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Abstract
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to Riley equilibria and Nash equilibria. The second describes in detail our cost model that predicts
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reweight our main sample using weights derived from the nationally representative MEPS survey,

and reproduce our main positive and normative analyses.
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1 Supplement: Wilson Equilibria

1.1 Characterization of Wilson Equilibria

A price configuration P = (PH , PL) is a Wilson equilibrium (WE) if there is no deviation by an entrant

to a price pair that is strictly profitable once any offers are withdrawn that make losses after the

deviation.1 We will say that a deviation from price configuration P that is strictly profitable after

any such withdrawals is a “profitable Wilson deviation.”2 Note that no policy L offers will ever be

withdrawn after a deviation, because a reduction in PH can never cause a PL offer to make losses (since

a reduction in PH lowers ACL).

We establish the following result, which we use to identify WE in our data:

Proposition S1. Let (PBEH , PBEL ) be the break-even price configuration associated with ∆PBE, and

let ∆Pw ∈ Argmax∆P∈[θ,∆PBE ] Π(PBEL + ∆P, PBEL ). If ∆AC(θ) > θ, then the break-even price

configuration (PwH , P
w
L ) associated with price difference ∆Pw is a WE, and is the unique WE whenever

∆Pw = Argmax∆P∈[θ,∆PBE ] Π(PBEL + ∆P, PBEL ) ∈ (θ,∆PBE). If instead ∆AC(θ) < θ, then the

unique WE outcome has all consumers purchasing policy H at price P ∗H = ACH .

We establish Proposition S1 through a series of lemmas. First, we identify some properties that any

WE must satisfy:

Lemma S1. If Pw = (PwH , P
w
L ) is a WE price configuration, then

(a) Π(PwH , P
w
L ) = 0;

(b) ΠH(P ′H , P
w
L ) ≤ 0 for all P ′H ≤ PwH ;

(c) ∆Pw = (PwH − PwL ) ≤ ∆PBE, the lowest break-even ∆P with positive sales of policy L.

Proof. (a) IfΠ(PwH , P
w
L ) < 0, then some firm would be better offdropping its offers, while ifΠ(PwH , P

w
L ) >

0 then an entrant could profit by offering (PwH −ε, PwL −ε) for suffi ciently small ε > 0. (b) If this is viol-

ated at P ′H , then ΠH(P ′H−ε, PwL ) > 0 for suffi ciently small ε > 0. A entrants’offering of P ′H−ε would be
a profitable Wilson deviation. (c) This is immediate if∆PBE = θ. So suppose that∆PBE < θ and that

∆Pw > ∆PBE , which implies that there are positive sales of policy L at Pw. Since both policies break

even at ∆PBE , and ΠL(PwH , P
w
L ) ≥ 0 by parts (a) and (b), it must be that the break-even price con-

figuration associated with ∆PBE , (PBEH , PBEL ), has PBEL = ACL(∆PBE) < ACL(∆Pw) ≤ PwL . Since

PBEL < PwL and ∆PBE < ∆Pw, we also have PBEH < PwH . So an entrant’s offer of (PBEH + ε, PBEL + ε)

for suffi ciently small ε > 0 is a profitable Wilson deviation.

1Note that since at least one of PH and PL is undercut by any profitable entrant deviation, there is no ambiguity

about which polices to withdraw in the event that one of the offers in the price configuration makes losses.
2Note that, in principle, a NE need not be a WE, as a profitable Wilson deviation may not be profitable if no policies

are withdrawn.
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Consider the following problem:

min(PH ,PL) PL

s.t. (i) Π(PH , PL) = 0

(ii) ΠH(P ′H , PL) ≤ 0 for all P ′H ≤ PH
(iii) PH − PL ∈ [θ,∆PBE ]

(1)

Lemma S2. Any P ∗ = (P ∗H , P
∗
L) that solves problem (1) is a WE price configuration.

Proof. We construct an equilibrium in which all prices P ≥ P ∗ are offered by multiple firms and each

firm has an equal share of sales of both policies. Thus, all active firms earn zero, and we need only

consider deviations by entrants.

To begin, it follows from constraint (ii) of problem (1), and the fact that L offers are never withdrawn,

that there is no profitable Wilson deviation in which an entrant makes sales only of the H policy (which

would require a price P̂H < P ∗H).

Next, there is no profitable Wilson deviation in which an entrant makes sales only of policy L.

Suppose there were and let the deviation price be P̂L < P ∗L. If everyone buys policy L at prices

(P ∗H , P̂L) then no policy H offers will be withdrawn and P̂L > ACL. But then prices (P ∗H , ACL) would

be feasible in problem (1) and attain a lower value of PL than P ∗L, contradicting P
∗ being a solution.

Suppose instead that some consumers still buy policy H at prices (P ∗H , P̂L). Then ΠH(P ∗H , P̂L) < 0,

which implies that offer P ∗H will be withdrawn, as will every PH up to the lowest PH above P ∗H such

that ΠH(PH , P̂L) = 0. The entrant’s profit will therefore be ΠL(PH , P̂L). However, it cannot be that

ΠL(PH , P̂L) > 0: if so then we have Π(PH , P̂L) > 0. But this would imply that there is an δ > 0

such that price pair (PH − δ, P̂L − δ) is feasible in problem (1) and achieves a lower PL than P ∗L, a

contradiction to P ∗ solving problem (1).3

Finally, suppose that there is a profitable Wilson deviation for an entrant offering P̂ = (P̂H , P̂L),

in which the entrant makes sales of both policies. Then since offers for policy L are never withdrawn,

P̂L ≤ P ∗L. We first argue that ΠH(PH , P̂L) ≤ 0 for all PH ≤ P̂H . If P̂H < P ∗H , then this follows

because P ∗ satisfies constraint (ii) and P̂L ≤ P ∗L. If, instead, P̂H > P ∗H , then it follows because the

entrant can make sales of the H policy only if ΠH(PH , P̂L) < 0 for all PH < P̂H , so that rivals’offers

are withdrawn. Next, observe that if ΠH(P̂H , P̂L) ≤ 0 and Π(P̂H , P̂L) > 0, then for some δ > 0 price

pair (P̂H − δ, P̂L− δ) is feasible in problem (1) and achieves a lower PL than P ∗L, a contradiction to P
∗

solving problem (1).

