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D Extensions

D.1 Empirical Welfare Maximization with a Capacity Constraint

This section shows a proof of the claim given in Remark 2.1 of the main text that says the expected

welfare of ĜK converges to the maximum at least at n−1/2 rate. The result is analogous to Theorem

2.1, with the additional term corresponding to potential welfare losses due to estimation errors of

PX(G).

Theorem D.1. Under Assumption 2.1,

sup
P∈P(M,κ)

EPn

[
sup
G∈G

WK(G)−WK(ĜK)

]
≤ C1

M

κ

√
v

n
+ C1

M

K

√
v

n
,

where C1 is the universal constant in Lemma A.4.

Proof. Since WK(G)−WK(G′) = V K(G)− V K(G′) for all G,G′,

sup
P∈P(M,κ)

EPn

[
sup
G∈G

WK(G)−WK(ĜK)

]
= sup

P∈P(M,κ)
EPn

[
sup
G∈G

V K(G)− V K(ĜK)

]
, (D.1)

and we focus on bounding the latter expression.

Since ĜK maximizes V K
n (G), V K

n (G̃) ≤ V K
n (ĜK) for any G̃ ∈ G and

V K(G̃) ≤ V K
n (G̃) + sup

G∈G

∣∣V K
n (G)− V K(G)

∣∣
≤ V K

n (ĜK) + sup
G∈G

∣∣V K
n (G)− V K(G)

∣∣
≤ V K(ĜK) + 2 sup

G∈G

∣∣V K
n (G)− V K(G)

∣∣ .
Applying the inequality for all G̃ ∈ G, we obtain

sup
G∈G

V K(G)− V K(ĜK) ≤ 2 sup
G∈G

∣∣V K
n (G)− V K(G)

∣∣ ,
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which is also true in expectation over Pn.

The welfare gain estimation error for any treatment rule G could be bounded from above by:

∣∣V K
n (G)− V K(G)

∣∣ =

∣∣∣∣ K

max{K,PX,n(G)}
· Vn(G)− K

max{K,PX(G)}
· V (G)

∣∣∣∣
≤ K

max{K,PX,n(G)}
· |Vn(G)− V (G)|+ V (G) ·

∣∣∣∣ K

max{K,PX,n(G)}
− K

max{K,PX(G)}

∣∣∣∣
≤ |Vn(G)− V (G)|+ M

K
· |PX,n(G)− PX(G)| .

The second line comes from subtracting and adding K
max{K,PX,n(G)}V (G) and then applying the

triangle inequality. The third line uses inequalities K
max{K,PX,n(G)} ≤ 1 and V (G) ≤ M (from

Assumption 2.1 (BO)), and the observation that for any a, b ∈ R and c > 0,∣∣∣∣ c

max{c, a}
− c

max{c, b}

∣∣∣∣ =

∣∣∣∣c(max{c, b} −max{c, a})
max{c, a} ·max{c, b}

∣∣∣∣ ≤ |max{c, b} −max{c, a}|
c

≤ |b− a|
c

.

Then

sup
P∈P(M,κ)

EPn

[
sup
G∈G

V K(G)− V K(ĜK)

]
≤ 2 sup

P∈P(M,κ)
EPn

[
sup
G∈G

∣∣V K
n (G)− V K(G)

∣∣]
≤ 2 sup

P∈P(M,κ)
EPn

[
sup
G∈G
|Vn(G)− V (G)|

]
+ 2

M

K
sup

P∈P(M,κ)
EPn

[
sup
G∈G
|PX,n(G)− PX(G)|

]
Note that since the class G has VC-dimension v <∞, the classes of functions

fG(Y,D,X) ≡
(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1{X ∈ G},

hG(Y,D,X) ≡ 1{X ∈ G} − 1/2,

are VC-subgraph classes with VC-dimension no greater than v by Lemma A.1. These classes of

functions are uniformly bounded by M/(2κ) and 1/2. Since Vn(G) = En(fG), V (G) = EP (fG),

PX,n(G) = En(hG) + 1/2 and PX(G) = EP (hG) + 1/2, we could apply Lemma A.4 and obtain

sup
P∈P(M,κ)

EPn

[
sup
G∈G

V K(G)− V K(ĜK)

]
≤ C1

M

κ

√
v

n
+ C1

M

K

√
v

n
.

The theorem’s result follows from (D.1).

D.2 Demeaned EWM

Define the demeaned population welfare as

W dm(G) ≡W (G)− EP [Y ],
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then sup
G∈G

W dm(G) = sup
G∈G

W (G)− EP [Y ] = W ∗G − EP [Y ]. Analogously to (2.2), for any G̃ ∈ G,

W dm(G̃)−W dm(ĜdmEWM ) ≤ 2 sup
G∈G

∣∣∣W dm
n (G)−W dm(G)

∣∣∣ ,
therefore

W ∗G −W (ĜdmEWM ) ≤ 2 sup
G∈G

∣∣∣W dm
n (G)−W dm(G)

∣∣∣ .
Note that since Y dm

i = Yi − En [Yi],

W dm
n (G) = En

[
Y dm
i Di

e(Xi)
· 1 {Xi ∈ G}+

Y dm
i (1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
= Wn(G)− En [Yi] · En

[
Di

e(Xi)
· 1 {Xi ∈ G}+

1−Di

1− e(Xi)
· 1 {Xi /∈ G}

]
,

and since |En(Yi)| ≤M/2,∣∣∣W dm
n (G)−W dm(G)

∣∣∣ ≤ |Wn(G)−W (G)|

+

∣∣∣∣En [Yi] · En
[
Di

e(Xi)
· 1 {Xi ∈ G}+

1−Di

1− e(Xi)
· 1 {Xi /∈ G}

]
− EP [Y ]

∣∣∣∣
≤ |Wn(G)−W (G)|

+ |En(Yi)− EP [Y ]|

+
M

2
·
∣∣∣∣En [ Di

e(Xi)
· 1 {Xi ∈ G}+

1−Di

1− e(Xi)
· 1 {Xi /∈ G}

]
− 1

∣∣∣∣ .
Similarly to the proof of Theorem 2.1, Lemma A.4 applies to all three terms with envelopes M/(2κ),

M/2, and M/(2κ), thus

EPn
[
W ∗G −W (ĜdmEWM )

]
≤ 2EPn

[
sup
G∈G

∣∣∣W dm
n (G)−W dm(G)

∣∣∣] ≤ C1M

(
2

κ
+ 1

)√
v

n
.

