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A PREFERRED-HABITAT MODEL OF THE TERM STRUCTURE OF INTEREST
RATES
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We model the term structure of interest rates that results from the interaction be-
tween investors with preferences for specific maturities and risk-averse arbitrageurs.
Shocks to the short rate are transmitted to long rates through arbitrageurs’ carry trades.
Arbitrageurs earn rents from transmitting the shocks through bond risk premia that re-
late positively to the slope of the term structure. When the short rate is the only risk
factor, changes in investor demand have the same relative effect on interest rates across
maturities regardless of the maturities where they originate. When investor demand is
also stochastic, demand effects become more localized. A calibration indicates that
long rates underreact to forward-guidance announcements about short rates. Large-
scale asset purchases can be more effective in moving long rates, especially if they are
concentrated at long maturities.
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monetary policy.

1. INTRODUCTION

WHAT DETERMINES THE TERM STRUCTURE of interest rates? In most macrofinance mod-
els, the interest rate for a given maturity depends on the willingness of a representa-
tive agent to substitute consumption from today toward that maturity. The consumption-
based view of the term structure contrasts with a more informal preferred-habitat view,
which has been proposed by Culbertson (1957) and Modigliani and Sutch (1966), and is
popular within central banks and the financial industry. According to that view, there are
investor clienteles for specific maturity segments, and the interest rate for a given matu-
rity is mainly driven by shocks affecting the demand of the corresponding clientele. The
term structure thus exhibits a degree of segmentation.

The preferred-habitat view has been used to interpret numerous market episodes. The
2004 U.K. pension reform is one example. The reform required pension funds to evaluate
their pension liabilities using the yields of long-maturity bonds. To hedge against drops
in long rates, which would raise the value of pension liabilities and trigger regulatory
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scrutiny, pension funds bought long-maturity bonds in large quantities. This drove long
rates to record low levels. A flat term structure in early 2004 became downward sloping
in subsequent years, with the 30-year bond yielding as much as 0.80% (80 basis points
(bps)) below its 10-year counterpart.! More recently, the preferred-habitat view informed
decisions by major central banks to engage in quantitative easing (QE). A stated goal
of QE programs was that large-scale purchases of long-maturity bonds would drive long
rates down, stimulating corporate investment.?

The preferred-habitat view cannot be correct in its most extreme form, namely, the
interest rate for a given maturity cannot be driven only by shocks affecting the demand
of the corresponding clientele. Indeed, if that were the case, interest rates for nearby
maturities could be very different, generating large profits for term-structure arbitrageurs.
At the same time, shocks to clientele demands can affect interest rates. Indeed, because
absorbing the shocks exposes arbitrageurs to interest-rate risk, bond prices must change
to compensate them for the risk.

How do shocks to clientele demands affect the term structure? What are the effects of
large-scale bond purchases by central banks? What are the implications of the preferred-
habitat view for the dynamics of interest rates, for bond risk premia, and for the trans-
mission of monetary policy from short to long rates? In this paper we develop a model to
answer these questions both qualitatively as well as quantitatively through a calibration
exercise. Our model formalizes the preferred-habitat view and embeds it into a modern
no-arbitrage term-structure framework.

We describe our model in Section 2. The short rate follows an exogenous mean-
reverting process. An exogenous short rate can be interpreted as the return of a linear
and instantaneously riskless production technology or as the instantaneous rate that a
(nonmodelled) central bank pays on reserves. Bond yields are determined endogenously
through trading between preferred-habitat investors and arbitrageurs. Preferred-habitat
investors demand zero-coupon bonds with specific maturities, and their demand can be
price-elastic. We provide an optimizing foundation for that demand in a setting where
investors form overlapping generations consuming at the end of their life, are infinitely
risk-averse, and can invest in bonds and in a private opportunity with exogenous return
(e.g., real estate). Arbitrageurs are competitive and maximize a mean—variance objective
over instantaneous changes in wealth. We fix their aggregate risk aversion and do not
study entry into the arbitrage business.

In Section 3, we solve for equilibrium when the demand of preferred-habitat investors
is constant over time and the only risk factor is the short rate. We address three main
questions: how shocks to the short rate are transmitted to long rates, how bond risk pre-
mia depend on the shape of the term structure, and how changes in preferred-habitat
demand affect the term structure. Since demand is constant over time, we take demand
changes to be unanticipated and permanent.

Shocks to the short rate are transmitted to bond yields through the trades of arbi-
trageurs. Suppose that the short rate drops. Since investing in bonds becomes more at-
tractive than investing in the short rate, arbitrageurs buy bonds by borrowing short term.
That trade causes bond prices to rise and yields to drop. Because, however, arbitrageurs

'For accounts of the 2004 U.K. pension reform and other related episodes, see Tzucker and Islam (2005),
Garbade and Rutherford (2007), Islam (2007), and Greenwood and Vayanos (2010).

2See, for example, the 2011 speeches on large-scale asset purchases by Janet Yellen, the then Vice-Chair of
the U.S. Federal Reserve (Yellen (2011)), and John Williams, the then President of the San Francisco Federal
Reserve (Wiliams (2011)).
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become exposed to the risk that the short rate will increase, they do not scale up their
trade to the point where it earns zero expected profit. Hence, the drop in bond yields
does not fully reflect the drop in the short rate, which means that forward rates under-
react to expected future short rates. The underreaction disappears when arbitrageurs are
risk-neutral. It also dissapears when preferred-habitat demand is price-inelastic since in
that case arbitrageurs cause bond prices to rise without actually buying the bonds.

Bond risk premia (expected returns in excess of the short rate) are positively related to
the slope of the term structure, consistent with the empirical findings of Fama and Bliss
(1987; FB) and Campbell and Shiller (1991; CS). When the short rate is low, the term
structure slopes up and bonds earn positive risk premia so that arbitrageurs are induced
to buy them. The risk premia accrue to arbitrageurs as a rent for transmitting short-rate
shocks to long rates. Monetary-policy actions by central banks affecting the short rate can
hence be viewed as a source of arbitrageur rent.’> That rent is higher when arbitrageurs
are more risk-averse and when preferred-habitat demand is more price-elastic.

When the short rate is the only risk factor, changes in preferred-habitat demand have
global effects: the effects depend on how the arbitrageurs’ overall exposure to the short
rate (“duration risk”) changes, and not on the specific maturities where the demand
changes originate. To illustrate this result’s surprising implications, suppose that the de-
mand for short-maturity bonds increases and the demand for long-maturity bonds de-
creases by the same amount in present-value terms. Since arbitrageurs buy long-maturity
bonds and these are more sensitive to short-rate changes than short-maturity bonds, all
yields rise, including those of short-maturity bonds for which demand increases. The same
logic implies that all demand changes have the same relative effect across maturities re-
gardless of where they originate. Moreover, the effect is largest at the longest maturity.
Indeed, since the longest-maturity bonds are the most sensitive to short-rate changes,
their risk premia are also the most sensitive to changes in the arbitrageurs’ exposure to
the short rate.

In Section 4, we allow the demand of preferred-habitat investors to vary over time.
‘We maintain a stochastic short rate; with a constant short rate, arbitrageur activity would
render all yields equal to the short rate. We mainly focus on the case where demand has a
one-factor structure and that factor is independent of the short rate, but we also consider
multiple demand factors and correlation. Within the two-factor model, we revisit the same
three questions as in Section 3.