To solve for the Wilson equilibrium, we examine a relaxed version of problem (1). For ∆P ∈ [θ, θ],

we first define PBEL (∆P ) by

[PBEL (∆P )−ACL(∆P )]F (∆P ) + [PBEL (∆P ) + ∆P −ACH(∆P )][1− F (∆P )] = 0,

3This δ would set Π(PH − δ, P̂L − δ) = 0, and would satisfy constraint (ii) of problem (1) since ΠH(PH , P̂L − δ) ≤ 0

for all PH ≤ PH .
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and PBEH (∆P ) ≡ PBEL (∆P ) + ∆P . Note that PBEL (∆P ) and PBEH (∆P ) are continuous functions.

Note as well that, for ∆P ∈ [θ, θ], [PBEL (∆P )−ACL(∆P )] T 0 if and only if ∆AC(∆P ) T ∆P .4

We will consider the relaxed problem

min∆P∈[θ,∆PBE ] PBEL (∆P ) (2)

Note that in problem (2) the constraint set is closed and bounded, and the objective function

is continuous, so a solution exists. In Lemma S3, we show the equivalence of this problem when

∆AC(θ) > θ to the problem of finding the profit-maximizing multi-policy Nash deviation from price

configuration (PBEH , PBEL ):

max∆P∈[θ,∆PBE ] Π(PBEL + ∆P, PBEL ) (3)

Lemma S3. Suppose that ∆AC(θ) > θ. Then Argmin∆P∈[θ,∆PBE ] P
BE
L (∆P ) = Argmax∆P∈[θ,∆PBE ] Π(PBEL +

∆P, PBEL ).

Proof. Letting δ(∆P ) ≡ PBEL − PBEL (∆P ), we have

Π(PBEL + ∆P, PBEL ) = Π(PBEL (∆P ) + ∆P + δ(∆P ), PBEL (∆P ) + δ(∆P ))

= Π(PBEL (∆P ) + ∆P, PBEL (∆P )) + δ(∆P )

= PBEL − PBEL (∆P ),

so for any ∆P and ∆P ′ we have

Π(PBEL + ∆P, PBEL )−Π(PBEL + ∆P ′, PBEL ) = PBEL (∆P ′)− PBEL (∆P ).

Thus, the solution to the relaxed problem (3) is exactly the ∆P ≤ ∆PBE that maximizes the

multi-policy deviation profits from ∆PBE . By Lemma 1, any solution to problem 3 for which there is

a price configuration (PH , PL) with PH − PL = ∆P that is feasible in problem 1 is a WE. This is the

case whenever the solution to problem 3 is ∆P = ∆PBE .

The usefulness of the relaxed problems (2) and (3) also stems from the following result:

Lemma S4. Suppose that ∆AC(θ) > θ and that ∆P ∗ = arg min∆P∈[θ,∆PBE ] P
BE
L (∆P ). Then the

price configuration (PBEH (∆P ∗), PBEL (∆P ∗)) is the unique solution to problem (1).

4This follows because

∆AC(∆P ) T ∆P ⇔ PBEL (∆P )−ACL(∆P ) T PBEH (∆P )−ACH(∆P ).
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Proof. By Lemma S3, we need only show that (PBEH (∆P ∗), PBEL (∆P ∗)) is feasible in problem (1). By

construction (PBEH (∆P ∗), PBEL (∆P ∗)) satisfies constraints (i) and (iii) of problem (1). We therefore

need only show that (PBEH (∆P ∗), PBEL (∆P ∗)) satisfies constraint (ii). Observe that when ∆AC(θ) > θ,

at any ∆P ∈ [θ,∆PBE ] we have ∆AC(∆P ) > ∆P . This implies that for all ∆P ∈ [θ,∆PBE ]

ΠH(PBEH (∆P ), PBEL (∆P )) ≤ 0.

Since PBEL (∆P ∗) ≤ PBEL (∆P ) for all ∆P ∈ [θ,∆PBE ] by virtue of ∆P ∗ being the solution to prob-

lem (2), we therefore have ΠH(PBEH (∆P ), PBEL (∆P ∗)) ≤ 0 for all ∆P ∈ [θ,∆PBE ]. Continuity of

PBEH (∆P ) in ∆P then implies that

ΠH(PH , P
BE
L (∆P ∗)) ≤ 0 for all PH ∈ [ACH , P

BE
H (∆P ∗)].

Since we also have that

ΠH(PH , P
BE
L (∆P ∗)) ≤ 0 for all PH ≤ ACH ,

(PBEH (∆P ∗), PBEL (∆P ∗)) satisfies constraint (ii) of problem (1).

We next show that, when ∆AC(θ) 6= θ , a unique solution P ∗ to problem (1) is the only WE

whenever ∆P ∗ ∈ (θ,∆PBE).

Lemma S5. Suppose that ∆AC(θ) > θ, there is a unique solution P ∗ of problem (1), and that ∆P ∗ ∈
(θ,∆PBE). Then P ∗ is the unique WE price configuration.5

Proof. Lemma S1 shows that any WE price configuration must satisfy the constraints of problem (1).

We next argue that when P ∗ is the unique solution to problem (1), any price configuration P̃ = (P̃H , P̃L)

that satisfies the constraints but is not a solution cannot be a WE price configuration. By definition,

P ∗L < min{ACH − θ, P̃L}. 6

If (P ∗H , P
∗
L) << (P̃H , P̃L) then at price configuration (P̃H , P̃L) an entrant has a profitable Wilson

deviation to (P ∗H + ε, P ∗L + ε) for small ε > 0. So, for the rest of the proof, suppose instead that

P ∗H ≥ P̃H , which also implies that ∆P̃ < ∆P ∗ since P ∗L < P̃L.

We will show that

ΠH(PH , P
∗
L) < 0 for all PH ∈ (P̃H , P

∗
H ] (4)

which will imply that at P̃ an entrant has a profitable Wilson deviation offering prices (P ∗H + ε, P ∗L+ ε)

for ε > 0 such that ΠH(P ′H , P
∗
L + ε) < 0 for all P ′H ∈ [P̃H , P

∗
H + ε] and P ∗L + ε < P̃L, which results in

all H policy offers in [P̃H , P
∗
H + ε] being withdrawn.

Condition (4) follows immediately if P ∗H ≤ ACH , since PH − P ∗L < ∆P ∗ for all PH ≤ P ∗H implies

that there are positive sales of policy H at price configuration (PH , P
∗
L). So suppose henceforth that

P ∗H > ACH .

5We conjecture, but have not proven, that the result extends to cases in which ∆P ∗ = ∆PBE .
6The inequality P ∗L < ACH −θ holds because the price configuration (ACH , ACH −θ), which results in all consumers

choosing policy H, is feasible in problem (1), but is not the solution.

