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This supplement contains extensions of the results in Menzel (2021) as well as an
asymptotic theory for alternative inference procedures under multi-way clustering.

APPENDIX B: ALTERNATIVE INFERENCE PROCEDURES

THIS SECTION gives asymptotic results for alternative methods of estimating the asymp-
totic distribution of the sample mean ȲNT, where we consider Gaussian inference using
the robust variance estimator proposed by Cameron, Gelbach, and Miller (2011), Gaus-
sian inference using the modified robust variance estimator ŜNT�sel introduced in Section 3,
subsampling inference (Politis and Romano (1994), Politis, Romano, and Wolf (1999)),
and Owen’s (2007) pigeonhole bootstrap.

B.1. Summary of Asymptotic Properties

The starting point for our analysis was the impossibility result in Proposition 4.1, which
establishes that it is in fact not possible to achieve uniform consistency in estimating the
asymptotic distribution of ȲNT. The alternative versions of the bootstrap procedure pro-
posed in Section 3 therefore either do not aim for full uniformity or are conservative.

The recommendation of which inference procedure should be chosen therefore de-
pends on the desired robustness properties, and what assumptions the researcher is will-
ing to make regarding the underlying data-generating process. We consider the following
three alternative criteria, which are not nested:

• (POINTW) Pointwise validity with respect to the variance parameters, where we al-
low for any of the components of σ2

a , σ2
g , σ2

v , σ2
e to be either strictly positive or zero.

• (UNIF-1) Uniform validity regarding clustering in means, where any of the compo-
nents of σ2

a , σ2
g , σ2

v , σ2
e may be strictly positive, zero, or drifting along sequences, but

rNTσ
2
v � 0. That is, we only exclude the degenerate case in which there is no cluster

dependence in means, but cluster dependence in second moments does not vanish.
• (UNIF-2) Uniform validity, where we allow for any values, and drifting sequences for

the components σ2
a , σ2

g , σ2
v , σ2

e .
In practice, cluster-robust methods are typically used in settings when the researcher

does not know whether the data exhibit any meaningful dependence along the dimen-
sions indexing the array (Yit)i�t , but wants to guard herself against that possibility. We
posit that UNIF-1 is a plausible interpretation of that idea of robustness: It only excludes
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the possibility that E[Yit |αi�γt] is a random variable that has a non-degenerate distribu-
tion, but whose conditional means given αi and γt happen to be close to constant.1 This
scenario is therefore non-generic once we allow for any type of cluster-dependence, and
we find that extending uniformity to include this non-generic scenario (as for the third
criterion) comes at the cost of a substantial power loss for the case in which observations
are in fact independent within each cluster.

For criterion POINTW, we show that pointwise consistency is achieved by subsampling
with model selection (see Proposition B.2 below), the bootstrap with model selection,and
the pivotal bootstrap with model selection (Theorem 4.2 in the main text), where the
pivotal bootstrap with model selection achieves refinements in the non-degenerate case
(Proposition 4.2), and both bootstrap procedures are consistent at faster respective rates
than subsampling. The non-pivotal pigeonhole bootstrap is consistent if σ2

a + σ2
g > 0, but

conservative otherwise (Proposition B.1).
For criterion UNIF-1, uniform consistency is achieved by subsampling and the boot-

strap (pivotal or not) without model selection, where again the pivotal bootstrap domi-
nates in terms of convergence rates. Finally, under UNIF-2, only the conservative boot-
strap is guaranteed to be asymptotically conservative, however at a steep price in terms of
power for the degenerate cases with rNT � √

NT in which it overestimates the asymptotic
variance by a factor growing at the rate κa

T
+ κg

N
. Proposition 4.1 implies that we cannot

close this rate gap without giving up uniformity. A full summary of the asymptotic proper-
ties of the different methods is given in Table B.I. In addition to the different versions of
the bootstrap introduced in Section 3, BS-N, BS-S, and BS-C, this section gives asymptotic
results for the following additional methods:

TABLE B.I

SUMMARY OF ESTIMATION APPROACHES FOR THE ASYMPTOTIC DISTRIBUTION OF ȲNT, WHERE “CONS.”
STANDS FOR “CONSERVATIVE”

Variance
Estimator

Asymptotic Validity

Method Pivotal POINTW UNIF-1 UNIF-2 Refinement

GAU – Ŝ2
NT�def No Yes No No

GAU – Ŝ2
NT�sel No No No No

BS-N No – No Yes No No
BS-N Yes Ŝ2

NT�def No Yes No Yes

BS-S No – Yes No No No
BS-S Yes Ŝ2

NT�sel Yes No No Yes

BS-C No – Cons. Cons. Cons. No
BS-C Yes Ŝ2

NT�sel Cons. Cons. Cons. (Yes)

PGH No – Cons. Cons. No No
PGH Yes Ŝ2

NT�def No Yes No Yes
PGH Yes Ŝ2

NT�sel Yes No No Yes
SUB No – Yes Yes No No
SUB Yes Ŝ2

NT�def No Yes No No
SUB Yes Ŝ2

NT�sel Yes No No No

1More precisely, rNTσ
2
v � 0 would require the variance of Var(E[Yit |αi�γt]) to be of a larger order of mag-

nitude than the variances of the conditional means given αi or γt alone, Var(E[Yit |αi]), and Var(E[Yit |γt ])).
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• (GAU) “Plug-in” Gaussian inference using a two-way clustering robust estimator for
the asymptotic variance of ȲNT,

• (PGH) inference based on the pigeonhole bootstrap estimate for the asymptotic dis-
tribution of rNTȲNT, and

• (SUB) inference based on the subsampling estimate for the asymptotic distribution
of rNTȲNT.

The pivotal versions of the different resampling procedures concern inference based on
estimates for the distribution of the studentized mean, tNT := (NT)1/2Ŝ−1

NT�defȲNT or tNT :=
(NT)1/2Ŝ−1

NT�selȲNT, depending on which variance estimator is used.
To highlight some of the main theoretical findings, we find that the “default” estimator

from Cameron, Gelbach, and Miller (2011) for the asymptotic variance, Ŝ2
NT�def, is only

consistent if rNTσ
2
v → 0, whereas the modified estimator Ŝ2

NT�sel is always pointwise consis-
tent. Gaussian “plug-in” inference with a consistent estimator for the asymptotic variance
is only consistent if rNTσ

2
v → 0, subsampling inference is valid pointwise, but not uni-

formly, and is consistent only at a rate slower than any of the alternative procedures. The
bootstrap with model selection is asympotically valid pointwise, and the bootstrap with-
out model selection is uniformly valid as long as rNTσ

2
v → 0. The pigeonhole bootstrap is

uniformly valid asymptotically but conservative in the degenerate case, and in addition,
its pivotal version achieves refinements in the case of a Gaussian limiting distribution.
Subsampling is consistent pointwise, but not uniformly, and approximates the asymptotic
distribution at a rate no faster than r−2/3

NT , assuming that subsample sizes are chosen at the
respective optimal rates mN = O(N1/3), mT = O(T 1/3). That convergence rate is slower
than the r−1

NT rate for the pointwise bootstrap, or the r−2
NT rate for the cases for which the

pivotal bootstrap yields a refinement. This comparison of theoretical properties is also
illustrated in a simulation study in Section 5.

B.2. Gaussian Asymptotic Inference (GAU)

We first discuss inference using an estimator of the asymptotic variance together with
quantiles of the Gaussian distribution. Specifically, we consider the two different variance
estimators Ŝ2

NT�def and Ŝ2
NT�def introduced in Section 3.