D.3 Multiple Treatments

It is feasible to extend the current approach to situations with multiple treatments. Suppose there

are K treatments denoted by D ∈ {1, . . . ,K}. Let ek(x) = P (D = k|X = x), k = 1, . . . ,K, be the

propensity scores in the experimental data, and {Yk : k = 1, . . . ,K} be the potential outcomes for

each treatment. Define a treatment assignment policy by a K-partition of the covariate space X ,

G = (G1, . . . , GK), where G1, · · · , GK ⊂ X are non-intersecting subsets that partition X into K

regions. For each k = 1, . . . ,K, Gk specifies a subpopulation to which treatment D = k is assigned.
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Under unconfoundedness, (Y1, . . . , YK) ⊥ D|X, consider the following empirical welfare crite-

rion;

Wn(G) =
1

n

n∑
i=1

K∑
k=1

Yi · 1{Di = k}
ek(Xi)

· 1{Xi ∈ Gk},

which unbiasedly estimates the population welfare attained by policy G,

W (G) =
K∑
k=1

E[Yk · 1{X ∈ Gk}].

Consider setting the space of policies to G = {G : G1 ∈ G, . . . , GK ∈ G,G partitions X}, where G
is a VC-class of subsets in X including ∅ such that K distinct subsets in G can form a partition of

X . For instance, when X = R, a class of connected intervals of the form G = {(x, x′] : −∞ ≤ x ≤
x′ ≤ ∞}∪ ∅ is a VC-class that allows us to pick K-distinct subsets partitioning R. The EWM rule

can be then obtained as ĜEWM ∈ arg maxG∈GW (G).

Analogous to derivation of inequality (2.3) in the paper, we can bound the welfare loss of the

EWM rule as

sup
G∈G

W (G)−W (ĜEWM ) ≤
K∑
k=1

2 sup
Gk∈G

∣∣∣W k
n (Gk)−W k(Gk)

∣∣∣ ,
where W k

n (Gk) ≡ 1
n

∑n
i=1

Yi·1{Di=k}
ek(Xi)

· 1{Xi ∈ Gk} and W k(Gk) ≡ E[Yk · 1{X ∈ Gk}]. Assuming

bounded outcomes Y ∈ [−M/2,M/2] and strict overlap, in the sense that ek(x) ∈ [κ, 1 − κ] for

all x and k = 1, . . . ,K for some κ > 0, we apply Lemmas A.1 and A.4 to obtain the mean of

supGk∈G
∣∣W k

n (Gk)−W k(Gk)
∣∣ bounded from above by C1M

√
v/n/κ. Hence, the whole welfare loss

can be bounded from above by that of Theorem 2.1 multiplied by the number of treatments K.

Computing ĜEWM presents additional challenges when the EWM framework is extended from

binary to multiple treatment case. We leave an investigation of computational procedures in this

setting for future research.

D.4 Comparison with the Nonparametric Plug-in Rule

The plug-in treatment choice rule (1.13) with parametrically or nonparametrically estimated m1(x)

and m0(x) is intuitive and simple to implement. In situations where flexible treatment assignment

rules are allowed and the dimension of conditioning covariates is small, the nonparametric plug-in

rule would be a competing alternative to the EWM approach. In this section, we review the welfare

loss convergence rate results of the nonparametric plug-in rule and discuss potential advantages and

disadvantages of these two approaches.
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We denote the class of data generating processes that satisfy Assumptions 2.1 (UCF), (BO),

(SO), Assumption 2.2 (MA), and Assumption E.1 by Psmooth (M,κ, α, η, βm). Given the smoothness

assumption of the regression equations, we consider estimating m1 and m0 by local polynomial

estimators of degree (βm − 1). The convergence rate results of the nonparametric plug-in classifiers

shown in Theorem 3.3 of Audibert and Tsybakov (2007) can be straightforwardly extended to the

treatment choice context, resulting in

sup
P∈Psmooth(M,κ,α,η,βm)

EPn
[
W (G∗FB)−W (Ĝplug−in)

]
≤ O

(
n
− 1+α

2+dx/βm

)
. (D.2)

Furthermore, if αβm ≤ dx, Theorem 3.5 of Audibert and Tsybakov (2007) applied to the current

treatment choice setup shows that the nonparametric plug-in rule attains the rate lower bound i.e.,

for any treatment rule Ĝ,

sup
P∈Psmooth(M,κ,α,η,βm)

EPn
[
W (G∗FB)−W (Ĝ)

]
≥ O

(
n
− 1+α

2+dx/βm

)
holds.

In practically relevant situations where αβm ≤ dx,1 a naive comparison of the welfare loss

convergence rate of the plug-in rule presented here with that of EWM (Theorems 2.3 and 2.4)

would suggest that in terms of the welfare loss converge rate, the EWM rule would outper-

form the nonparametric plug-in rule. It is, however, important to notice that the classes of

data generating processes over which the uniform rates are ensured differ between the two cases.

Psmooth (M,κ, α, η, βm) is constrained by smooth regression equations and continuously distributed

X, whereas PFB (M,κ, α, η) considered in Theorems 2.3 and 2.4 allows for discontinuous regres-

sion equations and no restriction on the marginal distribution of X’s. Assumption 2.2 (FB)

on PFB (M,κ, α, η) requires that {x : τ(x) ≥ 0} belongs to the pre-specified VC-class G, whereas

Psmooth (M,κ, α, η, βm) is free from such assumption. This non-nested relationship between PFB (M,κ, α, η)

and Psmooth (M,κ, α, η, βm) makes the naive rate comparison between (D.2) and Theorem 2.3 less

meaningful because a data generating process in Psmooth (M,κ, α, η, βm) that yields the slowest

convergence rate for the nonparametric plug-in rule is in fact excluded from PFB (M,κ, α, η). Ac-

cordingly, unless we can assess which one of Psmooth (M,κ, α, η, βm) and PFB (M,κ, α, η) is more

1In an analogy to the Proposition 3.4 of Audibert and Tsybakov (2007), when the class of data generating

processes is assumed to have αβm > dx, no data generating process in this class can have the conditional treatment

effect τ(x) = 0 in an interior of the support of PX . In the practice of causal inference, we a priori would not restrict

the plausible data generating processes only to these extreme cases; therefore, the class of data generating processes

with αβ > dx would be less relevant in practice.
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likely to contain the true data generating process, these rate results offer us limited guidance on

the procedure that should be used in a given application.

