̂(γ)−1
∥∥2
n−2

∥∥∥∥∥
n∑

t=1

xt (γ)et

∥∥∥∥∥
2)

= λ−2
n Op

(
n−2

∥∥∥∥∥
n∑

t=1

xt (γ)et

∥∥∥∥∥
2)

= λ−2
n Op

(
n−2

∥∥∥∥∥
n∑

t=1

xt (γ)εt

∥∥∥∥∥
2

+ n−2
∥∥X(γ)′r

∥∥2

)
�

uniformly in γ, by Lemma SL.B.2. Next, E(n−2‖∑n

t=1 xt (γ)εt‖2) equals

E

(
n−2

n∑
s�t=1

x′
t (γ)xs(γ)εsεt

)
� (SB.24)

which is

n−2
n∑

t=1

E
∥∥xt (γ)

∥∥2
σ2

t + 2n−2
∑
s<t

E
(
x′
t (γ)xs(γ)E

(
εsE(εt|εr� r < t)

))
=Op(p/n)� (SB.25)

by Assumptions 1 and Ex′
t (γ)xt (γ) = O(p). Finally,

n−2
∥∥X(γ)′r

∥∥2 ≤ n−2
∥∥X(γ)

∥∥2‖r‖2 = λ
(
M̂(γ)

)
n−1‖r‖2 =Op(1/n)� (SB.26)

by (2.2) and Lemma SL.B.2. Therefore,

sup
γ∈

∥∥δ− δ̂(γ)
∥∥ = Op

(
λ−1
n

√
p/

√
n
)
� (SB.27)

by Markov’s inequality. Q.E.D.

Observe that because

M(γ)−1 =
[

(1 − γ)−1M−1 (1 − γ)−1M−1

(1 − γ)−1M−1
[
γ(1 − γ)

]−1
M−1

]
� (SB.28)
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we have

B(γ)−1 = γ(1 − γ)M�−1M� (SB.29)

LEMMA SL.B.4: Under the conditions of Theorem ST.B.1,

sup
γ∈

{
λ
(
B(γ)

)}−1 =O
(
λ−1
n

)
and sup

γ∈
λ
(
B(γ)

) =O
(
λ−2
n

)
�

PROOF: {λ(B(γ))}−1 = λ(B(γ)−1), which, using (SB.29), is bounded by

Cλ
(
M�−1M

) = C
∥∥M�−1M

∥∥ ≤ Cλ(M)2λ(�)−1 = O
(
λ−1
n

)
�

uniformly on the compact , using Assumption 3(ii). For the second part of the claim,
because (SB.29) implies B(γ) = [γ(1 − γ)]−1M−1�M−1, it follows similarly that λ(B(γ))
is uniformly bounded by a constant times1

λ
(
M−1�M−1

) = ∥∥M−1�M−1
∥∥ ≤ λ(M)−2λ(�) =O

(
λ−2
n

)
� Q.E.D.

LEMMA SL.B.5: Under the conditions of Theorem ST.B.2,

sup
γ∈

∥∥B̂(γ)
∥∥ =Op

(
λ−2
n

)
� sup

γ∈

∥∥B̂(γ)−1
∥∥ = Op

(
λ−1
n

)
�

PROOF: We show the second claim, the first following easily by the definition of B̂(γ).
First, define B̃(γ) =RM̂(γ)−1�(γ)M̂(γ)−1R′. We will use uniform bounds in the calcula-
tions without explicitly mentioning this in each step to simplify notation. Proceeding as in
the proof of Lemma SL.B.2, we can write∥∥B̂(γ)−1

∥∥(
1 − ∥∥B̂(γ) − B̃(γ)

∥∥) ≤ ∥∥B̃(γ)−1
∥∥� (SB.30)∥∥B̃(γ)−1

∥∥(
1 − ∥∥B̃(γ) −B(γ)

∥∥) ≤ ∥∥B(γ)−1
∥∥� (SB.31)

Next, Lemma SL.B.2 implies

∥∥B̂(γ) − B̃(γ)
∥∥ ≤ ‖R‖2

∥∥M̂(γ)−1
∥∥2∥∥�̂(γ) −�(γ)

∥∥ =Op

(
λ−2
n vp

)
= op(1)� (SB.32)

On the other hand, B̃(γ) −B(γ) equals

R
[
M̂(γ)−1�(γ)M̂(γ)−1 −M(γ)−1�(γ)M(γ)−1

]
R′�

By adding and subtracting terms inside the square brackets, this can be written as

R
[
M(γ)−1

(
M̂(γ) −M(γ)