Corollary A.1 below shows that Ŝ2
NT�sel is pointwise consistent for the asymptotic vari-

ance. We now give a counterexample to show that the default estimator Ŝ2
NT�def is not:

Suppose that

Yit = αiγt� αi� γt
iid∼N(0�1)�

Since αi and γt are independent and have zero mean, the convergence rate of the sample
mean is r−2

NT = (NT)−1. We can then verify that the asymptotic variance of the sample mean
is

Var(
√

NTȲNT)= Var

([
1√
N

N∑
i=1

αi

][
1√
T

T∑
t=1

γt

])
= Var(αi)Var(γt)= 1�

Plugging the model into the expression for the variance estimator and rearranging terms,
we find that

T

N

N∑
i=1

(ȲiT − ȲNT)
2 =

(
1√
T

T∑
t=1

γt

)2
1
N

N∑
i=1

(αi − ᾱN)2�
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N

T

T∑
t=1

(ȲNt − ȲNT)
2 =

(
1√
N

N∑
i=1

αi

)2
1
T

T∑
t=1

(γt − γ̄T )2�

1
NT

N∑
i=1

T∑
t=1

(Yit − ȲNT)
2 = 1

NT

N∑
i=1

T∑
t=1

(
α2
i γ

2
t − ᾱ2

Nγ̄
2
T

)
�

where ᾱN := 1
N

∑N

i=1αi and γ̄T := 1
T

∑T

t=1 γt . Clearly, 1√
N

∑N

i=1 αi and 1√
T

∑T

t=1 γt converge

to independent standard normal random variables, 1
N

∑N

i=1(αi − ᾱN)2 p→ Var(αi)= 1, and
1
T

∑T

t=1(γt − γ̄T )2 p→ Var(γt)= 1. Hence, by Slutsky’s lemma, it follows that

Ŝ2
NT�def − 1

d→ Y1 +Y2 − 2�

where Y1, Y2 are independent draws from a chi-squared distribution with one degree of
freedom. In particular, for this specific distribution of the array (Yit)i�t , the limiting dis-
tribution on the right-hand side has zero mean and nonzero variance so that the default
estimator of the asymptotic variance is unbiased but inconsistent. However, using argu-
ments parallel to the consistency proof for the modified estimator in Proposition 4.1, the
estimator ŜNT�def remains consistent if qv = 0.

Finally, we turn to asymptotic validity of Gaussian inference using either variance
estimator—from Theorem 4.1, the asymptotic distribution for the sample mean is
(
√
qeZ

e + √
qaZ

a + √
qgZ

g)+�V = √
1 − qvZ+�V , where V is Wiener chaos governed

by the spectral coefficients c and with unit variance, and Z is a random variable with a
standard normal marginal distribution. Given a consistent estimator of the asymptotic
variance, the Gaussian approximation assumes a limiting distribution Z + 0 · V . Since
both Z and V have zero mean and unit variance, there is no clear dominance relation-
ship across all relevant percentiles and the tails between the true limiting distribution and
the Gaussian approximation when qv > 0. Hence, for a given testing problem, values of
qv > 0, and spectral coefficients c, Gaussian inference may or may not control size con-
servatively, depending on the nominal significance level and the specific distribution of
Gassian chaos V . In contrast, when qv = 0, either variance estimator is consistent and
Gaussian inference is asymptotically valid. However, as in the standard case of i.i.d. data,
Gaussian inference does not provide higher-order refinements.

B.3. Pigeonhole Bootstrap (PGH)

We next consider Owen’s (2007) “pigeonhole” bootstrap for inference regarding E[Yit]
under multi-way clustering. Large-sample results were provided by Owen (2007) for the
additively separable case, and by Davezies, D’Haultfœuille, and Guyonvarch (2018) for
the asymptotic distribution at the

√
min{N�T } rate. We give a result at the adaptive rNT

rate that explicitly accounts for the non-separable case as well. To simplify derivations,
we consider a slight modification of the procedure by Owen (2007), where instead of
drawing units i ∈ {1� � � � �N} and t ∈ {1� � � � � T } with replacement, we assign each “row” i
and “column” t random resampling weights Mi and Mt that are drawn i.i.d. from a fixed
distribution.

Specifically, we consider the following procedure:
(a) For the bth bootstrap iteration, generate random weights M1i�b for each i =

1� � � � �N (M2t�b, respectively, for t = 1� � � � �T ) as i.i.d. draws from a binomial distri-
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bution with N trials and success probability 1
N

(T trials and success probability 1
T

,
respectively).

(b) We then form the bth bootstrap mean

Ȳ ∗�PG
NT�b := 1

N∗
bT

∗
b

N∑
i=1

T∑
t=1

M1i�bM2t�bYit�

where N∗
b := ∑N

i=1M1i�b and T ∗
b := ∑T

t=1M2t�b.
For the pivotal bootstrap, we can use the modified variance estimator with or without

model selection. Specifically, let

ŝ2�∗PG
a := 1

N∗
b

N∑
i=1

M1i�b

(
Ȳ ∗�PG
iT�b − Ȳ ∗�PG

NT�b

)2
� ŝ2�∗PG

g := T ∗
b

T∑
t=1

M2t�b

(
Ȳ ∗�PG
Nt − Ȳ ∗�PG

NT

)2
�

ŝ2�∗PG
w := 1

N∗
bT

∗
b

N∑
i=1

T∑
t=1

M1i�bM2t�b

(
Y ∗�PG
it − Ȳ ∗�PG

NT

)2
�

where we denote the row and column means Ȳ ∗�PG
iT�b := 1

T ∗
b

∑T

t=1M2t�bYit and Ȳ ∗�PG
Nt :=

1
N∗
b

∑N

i=1M1i�bYit . We then form the variance estimator

Ŝ2�∗PG
sel�b := T ∗

b D̂a(κa)max
{

0� ŝ2�∗PG
a − 1

T ∗
b

ŝ2�∗PG
w

}

+N∗
bD̂g(κg)max

{
0� ŝ2�∗PG

g − 1
N∗
b

ŝ2�∗PG
w

}
+ ŝ2�∗PG

w �

where the selectors D̂a(κ), D̂g(κ) defined in Section 3 are evaluated for the initial sample
and κa, κg are chosen according to whether we use the variance estimator with or without
model selection.

We denote the conditional law of Ȳ ∗�PG
NT given the sample (Yit)i�t with

P
∗�PG
NT

(
rNT

(
Ȳ ∗�PG

NT − ȲNT

) ≤ x) := PM1�M2

(
rNT

(
Ȳ ∗�PG

NT�b − ȲNT

) ≤ x|Y11� � � � �YNT

)
�

This is a modification of Owen’s (2007) pigeonhole bootstrap with random sample size.
We do not claim any theoretical advantages for this modification. Rather, we only intro-
duce it to simplify the theoretical analysis and find that its asymptotic properties match
those of the original procedure in the cases where those properties have been derived
previously. The simulation study in Section 5 implements the original version proposed
by Owen (2007), and results match the theoretical properties shown here for the modified
version.

Specifically, we find the following:

PROPOSITION B.1—Pigeonhole Bootstrap: Suppose that Assumptions 2.1 and 2.2 hold.
Then if qv = 0, the pigeonhole bootstrap

∥∥P∗�PG
NT

(
rNT

(
Ȳ ∗�PG

NT − ȲNT

)) − PNT

(
rNT

(
ȲNT −E[Yit]

))∥∥
∞

p→ 0
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uniformly, where P
PG
NT is the convolution of the sampling distribution for rNT(ȲNT − E[Yit])

with an independent Gaussian random variable with variance 2(qe + qv).