In practical terms, we consider these two distinct approaches as complementary, and our choice

between them should be based on available assumptions and the dimension of covariates in a given

application. With knowledge of the propensity score, a practical advantage of the EWM rule is

that the welfare loss convergence rate does not directly depend on the dimension of X, so when an

available credible assumption on the level set {x : τ(x) ≥ 0} implies a certain class of decision sets

with a finite VC-dimension, the EWM approach offers a practical solution to get around the curse

of dimensionality of X. A potential drawback of using the EWM rule is the risk of misspecification

of G, i.e., if Assumption 2.2 (FB) is not valid, the EWM rule only attains the second-best welfare,

whereas the nonparametric plug-in rule is guaranteed to yield the first-best welfare in the limit.

Another aspect of comparison is that the performance of the EWM rule is stable regardless of

whether the underlying data generating processes, including the marginal distribution of X and

the regression equations m1(X) and m0(X), are smooth or not. In terms of implementation, the

EWM approach becomes particularly attractive when the class of candidate decision sets G is given

exogenously, since the user does not have to specify any smoothing parameter in this case. In

contrast, when the user can freely choose G, the welfare performance of the EWM rule can be

sensitive to how to choose G, similarly to that the performance of nonparametric plug-in rule can

be sensitive to the choice of the smoothing parameter.

E Hybrid EWM with Local Polynomial Estimators

This section focuses on the hybrid EWM approaches with local polynomial estimators for τ(x) and

e(x),. We spell out classes of data generating processes Pm and Pe as well as ψn, ψ̃n, φn, and φ̃n

that satisfy Condition 2.1 and the assumption of Theorem 2.6.

E.1 Assumptions, Estimators, and Welfare Convergence Rates

Consider the m-hybrid approach in which the leave-one-out local polynomial estimators are used

to estimate m1(Xi) and m0 (Xi), i.e., m̂1(Xi) and m̂0 (Xi) are constructed by fitting the local

polynomials excluding the i-th observation.2 For any multi-index s = (s1, . . . , sdx) ∈ Ndx and

any (x1, . . . , xdx) ∈ Rdx , we define |s| ≡
∑dx

i=1 si, s! ≡ s1! · · · sdx !, xs ≡ xs11 · · ·x
sdx
dx

, and ‖x‖ ≡
2The reason to consider the leave-one-out fitted values is to simplify analytical verification of Condition 2.1. We

believe that the welfare loss convergence rates of the hybrid approaches will not be affected even when the i-th

observation is included in estimating m̂1 (Xi) and m̂0 (Xi).
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(
x2

1 + · · ·+ x2
dx

)1/2
. Let K(·) : Rdx → R be a kernel function and h > 0 be a bandwidth. At each

Xi, i = 1, . . . , n, we define the leave-one-out local polynomial coefficient estimators with degree

l ≥ 0 as

θ̂1(Xi) = arg min
θ

∑
j 6=i,Dj=1

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

θ̂0(Xi) = arg min
θ

∑
j 6=i,Dj=0

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is the vector with elements indexed by the multi-index s, i.e., U

(
Xj−Xi

h

)
≡((

Xj−Xi
h

)s)
0≤|s|≤l

.3 Note that U(0) gives vector (1, 0, . . . , 0)T . Let λn,1(Xi) be the smallest eigen-

value of B1(Xi) ≡
(
nhdx

)−1∑
j 6=i,Dj=1 U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
and λn,0(Xi) be the

smallest eigenvalue of B0(Xi) ≡
(
nhdx

)−1∑
j 6=i,Dj=0 U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
. Accord-

ingly, we construct leave-one-out local polynomial fits for m1(Xi) and m0 (Xi) by

m̂1(Xi) = UT (0)θ̂1(Xi) · 1 {λn,1(Xi) ≥ tn} ,

m̂0 (Xi) = UT (0)θ̂0(Xi) · 1 {λn,0(Xi) ≥ tn} ,

where tn is a positive sequence that slowly converges to zero, such as tn ∝ (log n)−1. These trimming

rules regularize the regressor matrices of the local polynomial regressions and simplify the proof of

the uniform consistency of the local polynomial estimators.

To characterize Pm in Condition 2.1, we impose the following restrictions.

Assumption E.1.

(Smooth-m) Smoothness of the Regressions: The regression equations m1(·) and m0(·) belong to a

Hölder class of functions with degree βm ≥ 1 and constant Lm <∞.4

(PX) Support and Density Restrictions on PX : Let X ⊂ Rdx be the support of PX . Let Leb(·) be

the Lebesgue measure on Rdx . There exist constants c and r0 such that

Leb (X ∩B(x, r)) ≥ cLeb(B(x, r)) ∀0 < r ≤ r0, ∀x ∈ X , (E.1)

3We specify the same degree of polynomial and bandwidth for these two local polynomial regressions only to

suppress notational burden.
4Let Ds denote the differential operator Ds ≡ ∂

s1+···+sdx

∂x
s1
1 ···x

sdx
dx

. Let β ≥ 1 be an integer. For any x ∈ Rdx and any

(β − 1) times continuously differentiable function f : Rdx → R, we denote the Taylor expansion polynomial of degree

(β − 1) at point x by fx(x′) ≡
∑
|s|≤β−1

(x′−x)s

s!
Dsf(x). Let L > 0. The Hölder class of functions in Rdx with

degree β and constant 0 < L < ∞ is defined as the set of function f : Rdx → R that are (β − 1) times continuously

differentiable and satisfy, for any x and x′ ∈ Rdx , the inequality |fx(x′)− f(x)| ≤ L ‖x− x′‖β .
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and PX has the density function dPX
dx (·) with respect to the Lebesgue measure of Rdx that is bounded

from above and bounded away from zero, 0 < p
X
≤ dPX

dx (x) ≤ p̄X <∞ for all x ∈ X .

(Ker) Bounded Kernel with Compact Support: The kernel function K(·) have support [−1, 1]dx ,∫
Rdx K(u)du = 1, and supuK (u) ≤ Kmax <∞.

Smoothness of the regression equations, Assumption E.1 (Smooth-m), is a standard assumption

in the context of nonparametric regressions. Assumption E.1 (PX) is borrowed from Audibert and

Tsybakov (2007), and it provides regularity conditions on the marginal distribution of X. Inequality

condition (E.1) constrains the shape of the support of X, and it essentially rules out the case where

X has “sharp” spikes, i.e., X ∩B(x, r) has an empty interior or Leb (X ∩B(x, r)) converges to zero

as r → 0 faster than the rate of r2 for some x in the boundary of X .

Lemma E.4 below shows that when Pm consists of the data generating processes satisfying

Assumption E.1 (Smooth-m) and (PX), Condition 2.1 (m) holds with ψn = n
1

2+dx/βm , and equa-

tion (2.10) in Theorem 2.6 holds with ψ̃n = n
1

2+dx/βm (log n)
− 1

2+dx/βm
−2

. The following corollary

therefore follows.