)
M̂(γ)−1�(γ)M̂(γ)−1

]
R′

+RM(γ)−1�(γ)M(γ)−1
(
M̂(γ) −M(γ)

)
M̂(γ)−1R′� (SB.33)

1If λ(M�−1M) ≥ λn, the bound in this lemma becomes O(λ−1
n ).
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By this fact, Assumption 3, Lemmas SL.B.1 and SL.B.2, and (SB.1), we deduce from
(SB.33) that ∥∥B̃(γ) −B(γ)

∥∥ =Op

(
λ−3
n κp

) = op(1)� (SB.34)

The lemma now follows by taking limits of (SB.30) and (SB.31), and using (SB.32),
(SB.34), and Lemma SL.B.4. Q.E.D.

LEMMA SL.B.6: Under the conditions of Theorem ST.B.2 and H0,

Wn(γ)√
2p

= nε′A(γ)′B(γ)−1A(γ)ε√
2p

+ op(1)�

PROOF: Recall the notation M̂ = n−1X ′X and Ŝ(γ) = n−1X ′∗(γ)X(γ). Notice that
from (SB.23) we obtain

Wn(γ)√
2p

= nε′A(γ)′B̂(γ)−1A(γ)ε√
2p

+ 2nε′A(γ)′B̂(γ)−1A(γ)r√
2p

+ nr ′A(γ)′B̂(γ)−1A(γ)r√
2p

� (SB.35)

with r the n × 1 vector with elements rt . Begin with the modulus of the last term on the
RHS of (SB.35). Recalling the relation in (SB.3) and (SB.4) for A(γ)r, we bound it by
Cn/

√
2p times

Op

(∥∥n−1X ′r
∥∥2∥∥I − Ŝ(γ)M̂−1

∥∥2∥∥(
n−1X∗(γ)′MXX

∗(γ)
)−1∥∥2∥∥B̂(γ)−1

∥∥)
�

=Op

(
λ−3
n n−1

)
� (SB.36)

where Assumption 2 bounds the first term, Lemma SL.B.9 yields a bound for the second
and third terms after expanding the third term by (SB.3), and the last term is Op(λ−1

n )
Lemma SL.B.5. Thus, (SB.36) implies that the third term on the RHS of (SB.35) is op(1).

We now show that the first term on the RHS of (SB.35) is

nε′A(γ)′B(γ)−1A(γ)ε√
2p

+ op(1)� (SB.37)

Indeed, as above,

nε′A(γ)′(B̂(γ)−1 −B(γ)−1
)
A(γ)ε√

2p
= n√

p
Op

(∥∥n−1X ′ε
∥∥2∥∥B̂(γ)−1 −B(γ)−1

∥∥)
= √

pOp

(∥∥B(γ)−1
∥∥∥∥B(γ) − B̂(γ)

∥∥∥∥B̂(γ)−1
∥∥)

= λ−4
n

√
pOp

(
λ−1
n

∥∥M̂(γ) −M(γ)
∥∥ (SB.38)

+ ∥∥�̂(γ) −�(γ)
∥∥)

=Op

(
λ−4
n

√
p

(
λ−1
n κp + vp

))
� (SB.39)

using equations (SB.32) and (SB.34). This is negligible by (SB.1).
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For the second term on the RHS of (SB.35), apply the Cauchy–Schwarz inequality and
the preceding two results. Then the second term becomes op(1), establishing the lemma.

Q.E.D.

Denote, for convenience, C(γ) = [γ(1 − γ)]−1n−1�
1
2 G(γ)�−1G(γ)�

1
2 , where � =

diag[σ2
1 � � � � �σ

2
n].

LEMMA SL.B.7: Under the conditions of Theorem ST.B.2, any eigenvalue λ of C(γ) sat-
isfies

P
(∣∣λ(λ− 1)

∣∣<η
) → 1�

as n → ∞, for any η> 0.

PROOF: We have

C(γ)2 = [
γ(1 − γ)

]−1
n−1�

1
2 G(γ)�−1

[
γ(1 − γ)

]−1
n−1G(γ)′�G(γ)�−1G(γ)′�

1
2

= [
γ(1 − γ)

]−1
n−1�

1
2 G(γ)�−1��−1G(γ)′�

1
2

+ [
γ(1 − γ)

]−1
n−1�

1
2 G(γ)�−1

{[
γ(1 − γ)

]−1
n−1G(γ)′�G(γ) −�

}
×�−1G(γ)′�

1
2

= C(γ) +D(γ)�

say. We now prove that ∥∥D(γ)
∥∥ = op(1) as n→ ∞� (SB.40)

In view of Assumptions 1 and 3(i), to prove (SB.40) it suffices to show that

∥∥[
γ(1 − γ)

]−1
n−1G(γ)′�G(γ) −�

∥∥ = op(1)� (SB.41)

But

n−1G(γ)′�G(γ) = n−1(1 − 2γ)
[nγ]∑
t=1

xtx
′
tσ

2
t + γ2�

= (1 − 2γ)

(
n−1

[nγ]∑
t=1

xtx
′
tσ

2
t − γ�

)
+ [

γ(1 − γ)
]
��

so (SB.41) follows if ‖n−1
∑[nγ]

t=1 xtx
′
tσ

2
t − γ�‖ = op(1), which is true by Assumption 3.