5



Because ∆AC(θ) > θ, we have ∆AC(∆P ) > ∆P for all ∆P ∈ (θ,∆PBE), which implies that

ΠH(PBEH (∆P ), PBEL (∆P )) < 0 for all ∆P ∈ (θ,∆PBE). Moreover, continuity of PBEH (·) implies that
for each PH ∈ [ACH , P

∗
H ], there is a ∆P ′ ∈ (θ,∆PBE) such that PBEH (∆P ′) = PH . Thus, we have

ΠH(PH , P
∗
L) < 0 for all PH ∈ (ACH , P

∗
H ] (5)

since there are positive sales of policy H at price configuration (PH , P
∗
L) and

PH = PBEH (∆P ′) < ACH(PBEH (∆P ′)− PBEL (∆P ′)) < ACH(PBEH (∆P ′)− P ∗L) = ACH(PH − P ∗L),

[the first inequality follows because ΠH(PBEH (∆P ′), PBEL (∆P ′)) < 0 and the last inequality follows

because P ∗ being the solution to problem (1) implies that P ∗L < PBEL (∆P ′)]. If P̃H > ACH , then this

establishes (4).

Finally, suppose that P̃H ≤ ACH . Then

ΠH(PH , P
∗
L) < 0 for all PH ∈ [P̃H , ACH ] (6)

since PH − P ∗L < ∆P ∗ implies that there are positive sales of policy H at price configuration (PH , P
∗
L)

and PH − P ∗L > θ if PH = ACH (since P ∗L < ACH − θ) implies that there are positive sales of policy L
at price configuration (ACH , P

∗
L). Then (5) and (6) together imply (4).

Finally, for the case where ∆AC(θ) < θ we have the following result:

Lemma S6. Suppose that ∆AC(θ) < θ. Then the unique WE outcome has all consumers purchasing

policy H at price P ∗H = ACH .

Proof. In Lemma 4 in the main text, we established that all-in-90 is a RE when ∆AC(θ) < θ by

arguing that when P ∗H = ACH and P ∗L > ACH − θ, there was no profitable single-policy deviation in
PL. Since the exit of policy H cannot make policy L profitable (it would raise ACL), there are also

no profitable Wilson single-policy deviations in PL. It is also immediate that there are no profitable

Wilson deviations in only PH or in both prices. The proof of uniqueness follows much as in the proof

of Proposition 1 in the main text: Now any WE P ∗∗ must have P ∗∗L ≥ ACL(∆P ∗∗) by Lemma S1. A

single policy deviation to P̂H = P ∗∗L +θ attracts all consumers to policy H. Since P̂H > ACL(∆P ∗∗)+θ

> ACL + θ > ACH it is profitable absent any exit of policy L, and policy L will not exit since it does

not make losses (and could not make policy H unprofitable even if it did exit).

Remark 1. Proposition S1 implies that [provided that ∆ACH(θ) 6= θ] any NE is a WE, and that

whenever WE and RE outcomes coincide, they are also a NE outcome. Another implication of our

discussion is that WE outcomes weakly Pareto dominate RE outcomes. In particular, when ∆AC(θ) <

θ and ∆Pw < ∆PBE, we have PwL < PBEL (by Lemma S4) and PwL < PBEL (since PwL < PBEL and

∆Pw < ∆PBE).
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Wilson Equilibria: Community Rating and Health Status-based Pricing (Quartiles)

Market P60 S60 AC60 P90 S90 AC90

Full Population 4,006 83.7 2,477 7,105 16.3 14,961

Quartile 1 302 60.2 290 1,502 39.8 1,519

Quartile 2 1,307 64.7 1,155 3,307 35.3 3,586

Quartile 3 4,443 70.0 3,337 7,193 30.0 9,648

Quartile 4 9,704 73.6 7,259 13,204 26.4 20,007

Table S1: Equilibrium results for Wilson solution concept for (i) pure community rating (no pre-existing

conditions) and (ii) health-based pricing with quartiles.

Welfare Loss from Health-Status-based Pricing (Quartiles) in Wilson Equilibrium ($/year)

yHB4,no−pre(γ) yHB4,no−pre(γ) yHB4,no−pre(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0002 2,101 1,390 -468

0.0003 2,577 1,592 -682

0.0004 2,964 1,711 -950

0.0005 3,277 1,628 -1,076

0.0006 3,506 1,923 -1,050

Table S2: Long-run welfare based on the Wilson Equilibrium results. Compares the two pricing regu-

lations of (i) pricing based on health status quartiles (x = “HB4”) and (ii) pure community rating /

no pre-existing conditions (x′ = “no− pre”).

1.2 Empirical Results for Wilson Equilibria

We identify WE using Proposition S1, focusing on our baseline case of a 90 and a 60 policy. When

∆AC(θ) > θ (which is the case in our data), the price difference that maximizes the profit from a

multi-policy deviation from (PBE90 , PBE60 ), the break-even price configuration associated with ∆PBE , is

a WE.7 Table S1 shows the equilibria with community rating and with health status quartile pricing.

Wilson equilibrium policies break even in total, but they do so allowing the policy L to cross-subsidize

policy H. The cross-subsidization can be seen by comparing the prices to the average costs for each

policy. We see that in every population the WE has a positive share of consumers purchasing the 90

policy, in contrast to the RE/sp-NE of Section 4.

Table S2 shows welfare results for WE, which are of a similar order of magnitude to those for RE.

7As noted above, this is the unique Wilson equilibrium when ∆Pw ∈ (θ,∆PBE). We conjecture, but have not proven

that the same is true if ∆Pw ∈ {θ,∆PBE}.
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2 Supplement: Cost Model Setup and Estimation

This appendix describes the details of the cost model, which is summarized at a high-level in Section

3, and similar to that used in Handel (2013). The output of this model, Fjkt, is a family-plan-time-

specific distribution of predicted out-of-pocket expenditures for the upcoming year. This distribution

is an important input into the empirical choice model, where it enters as a family’s predictions of its

out-of-pocket expenses at the time of plan choice, for each plan option. We predict this distribution in

a sophisticated manner that incorporates (i) past diagnostic information (ICD-9 codes) (ii) the Johns

Hopkins ACG predictive medical software package (iii) a non-parametric model linking modeled health

risk to total medical expenditures using observed cost data and (iv) a detailed division of medical

claims and health plan characteristics to precisely map total medical expenditures to out-of-pocket

expenses. The level of precision we gain from the cost model leads to more credible estimates of the

choice parameters of primary interest (e.g., risk preferences and health risk). Crucially, the cost model

output is also used to predict consumer expected average costs for the upcoming year, λ, which is used

to determine plan costs (as a function of who selects which plans) in our equilibrium analyses.