In particular, the pigeonhole bootstrap is consistent in the non-degenerate case σ2
a +

σ2
g > 0 and asymptotically conservative for the sampling distribution under bowl-shaped

loss not only pointwise but uniformly as long as qv = 0. On the other hand, the pigeonhole
bootstrap is not guaranteed to converge to a deterministic limit for qv > 0, and it further-
more overestimates the contribution of the average 1

NT

∑N

i=1

∑T

t=1(vit + eit) to the limiting
distribution by a factor of 3, which can result in a substantial reduction in power when
observations are uncorrelated or even fully independent within clusters. It is possible to
show that a pivotal version of the pigeonhole that uses the two-way clustering robust vari-
ance estimator without model selection does not suffer from that power reduction in the
degenerate case, but remains inconsistent when qv > 0. We report simulation results for
both versions of the pigeonhole bootstrap in Section 5.

One might also consider modifying the pigeonhole bootstrap using model selection
along the lines of 3 in order to improve its pointwise properties at the expense of losing
uniformity for qv > 0. We find that in contrast to the new bootstrap procedure proposed
in this paper, plausible modifications of the pigeonhole bootstrap along these lines still
fail to achieve pointwise consistency.2

PROOF OF PROPOSITION B.1: For the bth bootstrap replication, we can decompose the
mean as

Ȳ ∗�PG
NT�b = ȲNT + 1

N∗
b

N∑
i=1

T∑
t=1

M1i�b

[
(ai − āN)+ (v̄iT − v̄NT)

]

+ 1
T ∗
b

T∑
t=1

M2t�b

[
(gt − ḡT )+ (v̄Nt − v̄NT)

] + 1
N∗
bT

∗
b

N∑
i=1

T∑
t=1

M1i�bM2t�b(eit − ēNT)

+
∞∑
k=1

ck

(
1
N∗
b

N∑
i=1

M1i�b

(
φk(αi)− φ̄kN

))(
1
T ∗
b

T∑
t=1

M2t�b

(
ψk(γt)− ψ̄kT

))
� (B.1)

where v̄iT := 1
T

∑T

t=1 vit , v̄Nt := 1
N

∑N

i=1 vit , φ̄kN := 1
N

∑N

i=1φk(αi), and ψ̄kT := 1
T

×∑T

t=1ψk(γk). We can immediately verify that for the binomial distribution, E[Mi] = 1 and
E[M2

1i] = E[M1i]2 + Var(M1i) = 2 − 1
N

. Similarly, E[M2t] = 1 and E[M2
2t] = 2 − 1

T
, where

2Specifically, if the consistent pre-test for clustering in means fails to reject the null of no dependence, a
modified bootstrap could either switch to a bootstrap that treats entries in each column or row as independent,
or subtract column- or row-means from observations to eliminate a spurious correlation. We find that neither
alternative is pointwise consistent, where the first proposal results in a Gaussian limit for the bootstrap distri-
bution even when qv > 0, and would therefore be inconsistent (and not necessarily conservative). The second
alternative would replicate the distribution of the Wiener chaos component, but continue to overestimate the
scale of the asymptotic distribution in the degenerate case by 2σ2

e .
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M11� � � � �M1N andM21� � � � �M2T are also independent. Hence, conditional on e11� � � � � eNT,

VarNT

(
1√
NT

N∑
i=1

T∑
t=1

M1i�bM2t�beit

)

= 1
NT

N∑
i=1

T∑
t=1

(
E
[
M2

1i�b

]
E
[
M2

2t�b

] −E[M1i�b]2
E[M2t�b]2

)
e2
it

=
(

3 − 2(N + T)− 1
NT

)
1

NT

N∑
i=1

T∑
t=1

e2
it =: (σ∗�PG

e�NT

)2
�

noting that Mi�b, Mt�b are independent. Similarly, conditional on α1� � � � �αN ,

VarNT

(
1√
N

N∑
i=1

M1i�b

(
φk(αi)− φ̄kN

)) = (
E
[
M2

1i

] −E[M1i]2
) 1
N

N∑
i=1

(
φk(αi)− φ̄kN

)2

=
(

1 − 1
N

)
1
N

N∑
i=1

(
φk(αi)− φ̄kN

)2 =: (σ∗�PG
φk�NT

)2
�

with analogous results for the variances and covariances among one-dimensional averages
1√
N

∑N

i=1M1i�b(ai + v̄i), 1√
T

∑T

t=1M2t�b(gt + v̄t), and 1√
T

∑T

t=1M2t�b(ψk(γt)− ψ̄kT ).
Next, we let (σ∗�PG

a�NT)
2 := 1

NT−1

∑N

i=1

∑T

t=1(eit − ēNT)
2, (σ∗�PG

a�NT)
2 := 1

N−1

∑N

i=1(ai − āN)
2,

(σ∗�PG
g�NT)

2 := 1
T−1

∑T

t=1(gt − ḡT )
2 be the empirical variances of the projection components.

Similarly, for k= 1�2� � � � , we define the empirical variances (σ∗�PG
φk�NT)

2, (σ∗�PG
ψk�NT)

2 and co-
variances σ∗�PG

ak�NT, (σ∗�PG
gk�NT) with the basis functions of the spectral representation of the

conditional mean function. We can then characterize the pigeonhole bootstrap distribu-
tion in terms of the local parameters q∗�PG

s�NT := rNT(σ
∗�PG
s�NT )

2 for s = a�g�φ1�ψ1� a1� g1� � � � ,
and

q∗�PG
NT := (

q∗�PG
e�NT� q

∗�PG
a�NT� q

∗�PG
g�NT� q

∗�PG
φ1�NT� q

∗�PG
ψ1�NT� q

∗�PG
a1�NT� q

∗�PG
g1�NT� � � �

)
�

We also define its population analog

qPG
NT = (

qPG
e�NT� q

PG
a�NT� q

PG
g�NT� q

PG
φ1�NT� q

PG
ψ1�NT� q

PG
a1�NT� q

PG
g1�NT� � � �

)
�

where qPG
s�NT = qs�NT for each s = a1� g1� � � � , qPG

φk�NT = qPG
ψk�NT = 1 for each k = 1�2� � � � ,

qPG
a�NT = qa�NT + qv�NT, qPG

g�NT = qg�NT + qv�NT, and qPG
e�NT = 3qe�NT.