Corollary E.1. Let Pm consist of data generating processes that satisfy Assumption E.1 (Smooth-

m) and (PX). Let m̂1(Xi) and m̂0 (Xi) be the leave-one-out local polynomial estimators with degree

l = (βm − 1), whose kernels satisfy Assumption E.1 (Ker).

(i) Suppose Assumption 2.1 holds and a bandwidth satisfies h ∝ n−
1

2βm+dx . Then, it holds

sup
P∈Pm∩P(M,κ)

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ O

(
n
− 1

2+dx/βm

)
.

(ii) Suppose Assumptions 2.1 and 2.2 hold with margin coefficient α ∈ (0, 1], and a bandwidth

satisfies h ∝
(

logn
n

) 1
2βm+dx . Then, it holds

sup
P∈Pm∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝm−hybrid)

]
≤ O

(
n
− 1+α

2+dx/βm (log n)

(
1

2+dx/βm
+2

)
(1+α) ∨ n−

1+α
2+α log n

)
.

Next, consider the e-hybrid approach. For each i = 1, . . . , n, define a leave-one-out local poly-

nomial propensity score estimator as

ê (Xi) = UT (0)θ̂e(Xi) · 1 {λn(Xi) ≥ tn} ,

θ̂e(Xi) = arg min
θ

∑
j 6=i

[
Dj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
.
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We then construct an estimate of individual treatment effect as

τ̂ i =

[
YiDi

ê(Xi)
− Yi(1−Di)

1− ê(Xi)

]
· 1 {εn ≤ ê(Xi) ≤ 1− εn} , 0 < εn ≤ O

(
n−a

)
, a > 0,

To ensure Condition 2.1 (e), we assume smoothness of the propensity score function e(·).

Assumption E.2. This assumption is the same as Assumption E.1 except that E.1 (Smooth-m)

is replaced by

(Smooth-e) Smoothness of the Propensity Score: The propensity score e(·) belongs to a Hölder class

of functions with degree βe ≥ 1 and constant Le <∞.

Again, Lemma E.4 below shows that Pe formed by the data generating processes satisfying As-

sumption E.2, Condition 2.1 (e) holds with φn = n
− 1

2+dx/βe and (2.11) with φ̃n = n
1

2+dx/βe (log n)
− 1

2+dx/βe
−2

.

Corollary E.2. Let Pe consist of data generating processes that satisfy Assumption E.2 (Smooth-e)

and (PX). Let ê(Xi) be the leave-one-out local polynomial estimator with degree l = (βe − 1), whose

kernel satisfy Assumption E.1 (Ker).

(i) Suppose Assumption 2.1 holds and a bandwidth satisfies h ∝ n−
1

2βe+dx . Then, it holds

sup
P∈Pe∩P(M,κ)

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ O

(
n
− 1

2+dx/βe

)
.

(ii) Suppose Assumptions 2.1 and 2.2 hold with margin coefficient α ∈ (0, 1], and a bandwidth

satisfies h ∝
(

logn
n

) 1
2βe+dx . Then, it holds

sup
P∈Pe∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝe−hybrid)

]
≤ O

(
n
− 1+α

2+dx/βe (log n)

(
1

2+dx/βe
+2

)
(1+α) ∨ n−

1+α
2+α log n

)
.

A comparison of Corollaries E.1 and E.2 shows that the rate upper bound of welfare loss

differs between the m-hybrid EWM and the e-hybrid EWM approaches when the degree of Hölder

smoothness of the regression equations βm and that of the propensity score βe are different. For

instance, if the propensity score e (·) is smoother than the regression equations of outcome m1(·) and

m0 (·) in the sense of βe > βm and the degree of local polynomial regressions is chosen accordingly,

then the rate upper bound of the e-hybrid EWM rule converges faster than that of the m-hybrid

EWM rule.
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The rest of this section provides formal proofs for validity of Condition 2.1 (m) and (e) for the

local polynomial estimators constructed above, when the class of data generating processes Pm or

Pe is constrained by Assumptions E.1 or E.2. Lemma E.4 shown in Section C.3 proves the main

claim. Appendix C.2 collects the preparatory lemmas to prove Lemma E.4.

E.2 Preparatory Lemmas

Let µ : Rdx → R be a generic notation for a regression equation onto a vector of covariates

X ∈ Rdx . In case of m-hybrid EWM, µ (·) corresponds to either of m1(·) or m0 (·). In case of

e-hybrid EWM, µ (·) corresponds to propensity score e(·). We use n to denote the size of the entire

sample indexed by i = 1, . . . , n, and denote by Ji ⊂ {1, . . . , n} a subsample used to estimate µ (Xi)

nonparametrically. Since we consider throughout the leave-one-out regression fits of µ (Xi), Ji does

not include i-th observation. In case of m-hybrid EWM, Ji is either the leave-one-out treated sample

{j ∈ {1, . . . , n} : Dj = 1, j 6= i} or the leave-one-out control sample {j ∈ {1, . . . , n} : Dj = 0, j 6= i}
depending on µ (·) corresponds to m1 (·) or m0 (·). Note that, in the m-hybrid case, Ji is random

as it depends on a realization of (D1, . . . , Dn). When the e-hybrid EWM is considered, Ji is non-

stochastic and it is given by Ji = {1, . . . , n} \ {i}. The size of Ji is denoted by nJi , which is equal

to n1 − 1 or n0 − 1 in the m-hybrid case, and is equal to n− 1 in the e-hybrid case. With abuse of

notations, we use Yi, i = 1, . . . , n, to denote dependent variable observations and use ξi to denote

a regression residual, i.e., Yi = µ (Xi) + ξi, E (ξi|Xi) = 0, holds for all i = 1, . . . , n. For e-hybrid

rule, Yi should be read as the treatment status indicator Di ∈ {1, 0}.

We assume that µ (·) belongs to a Hölder class of functions with degree β ≥ 1 and constant

0 < L < ∞. Our generic notation for the leave-one-out local polynomial regression fir for µ(Xi)

with degree l = (β − 1) is

µ̂−i (Xi) = UT (0)θ̂(Xi) · 1 {λ(Xi) ≥ tn} , (E.2)

θ̂−i(Xi) = arg min
θ

∑
j∈Ji

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is a regressor vector as defined above, λ(Xi) is a smallest eigenvalue of B−i(Xi) ≡(

nhdx
)−1∑

j∈Ji U
(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
, and tn is a sequence of trimming constant

converging to zero, whose choice is discussed later. The standard least squares calculus shows

θ̂−i (Xi) = B−i (Xi)
−1

 1

nhdx

∑
j∈Ji

U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

) ,
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so that µ̂ (Xi) can be written as

µ̂−i (Xi) =

∑
j∈Ji

Yjωj (Xi)

 · 1 {λ(Xi) ≥ tn} , (E.3)

where ωj (Xi) =
1

nhdx
UT (0) [B−i(Xi)]

−1 U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)
.