In order to predict expenses in a precise manner, we categorize the universe of total medical claims

into four mutually exclusive and exhaustive subdivisions of claims using the claims data. These cat-

egories are (i) hospital and physician services (ii) pharmacy (iii) mental health and (iv) physician offi ce

visits. We divide claims into these four specific categories so that we can accurately characterize the

plan-specific mappings from total claims to out-of-pocket expenditures since each of these categories

maps to out-of-pocket expenditures in a different manner. We denote this four dimensional vector of

claims Cit and any given element of that vector Cd,it where d ∈ D represents one of the four categories

and i denotes an individual (employee or dependent). After describing how we predict this vector of

claims for a given individual, we return to the question of how we determine out-of-pocket expenditures

in plan k given Cit.

Denote an individual’s past year of medical diagnoses and payments by ξit and the demographics

age and sex by ζit. We use the ACG software mapping, denoted A, to map these characteristics into a

predicted mean level of health expenditures for the upcoming year, denoted θ:

A : ξ × ζ → θ

In addition to forecasting a mean level of total expenditures, the software has an application that

predicts future mean pharmacy expenditures. This mapping is analogous to A and outputs a prediction

κ for future pharmacy expenses.

We use the predictions θ and κ to categorize similar groups of individuals across each of four claims

categories in vector in Cit. Then for each group of individuals in each claims category, we use the

actual ex post realized claims for that group to estimate the ex ante distribution for each individual

under the assumption that this distribution is identical for all individuals within the cell. Individuals

are categorized into cells based on different metrics for each of the four elements of C:
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Pharmacy: κit

Hospital / Physician (Non-OV): θit

Physician Offi ce Visit: θit

Mental Health: CMH,i,t−1

For pharmacy claims, individuals are grouped into cells based on the predicted future mean pharmacy

claims measure output by the ACG software, κit. For the categories of hospital / physician services (non

offi ce visit) and physician offi ce visit claims individuals are grouped based on their mean predicted total

future health expenses, θit. Finally, for mental health claims, individuals are grouped into categories

based on their mental health claims from the previous year, CMH,i,t−1 since (i) mental health claims are

very persistent over time in the data and (ii) mental health claims are generally uncorrelated with other

health expenditures in the data. For each category we group individuals into a number of cells between

8 and 10, taking into account the tradeoff between cell size and precision. The minimum number of

individuals in any cell is 73 while almost all cells have over 500 members. Thus, since there are four

categories of claims, each individual can belong to one of approximately 104 or 10,000 combination of

cells.

Denote an arbitrary cell within a given category d by z. Denote the population in a given category-

cell combination (d, z) by Idz. Denote the empirical distribution of ex-post claims in this category for

this population ˆGIdz (·). Then we assume that each individual in this cell has a distribution equal to a
continuous fit of ˆGIdz (·), which we denote Gdz:

$ : ˆGIdz (·)→ Gdz

We model this distribution continuously in order to easily incorporate correlations across d. Otherwise,

it would be appropriate to use GIdz as the distribution for each cell.

The above process generates a distribution of claims for each d and z but does not model correlation

over D. It is important to model correlation across claims categories because it is likely that someone

with a bad expenditure shock in one category (e.g., hospital) will have high expenses in another area

(e.g., pharmacy). We model correlation at the individual level by combining marginal distributions Gidt

∀ d with empirical data on the rank correlations between pairs (d, d′).8 Here, Gidt is the distribution

Gdz where i ∈ Idz at time t. Since correlations are modeled across d we pick the metric θ to group
people into cells for the basis of determining correlations (we use the same cells that we use to determine

group people for hospital and physician offi ce visit claims). Denote these cells based on θ by zθ. Then

for each cell zθ denote the empirical rank correlation between claims of type d and type d′ by ρzθ (d, d
′).

8 It is important to use rank correlations here to properly combine these marginal distribution into a joint distribution.

Linear correlation would not translate empirical correlations to this joint distribution appropriately.
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Then, for a given individual i we determine the joint distribution of claims across D for year t, denoted

Hit(·), by combining i’s marginal distributions for all d at t using ρzθ (d, d
′):

Ψ : GiDt × ρzθit (D,D
′)→ Hit

Here, GiDt refers to the set of marginal distributions Gidt∀d ∈ D and ρzθit (D,D
′) is the set of all

pairwise correlations ρzθit (d, d
′)∀(d, d′2. In estimation we perform Ψ by using a Gaussian copula to

combine the marginal distribution with the rank correlations, a process which we describe momentarily.

The final part of the cost model maps the joint distribution Hit of the vector of total claims C over

the four categories into a distribution of out of pocket expenditures for each plan. For each of the three

plan options we construct a mapping from the vector of claims C to out-of-pocket expenditures Xk:

Ωk : C → Xk

This mapping takes a given draw of claims from Hit and converts it into the out-of-pocket expenditures

an individual would have for those claims in plan k. This mapping accounts for plan-specific features

such as the deductible, co-insurance, co-payments, and out-of-pocket maximums described in the text.

We test the mapping Ωk on the actual realizations of the claims vector C to verify that our mapping

comes close to reconstructing the true mapping. Our mapping is necessarily simpler and omits things

like emergency room co-payments and out of network claims. We constructed our mapping with and

without these omitted categories to insure they did not lead to an incremental increase in precision.

We find that our categorization of claims into the four categories in C passed through our mapping Ωk

closely approximates the true mapping from claims to out-of-pocket expenses. Further, we find that

it is important to model all four categories described above: removing any of the four makes Ωk less

accurate. See Handel (2013) for figures describing this validation exercise with the data used in this

paper.

Once we have a draw of Xikt for each i (claim draw from Hit passed through Ωk) we map individual

out-of-pocket expenditures into family out-of-pocket expenditures. For families with less than two

members this involves adding up all the within family Xikt. For families with more than three members

there are family level restrictions on deductible paid and out-of-pocket maximums that we adjust for.

Define a family j as a collection of individuals ij and the set of families as J . Then for a given family

out-of-pocket expenditures are generated:

Γk : Xij ,kt → Xjkt

To create the final object of interest, the family-plan-time specific distribution of out of pocket ex-

penditures Fjkt(·), we pass the claims distributions Hit through Ωk and combine families through Γk.