If qv = 0, Lemma 3.1 together with a law of large numbers for the components corre-
sponding to moments of the basis functions φk(αi), ψk(γt) implies that for each K <∞,
‖q∗�PG

NT�K − qPG
NT�K‖ p→ 0 pointwise, where q∗�PG

NT�K and qPG
NT�K denote the subvectors consisting

of the first 3 + 4K components of q∗�PG
NT and qPG

NT�K , respectively. In particular, for the
pigeonhole bootstrap, all relevant variance parameters converge in probability to their
corresponding population analogs, except for q∗�PG

e�NT which converges to 3qe�NT instead.
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Next, along any convergent sequence qPG
NT → qPG, we can apply a CLT to obtain a Gaus-

sian joint asymptotic distribution for any finite subset of the averages

1
N

N∑
i=1

T∑
t=1

M1i�b(ai + v̄i)� 1
T

T∑
t=1

M2t�b(gt + v̄t)�

1
NT

N∑
i=1

T∑
t=1

M1i�bM2t�beit�
1
N

N∑
i=1

M1i�b

(
φk(αi)− φ̄kN

)
� and

1
T

T∑
t=1

M2t�b

(
ψk(γt)− φ̄kT

)
for k= 1�2� � � � �

Also, N
∗
b

N
�
T ∗
b

T

p→ 1 by a law of large numbers.
Following the truncation argument from the proof of Theorem 4.1, we can then con-

clude that along any convergent sequences qNT → q,∥∥P∗�PG
NT

(
rNT

(
Ȳ ∗�PG

NT�b −E[Yit]
)) −L0

(
qPG� c��

)∥∥
∞ → 0� (B.2)

where the simulation algorithm estimates the law P
∗�PG
NT consistently, and qPG coincides

with q if and only if qe + qv = 0.
Since convergence also holds along drifting sequences, we can adapt an argument from

the proof of Theorem 1 in Andrews and Guggenberger (2010) to conclude that the asymp-
totic properties for the pigeonhole bootstrap are in fact uniform; see the Proof for Theo-
rem 4.2 for details. Q.E.D.

B.4. Subsampling (SUB)

As an alternative to the bootstrap, the researcher may estimate the limiting distribution
of ȲNT using subsampling. Specifically, we consider the following procedure:

(a) We choose subsample sizes mN�mT → ∞, where we assume throughout that
mN/N�mT/T → 0.

(b) For the bth subsample, let j(1)� � � � � j(mN) and s(1)� � � � � s(mT) be drawn uniformly
and independently without replacement from {1� � � � �N} and {1� � � � �T }, respec-
tively.

(c) We then let Y ◦
it�b := Yj(i)s(t)�b for i= 1� � � � �mN and t = 1� � � � �mT , and form the bth

subsample mean Ȳ ◦
NT�b := 1

mNmT

∑mN
i=1

∑mT
t=1Y

◦
it�b.

For a pivotal version of subsampling, we use the variance estimator

(
Ŝ◦

NT�b

)2 := D̂a(κa)T
(
σ̂◦
a

)2 + D̂g(κg)T
(
σ̂◦
g

)2 + (
σ̂◦
w

)2
�

Here, the variance estimators σ̂◦
a , σ̂◦

g , σ̂◦
w are the subsample analogs of σ̂2

a , σ̂2
g , σ̂2

w, the se-
lectors D̂a(κ), D̂g(κ) based on the initial sample are as defined in Section 3, and κa�κg ≥ 0
are chosen according to whether subsampling is implemented with or without model se-
lection.

We can enumerate the possible subsamples of this type by b = 1� � � � �B◦
NT, where

B◦
NT := (

N

mN

)(
T

mT

)
, and denote the conditional distribution of the normalized subsample
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mean given the sample (Yit : i= 1� � � � �N� t = 1� � � � �T ) with

P
◦
NT

(
r◦NT

(
Ȳ ◦

NT − ȲNT

) ≤ x) := 1
B◦

NT

B◦
NT∑
b=1

1
{
r◦NT

(
Ȳ ◦

NT�b − ȲNT

) ≤ x}�
Here, we denote the rate for the subsample mean with(

r◦NT

)2 :=m−1
N σ

2
a +m−1

T σ
2
g + (mNmT)

−1σ2
w�

We can summarize our findings for this subsampling procedure in the following propo-
sition:

PROPOSITION B.2—Subsampling: Suppose that Assumption 2.1 holds, mN�mT → ∞,
and mN

N
� mT
T

→ 0. Then∥∥P◦
NT

(
r◦NT

(
Ȳ ◦

NT − ȲNT

)) − PNT

(
rNT

(
ȲNT −E[Yit]

))∥∥
∞

p→ 0

pointwise. If in addition Assumption 2.2 holds, subsampling is consistent along drifting se-
quences if and only if qv = 0 and (r◦NT)

2(m−1
N σ

2
a +m−1

T σ
2
g)→ 0.

It is straightforward to establish consistency for pivotal versions of subsampling, where
we can use Corollary A.1 below to show pointwise consistency for subsampling using the
subsampling analog of the variance estimator with model selection, and uniform consis-
tency regarding clustering in means (UNIF-1) without model selection.

As in the i.i.d. case, the subsampling estimators for the limiting distribution converge
at a slower rate than the bootstrap, which depend on subsample sizesmN , mT rather than
N and T , respectively. Specifically, noting that the leading terms of the decomposition of
Ȳ ◦

NT − E[Yit] are i.i.d., we can adapt the argument in Section 2.4 of Politis and Romano
(1994) to establish that, for the pivotal version of subsampling,∥∥∥∥P◦

NT

(√
mNmT

(
Ȳ ◦

NT�b − ȲNT

Ŝ◦
NT�b

))
− PNT

(√
NT

(
ȲNT −E[Yit]
ŜNT�sel

))∥∥∥∥
∞

=OP
((
r◦NT

)−1 +
(
r◦NT

rNT

)2)
�

where r◦NT depends on the choice of the sequences mN , mT . We can separately check
for each case with respect to the magnitudes of σ2

a , σ2
g , σ2

v , σ2
e that mN , mT can be chosen

such that (r◦NT)
−1 +( r◦NT

rNT
)2 =O(r−2/3

NT ), but no faster rate can be achieved. This also gives the
fastest possible rate at which subsampling can approximate the asymptotic distribution.
As with subsampling of i.i.d. data, this convergence rate is the same for the pivotal as for
the non-pivotal case. These findings for Gaussian asymptotic inference and subsampling
are summarized in Table B.I in the main text.

PROOF OF PROPOSITION B.2: Define the local parameters

q◦
a�NT := (

r◦NT

)2
m−1
N σ

2
a� q◦

g�NT := (
r◦NT

)2
m−1
T σ

2
g �

q◦
e�NT := (

r◦NT

)2
(mNmT)

−1σ2
e � q◦

v�NT := (
r◦NT

)2
(mNmT)

−1σ2
v � (B.3)

q◦
ak�NT := (

r◦NT

)2
m−1
N σak� q◦

gk�NT := (
r◦NT

)2
m−1
T σgk�
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for k= 1�2� � � � , and for given sequences mN , mT we denote the limits with

q◦
a := lim

N�T
qa�mNmT � q◦

g := lim
N�T
qg�mNmT � q◦

e := lim
N�T
qe�mNmT � q◦

v := lim
N�T
qv�mNmT �

q◦
ak := lim

N�T
qak�mNmT � q◦

gk := lim
N�T
qgk�mNmT

for k= 1�2� � � � .
Let JNT(x) := P(rNT(ȲNT −E[Yit])≤ x) and J◦

NT(x) := P
◦
NT(r

◦
NT(Ȳ

◦
NT −E[Yit])≤ x) be the

respective unconditional c.d.f.s of the normalized sample mean and its subsample analog.
We first check whether JNT(x) and J◦

NT(x) have the same limits under different assump-
tions on the variance components, and then give necessary and sufficient conditions for
consistency of the subsampling estimator for JNT(x).