Lemma E.1. Suppose Assumptions E.1 (PX) and (Ker).

(i) Conditional on (X1, . . . , Xn) such that λ(Xi) > 0,

max
j 6=i
|ωj(Xi)| ≤ c5

1

nhdxλ(Xi)
,∑

j∈Ji

|ωj(Xi)| ≤
c5

nhdxλ(Xi)

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
,

where c5 is a constant that depends only on β, dx and Kmax.

(ii) For any multi-index s such that |s| ≤ (β − 1),
∑

j∈Ji

(
Xj−Xi

h

)s
ωj(Xi) = 0.

(iii) Let λ̃ (x) be a smallest eigenvalue of B(x) ≡
(
nhdx

)−1∑n
j=1 U

(
Xj−x
h

)
UT
(
Xj−x
h

)
K
(
Xj−x
h

)
there exist positive constants c6 and c7 that depend only on c, r0, p

X
, and K(·) such that

Pn
({
λ̃ (x) ≤ c6

})
≤ 2 [dimU ]2 exp

(
−c7nh

dx
)

holds for all x, PX-almost surely, at every n ≥ 1.

Proof. (i) Since ‖U(0)‖ = 1, it holds

|ωj(Xi)| ≤
1

nhdx

∥∥∥∥[B−i(Xi)]
−1 U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)∥∥∥∥
≤ Kmax

nhdxλ(Xi)

∥∥∥∥U (Xj −Xi

h

)
1
{

(Xj −Xi) ∈ [−h, h]dx
}∥∥∥∥

≤ Kmax dim (U)1/2

nhdxλ(Xi)

≡ c5

nhdxλ(Xi)
,

for every 1 ≤ j ≤ n. Similarly,∑
j∈Ji

|ωj(Xi)| ≤
Kmax

nhdxλ(Xi)

∑
j∈Ji

∥∥∥∥U (Xj −Xi

h

)∥∥∥∥ 1
{

(Xj −Xi) ∈ [−h, h]dx
}

=
c5

nhdxλ(Xi)

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
.
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(ii) This claim follows from the first order condition for θ in the least square minimization

problem in (E.2).

(iii) This lemma is from Equation (6.3, pp. 626) in the proof of Theorem 3.2 in Audibert and

Tsybakov (2007), where suitable choices of constant c6 and c7 are given in Equation (6.2, pp.625)

in Audibert and Tsybakov (2007).

The next lemma provides an exponential tail bound for the local polynomial estimators. The

first statement is borrowed from Theorem 3.2 in Audibert and Tsybakov (2007), and the second

statement is its immediate extension.

Lemma E.2. (i) Suppose Assumption E.1 (PX) and (Ker) hold, and µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L < ∞. Assume Ji is non-stochastic with

nJi = n − 1 (e-hybrid case). Then, there exist positive constants c8, c9, and c10 that depend only

on β, dx, L, c, r0, p
X

, and p̄X , such that, for any 0 < h < r0/c, any c8h
β < δ, and any n ≥ 2,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
≤ c9 exp

(
−c10nh

dxδ2
)
,

holds for almost all x with respect to PX , where Pn−1 (·) is the distribution of
{

(Yi, Xi)
n−1
i=1

}
.

(ii) Suppose Assumptions 2.1 (SO), E.1 (PX), and (Ker) hold, and µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L < ∞. Assume Ji is stochastic (m-hybrid

case) with Ji = {j 6= i : Dj = d}, d ∈ {1, 0}. There exist positive constants c11, c12, and c13 that

depend only on κ, β, dx, L, c, r0, p
X

, and p̄X , such that for any 0 < h < r0/c, any c11h
β < δ, and

any nJn ≥ 1,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ|nJn
)
≤ c12 exp

(
−c13nJnh

dxδ2
)

holds for almost all x with respect to PX , where Pn−1 (·|nJn) is the conditional distribution of{
(Yi, Xi)

n−1
i=1

}
given

∑n−1
j=1 1 {Dj = d}.

Proof. (i) See Theorem 3.2 in Audibert and Tsybakov (2007).

(ii) Under Assumption 2.1 (SO), the conditional distribution of covariates X given D = d,

d ∈ {1, 0}, has the support X same as the unconditional distribution PX , and has bounded density

on X , since

κ

1− κ
dPX
dx

<
dPX|D=d

dx
<

1− κ
κ

dPX
dx

holds for all x ∈ X . Therefore, when PX satisfies Assumption E.1 (PX), the conditional distribu-

tions PX|D=d, d ∈ {1, 0} also satisfy the support and density conditions analogous to Assumption

12



E.1 (PX). This implies that, even when we condition on nJn =
∑n−1

j=1 1 {Dj = d} ≥ 1, the exponen-

tial inequality of (i) in the current lemma is applicable with different constant terms.

The next lemma concerns an upper bound of the variance of the supremum of centered empirical

processes indexed by a class of sets.

Lemma E.3. Let B be a countable class of sets in X , and let {PX,n (B) : B ∈ B} be the empirical

distribution based on iid observations, (X1, . . . , Xn), Xi ∼ PX .

V ar

(
sup
B∈B
{PX,n (B)− PX (B)}

)
≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

4n
.

Proof. In Theorem 11.10 of Boucheron et al. (2013), setting Xi,s at the centered indicator function

1 {Xi ∈ B} − PX (B), and dividing the inequality of Theorem 11.10 of Boucheron et al. (2013) by

n2 lead to

V ar

(
sup
B∈B
{PX,n (B)− PX (B)}

)
≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

n
sup
B∈B
{PX (B) [1− PX (B)]}

≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

4n
.

E.3 Main Lemmas and Proofs of Corollaries E.1 and E.2

The next lemma yields Corollaries E.1 and E.2.

Lemma E.4. Let Pµ be a class of joint distributions of (Y,X) such that µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L <∞, and Assumption E.1 (PX) holds. Let

µ̂−i(·) be the leave-one-out local polynomial fit for µ (Xi) defined in (E.2), whose kernel function

satisfies Assumption E.1 (Ker).

