Documentation of Code to Implement Sieve-ML
Estimator of “Errors in the Dependent Variable of
Quantile Regression Models”*

Jerry Hausman, Haoyang Liu, Ye Luo, Christopher Palmer!
October 19, 2020

Contents
1__Introduction| 2
s Man s T . 9

. Nputs| o e e e e e

2.1 Inputs 2
[2.1.1 Setting the Optimizer|. 3
2.1.2 Default Values oo 4
2.2 Outputs 5
(3 Plotting Function| 5
....................................... 6
3.2 Outputs] 6
4 Example Code] 6
1.1 Simulated Example]00 0o 6
M2 FEducational Datal 6

*NBER Working Paper No. 25819. An ungated version of the paper is available at
http://mit.edu/cjpalmer/www/HLLP-QR-EIV.pdf. We thank John Wilson for excellent research assistance.
fCorresponding Author: Haoyang Liu (liuhy@berkeley.edu)

1

1 Introduction

The EIV QR toolkit is a set of code designed to accompany the paper Errors in the Dependent
Variable of Quantile Regression Models (NBER Working Paper No. 25819, available at
http://mit.edu/cjpalmer/www/HLLP-QR-EIV.pdf), by Jerry Hausman, Haoyang Liu, Ye
Luo, and Christopher Palmer. It provides a simple Matlab function to implement the method
described in the paper as well as providing some examples of how to use the code. The code
is still under development, however the current version is functional and this document will
highlight the changes intended for the future of this toolkit.

2 Main sieve mle function

The main workhorse of this toolkit is the function sieve_mle contained in Toolkit /sieve_mle.m
and the helper functions called by this main function. This powerful function has the option
to run bootstrapped sampling for inference, and can also be used to plot the results of the
regresssions.

2.1 Inputs

The required inputs to this function are as follows:

1. X: An n x k double of independent variables, where n is the number of observations
and k is the number of covariates.

2. y: An n x 1 double of the dependent variable.

3. bootstrap: A positive integer indicating the number of bootstrap runs to perform.
If set to 1, the function will perform no bootstrap inference. Rather, it will simply
implement the sieve QR method on the full sample. If set to an integer greater than
1, the function will repeat the following procedure bootstrap times:

e Redraw n observations with replacement from the data X and y. Call this new
set of data X; and ;.

e Recursively call the QR_sieve function, this time using as data X; and y;, and
setting bootstrap to 1.

e Store the results from this sieve QR regression on the sampled data, and repeat
until bootstrap iterations have been achieved.

In addition to these required inputs, the function allows for several extra, optional in-
puts which can be used to customize the performance of the toolkit. These arguments are
explained here, and their default values are shown in Table [I}

4. ntau: An integer dictating the number of knots in 7 to use for the sieve QR estimation.

5. nmixtures: An integer dictating the number of components in the mixed normal dis-
tribution from which the measurement error in y is drawn.

10.

n_WLS_iter: An integer dictating the number of WLS iterations to perform to get a
starting point for the piecewise-constant MLE.

lower: A list of four doubles which define the lower boundaries on each of the variables
[6 A a] for the piecewise-constant MLE.

upper: A list of four doubles which define the upper boundaries on each of the vari-
ables [ﬁ A 0] for the piecewise-constant MLE. More specifically, suppose lower
= [ﬁl Ay O'l} and upper = [ﬁu Ay Uu]. Then for each of the B; coefficients
estimated by the piecewise-constant MLE, we have 5; < 8; < ,. Similarly, for each of
the distributional parameters {(\;, i, ;) JXwes we have Ay < A\ < Ay, i1 < pty < s
and o; < o; < g,

. optimizer: Parameters dictating the algorithm used in the piecewise-linear MLE. See

section below for more instruction about how to configure this parameter.

make_plot: Boolean dictating whether to plot the results or not. If bootstrap is set to
1, a single line will be plotted for each beta coefficient and for the density. If set to a
number greater than 1, 3 lines will be plotted for each beta and the density: one for
the results using the full dataset without sampling, and the two other lines depicting
the 95% confidence interval resulting from the bootstrapped results.

2.1.1 Setting the Optimizer

We have found that attaining a global optimum satisfying the constraints of the problem is
somewhat difficult. The high dimensionality of the problem complicates this optimization,
and the optimizer can get stuck in a local optimum. As such, we allow the user to pass in
parameters governing these optimizers. Currently the following optimizers are supported:

e Stochastic Gradient Descent: This is an optimizer we wrote to implement the standard

stochastic gradient descent algorithm. The function accepts some parameters that can
be used to customize its performance:

— n_batches: The number of batches to use per epoch. In a given epoch, the algo-
rithm will randomly divide the observations into n_batches different subsamples.
It will then sequentially perform one iteration of gradient descent on each of these
subsamples.