For the bth subsample, rows and columns are drawn uniformly and without re-
placement from {1� � � � �N} and {1� � � � �T }, respectively. Hence, the array (Y ◦

it�b : i =
1� � � � �mN; t = 1� � � � �mT) is a draw of size mN ×mT from the same separately exchange-
able array as the initial sample with second moments σ2

a , σ2
g , σ2

v , σ2
e and spectral coeffi-

cients c = (c1� c2� � � � ) for the sparse representation of E[Yit |αi�γt].
Hence, if we let q◦

NT := (q◦
e�NT� q

◦
a�NT� q

◦
g�NT� q

◦
a1�NT� q

◦
g1�NT� � � � ), it follows from Theorem

4.1 that along any convergent sequence q◦
NT → q◦ = (q◦

e� q
◦
a� q

◦
g� q

◦
a1� q

◦
g1� � � � ), we have

∥∥PNT

(
r◦NT

(
Ȳ ◦
mNmT �b

−E[Yit]
)) −L0

(
q◦� c��◦)∥∥

∞ → 0�

where �◦ := limNT r
◦
NT(NT)−1/2. In particular, the respective limits of JNT(x) and J◦

NT(x)
along such a subsequence are continuous and coincide if and only if q◦ = q. Moreover,
noting that the leading terms of the decomposition of Ȳ ◦

NT −E[Yit] are i.i.d., we can adapt
the main steps of the proof of Theorem 2.1 in Politis and Romano (1994) to conclude that
subsampling is consistent whenever JNT(x) and J◦

NT(x) have same limits.
For pointwise properties of the subsampling estimator, that is, whenever the variances

σ2
a , σ2

g , σ2
v , σ2

e are held fixed, we need to distinguish only two cases: if qa + qg > 0, it
follows that qv = qe = 0, so that qa + qg = 1. By inspection we then also have q◦

v = q◦
e = 0

and q◦
a + q◦

g = 1. If qa + qg = 0, then we also have q◦
a + q◦

g = 0. Since the subsample is a
draw from the same separately exchangeable array as the initial sample, it also follows
that q◦

e = qe and q◦
v = qv, so that JNT(x) and J◦

NT(x) have the same pointwise limits when
σ2
a , σ2

g , σ2
v , σ2

e are fixed.
For drifting sequences, we can now distinguish several cases regarding the limit of the

sampling distribution: If qv = 0, then q◦
v = 0 and qa+qg+qe = q◦

a+q◦
g+q◦

e = 1, so that the
limiting distributions coincide. If qv > 0 and qa + qg > 0, then mN/N → 0 and mT/T → 0
imply that q◦

a + q◦
g = 1 and q◦

v = 0 so that subsampling is inconsistent along that sequence.
Furthermore, for certain sequences mN , mT , we may also have q◦

a + q◦
g > 0 and q◦

v > 0
when qa + qg = 0 and qv > 0. Hence, JNT(x) and J◦

NT(x) do not converge to the same
limit whenever qv > 0 and q◦

a + q◦
g > 0, so that subsampling is not consistent under these

sequences. Since there is no unambiguous dominance relationship in the respective per-
centiles of the standard normal distribution and Wiener chaos, subsampling inference is
also not guaranteed to be conservative unless qv = q◦

v. Q.E.D.

APPENDIX C: EXTENSIONS

This section gives various extensions to the baseline case. We first show how to apply
our results to approximate joint distributions of means in several variables and when the
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statistic of interest is an estimator that is defined by potentially nonlinear moment condi-
tions. We furthermore consider non-exhaustively matched data, when not all of theN×T
index pairs are observed, and the case in which the (i� t) index pairs correspond to clusters
of more than one unit. We finally consider clustering acrossD rather than two dimensions,
then problems in which data concern outcomes at the level of a dyad or larger subgroup
out of a sample of N “fundamental” units. Sample averages of that type are common in
the analysis of network or matching data.

C.1. Multivariate Case

Another important extension concerns the case of the mean of a vector-valued array
(Yit), where Yit = (Y1it � � � � �YMit)

′ ∈ R
M , and the joint distribution of the components of

Yit is left unrestricted. This generalization is relevant for joint tests and estimators that
are defined by a vector of estimating equations described in the next subsection below.

For this case, we can consider a component-wise Aldous–Hoover representation of the
array

Yit = f (αi�γ t �εit)�

Here, the elements of αi�γ t �εit ∈ R
M are i.i.d. but different components of f (·) may

depend on a common set of factors to induce dependence between those components.
This adds the possibility that each component of the vector Yit may exhibit cluster-

dependence in the mean but that certain linear combinations could in fact be degener-
ate. Specifically, the rate of convergence of individual components of the sample mean
ȲNT depends on whether the diagonal elements of the variance matrices of E[Yit |αi] and
E[Yit |γt] are nonzero, and linear combinations of components are guaranteed to converge
at the slower

√
N or

√
T rate only if Var(E[Yit |αi]) (or Var(E[Yit |γt]), respectively) has

full rank.
We can then implement the bootstrap algorithm from the baseline case jointly in all

M components of the random vector Yit , where the projections Oai, Ogt , and Owit are M-
dimensional vectors whose components are defined in analogy to the scalar case. The
shrinkage parameters λ̂1� � � � � λ̂M are then computed component by component as in the
univariate case.

We denote the respective rates for the individual components with rNT = (r1NT� � � � �
rMNT)

′, where r2
mNT := Var(ȲmNT), the variance of the mth component of the sample av-

erage ȲNT. We also denote the slowest component of rNT with �NT := maxm=1�����M |rmNT|.
Then using the Cramér–Wold device, it follows immediately from Theorem 4.2 that the
bootstrap remains consistent for approximating the joint distribution of diag(rNT)(ȲNT −
E[Yit]) if the conditions of that theorem hold for each component m = 1� � � � �M . Simi-
larly, a refinement at the r−2

NT rate is a straightforward extension of Proposition 4.2.

C.2. Bootstrapping Estimators

The bootstrap procedure developed for the distribution of the sample mean ȲNT can be
used to estimate the distribution of potentially nonlinear estimators. Specifically, suppose
that the estimand of interest is a parameter θ0 in some parameter space Θ ⊂ R

k which
satisfies moment conditions of the form

E
[
g(Yit;θ0)

] = 0
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for a known function g : Y ×Θ→ R
m. We can obtain a Z-estimator θ̂ for the parameter

by solving m estimating equations of the form

0 = ÂNTĝNT(θ̂)�

where we define ĝNT(θ) := 1
NT

∑N

i=1

∑T

t=1 g(Yit;θ), and ÂNT is a k×m matrix which may
depend on quantities estimated from the data with probability limit ÂNT

p→A0. If we de-
note the Jacobian of the population moment with G0 := ∇θE[g(Yit;θ0)], under regularity
conditions we have from standard arguments3 that the estimator is asymptotically linear
and satisfies the expansion

rNT(θ̂− θ0)= −(A0G0)
−1rNTĝNT(θ0)+ op(1)�

where rNT is a rate such that the distribution of rNTĝNT(θ0) is asymptotically tight.
Following the proposal by Kline and Santos (2012), we can obtain the bootstrap analog

ĝ∗
NT(θ̂) := 1

NT

∑N

i=1 g
∗
it by resampling from the N×T ×m array with entries git := g(Yit; θ̂)

using the (multivariate version of the) algorithm from Section 3. We can then estimate
the distribution of the estimator with

rNT

(
θ̂∗ − θ̂) := −(ÂNTĜNT)

−1rNTĝ
∗
NT(θ̂)�

where ĜNT := 1
NT

∑N

i=1

∑T

t=1 ∇θg(Yit; θ̂). Under regularity conditions, the proof for boot-
strap consistency in Theorem 4.2 can be adapted to show that this procedure is asymp-
totically valid. However, it is important to note that refinements for a pivotal version of
this bootstrap are generally only available if the estimating equations are linear in the
parameter, so that the estimator can be written as a smooth function of sample moments.