Demand risk weakens and can even reverse the transmission of short-rate shocks to
long rates. Suppose that the short rate drops, in which case arbitrageurs buy bonds. Arbi-
trageurs become exposed to the risk that the short rate will increase and that preferred-
habitat demand will decrease. Because demand risk becomes dominant for long-maturity
bonds, arbitrageurs buy them in small quantities and may even sell them short to hedge
the demand risk of their long positions in intermediate maturities. Long-maturity yields
may thus rise in response to a short-rate drop.

Demand risk strengthens the positive relationship between bond risk premia and term-
structure slope. Indeed, when preferred-habitat demand is low, risk premia are high so
that arbitrageurs are induced to buy bonds to make up for the low demand. Because of
the high premia, bond yields are high and the term structure slopes up. As a result of the
stronger premia-slope relationship, the model-generated coefficients in the FB and CS
regressions have properties closer to their empirical counterparts. For example, the FB

3We thank John Cochrane for suggesting this idea (Cochrane (2008)).
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coefficient can be larger than 1 and increasing with maturity, rather than only positive and
constant as in the one-factor model.

With multiple risk factors, demand effects become more localized. Changes in the de-
mand for short- (long-) maturity bonds have more pronounced effects on short- (long-)
maturity yields. As in the one-factor model, the effects arise through the arbitrageurs’
exposure to the risk factors. They become more localized because demand changes orig-
inating at different maturities affect the exposure to each factor differently, and because
changes in each factor exposure have a different relative effect across maturities.

In Section 5, we calibrate the two-factor model and analyze central-bank policies such
as forward guidance and QE. We choose the model parameters to match the volatility
of U.S. government bond yields and yield changes, the correlation between yield changes
at the short and the long end of the term structure, and the composition of bond trad-
ing volume across maturities. Since the model can be given both a nominal and a real
interpretation, we calibrate it using nominal yields and then again using real yields. The
nominal and real calibrations generate remarkably similar results.

Forward guidance about short rates is effective in moving yields of short-maturity
bonds, but becomes less effective for long maturities. Lowering the average expected
short rate over the next 10 years by 100 bps (and holding preferred-habitat demand con-
stant) causes the 10-year yield to drop by 35-50 bps. The same change to the expected
short rate over 30 years has almost no effect on the 30-year yield. QE can be more effec-
tive in changing long rates, provided that bond purchases are concentrated at long matu-
rities. Purchases amounting to 12% of GDP and conforming to the maturity distribution
used by the Federal Reserve during QE1 lower the 10-year yield by 25-30 bps and the
30-year yield by 30-35 bps. Tilting purchases toward long maturities, while keeping the
fraction of available supply purchased in each maturity bucket within observed ceilings,
increases the effects by 10 and 30 bps, respectively.

Our model formalizes the preferred-habitat theory of the term structure, proposed by
Culbertson (1957) and Modigliani and Sutch (1966). Related to preferred habitat is To-
bin’s (1958, 1969) portfolio-balance theory, in which financial assets are imperfect sub-
stitutes and investors require a rise in interest rates to absorb an increased supply of
government bonds. The portfolio-balance channel is present in our model, with Tobin’s
investors being our arbitrageurs. It is the only channel present in the special case of our
model where preferred-habitat demand is price-inelastic.

Andres, Lopez-Salido, and Nelson (2004) study demand effects and the portfolio-
balance channel in a calibrated macroeconomic model with trading frictions. Greenwood
and Vayanos (2014) use our model’s special case with a price-inelastic demand to test for
a positive relationship between the maturity of government debt and future bond returns.
Other empirical studies of demand effects in the bond market that build on our model
include Hamilton and Wu (2012) and Li and Wei (2013) on QE purchases and the zero
lower bound (ZLB),* Hanson (2014) and Malkhozov et al. (2016) on mortgage-backed
securities, Gorodnichenko and Ray (2018) on Treasury auctions, Kaminska and Zinna
(2020) on purchases by foreign central banks, and King (2019) on nonlinearities induced
by the ZLB. Hayashi (2018) develops numerical algorithms to solve our model with a
general number of risk factors.

“For empirical estimates of the effects of QE, see also Gagnon et al. (2011), Joyce et al. (2011), Krishna-
murthy and Vissing-Jorgensen (2011), Swanson (2011), Christensen and Rudebusch (2012), D’Amico and King
(2013), Swanson and Williams (2014), and the survey by Wiliams (2014). Some of these papers emphasize the
duration—risk channel. That channel describes demand effects in the one-factor version of our model but not
with multiple factors.
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The notion that demand shocks can drive asset prices away from fundamental values is
emphasized in the literature on the limits of arbitrage, surveyed in Gromb and Vayanos
(2010). Closest to our paper is the strand of the literature on price distortions across an as-
set class. See, for example, Barberis and Shleifer (2003) and Vayanos and Woolley (2013)
on style investing, momentum, and reversal, Greenwood (2005) and Hau (2011) on index
redefinitions, Gabaix, Krishnamurthy, and Vigneron (2007) on mortgage-backed securi-
ties, Garleanu, Pedersen, and Poteshman (2009) on options, and Gabaix and Maggiori
(2015) on foreign exchange.

Preferred habitats in our model concern maturities. They could alternatively concern
bonds that differ in liquidity or in the type of issuer, for example, government versus cor-
porate. Preferences for liquidity have been used to explain the on-the-run phenomenon,
whereby just issued government bonds are more expensive than previously issued bonds
maturing on nearby dates.’ Preferences for government bonds over corporate bonds could
be arising because the former are safer and more widely acceptable as collateral. Krish-
namurthy and Vissing-Jorgensen (2012) provide evidence consistent with the existence of
an investor clientele pricing those attributes.

Our model belongs to the class of affine no-arbitrage term-structure models (Duffie
and Kan (1996)) because yields are affine in the risk factors. Dai and Singleton (2002)
and Duffee (2002) develop models within that class that embody the positive relationship
between bond risk premia and term-structure slope. We derive such a relationship in an
equilibrium model.® Our model can address questions that reduced-form models cannot,
such as how demand shocks affect the term structure and how the effects depend on
arbitrageur risk aversion and investor price elasticity.

2. MODEL

Time is continuous and goes from zero to infinity. The term structure at time ¢ consists
of a continuum of zero-coupon government bonds. The maturities of the bonds lie in the
interval (0, co). Assuming that the interval of bond maturities is infinite is without loss
of generality because we can specify preferred-habitat demand to be zero for bonds with
sufficiently long maturities. The bond with maturity 7 has face value 1, hence paying one
unit of the numeraire at time ¢ + 7. We denote by P{” and y\”, respectively the time-¢
price and yield of the bond with maturity 7. The yield is the spot rate for maturity = and
is related to the price through

(7)
o= eT) m
T
We denote by " *"" the time-t forward rate between maturities 7 — A7 and 7. The
forward rate is related to the price through

P
log<t—
(r—AT)
(1—AT1,7) — _ Pt

f - @

SFor evidence on the on-the-run phenomenon, see Amihud and Mendelson (1991), Warga (1992), and Kr-
ishnamurthy (2002). For theoretical explanations, see Duffie (1996), Vayanos and Weill (2008), and Banerjee
and Graveline (2013).

®Other equilibrium models that generate a positive premia-slope relationship include Wachter (2006),
Buraschi and Jiltsov (2007), and Lettau and Wachter (2011), who assume habit formation, Xiong and Yan
(2010), who assume heterogeneous beliefs, and Gabaix (2012), who assumes rare disasters with time-varying
severity.
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The short rate r, is the limit of the yield y{” when 7 goes to zero. We take 7, as ex-
ogenous, and describe its dynamics later in this section (7). An exogenous 7, can be in-
terpreted as the return of a linear and instantaneously riskless production technology.
Alternatively, r, can be determined by the central bank in response to exogenous shocks.
We sketch the central-bank interpretation in Section 3.3, where we derive some of our
model’s implications for monetary policy.