Thus, (SB.40) is established.
Let λ be any eigenvalue of C(γ) and w be the corresponding eigenvector, normalized to

‖w‖ = 1. Because λw = C(γ)w, we have λC(γ)w = C(γ)2w = [C(γ) + D(γ)]w = λw +
D(γ)w, implying λ(λ− 1)w =D(γ)w. Thus,∣∣λ(λ− 1)

∣∣ = ∥∥D(γ)w
∥∥ ≤ ∥∥D(γ)

∥∥� (SB.42)
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Then, for arbitrary η> 0,

P
(∣∣λ(λ− 1)

∣∣<η
) = P

(∥∥D(γ)w
∥∥<η

) ≥ P
(∥∥D(γ)

∥∥ <η
) → 1� as n→ ∞�

by (SB.40). This completes the proof. Q.E.D.

We have Rn(γ) = [γ(1 − γ)]−1n−1ε′G(γ)′�−1G(γ)′ε, which in turn equals

[
γ(1 − γ)

]−1
n−1

n∑
t�s=1

gt (γ)′�−1gs(γ)εtεs� (SB.43)

Note that tr{C(γ)} is the sum of the eigenvalues of C(γ), which is a symmetric matrix
with rank p. Thus, in view of Lemma SL.B.7 it has p eigenvalues that approach 1 in
probability, with the remainder approaching 0. Thus,

Rn(γ) − tr
(
C(γ)

)
√

2p
= Rn(γ) −p√

2p
+ op(1)� (SB.44)

whence using (SB.43) we deduce that (SB.44) equals

n−1
n∑

t=1

gt (γ)′�−1gt (γ)
(
ε2
t − σ2

t

) + n−1
∑
s 
=t

gt (γ)′�−1gs(γ)εtεs

γ(1 − γ)
√

2p
� (SB.45)

LEMMA SL.B.8: Under the conditions of Theorem ST.B.2,

sup
γ∈

n−1
n∑

t=1

gt (γ)′�−1gt (γ)
(
ε2
t − σ2

t

) = op(1) as n → ∞� (SB.46)

PROOF: Conditional on xt , the LHS of (SB.46) has mean zero and variance

n−2
n∑

t=1

(
gt (γ)′�−1gt (γ)

)2
E

[(
ε2
t − σ2

t

)2]
(SB.47)

+ 2n−2
∑
s<t

gs(γ)′�−1gs(γ)gt (γ)′�−1gt (γ)E
[(
ε2
t − σ2

t

)(
ε2
s − σ2

s

)]
� (SB.48)

The expectation in (SB.48) equals E[(ε2
t − σ2

t )E((ε2
s − σ2

s )|εs)] = 0, by Assumption 1.
Also, by Assumption 1, (SB.47) is bounded by a constant times

n−2
∥∥�−1

∥∥2
n∑

t=1

∥∥gt (γ)
∥∥4 ≤ n−2

∥∥�−1
∥∥2

n∑
t=1

(∥∥xt (γ)
∥∥4 + γ4‖xt‖4

) =Op

(
λ−2
n

p2

n

)
�

uniformly in γ, the last equality following by Assumption 3(i). Q.E.D.

LEMMA SL.B.9: Under the conditions of Theorem ST.B.2, as n → ∞,∥∥(
I − M̂−1Ŝ(γ)

)−1 − γ−1I
∥∥ =Op

(
λ−1
n κp

)
�
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PROOF: First, note that ‖(I − M̂−1Ŝ(γ)) − γI‖ equals∥∥(1 − γ)I − M̂−1
(
Ŝ(γ) − (1 − γ)M

) − (1 − γ)M̂−1M
∥∥

≤ C
∥∥M̂−1

∥∥(‖M̂ −M‖ + ∥∥Ŝ(γ) − (1 − γ)M
∥∥)

=Op

(
λ−1
n κp

)
�

by Assumptions 3. Since

(
I − M̂−1Ŝ(γ)

)−1 − γ−1I = −γ−1
(
I − M̂−1Ŝ(γ)

)−1{(
I − M̂−1Ŝ(γ)

) − γI
}

and ‖(I − M̂−1Ŝ(γ))−1‖ =Op(1), the lemma is established. Q.E.D.