An important special case are method of moments estimators that match model predic-
tions as a function of the unknown parameter π :Θ→ R

M to the corresponding sample
moments, 1

NT

∑N

i=1

∑T

t=1 g(Yit). In that case, we can directly bootstrap the joint distribu-
tion of the sample moment functions via

ĝNT(θ)= 1
NT

N∑
i=1

T∑
t=1

(
g(Yit)−π(θ))�

Note that the resulting estimating equations are linear in the sample moments by con-
struction, so that the bootstrap procedure immediately inherits the asymptotic properties
from the bootstrap distribution for vectors of sample means, including refinements.

C.3. Non-Exhaustively Matched Samples

We next consider the case in which Yit is observed only for some, but not all, index pairs
(i� t). For example, units i = 1� � � � �N could be high school students, and t = 1� � � � � T
teachers, and we observe student i’s test score Yit after being taught by teacher t. The
process for assigning students and teachers to classrooms may be “blind” to student- and
teacher-level characteristics αi or γt , or subject to sorting. For example, a principal may
assign a more talented teacher to a classroom of “weak” students. Endogenous sorting

3See, for example, Newey and McFadden (1994).



BOOTSTRAP WITH CLUSTER-DEPENDENCE 13

raises additional major conceptual and practical issues for identification and estimation,
so for the remainder of this section we focus exclusively on the case of “exogenous” as-
signment, in a sense to be made more precise in Assumption C.1(b) below.

We can formalize such a sampling scheme by defining an N × T matrix W of indicator
variables, where Wit equals 1 if Yit is observed for the dyad (i� t), and zero otherwise. We
then consider the sampling distribution of

ȲNT�W := 1
N∑
i=1

T∑
t=1

Wit

N∑
i=1

T∑
t=1

WitYit

conditional on Wit . We also let

pi := 1
T

T∑
t=1

Wit� pt := 1
N

N∑
i=1

Wit� and

p̄ := 1
NT

N∑
i=1

T∑
t=1

Wit = 1
N

N∑
i=1

pi = 1
T

T∑
t=1

pt�

We then make the following assumptions:

ASSUMPTION C.1: (a) As N�T → ∞, sampling weights Wit are such that 1
N

∑N

i=1(pi/

p̄)2 → τa < ∞ and 1
T

∑T

t=1(pt/p̄)
2 → τg <∞. (b) The random array can be represented

as Yit = f (αi�γt� εit) for some function h(·), and random variables αi, γt , εit that are i.i.d.
conditional on Wit .

Note that part (a) does not impose any restrictions on the density/sparseness of the
sampling frame, but the assumption of finite limits τa, τg amounts to a balance require-
ment on relative cluster sizes in either dimension. In particular, we allow for the case
p̄→ 0, but rule out the existence of individual clusters that dominate in size. Part (b) can
be interpreted as a “no sorting” condition that is restrictive in many contexts in which the
observable (i� t) pairs are the result of matching or self-selection of economic agents. This
excludes cases with assortative matching on worker and firm productivity, or samples with
students and teachers that are matched according to ability.

Given Assumption C.1, we find from elementary variance calculations that

r−2
NT�W := Var(ȲNT�W )

= 1
NTp̄

(
Tp̄σ2

a

[
1
N

N∑
i=1

(
pi

p̄

)2
]

+Np̄σ2
g

[
1
T

T∑
t=1

(
pt

p̄

)2
]

+ σ2
w

)
� (C.1)

From this expression, we can see that clustering on αi and γt matters asymptotically if
and only if Np̄σ2

g + Tp̄σ2
a converges to a strictly positive limit. Cluster-level variation

dominates the limiting distribution if Np̄σ2
g + Tp̄σ2

a → ∞.
By Assumption C.1(b), E[ȲNT�W |W] = E[Yit |Wit] = E[Yit] a.s., so that our analysis of the

asymptotic distribution will focus on the studentized mean rNT(ȲNT�W −E[Yit]).
We then consider the following bootstrap algorithm:
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(a) Generate an exhaustively matched bootstrap sample Y ∗
it , i= 1� � � � �N , t = 1� � � � � T

as in the baseline case with

λ̂a :=
D̂a(κa)T p̄σ̂

2
a

[
1
N

N∑
i=1

(
pi

p̄

)2
]

D̂a(κa)T p̄σ̂
2
a

[
1
N

N∑
i=1

(
pi

p̄

)2
]

+ p̄σ̂2
w

�

λ̂g :=
D̂g(κg)Np̄σ̂

2
g

[
1
T

T∑
t=1

(
pt

p̄

)2
]

D̂g(κg)Np̄σ̂
2
g

[
1
T

T∑
t=1

(
pt

p̄

)2
]

+ p̄σ̂2
w

�

where κa, κg are chosen according to whether the bootstrap is implemented with
or without model selection. For the conservative bootstrap, λ̂a, λ̂g are constructed
in analogy to the description in Section 3.

(b) Keep the observations for which Wit = 1 and compute the bootstrapped mean

Ȳ ∗
NT�W := 1

N∑
i=1

T∑
t=1

Wit

N∑
i=1

T∑
t=1

WitY
∗
it �

We can then show that under Assumptions 2.1 and C.1, the analogous conclusions to
Theorem 4.2 and Proposition 4.2 hold for the modified bootstrap distribution:

PROPOSITION C.1—Bootstrap Consistency: Suppose that Assumptions 2.1 and C.1 hold.
Then the sampling distribution PNT(rNT(ȲNT�W − E[Yit])) and the bootstrap distribution
P

∗
NT(rNT(Ȳ

∗
NT�W − ȲNT�W )) converge in probability to the same limit,

∥∥P∗
NT

(
rNT

(
ȲNT�W −E[Yit]

)) − PNT

(
rNT

(
Ȳ ∗

NT�W − ȲNT�W

))∥∥
∞

p→ 0�

where convergence is pointwise for the bootstrap with model selection. If qv = 0, convergence
is uniform for the bootstrap without model selection; for qv > 0, the bootstrap without se-
lection is inconsistent. The conservative bootstrap is consistent for the case qv + qe = 0, and
conservative for the case qv + qe > 0.

PROOF: The main arguments from the Proof of Theorem 4.2 hold after a few minor
modifications of the arguments for the case qv = 0. The only major complication arises if
the second-order projection term 1

NTp̄2

∑N

i=1

∑T

t=1Witvit is of first order as we take limits.

In that case, the terms 1
NTp̄

∑N

i=1

∑T

t=1Witφk(αi)ψk(γt) of the sparse representation can
in general no longer be represented in terms of separate sample averages of φk(αi) and
ψk(γt), respectively.
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We first consider the case of dyadic data, where the components of the second-order
projection term take the form

Qk := 1
N2p̄

N∑
i=1

N∑
j=1

Witφk(αi)φk(αj)

= 1
N2p̄

φ′
kW φk

= 1
2N2p̄

φ′
k

(
W +W ′)φk

for the vector φk := (φk(α1)� � � � �φk(αN))
′. To characterize the limit distribution for

N
√
pQk, letZk ∼N(0� IN) and Q̃k := 1

2N2p̄
Z′
k(W +W ′)Zk. Conditions for convergence of

N
√
pQk to N

√
pQ̃k were given by Götze and Tikhomirov (1999), noting that the matrix

W +W ′ is symmetric.
Now, by Assumption C.1(a), we either have that supi=1�����N pi → 0, or that limN p̄ > 0.