Agents are of two types: arbitrageurs and preferred-habitat investors. Arbitrageurs can
invest in the bonds and in the short rate. We denote their time-¢ wealth by W, and their
time-¢ position, expressed in present-value terms, in the bonds with maturities in [7, 7 +
dr] by X\” dr.” The arbitrageurs’ budget constraint is

00 00 dP(‘r)
dW, = (m_/ x® dT)rtdt—}—/ X" = dr, 3
0 0 t

where the instantaneous change dP.” is computed by changing the time subscript ¢ to
t + dt and the maturity superscript 7 to 7 — dt. Arbitrageurs maximize a mean—variance
objective over instantaneous changes in wealth. Their optimization problem is

max |:Et(dW,) — gVart(th)} 4

(X:T)]TE(O,OC)

where a > 0 is a risk-aversion coefficient that characterizes the trade-off between mean
and variance. Arbitrageurs with the objective (4) can be interpreted as overlapping gen-
erations living over infinitesimal periods. The generation born at time ¢ is endowed with
wealth W, invests from ¢ to ¢ + dt, consumes at ¢ + dt, and then dies. If preferences over
consumption are described by the von Neumann—Morgenstern (VNM) utility function U
and if all uncertainty is Brownian as is the case in equilibrium, utility maximization yields
the objective (4) with the risk-aversion coefficient a = — LL’]((:VV))

Preferred-habitat investors have preferences for specific maturities. For example, pen-
sion funds prefer long-maturity bonds because their duration matches that of pension
liabilities. Insurance companies likewise prefer long- and intermediate-maturity bonds
because their duration matches that of liabilities associated to retirement and insurance
products that they offer. At the other end of the maturity spectrum, money-market funds
are required by their mandates to hold short-maturity bonds. We model the demand of
preferred-habitat investors in reduced form and provide an optimizing foundation in Ap-
pendix B (Vayanos and Vila (2021)).

Investors’ maturity habitats cover the interval (0, c0), and investors with habitats in
[7, 7+ d7] are in measure d7. Investors with habitat 7 at time ¢ hold a position

2 = —a(n) log(P") - B, )

expressed in present-value terms, in the bond with maturity 7 and hold no other bonds.
Equation (5) is a demand function linear and decreasing in the logarithm of the bond
price. The slope coefficient a(7) > 0 is constant over time but can depend on maturity 7.
The intercept coefficient 8;” can depend on both ¢ and 7. For simplicity, we refer to

"Implicit in our notation is that the arbitrageurs’ position in the bonds with maturities in [7, 7 + d7] is of
order dr. Arbitrageurs hold such a position in equilibrium because preferred-habitat demand for the bonds
with maturities in [, 7 + d7] is assumed to be of order dr.
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a(7) and B{” as demand slope and demand intercept, respectively. The actual intercept
is —B.”. By setting a(7) = B;” = 0 for 7 larger than a finite threshold T, we can take the
interval of bond maturities to be finite and equal to (0, T').

The demand intercept B!” takes the form

K
BY = 00(7) + D 04(7)Brss (6)

k=1

where {0;(7)}x—0,..x are constant over time but can depend on maturity 7, and
{Br.}i=1,. x are time-varying but independent of 7. We refer to {Bi  }i=1..x as de-
mand risk factors. The functions {6(7)}c-1, . x characterize the maturities where de-
mand changes originate. If, for example, 6,(7) is independent of 7, then a change in
Br.. impacts demand for all maturities equally and can be interpreted as a global demand
shock. If instead 6, (7) peaks at a specific maturity, then a change in B, , impacts demand
for that maturity the most and can be interpreted as a local demand shock. To ensure
that integrals involving (a(7), {0k (7)}x=1.. k) are well defined, we assume that either (i)
(a(7), {0c(7)}r=1...x) becomes zero for 7 larger than a finite threshold 7" and are contin-
uous in (0, T] or (ii) (a(7), {6x(7)}i=1...x) converges to zero at exponential rates when

.....

T goes to infinity, with the rate for a(7) not exceeding those for {6, (7)}«-1.. .k, and are
continuous in (0, 00).
The (K + 1) x 1 vector ¢, = (r;, Biss .-, Bx.) ' follows the process
dq,=—-I'(q, —7E)dt + 3dB,, (7)

where 7 is a constant, £ is the (K + 1) x 1 vector (1,0,...,0)7, (I', 3) are constant
(K +1) x (K + 1) matrices, dB, is a (K + 1) x 1 vector (dB,,,dBg1,,...,dBgk.)" of
independent Brownian motions, and T denotes transpose. Equation (7) nests the case
and the case where they are correlated. Independence arises when the matrices (I, 3)
are diagonal. When instead 3 is nondiagonal, shocks to the factors r, and {Bx. }i=1...
are correlated, and when I is nondiagonal, the drift (instantaneous expected change) of
each factor depends on all other factors. We assume that the eigenvalues of I' have neg-
ative real parts. Hence, g, is stationary, and (7) implies that the long-run means of r, and
{Br..}i=1,. x are ¥ and zero, respectively. Setting the long-run mean of {8y ,}x-1.._x to zero
is without loss of generality since we can redefine the function 6y(7) to include a nonzero
long-run mean.

We assume that government bonds are in zero supply. This is without loss of general-
ity because we can redefine the demand function (5) as a net demand: the demand by
preferred-habitat investors for the bond with maturity 7, net of the government supply of
that bond.

Under the assumed demand function (5), the demand by preferred-habitat investors
for the bond with maturity 7 depends only on that bond’s price and not on the prices of
other bonds. This begs the question why rational investors buy the bond with maturity =
if a bond with maturity close to 7 is much cheaper. Appendix B shows that the demand
function (5), together with the specifications (6) and (7) for the demand intercept B.”,
can be given an optimizing foundation when bond maturities belong to a finite interval
(0, T') and the matrix 3 has full rank. The optimizing foundation requires that the term
structure satisfies no-arbitrage, which is the case for the equilibrium derived in Sections 3
and 4.
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The preferred-habitat investors in Appendix B form overlapping generations living over
a period equal to the maximum bond maturity 7. The generation born at time ¢ consumes
only at £+ T and then dies. Investors are infinitely risk-averse over consumption. They de-
rive consumption by investing in bonds and in a private opportunity whose return at time
t' >t is exogenous and increasing in B!" " " Infinite risk aversion ensures that investors’
optimal bond portfolio yields a riskless payoff at the time ¢ + 7" when they consume. That
portfolio consists only of the bond maturing at r + 7. No-arbitrage ensures that investors
cannot achieve a higher payoff with certainty by investing in bonds with maturities other
than ¢ + T': if the payoff is higher with positive probability, then it must also be lower with
positive probability.

The elasticity of preferred-habitat demand in Appendix B arises because investors sub-
stitute between the bond that matures at the time ¢ + T when they consume and the
private opportunity. When the bond’s price decreases, the bond’s return from ¢ to ¢ + T
increases. Hence, the bond becomes more attractive relative to the private opportunity,
and bond demand increases.® Conversely, when the return on the private opportunity in-
creases, it becomes more attractive relative to the bond, and bond demand decreases. The
private opportunity could represent, for example, an investment in real estate.’