LEMMA SL.B.10: Under the conditions of Theorem ST.B.2, as n → ∞,∥∥∥∥∥∥∥∥∥∥∥
(
Ŝ(γ)−1X ′∗(γ)ε− γ(1 − γ)−1M̂−1X ′ε

) − M̂−1

(
[nγ]∑
t=1

εtxt − γ

n∑
t=1

εtxt

)

1 − γ

∥∥∥∥∥∥∥∥∥∥∥
= Op

(
λ−2
n

√
npκp

)
� (SB.49)

PROOF: First, note that

(1 − γ)−1

(
[nγ]∑
t=1

εtxt − γ

n∑
t=1

εtxt

)
= (1 − γ)−1X ′∗(γ)ε− γ(1 − γ)−1X ′ε�

so the term inside the norm in (SB.49) equals

(
Ŝ(γ)−1 − (1 − γ)−1M̂−1

)
X ′∗(γ)ε

= (1 − γ)−1M̂−1
(
(1 − γ)M̂ − Ŝ(γ)

)
Ŝ(γ)−1X ′∗(γ)ε� (SB.50)

The norm of the RHS of (SB.50) is bounded by a constant times

∥∥M̂−1
∥∥∥∥Ŝ(γ)−1

∥∥(∥∥∥∥∥n−1
[nγ]∑
t=1

xtx
′
t − γM

∥∥∥∥∥ + ‖M̂ −M‖
)∥∥X ′∗(γ)ε

∥∥ =Op

(
λ−2
n

√
npκp

)
�

the last equality following from Assumptions 3, Lemma SL.B.2, and also (SB.25). Q.E.D.

APPENDIX S.C: PROOF OF THEOREM 4.2

PROOF: It is sufficient to check (4.7), whence (4.8) follows. Let ε� denote the vector
collecting ε�

t = êt (γ)ξt , where ξt is an iid sequence of Rademacher variables. Then

δ̂�
2(γ) =A(γ)ε��
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since δ2 = 0 under H0. Also, we have

W �
n (γ) = n

(
ε�

)′
A′(γ)B̂�(γ)−1A(γ)ε�� (SC.1)

where B̂�(γ) =RM̂(γ)−1�̂�(γ)M̂(γ)−1R′ and �̂�(γ) is constructed as �̂(γ) with the boot-
strap sample.

We begin with

E�W̄ �
n (γ) = n trA′(γ)B̂(γ)−1A(γ)E�ε�

(
ε�

)′
�

= n trA′(γ)B̂(γ)−1A(γ) diag
[
ê1(γ)2� � � � � ên(γ)2

]
� (SC.2)

where W̄ �
n (γ) = n(ε�)′A′(γ)B(γ)−1A(γ)ε�. Note that the term in (SC.2) subtracted by p

is op(p1/2) uniformly in γ due to Lemma SL.B.7, Lemma SL.B.8, and Lemma SL.B.3.
Next, we show that the order of the difference between E�W̄ �

n (γ) and E�W �
n (γ) is

op(p1/2). Following (SB.39), write

E�
∣∣W̄ �

n (γ) −W �
n (γ)

∣∣ ≤E�
(∥∥n−1/2A′(γ)ε�

∥∥2∥∥B̂(γ)−1 − B̂�(γ)−1
∥∥)
�

To apply the Cauchy–Schwarz inequality, and to bound E�‖B̂(γ)−1 − B̂�(γ)−1‖2, we derive
bounds for E�‖B̂�(γ)−1‖4 and E�‖B̂(γ) − B̂�(γ)‖4. Since both are similar to the deriva-
tions for the sample counterparts in Lemmas SL.B.1 and SL.B.5, we only illustrate the
latter. Recall B̂(γ) − B̂�(γ) =R′M̂(γ)−1(�̂(γ) − �̂�(γ))M̂(γ)−1R and supγ∈ ‖M̂(γ)−1‖ =
Op(λ−1

n ) by Lemma SL.B.2. Following the steps in the proof of Lemma SL.B.1, the term
�̂(γ) − �̂�(γ) is given by the sum of U�

1 (γ) and U�
3 (γ) therein. Due to the triangle in-

equality and cr inequality, we only show E�‖U�
j (γ)‖4 = Op(λ−8

n p12/n4), for j = 1�3. Note
that by the independence of the sequence ξt ,

E�
∥∥U�

1 (γ)
∥∥4 ≤

(
n−1

n∑
t=1

(
x′
t (γ)xt (γ)

)2

)4

E�
((
δ� − δ̂�(γ)

)′(
δ� − δ̂�(γ)

))4

≤Op

(
p8

)∥∥M̂(γ)−1
∥∥8
n−8

∑
t1�t2�t3�t4

ê2
t1
x′
t1
xt1 · · · ê2

t4
x′
t4
xt4�

to yield the desired result and the bound for U�
3 is similarly obtained. Putting these to-

gether yields E�‖B̂(γ)−1 − B̂�(γ)−1‖2 = Op(λ−10
n p12/n4).