— n_epochs: The number of epochs to perform. For each epoch, it will perform
n_batches iterations of gradient descent on randomly sampled data, as described
above. Every 2 epochs, the algorithm will compare the value of the loss function
for the full dataset to the previous best value and discard the last 2 epochs if the
random draws from the last 2 epochs made the function worse.

— learning_rate: A float governing the speed at which gradient descent proceeds.
See the description for the decay parameter for more detail.

— decay: A float governing the decay of the learning rate. More specifically, suppose
Af(X;) is the gradient of the function restricted to the data in subsample 7. Call
the learning rate 7, and the decay a. Then for each batch in each epoch the
optimal x is updated following

i = 2 — a'nAf (X)) (1)

— verbose: A boolean dictating whether the SGD algorithm’s progress is printed
every 50 epochs or not.

To use the SGD optimizing algorithm, you could set

n_batches = 30;

n_epochs = 1000;

learning rate = .00001;

decay = .999;

verbose = true;

optimizer = {‘SGD’, n_batches, n_epochs,

learning rate , decay, verbose};

e Genetic Algorithm: This option will allow the user to employ MATLAB’s built-in ge-
netic algorithm function. To employ this function, simply define a Matlab optimoptions
object with the settings you want. See the documentation here for more information.
For example, you could use:

opts = optimoptions(’ga’, 'MaxGenerations’, 500,
"PopulationSize’, 500);
optimizer_settings = {‘GA’, opts};

WARNING: If any of your variables is fully unbounded (ie the bound is set to Inf)
then the genetic algorithm will take several days.

2.1.2 Default Values

The arguments (4)-(10) in the above list of inputs are optional and can be omitted. For
example, if you want to run the function using all the default options you could call

QR _sieve (X, y, 100);

which will run the function on the data X and y, running 100 bootstrap runs. If you
wished to change only parameter (6) above, for example, you could run

QR_sieve (X, y, 100, [], [], 20);

which will assume default values for ntau and nmixtures and set the value for n. WLS __iter
to 20.

Default values for all the optional parameters are as follows (note ¢ is the empirical mean
of y, and o, is the empirical standard deviation of y)

https://www.mathworks.com/help/gads/ga.html

Parameter name Default value
ntau 15
nmixtures 3
n_WLS_iter 40
lower [-10000, .0001, —y — 30y, .010,]
upper (10000, 1, y + 30y, 100,]
optimizer {*SGD’, 50, 1000, .00001, .999, true}
make_plot false

Table 1: Default parameter values

2.2 Outputs

Once the function has finished running, it will return four objects:

3

1.

betas: A (number of covariates x ntau) array of the estimated coefficients for each
value of tau

fit_hat : An array of all the estimated parameters. The first (number of covariates -
ntau) are the same numbers as in the betas array, though flattened. The remaining
numbers are the distributional parameters:

e nmixtures—1 component weights

e nmixtures—1 component means

e nmixtures component standard deviations
betas_bootstrap: If the bootstrap parameter is set to 1, this will be the same as the
betas array. If set to an integer greater than 1, it will be an (ntau x number of

covariates X bootstrap) array of the coefficients for each of the bootstrap runs, for
each tau and covariate.

fit_hat_bootstrap: If the bootstrap parameter is set to 1, this will be the same as the
fit_hat array. If set to an integer greater than 1, it will be a (bootstrap x total number
of parameters) array of the parameters for each of the bootstrap runs, including the
coefficients and the distributional parameters.

Plotting Function

This function contained in Toolkit/plot_bootstrap.m takes as inputs the results of the sieve
mle function and generates plots. This is useful if the code was run on a server or make_plot
was set to false. The plots that it makes are the same as if make_plot was set to true, but
this function allows you to create the plots again without running the function.

3.1 Inputs

This function takes as inputs the exact output of the main sieve QR function:

1. betas
2. fit_hat
3. betas_bootstrap

4. fit_hat_bootstrap

3.2 Outputs

This function produces the same outputs as the main sieve QR function provided make_plot
was set to true.

4 Example Code

In order to facilitate easy use of this toolkit, two example use cases are provided which
correspond to the two examples from the paper.

4.1 Simulated Example

The set of code contained in Examples/Paper_simulation/paper_simulation_main.m corre-
sponds to the simulated example from section 4 of the paper. Note that the example in the
code is based on a much smaller sample size, since the results from the paper came from
hundreds of runs of the simulation across multiple cloud computing servers which were then
aggregated into one figure. As such, the results may not exactly match up, but the general
shape of the betas plotted against tau will appear similar.

4.2 Educational Data

The file Examples/Angrist_et_al/Angrist_main.m contains code to replicate the educational
data results from section 5 in the paper. Note that it by default only runs the code for the
2010 data - this can be changed as desired.

	Introduction
	Main sieve mle function
	Inputs
	Setting the Optimizer
	Default Values

	Outputs

	Plotting Function
	Inputs
	Outputs

	Example Code
	Simulated Example
	Educational Data