Stepping outside of the optimizing foundation in Appendix B, 8" could vary because
of shocks to the supply of bonds issued by the government and shocks to the composition
of the preferred-habitat investor pool. The demand specifications (5)—(7) can capture
these shocks if the maturities affected by the shocks remain fixed as time passes. Suppose,
for example, that there is a sudden increase at time ¢ in the demand for the bond with
maturity 7. The specifications (5)—(7) require that this increase translates to an increase
at time ¢ > ¢ in the demand for the bond with maturity 7 rather than 7 4 ¢ — ¢'. That is,
the shock does not “roll down” over time in the maturity space.

Some shocks roll down in the maturity space. For example, an increase at time ¢ in the
government supply of the bond with maturity 7 translates to an increase at time ¢ > ¢
in the supply of the bond with maturity 7 + ¢ — ¢ rather than 7. For such shocks, the
specifications (5)—(7) can be viewed as an approximation. Modifying that specification to
allow roll down would render the analysis more complicated because bond demand at
time ¢ would depend on the entire history of shocks up to time ¢ — 7. (The shocks up to
time ¢ — T + 7 would affect demand for bonds with maturities up to 7.)

Our model makes a stark distinction between arbitrageurs, who can substitute across
maturities, and preferred-habitat investors, who invest only in their maturity habitat.
Suppressing this distinction (by making the risk aversion of preferred-habitat investors
finite in Appendix B) would complicate the model without changing the basic mecha-
nisms. Preferred-habitat investors would substitute across maturities, acting partly as ar-
bitrageurs, and arbitrage capacity would increase. The analysis would become more com-
plicated because it would involve a continuum of portfolios rather than only the portfolio
of arbitrageurs.

8Since investors in Appendix B choose their portfolio based on its return at the time ¢ + T when they
consume, their demand for the bond that matures at ¢ + 7' depends on the bond’s return to maturity rather
than on the return over the next instant.

% An example of preferred-habitat investors substituting from government bonds into real estate comes from
the U.K.’s pension reform of 2004, mentioned in the Introduction. The drop in long rates induced pension
funds to substitute toward nonbond investments, including real estate. For example, Marks & Spencer ar-
ranged for their pension fund to receive payments based on the leases of their property portfolio (Islam (2007,

p. 61)).
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An additional distinction between arbitrageurs and preferred-habitat investors, which
is implicit in the demand specification (5) and explicit in the optimizing foundation in
Appendix B, is that the latter can access investment opportunities outside of the bond
market while the former cannot. If arbitrageurs could access investment opportunities
outside the government bond market, then shocks to the returns of their opportunities
would affect bond prices as well. We suppress that effect by assuming that arbitrageurs
specialize in trading only government bonds.

Our model can be given both a nominal and a real interpretation. Under the nominal
interpretation, the numeraire is money, arbitrageurs’ preferences concern their wealth
evaluated in nominal terms, and preferences of preferred-habitat investors (in the opti-
mizing foundation in Appendix B) concern their consumption in nominal terms. Under
the real interpretation, the numeraire consists of goods, and preferences concern wealth
and consumption in real terms. A short rate determined by the central bank fits better
the nominal interpretation, while a short rate determined by a production technology fits
better the real interpretation.

The arbitrageurs’ optimization problem yields the same solution regardless of whether
preferences concern nominal or real wealth. This is because the arbitrageurs’ objective in-
volves changes in wealth over an infinitesimal interval, during which inflation is constant.'
Hence, the assumption under the nominal interpretation that arbitrageurs’ preferences
concern nominal wealth is innocuous.

Whether preferences concern nominal or real consumption matters for preferred-
habitat investors, who have a longer horizon. Preferences over nominal consumption de-
scribe, for example, life-insurance companies that offer insurance or retirement products
with guaranteed minimum returns typically not indexed to inflation."! Preferences over
real consumption describe, for example, pension funds that offer pensions rising with, or
explicitly indexed to, inflation.!? Payouts from property and casualty insurance rise with
inflation as well. Hence, both nominal and real preferred habitats arise in practice.

Under the nominal interpretation, inflation could affect both the short rate and the in-
tercept B{” of preferred-habitat demand. Indeed, high inflation could be associated with
high nominal returns throughout the economy, and hence with both a high nominal short
rate and a high nominal return 8" on investment opportunities other than government
bonds. Inflation could thus generate a positive correlation between the short rate and the
demand factors. Because of that correlation, inflation could have only a weak effect on
bond demand by preferred-habitat investors: high bond yields raise demand, and high 8"
lowers it.

3. NO DEMAND RISK

In this section, we study the case where there are no demand risk factors (K = 0). Time
variation in yields arises because of the short rate r,, which is the only risk factor. For

YDenoting by dW, = W4, — W, the instantaneous change in arbitrageur nominal wealth, the change

in real wealth is dWR = HW’T*fg’“ — W, = dW, — W,m,dt, where m, is inflation between ¢ and ¢ + dt. Since
E,(dW}R) — & Var,(dWR) = E,(dW,) — & Var,(dW,) — W, dt, maximizing E,(dW}) — 4 Var,(dW*) yields the
same solution as maximizing E,(dW;) — 7 Var,(dW,).

"For a description of the products offered by life-insurance companies, see, for example, Berends et al.
(2013) and Sen (2019). Table 1 of Berends et al. (2013) indicates that guaranteed minimum returns not indexed
to inflation are a common feature of life-insurance products.

2Indexation of pensions to inflation was accounted for in the 2004 U.K. pension reform, which required
pension funds to evaluate their pension liabilities using the yields of long-maturity inflation-indexed bonds.
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K =0, (7) reduces to
dr,=«k,(t —r;)dt+ o,dB,,, ®)

where k, =11, >0and 0, = 3 ;.

3.1. Equilibrium Without Arbitrageurs

We first derive, as a benchmark, the equilibrium that would prevail in the arbitrageurs’
absence. We refer to it as the segmentation equilibrium because the yield for each matu-
rity is determined solely by the demand of the investors with that maturity habitat. The
yield y” for maturity 7 is determined by setting the net demand (5) by preferred-habitat

investors to zero. Since (1) implies log(P”) = —7y\”, y{”' is given by

(7)

y,(f) — Bt — 00(7-) , (9)
a(t)t  a(T)T
where the second equality follows by setting K = 0 in (6). The yield y{” for maturity 7
is constant over time and is disconnected from the time-varying short rate r,. It depends
only on the demand intercept B!” = 6,(7) and demand slope a(7) for maturity 7. An
increase in 6, (1) lowers the demand by preferred-habitat investors for the bond with ma-
turity 7 and, hence, raises y.7. The effect is weaker the larger a(7) is because the demand
by preferred-habitat investors is more price-elastic. The segmentation equilibrium corre-
sponds to an extreme form of the preferred-habitat view (Culbertson (1957), Modigliani
and Sutch (1966)).

3.2. Equilibrium With Arbitrageurs

We next derive the equilibrium when arbitrageurs are present. We proceed in three
steps: (i) conjecture a functional form for equilibrium yields, (ii) derive the arbitrageurs’
first-order condition given the conjectured yields, and (iii) combine the arbitrageurs’ first-
order condition with market clearing, and confirm that yields are as conjectured.