Next, similar to the preceding bound,

E�
∥∥n−1/2A′(γ)ε�

∥∥4 =Op

(
λ−4
n

)(
n−1

n∑
t=1

x′
txt ê

2
t

)2

=Op

(
λ−4
n p2

)
�

as ξt is an iid Rademacher sequence. Then, under the condition (3.1), λ−14
n p14/n4 = o(p)

and this completes the proof. Q.E.D.
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APPENDIX S.D: VERIFICATION OF COVARIANCE DECAY IN ASSUMPTION 4

TABLE S.TAB.D.1

(n4p2)−1 ∑n
t=1

∑t−1
s=1 cov(tr(ϒt�t)� tr(ϒs�s)) WITH n= 999� � � � �9999 FOR MULTIPLE REGRESSION.

type αx α 999 3249 5499 7749 9999

1 0�1 0�3 0�0082 0�0058 0�0047 0�0043 0�0043
1 0�1 0�4 0�0086 0�0053 0�0044 0�0043 0�0038
1 0�1 0�5 0�0086 0�0055 0�0046 0�0041 0�0037
1 0�1 0�55 0�008 0�0054 0�0042 0�0037 0�0034
1 0�5 0�3 0�0377 0�0264 0�0233 0�0219 0�0212
1 0�5 0�4 0�0405 0�0251 0�0225 0�0197 0�0191
1 0�5 0�5 0�0357 0�0217 0�0174 0�0147 0�0138
1 0�5 0�55 0�038 0�0221 0�0171 0�0155 0�0138
1 0�7 0�3 0�2278 0�1735 0�1388 0�137 0�1354
1 0�7 0�4 0�2615 0�1858 0�1544 0�1413 0�1375
1 0�7 0�5 0�2757 0�1561 0�1416 0�1359 0�1313
1 0�7 0�55 0�2062 0�1484 0�1352 0�1149 0�1002
2 0�1 0�3 0�0155 0�0075 0�0054 0�0047 0�0044
2 0�1 0�4 0�011 0�0061 0�0054 0�0046 0�0042
2 0�1 0�5 0�0202 0�0108 0�0122 0�0069 0�006
2 0�1 0�55 0�0355 0�095 0�0199 0�0091 0�006
2 0�5 0�3 0�0518 0�0334 0�0265 0�0241 0�0219
2 0�5 0�4 0�0614 0�0307 0�0255 0�0241 0�0223
2 0�5 0�5 0�0703 0�0498 0�0302 0�0256 0�0238
2 0�5 0�55 1�6204 0�0992 0�0373 0�0313 0�0326
2 0�7 0�3 0�3164 0�203 0�188 0�1722 0�1536
2 0�7 0�4 0�3501 0�2266 0�2175 0�1972 0�183
2 0�7 0�5 0�9339 0�2196 0�8319 0�3447 0�3014
2 0�7 0�55 1�4368 0�5232 0�2518 0�1936 0�167
3 0�1 0�3 0�0078 0�0039 0�0035 0�0032 0�0028
3 0�1 0�4 0�0061 0�0035 0�0028 0�0024 0�0021
3 0�1 0�5 0�004 0�0023 0�0019 0�0018 0�0017
3 0�1 0�55 0�0035 0�0019 0�0014 0�0013 0�0012
3 0�5 0�3 0�0363 0�0232 0�0161 0�0141 0�0135
3 0�5 0�4 0�0229 0�0169 0�0134 0�0122 0�0108
3 0�5 0�5 0�0202 0�0122 0�0119 0�0099 0�0092
3 0�5 0�55 0�0172 0�01 0�0075 0�0067 0�006
3 0�7 0�3 0�2202 0�1438 0�1218 0�1062 0�0963
3 0�7 0�4 0�1665 0�107 0�0919 0�0849 0�0789
3 0�7 0�5 0�1273 0�0807 0�077 0�0696 0�062
3 0�7 0�55 0�1106 0�0556 0�0522 0�0453 0�0438
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