(i) Then,

sup
P∈Pµ

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] ≤ O(hβ) +O

(
1√
nhdx

)
(E.4)
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holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of the

uniform upper bound is h ∝ n−
1

2β+dx and the resulting uniform convergence rate is

sup
P∈Pµ

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] ≤ O (n− 1

2+dx/β

)
.

(ii) Let tn ∝ (log n)−1. Then,

sup
P∈Pµ

EPn

[(
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣)2
]
≤ O

(
h2β

t2n

)
+O

(
log n

nhdxt2n

)
(E.5)

holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of the

uniform upper bound is h ∝
(

logn
n

) 1
2β+dx and the resulting uniform convergence rate is

sup
P∈Pµ

EPn

[(
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣)2
]
≤ O

(
(tn)−2

(
log n

n

) 2
2+dx/β

)
.

Proof. (i) First, consider the non-stochastic Ji case with nJi = (n − 1) (e-hybrid case). Since

observations are iid (hence exchangeable) and the probability law of µ̂−i (·) does not depend on Xi,

it holds

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] = EPn

∣∣µ̂−i(Xi)− µ (Xi)
∣∣ (E.6)

= EPX
[
EPn−1

[∣∣µ̂−n(Xn)− µ (Xn)
∣∣ |Xn

]]
=

∫
X
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] dPX(x)

=

∫
X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
dδ

]
dPX(x),

where EPn−1 [·] is the expectation with respect to the first (n− 1)-observations of (Yi, Xi). By

Lemma E.2 (i), there exist positive constants c8, c9, and c10 that depend only on β, dx, L, c, r0,

p
X

, and p̄X such that, for any 0 < h < r0/c, any c8h
β < δ, and any n ≥ 2,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
≤ c9 exp

(
−c10nh

dxδ2
)

(E.7)

holds for almost all x with respect to PX . Hence,∫
X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
dδ

]
dPX(x) ≤ c8h

β + c9

∫ ∞
0

exp
(
−c10nh

dxδ2
)
dδ

= c8h
β +

c14√
nhdx

(E.8)

= O(hβ) +O

(
1√
nhdx

)

14



where c14 = c9(2c10)−1/2
∫∞

0

(
δ′
)−1/2

exp
(
−c10δ

′) dδ′ < ∞. Since the upper bound (E.8) does not

depend upon P ∈ Pµ, this upper bound is uniform over P ∈ Pµ, so the conclusion holds.

Next, consider the stochastic Ji case with nJi =
∑

j 6=i 1 {Dj = d}, where d ∈ {1, 0}. we can

interpret nJi as a binomial random variable with parameters (n− 1) and π, where π = P (Di = 1)

when µ (·) corresponds to m1 (·) and π = P (Di = 0) when µ (·) corresponds to m0 (·). In either

case, κ < π < 1 − κ by Assumption 2.1 (SO). Let n ≥ 1 + 2
π and Ωπ,n ≡

{∣∣∣ nJnn−1 − π
∣∣∣ ≤ 1

2π
}

={
(n−1)π

2 ≤ nJn ≤
3(n−1)π

2

}
. Consider

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ · 1 {Ωπ,n}

]
=

∑
nJn∈Ωπ,n

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]Pn−1 (nJn)

≤ max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]}Pn−1 (Ωπ,n)

≤ max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]} .

Since nJn ≥
(n−1)π

2 ≥ 1 on Ωπ,n, Lemma E.2 (ii) implies

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn] ≤ ∫

X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ|nJn
)
dδ

]
dPX(x)

≤ c11h
β +

c15√
nJnh

dx
,

where c11 and c15 are positive constants that depend only on κ, β, dx, L, c, r0, p
X

, and p̄X . Since

nJn ≥
(n−1)π

2 ≥ nπ
4 on Ωπ,n for n ≥ 2, it holds

max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]} ≤ c11h

β +
2c15√
πnhdx

.

Accordingly, combined with the Hoeffding’s inequality Pn−1
(
Ωc
π,n

)
≤ 2 exp

(
−π2

4 n
)
, we obtain

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] ≤ EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ · 1 {Ωπ,n}

]
+MPn−1

(
Ωc
π,n

)
≤ c11h

β +
2c15√
πnhdx

+ 2M exp

(
−π

2

4
n

)
.

The third term in the right hand side converges faster than the second term, so we have shown

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] =

∫
X
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] dPX(x)

≤ O(hβ) +O

(
1√
nhdx

)
holds for the stochastic Ji case as well.
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(ii) Let Ωλ,n be an event defined by {λ (Xi) ≥ tn, ∀i = 1, . . . , n}. On Ωλ,n, (E.3) implies

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2 ≤

∣∣∣∣∣∣
∑
j∈Ji

Yjωj (Xi)− µ (Xi)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi) +
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

, (E.9)

where the second line follows from Yj = µ (Xj) + ξj and
∑

j 6=i ωj (Xi) = 0 as implied by Lemma

E.1 (ii). Since µ (·) is assumed to belong to the Hölder class, Lemma E.1 (ii) and Assumption E.1

(Ker) imply∣∣∣∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 =

∣∣∣∑
j∈Ji
‖Xj −Xi‖β ωj (Xi)

∣∣∣2
=
∣∣∣∑

j∈Ji
‖Xj −Xi‖β ωj (Xi) · 1

{
(Xj −Xi) ∈ [−h, h]dx

}∣∣∣2
≤ dβxh2β

∣∣∣∑
j∈Ji
|ωj (Xi)|

∣∣∣2
≤ dβxh2β

(
c5

λ(Xi)

)2( 1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
})2

≤ c16
h2β

t2n

(
1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
})2

,

where c16 = c2
5d
β
x. Under Assumption E.1 (PX) and being conditional on Ωλ,n,

max
1≤i≤n

∣∣∣∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 ≤ c16

h2β

t2n

[
1

hdx
sup
B∈Bh

PX,n(B)

]2

≤ c16
h2β

t2n

[
1

hdx

(
sup
B∈Bh

(PX,n(B)− PX (B)) + sup
B∈Bh

PX (B)

)]2

≤ c16
h2β

t2n

[
1

hdx
sup
B∈Bh

(PX,n(B)− PX (B)) + 2dx · p̄X

]2

≤ c16
h2β

t2n

 2

h2dx

[
sup
B∈Bh

(PX,n(B)− PX (B))

]2

+ 22dx+1 · p̄2
X

 ,

where Bh is the class of hypercubes in Rdx , Bh ≡
{∏dx

k=1
[xk − h, xk + h] : (x1, . . . , xdx) ∈ X

}
, and
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the last inequality follows since (a+ b)2 ≤ 2a2 + 2b2. Accordingly,

EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
≤ c17

h2β

t2n
+ 2c16

h2β

t2n

1

h2dx
EPn

{[
supB∈Bh (PX,n(B)− PX (B))

]2}
≤ c17

h2β

t2n
+ 4c16

h2β

t2n

1

h2dx

{
V ar

(
supB∈Bh (PX,n(B)− PX (B))

)
+
[
EPn

(
supB∈Bh (PX,n(B)− PX (B))

)]2
}
,

where c17 = 22dx+1c16p̄
2
X . In order to bound the variance and the squared mean terms in the curly

brackets, we apply Lemma E.3 and Lemma A.5 with F̄ = 1 and δ = p̄X (2h)dx/2. Let vBh <∞ be

the VC-dimension of Bh that depends only on dx. For all n satisfying nhdx ≥ C1vBh
2dx p̄2X

, we have

V ar

(
sup
B∈Bh

(PX,n(B)− PX (B))

)
≤ 2

n
EPn

(
sup
B∈Bh

(PX,n(B)− PX (B))

)
+

1

4n

≤ 2
dx
2

+1C2p̄X

√
vBhh

dx

n3/2
+

1

4n
and[

EPn

(
sup
B∈Bh

(PX,n(B)− PX (B))

)]2

≤ 2dxC2
2 p̄

2
X

vBhh
dx

n
.

As a result, there exist positive constants c18, and c19 that depend only on β, dx, and p̄X , such that

EPn

max
1≤i≤n

∣∣∣∣∣∣
∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ c17
h2β

t2n
+c18

h2β

t2n (nhdx)
+c19

h2β

t2n (nhdx)
3/2

holds for all n satisfying nhdx ≥ C1vBh
2dx p̄2X

. Since nhdx →∞ by the assumption, focusing on the leading

term yields

lim sup
n→∞

sup
P∈Pµ

EPn

2 max
1≤i≤n

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ O(h2β

t2n

)
. (E.10)

In order to bound the second term in the right hand side of (E.9), note first that∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

≤ 1

nhdxλ2(Xi)

∥∥∥∥∥∥ 1√
nhdx

∑
j∈Ji

ξjU

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)∥∥∥∥∥∥
2

≤ K2
max

nhdxt2n
max

1≤k≤dim(U)
η2
ik

holds conditional on Ωλ,n, where ηik, 1 ≤ k ≤ dim (U), is the k-th entry of vector

1√
nhdx

∑
j∈Ji

ξjU

(
Xj −Xi

h

)
1
{

(Xj −Xi) ∈ [−h, h]dx
}

.
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Therefore,

EPn

max
1≤i≤n

∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ K2
max

nhdxt2n
EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik

]
. (E.11)

Conditional on (X1, . . . , Xn) , ηik has mean zero and every summand in ηik lies in the interval,[
− M√

nhdx
1
{

(Xj −Xi) ∈ [−h, h]dx
}
, M√

nhdx
1
{

(Xj −Xi) ∈ [−h, h]dx
}]

. The Hoeffding’s inequality

then implies that, for every 1 ≤ i ≤ n and 1 ≤ k ≤ dim (U), it holds

Pn (|ηik| ≥ t|X1, . . . , Xn)

≤ 2 exp

− t2

2M2

nhdx

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}


≤ 2 exp

− t2

2M2

nhdx
max1≤i≤n

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}
 , ∀t > 0.

Therefore,

EPn

exp

 η2
ik

2M2

nhdx
max1≤i≤n

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}
 |X1, . . . , Xn



= 1 +

∫ ∞
1

Pn

exp

 η2
ik

2M2

nhdx
max

1≤i≤n

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
 ≥ t′|X1, . . . , Xn

 dt′

= 1 +

∫ ∞
1

Pn

|ηik| ≥
√√√√2M2

nhdx
max

1≤i≤n

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}

log t′|X1, . . . , Xn

 dt′

≤ 1 + 2

∫ ∞
1

exp
(
−2 log t′

)
dt′

= 1 + 2

∫ ∞
1

(
t′
)−2

dt′

= 3

for all 1 ≤ i ≤ n and 1 ≤ k ≤ dim (U). We can therefore apply Lemma 1.6 of Tsybakov (2009) to
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bound EPn
[
maxi,k η

2
ik|X1, . . . , Xn

]
,

EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik|X1, . . . , Xn

]

≤ 2M2 max
1≤i≤n

 1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
} log (3 dim (U)n)

≤ 2M2

[
1

hdx
sup
B∈Bh

(PX,n(B)− PX (B)) + 2dx p̄X

]
log (3 dim (U)n) .

By applying Lemma A.5 with F̄ = 1 and δ = p̄X (2h)dx/2, the unconditional expectation of

maxi,k η
2
ik can be bounded as

EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik

]
≤ 2M2

[
C22dx/2p̄X

√
vBh
nhdx

+ 2dx p̄X

]
log (3 dim (U)n) (E.12)

for all n such that nhdx ≥ C1vBh
2dx p̄2X

. Plugging (E.12) back into (E.11) and focusing on the leading

term give

lim sup
n→∞

sup
P∈Pµ

EPn

[
max

0≤i≤n

∣∣∣∑
j 6=i

ξjωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
≤ O

(
log n

nhdxt2n

)
. (E.13)

Combining (E.9), (E.10), and (E.13), we obtain

EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2]

≤ EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2 · 1 {Ωλ,n}

]
+M2Pn

(
Ωc
λ,n

)
≤ 2EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
+2EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

ξjωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
+M2Pn

(
Ωc
λ,n

)
,

= O

(
h2β

t2n

)
+O

(
log n

nhdxt2n

)
+M2Pn

(
Ωc
λ,n

)
,

so the desired conclusion is proven if Pn
(

Ωc
λ,n

)
is shown to converge faster than the O

(
logn
nhdx t2n

)
term.

To find the convergence rate of Pn
(

Ωc
λ,n

)
, consider first the case of non-stochastic Ji. By
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applying Lemma E.1 (iii) with the sample size set at (n− 1), we have

Pn ({λ (Xi) ≤ c6, for some 1 ≤ i ≤ n}) = nPn ({λ (Xn) ≤ c6})

= n

∫
Pn (λ(Xn) ≤ c6|Xn) dPX

= n

∫
Pn−1 (λ(x) ≤ c6) dPX(x) (E.14)

≤ 2n [dimU ]2 exp
(
−c7

2
nhdx

)
.