We conjecture that equilibrium yields are affine in the single risk factor r,. That is, there
exist two functions (A,(7), C(7)) that depend only on 7 such that the time-¢ price of the
bond with maturity 7 is

Pt(‘r> — e ArMn+Cm1 (10)

Applying Ito’s lemma to (10), recalling that dP” is computed by changing the time sub-
script ¢ to ¢ + dt and the maturity superscript 7 to 7 — dt, and using the dynamics (8) of
r;, we find that the time-¢ instantaneous return on the bond with maturity 7 is

dp®
P(:_) = I-L;T) dt - Ar(T)O-r dBr,ta (11)
t
where
1
W = A+ C(1) + AT (r = F) + 5 Ay (1) 0} (12)

is the instantaneous expected return.
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To derive the arbitrageurs’ first-order condition, we substitute the bond return (11) into
the arbitrageurs’ budget constraint (3) and optimization problem (4). This yields

0

dW, = |:Wtrt+/ X7 (w” —r) d7i| dt — / XD A, (r)dr |0, dB,,
LJo i
and
ac?

00 - poo 92
max {/ Xt(”(,u;” - r,) dr — > / Xt(T)A,(T) dr }, (13)
0 | Jo i

{X;(T))re(o.oo)

respectively. Pointwise maximization of (13) yields the arbitrageurs’ first-order condition.

LEMMA 1: The arbitrageurs’ first-order condition is
,U“Y) —I= _Ar(T)/\r,ta (14)
where

Ay = —aaf/o XA, (r)dr. (15)

The arbitrageurs’ first-order condition (14) balances risk and return. The left-hand side
is the increase in the expected return on the arbitrageurs’ portfolio if they shift one unit
of the numeraire from the short rate r, to the bond with maturity 7. Portfolio expected
return increases by the difference between the bond’s expected return w{” and the short
rate r,. The right-hand side is the increase in the risk of the arbitrageurs’ portfolio times
the arbitrageurs’ risk-aversion coefficient a. Portfolio risk increases by the covariance be-
tween the return on the additional investment in the bond and the return on the portfolio.
With one risk factor, the covariance is the product of the sensitivities of the two returns
to the factor times the factor’s variance. The risk factor is the short rate and its variance
is 2. Moreover, (11) implies that the sensitivity of the bond’s return to the short rate is
— A, (1) and the sensitivity of the portfolio’s return is — fooo XA, (r)dr.

The first-order condition (14) can alternatively be interpreted in the context of no-
arbitrage models of the term structure.'® No-arbitrage in continuous time requires that
there exist prices specific to each risk factor and common across assets, such that the
expected return of any asset in excess of the short rate is equal to the sum across factors
of the asset’s sensitivity to each factor times the factor’s price. With one factor, the no-
arbitrage condition boils down to requiring that the factor’s price is equal to the ratio
of any asset’s expected excess return to the asset’s factor sensitivity. The no-arbitrage
condition in our model is the arbitrageurs’ first-order condition (14), and the price of the
short-rate factor is A,,.

Absence of arbitrage is mute on what the prices of the risk factors are. These prices
are instead determined by equilibrium arguments. Equation (15) shows that A,, is pro-
portional to the factor sensitivity — [~ X, M A,(1) dr of the arbitrageurs’ portfolio. To de-
termine that portfolio, we use market clearing.

13See, for example, Vasicek (1977) and Cox, Ingersoll, and Ross (1985) for early contributions, and Veronesi
(2010) for a textbook treatment.
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Market clearing requires that the time-¢ positions of arbitrageurs and preferred-habitat
investors in the bond with maturity 7 sum to zero:

X0+ 7 =0, (16)

Substituting X.” from (16) into (15), we find
A =ao? /Ooo ZD A (t)dT
— a0 /0 “[—a(n) log(P7) — B]4,(7) dr
=ao? /Ooo[a(r)[A,(T)r, + C(1)] = 6o(7)] A, (1) dT, (17)

where the second equality follows by substituting Z{™ from (5), and the third equality
follows by substituting P{” from (10) and using 8! = 6y(7) (which follows by setting
K =0 in (6)). Equation (17) shows that the price A,, of the short-rate risk factor de-
pends on the short rate r,, and on the demand intercept 6,(7) and demand slope a(7) of
preferred-habitat investors. We return to these effects and their economic implications in
Sections 3.3-3.5.

Substituting A,, and w\” from (17) and (12), respectively, into (14), we find

A () + C/(7) + A (1)K, (r = F) + %A,m%ﬁ e
= ae 4,0 / [60(r) = a(D)[ A, (1)1, + C(D)]] A(7) . (18)
0

Equation (18) must hold for all values of r,. Hence, the linear terms in r, on both sides
must be equal, and the same is true for the terms that are independent of r,. This yields
the two first-order linear ordinary differential equations (ODEs)

A(r)+ Kk A(T)—1= —aO'rZA,(T) /‘0001(7')/1,(1')2 dr, (19)
0
C'(1)— Kk, 7A, (1) + %JEA,(T)Z =ac’A,(7) /w[eo(r) —a(1)C(D)]A,(t)dT  (20)
0

in the functions (A4,(7), C(7)). Equations (19) and (20) must be solved with the ini-
tial conditions A4,(0) = C(0) = 0, which follow from (10) because a bond with zero
maturity trades at its face value of 1. A complicating feature of (19) and (20) is that
the coefficient of A4,(7) in each equation depends on an integral involving the func-
tions (A,(7), C(7)). To solve (19) and (20), we proceed in two steps. First, we take
the integrals as given and solve (19) and (20) as linear ODEs with constant coeffi-
cients. Second, we require that the solution is consistent with the value of the inte-
grals.
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The first step yields
1 KT
A= —, (21)
T 0_2 T
C(r)= Kr?*/ A, (u) du — 7’/ A (w)’ du, (22)
0 0
where the scalars («*, 7*) are defined by
K; =K, + a0} / (1) A, (1)’ d, (23)
0
KT = K F + ao” / [06(7) — a(1)C(n)] A, (7) d. (24)
0

We use the star superscript because (k*,7") are the counterparts of (k,,7) under the
risk-neutral measure. The second step requires that («*,7*) solve (23) and (24) when
(A,(1), C(71)) are substituted in from (21) and (22). Proposition 1 shows that this re-
quirement determines (k*,7") uniquely.

PROPOSITION 1: The functions (A,(1), C(7)) are given by (21) and (22), respectively,
where K is the unique solution to

00 1— —KkET 2
K;‘:K,—i—ao'rz/(; a(T)<K76*> dr (25)

and 7" is given by

efx;“r

=7+ aaf(/oo[eo(r) —Fa(7)7] Lze™ _K* dr
0

r

2 00 T _—Kfu\ 2 KT
+ if a(T) [/ <—1 e* > du] 71 e* dT)
2 0 0 K, K,
00 ™1 — —Kfu 1— —KfT
/(Kf |:1 + aO',Z/ a(T) [/ e* du:| e* dT]). (26)
0 0 K, K,

We next explore the economic implications of the equilibrium derived in Proposition 1.
Section 3.3 examines how shocks to the short rate are transmitted to longer maturities.
Section 3.4 examines how bond expected excess returns depend on the short rate and on
the shape of the term structure. Section 3.5 examines how changes in bond demand affect
the term structure.

3.3. Monetary-Policy Transmission and Carry Trades

In the segmentation equilibrium, in which there are no arbitrageurs, bond yields y,”

are disconnected from the short rate r,. By contrast, when arbitrageurs are present, they
transmit short-rate shocks to bond yields, ensuring that yields are informative about the
current and expected future short rates.
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Arbitrageurs transmit short-rate shocks to bond yields through their carry trades. Sup-
pose that a shock causes the short rate to drop below the value that bond yields would take
in the segmentation equilibrium. To benefit from the discrepancy between bond yields and
the short rate, arbitrageurs buy bonds and finance their position by borrowing short term.
Their activity causes bond prices to rise and yields to drop, thus reflecting the drop in the
short rate. Conversely, following a shock that causes the short rate to exceed the value
that bond yields would take under segmentation, arbitrageurs short-sell bonds and invest
short term. Their activity causes bond prices to drop and yields to rise, thus reflecting the
rise in the short rate. In both cases, arbitrageurs engage in carry trades—trades that are
profitable when prices do not move. For example, buying a bond and financing that posi-
tion by short-term borrowing is profitable when the short rate remains below the bond’s
yield until the bond’s maturity.