Fjkt(·) is then used as an input into the choice model that represents each family’s information set over
future medical expenses at the time of plan choice. Eventually, we also use Hit to calculate total plan

cost when we analyze counterfactual plan pricing based on the average cost of enrollees.
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We note that the decision to do the cost model by grouping individuals into cells, rather then by

specifying a more continuous form, has costs and benefits. The cost is that all individuals within a

given cell for a given type of claims are treated identically. The benefit is that our method produces

local cost estimates for each individual that are not impacted by the combination of functional form

and the health risk of medically different individuals. Also, the method we use allows for flexible mod-

eling across claims categories. Finally, we note that we map the empirical distribution of claims to a

continuous representation because this is convenient for building in correlations in the next step. The

continuous distributions we generate very closely fit the actual empirical distribution of claims across

these four categories.

Cost Model Identification and Estimation. The cost model is identified based on the two as-

sumptions of (i) no moral hazard / selection based on private information and (ii) that individuals

within the same cells for claims d have the same ex ante distribution of total claims in that category.

Once these assumptions are made, the model uses the detailed medical data, the Johns Hopkins pre-

dictive algorithm, and the plan-specific mappings for out of pocket expenditures to generate the final

output Fjkt(·). These assumptions, and corresponding robustness analyses, are discussed at more length
in the main text and in Handel (2013).

Once we group individuals into cells for each of the four claims categories, there are two statistical

components to estimation. First, we need to generate the continuous marginal distribution of claims

for each cell z in claim category d, Gdz. To do this, we fit the empirical distribution of claims GIdz
to a Weibull distribution with a mass of values at 0. We use the Weibull distribution instead of the

lognormal distribution, which is traditionally used to model medical expenditures, because we find

that the lognormal distribution overpredicts large claims in the data while the Weibull does not. For

each d and z the claims greater than zero are estimated with a maximum likelihood fit to the Weibull

distribution:

max
(αdz,βdz)

Πi∈Idz
βdz
αdz

(
cid
αdz

)βdz−1e
−(

cid
αdz

)βdz

Here, α̂dz and ˆβdz are the shape and scale parameters that characterize the Weibull distribution.

Denoting this distributionW (α̂dz, ˆβdz) the estimated distribution Ĝdz is formed by combining this with

the estimated mass at zero claims, which is the empirical likelihood:

ˆGdz(c) =

 GIdz (0) if c = 0

GIdz (0) + W ( ˆαdz, ˆβdz)(c)
1−GIdz (0) if c > 0

Again, we use the notation ˆGiDt to represent the set of marginal distributions for i over the categories

d: the distribution for each d depends on the cell z an individual i is in at t. We combine the distributions
ˆGiDt for a given i and t into the joint distribution Hit using a Gaussian copula method for the mapping

Ψ. Intuitively, this amounts to assuming a parametric form for correlation across ˆGiDt equivalent
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to that from a standard normal distribution with correlations equal to empirical rank correlations

ρzθit
(D,D′) described in the previous section. Let Φi1|2|3|4 denote the standard multivariate normal

distribution with pairwise correlations ρzθit (D,D
′) for all pairings of the four claims categories D. Then

an individual’s joint distribution of non-zero claims is:

ˆHi,t(·) = Φ1|2|3|4(Φ−1
1 ( ˆGid1t),Φ

−1
2 ( ˆGid2t),Φ

−1
3 ( ˆGid3t),Φ

−1
4 ( ˆGid4t))))

Above, Φd is the standard marginal normal distribution for each d. Ĥi,t is the joint distribution of

claims across the four claims categories for each individual in each time period. After this is estimated,

we determine our final object of interest Fjkt(·) by simulating K multivariate draws from Ĥi,t for each

i and t, and passing these values through the plan-specific total claims to out of pocket mapping Ωk

and the individual to family out of pocket mapping Γk. The simulated Fjkt(·) for each j, k, and t is
then used as an input into estimation of the choice model.

Table S3 presents summary results from the cost model estimation for the final choice model sample,

including population statistics on the ACG index θ, the Weibull distribution parameters α̂dz and
ˆβdz for each category d, as well as the across category rank correlations ρzθit (D,D

′). These are the

fundamentals inputs used to generate Fjkt, as described above, and lead to accurate characterizations of

the overall total cost and out-of-pocket cost distributions (validation exercises which are not presented

here).
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Final Sample

Cost Model Output

Overall PPO250 PPO500 PPO1200

Individual Mean (Median)

Unscaled ACG Predictor

Mean 1.42 0.74 0.72

Median 0.83 0.37 0.37

Pharmacy: Model Output

Zero Claim Pr. 0.35 (0.37) 0.31 (0.18) 0.40 (0.37) 0.42 (0.37)

Weibull α 1182 (307) 1490 (462) 718 (307) 596 (307)

Weibull β 0.77 (0.77) 0.77 (0.77) 0.77 (0.77) 0.77 (0.77)

Mental Health

Zero Claim Pr. 0.88 (0.96) 0.87 (0.96) 0.90 (0.96) 0.90 (0.96)

Weibull α 1422 (1295) 1447 (1295) 1374 (1295) 1398 (1295)

Weibull β 0.98 (0.97) 0.99 (0.97) 0.98 (0.97) 0.98 (0.97)

Hospital / Physician

Zero Claim Pr. 0.23 (0.23) 0.21 (0.23) 0.26 (0.23) 0.26 (0.23)

Weibull α 2214 (1599) 2523 (1599) 1717 (1599) 1652 (1599)

Weibull β 0.58 (0.55) 0.59 (0.55) 0.55 (0.55) 0.55 (0.55)

(> $40, 000) Claim Pr. 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

Physician OV

Zero Claim Pr. 0.29 (0.20) 0.26 (0.20) 0.33 (0.46) 0.34 (0.46)

Weibull α 605 (553) 653 (553) 517 (410) 529 (410)

Weibull β 1.15 (1.14) 1.15 (1.14) 1.15 (1.14) 1.14 (1.14)

Correlations

Rank Correlation Hospital-Pharm. 0.28 (0.34) 0.26 (0.32) 0.31 (0.34) 0.32 (0.34)

Rank Correlation Hospital-OV 0.73 (0.74) 0.72 (0.74) 0.74 (0.74) 0.74 (0.74)

Rank Correlation Pharm.-OV 0.35 (0.41) 0.33 (0.37) 0.38 (0.41) 0.39 (0.41)

Table S3: This table describes the output of the cost model in terms of the means and medians of individual

level parameters, classified by the plan actually chosen. These parameters are aggregated for these groups but

have more micro-level groupings, which are the primary inputs into our cost projections in the choice model.