Hence, we only need to distinguish two cases regarding the asymptotic behavior of pi. For
the first case with supi=1�����N pi → 0, Corollary 2 in Götze and Tikhomirov (1999) implies
that

�(N
√
pQk�N

√
pQ̃k)≤ (

E
∣∣φk(αi)∣∣3)2

sup
i=1�����N

√
pi�

where �(X�Y) := supx |FX(x)− FY(x)| for any two random variables X , Y with respec-
tive c.d.f.s FX and FY . Furthermore, in this case the asymptotic distribution of N

√
pQk is

Gaussian. By an analogous argument, we also find that the distribution of the bootstrap
analog N

√
pQ∗

k converges to N
√
pQ̃k, so that bootstrap consistency follows from the

triangle inequality. For the second case with p̄ bounded away from zero, pi is bounded
away from zero by a constant for at least two distinct units in {1� � � � �N}. In that case,
consistency follows instead from Theorem 3 in Götze and Tikhomirov (1999).

An extension to multilinear forms for the case in which each dimension of the random
array corresponds to a different type of sampling unit can be obtained in a straightforward
manner after stacking the random variates φk(α1)� � � � �φk(αN)�ψk(γ1)� � � � �ψk(γT ) and
considering the symmetric quadratic form corresponding to the (N+T)×(N+T)matrix
A= 1

2 [0�W ;W ′0]. Q.E.D.

Note that the only major complication in the proof arises if the second-order pro-
jection term 1

NTp̄2

∑N

i=1

∑T

t=1Witvit remains relevant in the limit. In that case, the terms
1

NTp̄

∑N

i=1

∑T

t=1Witφk(αi)ψk(γt) of the sparse representation can in general no longer be
represented in terms of separate sample averages of φk(αi) and ψk(γt), respectively. In-
stead, we use results on random quadratic forms by Götze and Tikhomirov (1999) to
reach the analogous conclusions. For the case of a sparse sample, p̄→ 0, Corollary 2 in
Götze and Tikhomirov (1999) furthermore implies the stronger conclusion of asymptotic
normality of rNT(ȲNT − E[Yit]) even when qv > 0. Finally, a straightforward adaptation
of the arguments in the proof of Proposition 4.2 establishes refinements to the estimated
percentiles for the case of non-exhaustively matched samples whenever qv = 0.
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C.4. Unbalanced Cluster Sizes

Suppose that we observe Rit i.i.d. units in the intersection of clusters i and t, denoted
by Yitr� r = 1� � � � �Rit . We consider inference for the pooled average

ȲNT�R := 1
N∑
i=1

T∑
t=1

Rit

N∑
i=1

T∑
t=1

Rit∑
r=1

Yitr �

We also define ri := 1
T

∑T

t=1Rit , rt := 1
N

∑N

i=1Rit , and r̄ := 1
NT

∑N

i=1

∑T

t=1Rit . Clearly, r̄ =
1
N

∑N

i=1 ri = 1
T

∑T

t=1 rt .
Note that for the case of equal-sized clusters, Rit =R, this problem is formally equiva-

lent to clustering in three dimensions i= 1� � � � �N , t = 1� � � � � T , and r = 1� � � � �R, where
clustering in the third dimension is trivial, and the Aldous–Hoover representation is of
the form

Yitr = f (αi�γt� εitr)�
where αi, γt , εitr are i.i.d. across all indices. Note that in the case of balanced cluster
sizes, Rit = R for all i, t, we can directly apply our results for the baseline case, where
Yit := 1

R

∑R

r=1Yitr . The unbalanced case in which Rit varies across i, t requires additional
assumptions under which we can adapt our approach for the case of non-exhaustively
matched samples from the previous section. However, our results do not assume that R
grows large.

For our results, we assume that cluster size is independent of cluster effects αi, γt , and
that the imbalance in cluster size is bounded:

ASSUMPTION C.2: (a) As N�T → ∞, sampling weights Rit are such that r̄ → ∞,
1
N

∑N

i=1(ri/r̄)
2 → �a < ∞, and 1

T

∑T

t=1(rt/r̄)
2 → �g < ∞. (b) The random array satisfies

Yit = h(αi�γt� εit), where αi, γt , εit are i.i.d. conditional on Rit .

Now let

âi := 1
Trt

T∑
t=1

Rit∑
r=1

Yitr − ȲNT�R� ĝt := 1
Nrt

N∑
i=1

Rit∑
r=1

Yitr − ȲNT�R�

v̂it := 1
Rit

Rit∑
r=1

Yitr − âi − ĝt + ȲNT�R� êitr := Yitr − âi − ĝt − v̂it �

For our projection representation, v̂it estimates the second projection term E[Yitr|αi�γt],
and êitr may remain relevant for the limiting distribution as long as R does not grow too
fast.

We then construct a bootstrap sample as follows:
(a) Generate a∗

i := âk(i), g∗
t := ĝs(t) for i = 1� � � � �N and t = 1� � � � � T , where k(i)

and s(t) are drawn independently and uniformly at random from the index sets
{1� � � � �N} and {1� � � � �T }, respectively, and v∗

it := v̂k(i)s(t) and e∗
itr := êk(i)s(t)q(r) for

q(r) are drawn independently and uniformly from {1� � � � �Rk(i)�s(t)}.
(b) Let ωi, ωt , ωr be i.i.d. draws from a distribution with mean zero, unit variance, and

third moments equal to 1 for i= 1� � � � �N , t = 1� � � � � T , and r = 1� � � � �R.
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(c) Generate an N × T ×R array of bootstrap draws

Y ∗
itr := ȲNT�R +

√
λ̂aa

∗
i +

√
λ̂gg

∗
t +ωiωt

(√
�̂v∗

it +ωre
∗
itr

)
�

where �̂ := r̄σ̂2
v

r̄σ̂2
v+σ̂2

e
and

λ̂a :=
D̂a(κa)T r̄σ̂

2
a

[
1
N

N∑
i=1

(
ri

r̄

)2
]

D̂a(κa)T r̄σ̂
2
a

[
1
N

N∑
i=1

(
ri

r̄

)2
]

+ r̄σ̂2
w

�

λ̂g :=
D̂g(κg)Nr̄σ̂

2
g

[
1
T

T∑
t=1

(
rt

r̄

)2
]

D̂g(κg)Nr̄σ̂
2
g

[
1
T

T∑
t=1

(
rt

r̄

)2
]

+ r̄σ̂2
w

�

where κa, κg are chosen according to whether the bootstrap is implemented with
or without model selection. For the conservative bootstrap, λ̂a, λ̂g are again con-
structed in analogy to the description in Section 3.

Under Assumptions 2.1 and C.2, the analogous conclusions to Theorem 4.2 and Propo-
sition 4.2 regarding bootstrap consistency and refinements hold for the modified boot-
strap procedure after only minor modifications of the arguments in Theorem C.1.

C.5. Cluster-Dependence in D Dimensions

The bootstrap procedure can be immediately extended to the case of an array (Yi1���iD :
i1 = 1� � � � �N1� � � � � iD = 1� � � � �ND) that may exhibit clustering in D dimensions. As in the
benchmark case, we assume that the sampling units corresponding to the indices in each
dimension are i.i.d. draws from a common distribution so that, for the dth dimension, the
“sheets” of the form (Yi1���id−1jid+1���iD : id′ = 1� � � � �Nd′� d′ �= d) are identically distributed
for each j = 1� � � � �Nd and d = 1� � � � �D.