The extent to which arbitrageurs transmit short-rate shocks to bond yields depends
on three main parameters of our model: the arbitrageurs’ risk-aversion coefficient a, the
volatility o, of the short rate, and the slope a(7) of the demand by preferred-habitat
investors. When a = 0, arbitrageurs are not averse to the risk that carry trades entail,
namely, that the short rate can rise when they borrow short term to buy bonds, and that the
short rate can drop when they short-sell bonds and invest short term. Hence, arbitrageurs
engage in carry trades that are sufficiently large to transmit short-rate shocks fully to
bond yields. When «a(7) = 0 for all = € (0, T'), shocks are again transmitted fully, but
for a different reason. Since the demand of preferred-habitat investors is independent of
bond prices, short-rate shocks do not trigger carry trades by arbitrageurs in equilibrium,
even though bond yields change. Hence, arbitrageurs impact bond yields without bearing
carry-trade risk, in effect having infinite price impact. The transmission of shocks becomes
weaker when a, o, and «(7) increase.

We measure the extent to which arbitrageurs transmit short-rate shocks to bond yields
by comparing the reaction of forward rates to that of expected future short rates. We
evaluate how a time-¢ shock to the short rate r, affects the expected short rate E,(r,,,) at
time ¢+ 7 and the instantaneous forward rate f,” for maturity 7. The latter rate is defined
as the limit of the forward rate £, *"" between maturities 7 — A7 and 7 when At goes to
Zero,

(1)
f(T) = lim f(T—AT,T) — _alog(Pt )
! Ar—0 ! oT

=A (r)r,+C'(1), (27)

where the second step follows from (2) and the third step follows from (10). When the
expectations hypothesis (EH) of the term structure holds, forward rates move one-to-
one with expected future short rates. Proposition 2 shows that when a > 0 and a(7) >
0, forward rates underreact and, hence, arbitrageurs transmit short-rate shocks to bond
yields only partially.

Formally, a unit shock to r, raises E,(r,,,) by e " because the short rate mean-reverts
atrate k,. Equation (27) implies that £\ rises by A/ (1) = e ", where the equality follows
from (21). Underreaction occurs because the short rate’s mean-reversion parameter
under the risk-neutral measure exceeds its counterpart «, under the physical measure.
Equation (25) implies that the difference «* — k,, and, hence, the extent of underreaction,
increases in a, o2, and a(7).

PROPOSITION 2—Underreaction of Forward Rates: A unit shock to the short rate r, has
the following effects:

e It raises the expected short rate E,(r,,,) at time t + T by 9Eirrer)

—KpT
p =e .
are
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0 (T) «

o It raises the instantaneous forward rate '™ for maturity T by ”{;rt =e ",

The forward rate underreacts (k* > k,) if arbitrageurs are risk-averse (a > 0) and the de-

mand by preferred-habitat investors is price-elastic (a(t) > 0 in a positive-measure subset of

(0, 00)). The extent of underreaction k* — k, increases in a, o*, and o(r).

Our results have implications for the transmission of monetary policy. Suppose that the
central bank conducts monetary policy by changing the rate that it pays on bank reserves.
Suppose also that arbitrageurs are banks, in which case the short rate r, that they earn
on their wealth is the rate paid on reserves. Our model implies that the transmission
of monetary-policy shocks to the yields of long-maturity bonds is done by arbitrageurs.
Moreover, the transmission mechanism is weaker when arbitrageurs are more risk-averse,
central-bank actions are more uncertain (the short rate is more volatile), or the demand
by preferred-habitat investors is more price-elastic. An additional implication is that in
transmitting monetary-policy shocks, arbitrageurs earn a rent. That rent arises from the
returns on the carry trades and reflects bond risk premia, as we explain in Section 3.4. In
that section, we also show that bond risk premia are larger, resulting in a larger rent for
arbitrageurs, under the same conditions that generate a weaker transmission mechanism.

3.4. Bond Risk Premia

Under the EH, bond expected returns are equal to the riskless rate. When instead a > 0
and «a(7) > 0, they differ from the riskless rate and mirror the carry trades of arbitrageurs.
This is because risk-averse arbitrageurs enter into carry trades only if they expect to earn
high returns as compensation for the risk they take. Suppose that the short rate drops,
in which case bond yields drop and price-elastic preferred-habitat investors sell bonds.
Bonds earn then positive expected returns in excess of the riskless rate so that arbitrageurs
are induced to buy them. When instead the short rate rises, bonds earn negative expected
excess returns so that arbitrageurs are induced to sell them short. We refer to expected
excess returns as risk premia because they compensate arbitrageurs for risk.

Since in the absence of demand risk factors, the short rate is the only source of time
variation, bond risk premia are positively related to the slope of the term structure: a low
(high) short rate implies both a term structure with slope higher (lower) than average and
positive (negative) bond risk premia. The positive premia-slope relationship is a widely
documented empirical fact in the term-structure literature, starting with Fama and Bliss
(1987; FB). FB perform the regression

1 (T*fT) -
Ar log( }J;;AT) ) - yt(AT) = apg + brs (f,” A yt(AT)) + eiar (28)

The dependent variable is the return on a zero-coupon bond with maturity = held over a
period Ar, in excess of the spot rate for maturity A7. The independent variable is the slope
of the term structure as measured by the difference between the forward rate between
maturities T — A7 and 7, and the spot rate for maturity A7. FB find that bgg is positive,
larger than 1 for most 7, and increasing in 7. The implied time variation of risk premia
is economically significant: predicted premia have a standard deviation of about 1-1.5%
per year, while average premia are about 0.5% per year.

The behavior of bond risk premia is related to the predictability of changes to long
rates. Campbell and Shiller (1991; CS) find that the slope of the term structure predicts
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changes in long rates, but to a weaker and typically opposite extent than implied by the
EH. CS perform the regression

(1—A7) (1)
yt+A'r -

=dacs + bes (ytm - yt(AT)) + €rpar (29)

r
T— AT
The dependent variable is the change, between times ¢ and ¢ + Ar, in the yield of a zero-
coupon bond that has maturity = at time ¢. The independent variable is the difference
between the spot rates for maturities 7 and A7, normalized so that the regression coeffi-
cient bcs is equal to 1 under the EH. CS find that bg is smaller than 1, negative for most
7, and decreasing in 7. This finding is related to the positive premia—slope relationship.
Indeed, suppose that the term structure has slope higher than average. Because bonds
earn positive expected excess returns, their yields increase by less than under the EH,
implying a regression coefficient bcs smaller than 1.

Proposition 3 computes the FB and CS regression coefficients bgg and bcs in the ana-
lytically convenient case where At is small. The proposition confirms that when a > 0 and
a(1) > 0, bgg is positive and b is smaller than 1. It also shows that bgg increases in the
arbitrageurs’ risk-aversion coefficient a, the volatility o, of the short rate, and the slope
a(7) of the demand by preferred-habitat investors.

Additional implications of Proposition 3 are that bgy is independent of 7 and is smaller
than 1, and that bcg increases in 7. In the data, by contrast, bgg increases in 7 and ex-
ceeds 1 for most maturities, and bcg decreases in 7. Our model can match these empirical
properties in the presence of demand risk, as we show in Sections 4 and 5.