For the case of stochastic Ji, by viewing nJi as a binomial random variable with parameters (n− 1)

and π with κ < π < 1 − κ, and recalling that, when PX satisfies Assumption E.1 (PX), the

conditional distributions PX|D=d, d ∈ {1, 0} also satisfy the support and density conditions stated

in Assumption E.1 (PX), we can apply the exponential inequality shown in Lemma E.1 (iii) to

bound Pn−1 (λ(x) ≤ c6|nJn). Hence, with Ωπ,n ≡
{∣∣∣ nJnn−1 − π

∣∣∣ ≤ 1
2π
}

=
{

(n−1)π
2 ≤ nJn ≤

3(n−1)π
2

}
used above, we have

Pn−1 (λ(x) ≤ c6) ≤ Pn−1 ({λ(x) ≤ c6} ∩ Ωπ,n) + Pn−1
(
Ωc
π,n

)
≤ max

nJn∈Ωπ,n
Pn−1 (λ(x) ≤ c6|nJn) + Pn−1

(
Ωc
π,n

)
.

≤ 2 [dimU ]2 exp
(
−c7π

4
nhdx

)
+ 2 exp

(
−π

2

4
n

)
,

Plugging this upper bound into (E.14) and focusing on the leading term leads to

Pn ({λ (Xi) ≤ c6, for some 1 ≤ i ≤ n}) ≤ O
(
n exp

(
−c7

π

4
nhdx

))
.

Hence, in either of the non-stochastic or the stochastic Ji case, since tn ≤ c6 holds for all large n

and the obtained upper bounds are uniform over P ∈ Pµ, we conclude

lim sup
n→∞

sup
P∈Pµ

EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2] ≤ O(h2β

t2n

)
+O

(
log n

nhdxt2n

)
+O

(
n exp(−nhdx)

)
.

Since tn = (log n)−1 by assumption, O(n exp
(
−nhdx

)
) converges faster thanO

(
logn
nhdx t2n

)
, the leading

terms are given by the first two terms, O
(
h2β

t2n

)
+O

(
logn
nhdx t2n

)
.
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Proof of Corollary E.1. By noting the following inequalities,

EPn

[
1

n

∑n

i=1
|τ̂m(Xi)− τ (Xi)|

]
≤ EPn

[
1

n

∑n

i=1
|m̂1(Xi)−m1 (Xi)|

]
+EPn

[
1

n

∑n

i=1
|m̂0(Xi)−m0 (Xi)|

]
EPn

[
max

1≤i≤n
(τ̂m(Xi)− τ (Xi))

2

]
≤ 2EPn

[
max

1≤i≤n
(m̂1(Xi)−m1 (Xi))

2

]
+2EPn

[
max

1≤i≤n
(m̂0(Xi)−m0 (Xi))

2

]
,

we obtain the current corollary by applying Lemma E.4. The resulting uniform convergence rate

is given by ψn = n
1

2+dx/βm . When the assumption (2.10) in Theorem 2.6 is concerned, the corre-

sponding rate is given by ψ̃n =

[(
logn
n

) 1
2+dx/βm (log n)2

]−1

.

Proof of Corollary E.2. (i) Assume that n is large enough so that εn ≤ κ/2 holds. Given ê (Xi) ∈
[εn, 1− εn], τ̂ ei − τ i can be expressed as

τ̂ ei − τ i =
YiDi

e(Xi)

[
e(Xi)− ê(Xi)

ê(Xi)

]
+
Yi (1−Di)

1− e(Xi)

[
e(Xi)− ê(Xi)

1− ê (Xi)

]
,

so

|τ̂ ei − τ i| ≤
M

κ
· 1

ê (Xi) (1− ê (Xi))
· |ê(Xi)− e(Xi)|

holds. On the other hand, when ê (Xi) /∈ [εn, 1− εn], τ̂ ei = 0 and |τ i| ≤ M
κ imply |τ̂ ei − τ i| ≤ M

κ .

Hence, the following bounds are valid,

|τ̂ ei − τ i| ≤

 M
κ ·

4
κ(2−κ) · |ê(Xi)− e(Xi)| if ê (Xi) ∈

[
κ
2 , 1−

κ
2

]
,

M
κ ·

1
εn(1−εn) if ê (Xi) /∈

[
κ
2 , 1−

κ
2

]
.

(E.15)

Hence,

EPn

[
1

n

∑n

i=1
|τ̂ ei − τ i|

]
= EPn [|τ̂ en − τn|]

≤ M

κ
· 4

κ (2− κ)
· EPn [|ê(Xn)− e(Xn)|]

+
M

κ
· 1

εn (1− εn)
· Pn

(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
.
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By Lemma E.4 (i), supP∈Pe EPn [|ê(Xn)− e(Xn)|] ≤ O(n
− 1

2+dx/βe ), so the conclusion follows if

Pn
(
ê (Xn) /∈

[
κ
2 , 1−

κ
2

])
is shown to converge faster than O(n

− 1
2+dx/βe ). To see this claim is true,

note that

Pn
(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
=

∫
X
Pn−1

(
ê (x) /∈

[κ
2
, 1− κ

2

])
dPX (x)

≤
∫
X
Pn−1

(
|ê (x)− e(x)| ≥ κ

2

)
dPX (x)

≤ c9 exp

(
−c10κ

2

4
nhdx

)
holds for all n satisfying c8h

β < κ/2, where the c8, c9, and c10 are the constants defined in Lemma

B.2 (i). Since εn is assumed to converge at a polynomial rate, 1
εn(1−εn)P

n
(
ê (Xn) /∈

[
κ
2 , 1−

κ
2

])
converges faster than O(n

− 1
2+dx/βe ).

(ii) By (E.15), we have

EPn

[
max

1≤i≤n
|τ̂ ei − τ i|

2

]
≤

(
4M

κ2 (2− κ)

)2

EPn

[
max

1≤i≤n
|ê(Xi)− e(Xi)|2

]
(E.16)

+

(
M

κεn (1− εn)

)2

Pn
(
ê (Xi) /∈

[κ
2
, 1− κ

2

]
for some 1 ≤ i ≤ n

)
.

By Lemma E.4 (ii), the first term in (E.16) converges at rate O
(
n
− 2

2+dx/β (log n)
2

2+dx/β
+2
)

. To find

the convergence rate of the second term in (E.16), consider

Pn
(
ê (Xi) /∈

[κ
2
, 1− κ

2

]
for some 1 ≤ i ≤ n

)
≤ nPn

(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
≤ c9n exp

(
−c10κ

2

4
nhdx

)
,

where the last line follows from Lemma B.2 (i). Since εn converges at polynomial rate, we conclude

the second term in (E.16) converges faster than the first term.
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