Weibull α, Weibull β, and Zero Claim Probability correspond to the cell-specific predicted total individual-level

health expenses as described in more detail in this supplement.
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3 Supplement: Exchange Participation

Our market analysis in the main text assumed full participation in the market. This could result

from, for example, a legally enforced individual mandate (as in the ACA) with a large penalty, or,

alternatively, an employer requiring all workers to remain in the insurance pool of a private exchange.

In reality, such a requirement may be diffi cult to enforce, or the penalty for not purchasing insurance

may be small, leading to a scenario where certain consumers, especially healthy ones, may prefer to

opt out of the market.

To understand the role of mandated participation, we investigate the case where individuals can opt

out of the exchanges should their expected utility from being uninsured be higher than joining their

favorite insurance plan in the market. Uninsured means that the consumer pays zero premium and

pays for the total cost of their health expenses. We again focus on the case of a 90% policy and a 60%

policy in the market. We find equilibria allowing individuals to opt out without any penalty.9

Recall that equilibria without age-based pricing unraveled to all-in-60. The column “Better-off In”

in the “Community Rating” section of Table S4 shows the percentage of each age group (and of the

population as a whole) that is better off insured at the equilibrium premium of $4,068 than remaining

uninsured. For example, 44.2% (= 100−55.8) of 25 to 30 year old individuals prefer to opt out as their

expected utility from non-insurance is higher than being pooled with the whole population.

Naturally, those that prefer to opt out are younger, healthier and less risk averse. The expected

costs of insuring consumers who prefer to decline coverage is $3,107 versus $5,107 for those that prefer

to participate. The average risk aversion coeffi cient of those that prefer to participate is 4.26 ∗ 10−4

versus 4.03 ∗ 10−4 for those that prefer to decline coverage.

Allowing healthier individuals to opt out increases the cost of covering the remaining pool, which

in turn draws more people out of the pool. The process stops with a RE premium of $5,339 when no

more individuals want to drop out (that is, the RE for the remaining pool has P60 = $5, 339). The

equilibrium without the mandate involves full unraveling to 60, with 74.3% of the population voluntarily

covered. The column “No Mandate: Participation”under “Community Rating” shows participation

by age in the non-mandate equilibrium.

We can also compute the welfare impact of removing the mandate. Those individuals that remain

covered, 74.3% of the population, suffer a loss equal to the premium increase $1,271 (= 5, 339−4, 068).

Comparing the certainty equivalent of remaining uninsured versus participation in the exchange for the

25.7% of the population that opts out, we find that they are better off by $1,972, on average. Thus,

removing the mandate entails a welfare loss of $434.3 [= 0.743(1, 271) − 0.257(1, 972)] per person.

On the right side of Table S4 we show the corresponding numbers for age-based pricing. As we saw

in Section 6.2 in the main text, all the equilibria under the mandate (with no opting out) for the

9More concretely, we find the equilibrium with the mandate, and eliminate from the sample those individuals that are

better off uninsured. We then iterate finding equilibria and eliminating the worse off consumers, until all buyers want to

remain in the market.
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Implications of Individual Mandate

Community Rating Age-Based Pricing

Mandate: No Mandate: Mandate: No Mandate:

Ages Better-Off In Participation Premium Better-Off In Premium Participation

All 78.3% 74.3% - 80.7% - 77.0%

25-30 55.8% 50.6% 1,786 70.1% 2,732 63.1%

30-35 59.6% 54.1% 2,215 70.0% 3,409 62.5%

35-40 68.7% 62.2% 2,542 75.9% 3,476 70.8%

40-45 75.1% 70.9% 3,242 77.7% 4,233 74.5%

45-50 82.5% 79.3% 4,103 82.9% 4,976 80.6%

50-55 90.6% 87.2% 5,038 88.6% 5,714 86.9%

55-60 94.7% 92.5% 6,304 92.1% 6,927 89.9%

60-65 95.8% 93.9% 7,259 91.6% 7,959 90.2%

Table S4: Implications of the individual mandate for equilibrium prices and market participation.

different age groups involve unravelling to 60. At the equilibrium premium, reported in the “Mandate:

Premium”column, only some of the population would voluntarily participate in the exchange. Column

“Mandate: Better-off In,”shows that the share that prefers to participate is an increasing share in age.

Older individuals are more likely to benefit from participation, but the differences across ages are less

pronounced once age is priced.

For each age, as individuals opt out, the cost of coverage increases. The column “No Mandate:

Premium” reports the equilibrium premia for each age group absent a mandate. It is substantially

higher than under the mandate, especially so for younger cohorts for whom the mandate is binding for

a larger proportion of individuals. In a similar fashion we can use the model to study the participation

level for different subsidy or penalty levels (analysis available upon request).
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4 Supplement: Population Re-Weighting

The analysis in the main text uses health choice and utilization data from a large firm with approxim-

ately 10,000 employees and 20,000 covered lives. While these data have a lot of depth on dimensions

that are essential to model health risk and risk preferences, they represent a specific population working

for a specific large employer. Our results thus represent the case of exchange design as if this population

were the population of interest. This could correspond closely to the case where either (i) this large

employer (or a similar one) sets up a private exchange or (ii) our population represents a population of

general interest for a public exchange (such as the ACA state exchanges). While our analysis thus far

is clearly relevant for (i), and conceptually relevant for (ii), it is also likely that our sample is not the

same as the sample of interest for policymakers setting up state insurance exchanges under the ACA.

To provide a rough sense of how our results could change under a population more similar to

that enrolling in state insurance exchanges under the ACA, we extend the analysis by applying our

framework to a more externally relevant sample from the Medical Expenditures Panel Survey (MEPS),

which was specifically created to study medical care decisions for a nationally representative population.

Column 1 in Table S5 contains the summary statistics for the entire MEPS population during the years

we focus on (2004-2008) with no sample cuts (N = 166,539). We analyze exchange equilibria and

welfare outcomes using an “ACA relevant”sample composed of individuals in the MEPS data who are

(i) between the ages of 25-65 and (ii) either uninsured or covered by a plan on the individual market

(N = 21,856). This sample is similar in spirit to the sample that actually enrolls in the state insurance

exchanges proposed under the ACA (which contain few people who already have access to existing

public or employer-sponsored insurance). We note that, in addition to this “ACA relevant”MEPS

sample, we also perform our equilibrium and welfare analysis for a second, broader, sample composed

of all individuals in MEPS between the ages of 25 and 65, including those with employer sponsored or

public insurance (Column 2 in Table S5, N = 81,733). For the remainder of this section, we focus on

the “ACA relevant”MEPS sample, our primary sample of interest.