PROPOSITION 3—Positive Premia—Slope Relationship: For At — 0 and for all 7, the
following statements hold.:
e The FB regression coefficient in (28) is brp = @ It is positive if arbitrageurs are risk-
averse (a > 0) and the demand by preferred-habritat investors is price-elastic (a(7) > 0
in a positive-measure subset of (0, 00)). It increases in a, o2, and a(7).

o The CS regression coefficient in (29) is bes =1 — %. 1t is smaller than 1 under

the same condition that ensures bgg > 0, and it increases in 7.

3.5. Demand Effects

In the segmentation equilibrium, in which there are no arbitrageurs, the yield y,” for
maturity 7 depends only on the demand intercept B\” = 6,(7) and demand slope a(7)
for that maturity. The presence of arbitrageurs changes that aspect of the equilibrium
dramatically. The yield y!” depends on the demand intercept and slope for all maturities.
Moreover, a change in the demand intercept for maturity 7 can have its largest effects for
maturities other than 7.

Suppose that the demand intercept 6,(7) changes to 6y(7) + Afy(7), where Afy(7) is a
general function of 7 and represents an unanticipated and permanent change. Maturities
for which A6y(7) > 0 experience a drop in demand because (5) defines the demand inter-
cept with a negative sign. Proposition 1 implies that k* and A4,(7) do not change, that the
change A7 in 7* has the same sign as ao?? [;° A6y(7) A,(7) d7, and that C(7) changes by

YFor more material and references on bond return predictability, see the survey by Cochrane (1999). See
also Cochrane and Piazzesi (2005), who find that a tent-shaped factor of yields explains bond risk premia even
better than the slope of the term structure does.



PREFERRED HABITAT AND THE TERM STRUCTURE 93

kAT [ A,(u) du. Hence, the yield y” for maturity 7 changes by Ay,” = KfA?*M.
Proposition 4 follows from these observations.

PROPOSITION 4—Global Demand Effects: A change in the demand intercept from 0y(1)
to 6o(7) + A6y (7) affects yields if arbitrageurs are risk-averse (a > 0). Spot rates for all matu-

rities rise if f0°° Aby(7)A.(7)d7 > 0 and drop otherwise. The relative effect across maturities

(12)
Ay, 2

(T1)
Ay, !

is independent of the maturities where the demand change originates ( is independent of

(72)
Ay, 2

(
Ay,

A6y (1)). Yields for longer maturities are more affected ( > 1form < 7).

1)

Proposition 4 shows that the effects of the change Afy(7) are characterized fully by
the integral f0°° A6y(7)A,(7)dr. If that integral is positive, then yields for all maturities
rise—even for maturities for which demand increases because A6y(7) < 0. Thus, demand
effects are global: demand intercepts across all maturities are aggregated into the one-
dimensional index fooc 0o(7)A,(1)d7, and changes to that index move all yields in the
same direction. These global effects are the polar opposite of the local effects derived in
the segmentation equilibrium.

Demand effects are represented by a one-dimensional index because there is only one
risk factor: the short rate. The index relates to the sensitivity of arbitrageurs’ portfolio to
that factor. Suppose that following a change in preferred-habitat demand, arbitrageurs
are induced to hold a portfolio that realizes more losses when the short rate increases.
Arbitrageurs then view bonds as riskier and require higher expected excess returns to
hold them, causing yields to increase for all maturities.

The index is derived by multiplying the demand intercept 6,(7) for maturity = by the

*
eTKFT

function A4,(7) = “K— that characterizes the sensitivity of the 7-maturity bond to the
short rate, and integrating across maturities. If a change in the demand intercept raises
that integral, then the sensitivity-weighted demand for bonds by preferred-habitat in-
vestors declines and the sensitivity of arbitrageurs’ portfolio increases. Since A4,(7) in-
creases in 7, demand intercepts for longer-maturity bonds receive a larger weight in the
index. Hence, changes to the demand for these bonds have a larger effect on the term
structure.

While changes to the demand for longer-maturity bonds have a larger effect on yields,
the relative effect across maturities is the same as when the demand for shorter-maturity
bonds changes. Moreover, yields for longer maturities are more affected (by any demand
change). Intuitively, a decrease in demand raises the instantaneous expected returns of
long-maturity bonds more than of short-maturity bonds. This is because expected excess
returns compensate arbitrageurs for risk, and long-maturity bonds are riskier (A,(7) in-
creases in 7). The increase in expected returns causes yields to increase: the yield for
maturity 7 involves an average of instantaneous expected returns that the bond with ma-
turity 7 earns during its life [¢, £+ 7]. Since demand changes are permanent, the average of
instantaneous expected returns increases more for longer-maturity bonds. Hence, yields
for longer maturities are more affected by demand changes.

4. DEMAND RISK

In this section, we generalize our analysis to the case where demand is time-varying.
Since demand affects yields only when arbitrageurs are risk-averse, we assume a > 0.
Time variation in yields arises because of the short rate r, and the K demand factors

{Bk,t}k:l ..... K-
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4.1. Equilibrium

We derive the equilibrium following the same three steps as in Section 3.2. We conjec-
ture that there exist K + 2 functions (A, (7), {Ag(7)}k=1,. .k, C(7)) that depend only on
7 such that the time-¢ price of the bond with maturity 7 is

.....

_ T
PL‘(T) — e 1AM 4t+C(T)J, (30)

where A(7) is the (K + 1) x 1 vector (A,(7), Ag1(7),..., Agk(7))". Applying Ito’s
lemma to (10), using the dynamics (7) of g,, and noting that ¢ 4+ 7 stays constant when
taking the derivative, we find that the time-# instantaneous return on the bond with ma-
turity 7 is

dpP™

P(:) =w"dt— A(r)'¥dB,, (31)
t

where
" =A(1)'q,+C(r)+ A(T) T(q —7E) + %A(T)TEETA(T) (32)

is the instantaneous expected return. Substituting the bond return (31) into the the arbi-
trageurs’ optimization problem (4) yields

00 %) T 00
max { / X}”(,u,ﬁ”—r[)dq-—g[ / XfT)A(T)dT] ZZT[ / XfT)A(T)dT:“. (33)
0 0

X re0.ry Lo
Pointwise maximization of (33) yields the arbitrageurs’ first-order condition.

LEMMA 2: The arbitrageurs’ first-order condition is
WO = ad(r) 35T [ / X0 A(r) dT]. (34)
0

Equation (34) is the multifactor counterpart of (14). The left-hand side is the increase
in portfolio expected return if arbitrageurs shift one unit of the numeraire from the short
rate r, to the bond with maturity 7. The right-hand side is the increase in portfolio risk
times the arbitrageurs’ risk-aversion coefficient a. The increase in portfolio risk is equal to
the covariance between the return on the additional investment in the bond and the return
on the arbitrageurs’ portfolio. With multiple risk factors, the covariance is the product of
the sensitivity vectors —A(7) and — fooc X" A(7) dr of the two returns to the factors times
the factors’ covariance matrix 33", To show the full analogy between (34) and (14), we
can write (34) in terms of factor prices. Denoting the (K + 1) x 1 vector of factor prices
by Av = (A, Agiss - -> Apki) T, we can write (34) as ui” — r, = —a A(7)TA, and deduce
that factor prices are A, = —33T[ [~ XV A(r)dr).