Such an array is separately exchangeable, and the main result by Hoover (1979) (see
also Corollary 7.23 in Kallenberg (2005)) implies that it can be represented as

Yi1�����iD = f (μ�α(1)1i1
�α(1)2i2

� � � � �α(k)d1���dki1���ik
� � � � �α(D)1���Di1���iD

)
for some function f (m�a(1)1 � a

(1)
2 � � � �α(D)1���D), where μ, α(1)1i1

� � � � � a(D)1���Di1���iD
are i.i.d. draws

from the uniform distribution for id = 1� � � � �Nd and d = 1� � � � �D. As in the leading case,
we consider inference with respect to the conditional mean of Yi1���iD given μ.

This case is therefore conceptually analogous to the two-dimensional case, but we need
to keep track of a larger number of terms in an orthogonal projection onto subsets of
the D dimensions. For more compact notation, we let N(k)

d := ∏D

d=1Nd/
∏k

l=1Ndl for any
k-variate multi-index d = (d1� � � � � dk). In particular, N(0)

() = ∏D

d=1Nd .
We can then adapt the bootstrap procedure from Section 3 in the following manner: For

k = 0�1� � � � �D, we then recursively define projections of the array on the k dimensions
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d1� � � � � dk,

â(0) := 1

N(0)
()

∑
i1�����iD

Yi1���iD =: ȲN1���ND�

and for any multi-indices d := (d1� � � � � dk) and i = (id1� � � � � idk), let

â(k)di := 1

N(k)
d

∑
id′ :d′ /∈{d1�����dk}

Yi1�����iD −
k−1∑
k′=0

∑
d′∈D(k′)

â(k−1)
d′id′1

���id′
k′
�

where D(k′) consists of the
(
k

k′
)

subsets of {d1� � � � � dk} of size k′. In particular, the projec-
tion residual

â(D)i1���iD
:= Yi1���iD −

D−1∑
k=0

∑
d′∈D(k)

â(k−1)
d′id′1

���id′
k

�

As in the two-dimensional case, we let σ̂2
a
(k)
d

be the respective bias-corrected em-

pirical variances of these components. In order to select the asymptotically relevant
projection terms, for each multi-index d = (d1� � � � � dk) we also define the selector
D̂
a
(k)
d
(κ) := 1{minl≤k Ndl σ̂

2
a
(k)
d

≥ κ} and sequences κ
a
(k)
d

that grow to infinity at a slow rate

in min{Nd1� � � � �Ndk}.
For d ∈ {1� � � � �D}, we then draw a(1)∗d independently from the empirical distribution

for â(1)d , and for each k= 1� � � � �D− 1 and d1� � � � � dk ∈ {1� � � � �D}, we let a(k)∗d1���dkid1
���idk

:=
â(k)d1���dkj

∗
1 (i1)���j

∗
k
(ik)
(
∏k

l=1ωdlidl
) for independent draws ωdid from the same distribution as in

the baseline case. As before, j∗d(id) denotes the index of the cross-sectional unit corre-
sponding to the idth bootstrap draw for dimension d. We then form

Y ∗
i1���iD

:= ȲN1���ND +
D∑
k=1

∑
d′∈D(k)

√
λ̂d′ka

(k−1)∗
d′id′1

���id′
k′
�

where for the bootstrap with and without model selection,

λ̂d′k :=
D̂
a
(k)
d
(κ

a
(k)
d
)N(k)

d σ̂2
a
(k)
d′

D̂
a
(k)
d
(κ

a
(k)
d
)N(k)

d σ̂2
a
(k)
d′

+ σ̂2
a
(D)
1���D

is defined in analogy to the two-dimensional case. In particular, for each d(k), we choose
κ
a
(k)
d

according to slowly increasing sequences for the bootstrap with model selection, and
κ
a
(k)
d

= 0 for the bootstrap without model selection.

We can then compute the bootstrapped mean Ȳ ∗
N1���ND

:= 1
N
(0)
()

∑
i1���iD

Y ∗
i1���iD

or its studen-

tization for the pivotal bootstrap.
Noting that the arguments behind Theorem 4.2 and Proposition 4.2 do not rely on the

assumption that the random array is two-dimensional, an extension of these results to the
D-dimensional case requires only a few minor notational changes.
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C.6. Dyadic and D-Adic Data

The results in this paper readily extend to the case of dyadic or network data, where
we observe a D-dimensional array (Yi1���iD : i1� � � � � iD = 1� � � � �N) whose distribution is

invariant to permutations π : {1� � � � �N} → {1� � � � �N}, that is, Yi1���iD
d= Yπ(i1)���π(iD). Using

the terminology of Kallenberg (2005), such an array is jointly exchangeable and can be
represented as

Yi1���iD = f (μ�α(1)i1 �α(1)i2 � � � � �α(k)i1���ik � � � � �α(D)i1���iD

)
�

and μ, α(1)i1 �α
(1)
i2
� � � � �α(D)i1���iD

are i.i.d. uniform random variables for i1� � � � � iD ∈ {1� � � � �N}
(see Hoover (1979) or Theorem 7.22 in Kallenberg (2005)). Conditional on μ, we then
consider the sampling distribution of the “D-adic” mean

ȲN�D := 1
ND

N∑
i1�����iD=1

Yi1���iD

forN units drawn at random from a larger population (with replacement) or distribution.4

EXAMPLE C.1—Subgraph Counts: Suppose that the adjacency matrix with entries
Gij ∈ {0�1}N2 represents the subgraph among the set of nodes 1� � � � �N drawn at ran-
dom from an infinite directed graph. Then the sampling distribution for the density of
network homomorphisms (adjacency-preserving maps; see Lovasz (2012)) with respect
to a network F among D distinct nodes can be approximated using this bootstrap proce-
dure in the following way: We can define an indicator Ri1���iD(F) that equals 1 if there is an
adjacency-preserving map between F and the subnetwork among the nodes i1� � � � � iD. We
can then re-sample from the D-dimensional array with entries Yi1����iD := Ri1���iD(F) using
the algorithm described above, where in step (b) we draw N row identifiers with replace-
ment at random and select columns and other dimensions of the array corresponding to
the same identifiers.

We can implement each of the three bootstrap procedures (with and without model
selection and conservative bootstrap) for D-adic arrays by following the algorithm as de-
scribed in Sections 3 and C.5 except that in step (b) we draw N row identifiers with re-
placement at random and select columns and other dimensions of the array corresponding
to the same identifiers. The proofs of Theorem 4.2 and Proposition 4.2 then go through
under analogous conditions as for the original case.

REMARK C.1—U-Statistics: U- and V-statistics with a kernel of order higher than 2
are a special case of D-adic data, where Yi1�����iD = h(Xi1� � � � �XiD) is the known kernel
function h(·), and X1� � � � �Xn are observed by the researcher. In that special case, the ar-
ray has the simpler representation Yi1�����iD = h(αi1� � � � �αiD) in terms of a reduced number
of Aldous–Hoover factors. The population analogs of â(k)di then correspond to terms in
the usual Hoeffding expansion of the statistic. While our theoretical insights also apply
to that problem, for the special case of U- or V-statistics in which the factors α(1)· corre-
spond to observable data, more straightforward resampling procedures may be available.

4Note that the case in which we only include D-ads of D or fewer distinct indices in the average is nested in
this formulation, potentially after rescaling the mean by a bounded sequence.
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For example, the researcher might prefer to adapt the procedure in Arcones and Giné
(1992) with an appropriate model selection step along the lines described in this paper to
determine the appropriate order of degeneracy for their method. However, establishing
formal properties of such a procedure is beyond the scope of this paper.
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