Our analysis matches individuals in the employer data used throughout our analysis to the MEPS

“ACA relevant”population and creates a new simulation sample with demographic weights similar to

the MEPS sample but with detailed health and risk preference data from our estimates.10 We match

individuals in our data to those in the MEPS data based on three demographics: age, income, and

gender. To do this, we probabilistically model cells of age, gender, and income in the MEPS sample,

and then draw randomly from individuals in those bins in our data with weights proportional to the

MEPS cell weights. We note that, before we construct the MEPS cell weights, we incorporate the

survey sample weights in the MEPS data, which are intended to correct for sampling and response

issues. Table S6 describes the non-parametric age, income, and gender cell multivariate cell weights for

10We bring in the cost data from our data set because it is more detailed on the health risk dimension and our setting

provides more precise plan characterizations, with which it is possible to estimate risk preferences.
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this MEPS sample.11 12

For the uninsured / individual market MEPS reweighted sample, we reproduce our earlier equi-

librium and welfare analysis for the cases of (i) pure community rating and (ii) health status- based

pricing for health status quartiles in the market setup where insurers can offer either 90% or 60% in-

surance contracts. Table S8 presents the main results for this sample, and can be directly compared to

Table 4 from the main text. The comparison yields several important insights. First, the equilibrium

premia and market shares are similar in this MEPS re-weighted sample and our main analysis: the

market fully unravels to all-in-60 for the case of pure community rating. Under health-based pricing,

in both cases the healthiest quartile has substantial market share in both 60 and 90: in our main

analysis 64.8% in this quartile choose 60% coverage, while 57.5% do in the exchange-relevant MEPS

re-weighted sample. Interestingly, while no consumers from the second healthiest quartile enroll in 90%

coverage in our primary analysis, in the MEPS re-weighted sample 30.4% do. Thus, under our frame-

work, if the exchanges are comprised of only uninsured individuals and those that would have been on

the individual market, there will be higher insurance rates for the within-exchange population under

health status-based pricing. For both our primary and MEPS analysis, the market unravels for the two

sickest quartiles. Finally, and importantly, we note that the population expense levels are very similar

between our main sample and the re-weighted MEPS sample: if all enroll in 60, the average costs in

the former are $4,051 while in the latter they are $3,901.13 Overall, the analysis of MEPS data in this

section suggests that, at a first pass, our main results are not substantially changed when applied to a

sample that more closely reflects the demographic profile of individuals who will sign up for the ACA

state exchanges. 14 Table S9 and S10 present, respectively, the demographics and equilibrium results

for the broader sample of all individuals in MEPS between the ages of 25 and 65, including those with

employer sponsored or public insurance within-sample.

11We note that in this analysis, we do not match our sample to MEPS using health expenditure data (conditional on

the other demographics) since our sample has more detailed medical information on consumers. However, the analysis

and tables below show that average costs conditional on demographic bins are similar in our data and in the MEPS data.
12We note that Table S5 presents the data “as is.” In our analysis, we use MEPS sample weights, which re-weight this

“as is” population to correct for survey sampling bias. In addition, as in our main analysis, we assume that the market

is purely an individual market: there could be multiple people from one family in each sample represented in Table S5.
13Though the means are similar, the exchange-relevant MEPS sample is more heavily skewed in both directions, with

more very healthy and more very sick individuals.
14The market unravelling we find under community rating (with or without age-based pricing) is somewhat consistent

with experience in the Massachusetts exchange, where most buyers opted for the Bronze (60%) plan in the early years of

this ACA-like exchange [see, e.g., Ericson and Starc (2013)].
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

N - Individual-Year Obs. 166,539 81,733 21,856

N - Individuals in Panel 105,353 51,922 13,804

N - Family-Year Obs. 58,647 - -

N - Families in Panel 36,317 - -

Avg. Family Members 2.90 - -

Age-Individual

Mean 33.82 43.15 42.6

10th Qtile 5 28 27

25th Qtile 14 34 32

Median 32 43 42

75th Qtile 51 52 52

90th Qtile 66 59 60

Gender-Individual

Male % 47.7% 46.6% 50.2%

Total Income-Family-Year* **

Mean 53613 64058 42746

10th Qtile 9240 12733 8000

25th Qtile 19000 26000 17068

Median 39080 50000 31114

75th Qtile 72375 85584 54995

90th Qtile 115086 131080 89600

Wage Income-Family-Year**

Mean 44583 59945 38882

10th Qtile 0 7348 300

25th Qtile 8000 24000 14280

Median 32000 48300 30000

75th Qtile 65000 83753 52000

90th Qtile 104438 124996 82680

Region-Individual

Northeast 14.5% 15.0% 10.1%

Midwest 19.2% 19.6% 15.0%

South 38.3% 38.7% 46.3%

West 26.9% 26.8% 28.7%

Table S5: This table describes demographic data for key samples of interest in the MEPS data, for the pooled

data from 2004-2008. A more detailed description of each column’s sample is contained in the text.

*In individual samples, a given family’s income may count twice since two individuals can be from same family.
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MEPS Weights Incorporated

All 25-65 Sample

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 ≥ 105,000 Total

25-29 4.1% 4.5 2.7 1.9 13.1%

30-34 3.3% 4.4 2.6 1.9 12.3%

35-39 3.5% 4.2 2.8 2.3 12.9%

40-44 3.6% 4.5 3.0 2.8 13.9%

45-49 3.5% 4.2 3.0 3.1 13.9%

50-54 3.5% 3.8 2.8 2.9 13.1%

55-59 3.8% 3.2 2.3 2.3 11.7%

60-64 4.4% 2.3 1.3 1.2 9.2%

Total 29.7% 31.1% 20.5% 18.4% 100%

% Male by Income* 45.6% 49.9% 50.3% 51.4%

25-65 Unins./ Private

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 ≥ 105,000 Total

25-29 7.4% 5.0 1.9 1.6 15.9%

30-34 6.0% 4.4 1.3 0.7 12.4%

35-39 6.4% 3.5 1.1 0.6 11.6%

40-44 6.1% 4.0 1.4 0.8 12.2%

45-49 6.2% 3.1 1.6 0.9 10.8%

50-54 5.9% 2.9 1.1 0.9 10.8%

55-59 7.0% 2.5 1.1 0.8 11.4%

60-64 10.1% 2.3 0.8 0.8 14.0%

Total 55.1% 27.7% 10.3% 7.1% 100%

% Male by Income* 51.4% 56.2% 55.4% 56.8%

Table S6: This table describes the discrete age probabiliities for different age / gender / income categories for

(i) all individuals in MEPS, age 25-65, and (ii) all uninsured / individual market insured individuals in MEPS,

age 25-65. These weights incoporate MEPS sample weights as well, as an additional weighting factor.

*Percentages of gender across age are essentially constant conditional on income, which is why those figures are

not presented here.
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MEPS Weights Incl.

All 25-65 Sample

Age Bucket / Quantile 10th 25th 50th 75th 90th 95th Mean

25-29 0 (0) 0 (203) 125 (843) 620 (2833) 2109 (7638) 4155 (12007) 997 (2820)

30-34 0 (0) 0 (241) 224 (940) 922 (3179) 2815 (9040) 5582 (13122) 1376 (3146)

35-39 0 (0) 0 (239) 331 (925) 1314 (2928) 3499 (8158) 6333 (13595) 1696 (3126)

40-44 0 (0) 25 (258) 450 (967) 1669 (2955) 4513 (7844) 9099 (13843) 2235 (3544)

45-49 0 (0) 115 (365) 703 (1342) 2425 (3827) 6423 (9143) 12125 (15505) 3016 (3838)

50-54 0 (90) 221 (563) 1114 (1860) 3385 (4744) 8562 (10683) 16271 (17135) 4187 (4551)

55-59 0 (102) 410 (781) 1837 (2437) 4953 (5820) 11929 (13615) 21069 (22741) 5315 (6129)

60-64 71 (255) 707 (1109) 2337 (2906) 5916 (6771) 15261 (14493) 27033 (24997) 6790 (6666)

25-65 Unins./ Private

Age Bucket / Quantile 10th 25th 50th 75th 90th 95th Mean

25-29 0 (0) 0 (0) 0 (166) 173 (758) 819 (2959) 1824 (5502) 391 (952)

30-34 0 (0) 0 (0) 0 (180) 254 (852) 1062 (3234) 2024 (6095) 608 (1322)

35-39 0 (0) 0 (0) 0 (174) 328 (1024) 1650 (3187) 3164 (5748) 744 (1223)

40-44 0 (0) 0 (0) 50 (308) 750 (1459) 2929 (3966) 4500 (6908) 1381 (2449)

45-49 0 (0) 0 (0) 120 (425) 857 (1846) 3108 (4566) 6719 (9658) 2089 (1967)

50-54 0 (0) 0 (144) 340 (798) 1576 (2866) 5590 (7462) 11851 (12952) 2474 (3085)

55-59 0 (0) 24 (176) 1076 (1312) 3565 (3996) 9290 (9990) 16419 (19459) 3898 (4941)

60-64 0 (60) 449 (732) 1966 (2398) 5166 (5730) 13749 (12017) 24157 (21839) 6003 (6043)

Table S7: This table describes the expenditure quantiles for (i) all individuals in MEPS age 25-65 (top panel)

and (iii) all uninsured / individual market insured individuals in MEPS, age 25-65 (bottom panel). Female

numbers presented in parantheses, male numbers are not.
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MEPS Unins. Weighted: Equilibria without Pre-existing Conditions

Equilirium Type P60 S60 AC60 P90 S90 AC90

RE 3,901 100.0 3,901 — 0 —

NE Does not exist

MEPS Unins. Weighted: Equilibria with Health Status-based Pricing (Quartiles)

Market Equilibrium Type P60 S60 AC60 P90 S90 AC90

Quartile 1 RE 311 57.5 311 1,476 42.5 1,476

Quartile 2 RE 1,128 69.6 1,128 3,228 30.4 3,228

Quartile 3 RE 4,121 100.0 4,121 - 0 -

Quartile 4 RE 9,751 100.0 9,751 - 0 -

Table S8: This table presents the analogous table to Table 4 (in the main text) on equilibrium outcomes,

applied to the sample reweighted by characteristics of the uninsured / individual coverage MEPS, described

in the text. The top presents the equilibrium results for the case of pure community rating (no pricing of

pre-existing conditions) and the bottom for the case where insurers can price based on health status quartiles.
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

Family-Year: Coverage Type*

Private (Employer or Ind.) 66.3% 73.3% 41.0%

Medicaid (someone) 30.7% 33.4% 45.4%

Medicare (someone) 29.01% 14.0% 16.4%

Uninsured** (someone) 26.7% 35.0% 84.7%

Only Public in Fam 22.5 % 15.1% 0%

Always Offered Employer (someone) 48.8 % 62.1% —

Offered Employer Sometimes (someone) 62.0% 76.1% —

Family Member Emp. Always 69.7% 84.7% 76.2%

Family Member Emp. Once 77.5% 92.3% 87.4%

Individual-Year: Coverage Type*

Private (Employer or Ind.) 54.5% 64.0% 16.8%

Medicaid 25.4% 12.4% 0.72%

Medicare 13.4% 3.9% 1 .25%

Uninsured** 16.6% 22.3% 83.2%

Only Public 27.6% 12.7% 0%

Always Offered Employer 21.3 % 38.9% —

Offered Employer Sometimes 32.5% 55.0% —

Individual Emp. Always 37% 65.4% 37.5%

Individual Emp. Once 48% 78.3% 48.0%

Table S9: This table describes insurance coverage, expenditures, and other statistics in the MEPS data for the

pooled data from 2004-2008. A more detailed description of each column’s sample is contained in the text.

*Coverage type reflects whether a family ever had this kind of coverage (for any member) throughout the year,

so these numbers add to more than 100%.

**Uninsured variable occurs when none of other coverage types are held, and the family is uninsured for whole

year.
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MEPS Weighted: Equilibria without Pre-existing Conditions

Equilirium Type P60 S60 AC60 P90 S90 AC90

RE 3,852 100.0 4,051 — 0 —

NE Does not exist

MEPS Weighted: Equilibria with Health Status-based Pricing (Quartiles)

Market Equilibrium Type P60 S60 AC60 P90 S90 AC90

Quartile 1 RE 321 60.2 321 1,521 39.8 1,521

Quartile 2 RE 1,445 100.0 1,445 - 0 -

Quartile 3 RE 4,239 100.0 4,239 - 0 -

Quartile 4 RE 9,347 100.0 9,347 - 0 -

Table S10: This table presents the analogous table to Table 4 (in the main text) on equilibrium outcomes,

applied to the sample reweighted by characteristics of the MEPS full population, as described in the text. The

top presents the equilibrium results for the case of pure community rating (no pricing of pre-existing conditions)

and the bottom for the case where insurers can price based on health status quartiles.
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