Substituting X” from the market-clearing equation (16) into (34), using (5), (6), (30),
and (32), and denoting by @(7) the 1 x (K + 1) vector (0, 6,(7), ..., 6x(7)), we find the
following counterpart of (18):

A1) g +C(1)+ A(1)'T(q, —7E) + %A(T)TEETA(T) —r

= aA(T)TZZT/ [60(T) + O(7)q, — a(T)(A(T) g, + C(7)) JA(T)dT.  (35)
0
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Setting the linear terms in ¢, on both sides of (35) to be equal yields the system of K + 1
first-order linear ODEs

A(T)+MA(T) —E=0, (36)
where M is the (K + 1) x (K + 1) matrix

M=TI"—-a /oo[@(T)TA(T)T —a(r)A(1)A(T)"|dr33". (37)
0

Setting the terms that are independent of g, on both sides of (35) to be equal yields the
first-order linear ODE

C'(7) ~ FA() TE + 3 A 53T A7)
—aA(r)T33T ./OO[QO(T) — a(r)C(n)]A(r)dr. (38)
0

Equations (36) and (38) must be solved with the initial conditions A(0) = C(0) =0. To
solve (36) and (38), we follow the same two steps as in Section 3. The first step is to take
the integrals in (36) and (38) as given and solve these equations as linear ODEs with
constant coefficients. The solution is in Lemma 3.

LEMMA 3: Suppose that the matrix M defined in (37) has K + 1 distinct eigenvalues
(V1y -+« s vis1). The function A(1) = (A,(7), Ag1(7), ..., Agx(7))T is given by

1—e™" K 1 — e ¥K+1T 1—e ™"
A(r)=——+) dn,;«( — ) (39)
41 et Vi V1
K _ _
1 —e Vi T 1 —e T
A = / - 40
ik (T) ; bp ik ( o " >7 (40)

k'=

where ({¢, 1=, k> {p..i k=1, k) are scalars derived from the eigenvectors of M. The
function C(7) is given by

C(r)= |:/TA(M)T du]x — %/TA(M)TEETA(u)du, (41)
0 0
where X = (Xr» Xp.1s--+» Xp.x) | i the (K + 1) x 1 vector
x=1T€ + aEET/ [90(7) — a(T)C(T)]A(T) dr. (42)
0

The second step is to ensure that the solution derived in Lemma 3 is consistent with the
value of the integrals. There are (K + 1)? integrals in (36). These integrals involve the K +
1 functions (A,(7), {Ap«(7)}k=1,. k), and determine the elements of the (K +1) x (K+1)
matrix M defined in (37). In turn, the eigenvalues and eigenvectors of M determine the
solution for (A4,(7), {Apx(T)}x=1,..x) in Lemma 3, and that solution determines the value
of the integrals. This yields a nonlinear system of (K + 1)? equations in the (K + 1)?
integrals. Given a solution to that system, the elements (x,, xs.1, ..., Xgx) of the vector
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x in the solution for C(7) in Lemma 3 can be derived from a linear system of K + 1
equations.

In the remainder of this section, we show analytically properties of the model. We focus
on the case where there is one demand factor (K = 1, four nonlinear equations) and
omit the subscript k£ from that factor. We additionally assume that the short rate and the
demand factor are independent. This corresponds to the matrices (I', 3) being diagonal.
We denote their diagonal elements by (k,, kg, 0, 05) = (I'11, 22, 211, 355). The case
with one independent demand factor is a natural first case to analyze, and it yields a rich
set of results. We analyze the same case numerically in Section 5, where we perform a
calibration exercise.'> We discuss the general case briefly at the end of Section 4.4.

Two useful assumptions for deriving some of our analytical results are that the func-
tions (a(7), {60, (7)}k=1.. k) are exponentials or linear combinations of exponentials. Un-
der these assumptions, the integrals in (36) involve Laplace transforms of the functions
(A, (1), {Ap r(T)}x=1,..x) and of those functions’ pairwise products. Moreover, by multi-
plying the ODE system (36) by the exponentials in («(7), {64 (7)}x=1...x) and by the prod-
ucts of these exponentials with the functions (A,(7), {Ag«(7)}k=1,..x), we find equations
that involve the same Laplace transforms. This yields a system of equations in the Laplace
transforms, derived in Appendix A for the general case (Lemma A.1). While that system
remains nonlinear, a key advantage of the Laplace-transform approach is that we do not
need to compute the eigenvalues and eigenvectors of M, which can be real or complex.

We begin our analytical investigation by showing existence of equilibrium. We take the
demand elasticity a(7) to be the declining exponential a(7) = ae~%", where (a, 8,) are
positive constants. We take the impact 6(7) of the single demand factor on the demand in-
tercept to be a difference between two exponentials 6(7) = 0(e~%" —e~%"), where (0, §,)
are positive constants and 8, < §,. A unit increase in the demand factor 3, raises the spot
rate for maturity 7 in the segmentation equilibrium by

O(r)  O(1—e )

a(T)T a aT

This function has a positive limit at 7 =0 and decreases in 7.

THEOREM 1—Equilibrium Existence: Suppose that there is one demand factor, the ma-
trices (T, 3) are diagonal, a(7) = ae 7, and 0(7) = 0(e %" — e=%7), where (a, 0, 8,, 8;)
are positive constants and 8, is large. An equilibrium exists under either of the sufficient con-
ditions

e kg is close to zero

e 6,(00+ K, )(8a+ Kp) >2a00,0p.

In equilibrium, My ; > k,, M1, >0, My, <0,and M,, >

Kﬁfﬁa
-

We complement the existence result in Theorem 1 by computing in Appendix A
(Lemma A.2) the equilibrium in closed form when the arbitrageurs’ risk-aversion co-
efficient a is close to zero or to infinity and other parameters can take any values. For
our analysis of a ~ 0 and a ~ oo, we require that a(7) and 2 have a positive and
a finite limit, respectively, at 7 = 0. That restriction is satisfied by the specification in

5Hayashi (2018) derives two alternative numerical algorithms for solving our model in the case a(7) =
Both algorithms discretize the functions (A,(7), {Ag x(7)}k=1,.. k), without imposing the structure derived in
Lemma 3. They have the advantage of handling large values of K as easily as small values.
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Theorem 1.'® We next examine how the results of Sections 3.3-3.5 are modified in the
presence of demand risk.

4.2. Carry Trades and Hedging

Demand risk weakens the transmission of short-rate shocks to bond yields. This is be-
cause the carry trades through which arbitrageurs transmit the shocks become riskier. To
hedge against demand risk, arbitrageurs scale down their carry trades or even convert
them into butterfly trades, reversing the sign of their positions for long maturities. Because
of hedging, short-rate shocks can move yields for long maturities in the direction opposite
to the shocks.

To explain hedging in our model, suppose as in Section 3.3 that a shock causes the short
rate to drop below the value that bond yields would take in the segmentation equilibrium.
Arbitrageurs can benefit from the discrepancy between bond yields and the short rate by
buying bonds and borrowing short term. This carry trade leaves them exposed to a rise
in the short rate, as in Section 3.3, and to a drop in bond demand by preferred-habitat
investors. The importance of demand risk relative to short-rate risk rises with maturity.
This is shown in Proposition 5, and can be partly anticipated from the one-factor model,
in which short-rate shocks have an effect on yields that declines with maturity, while
permanent demand changes have an increasing effect. Because long-maturity bonds are
highly exposed to demand risk, arbitrageurs can short-sell them to hedge the demand risk
of their aggregate position. Such short-selling occurs when arbitrageurs are sufficiently
risk-averse, and causes yields for long maturities to rise despite the drop in current and
expected future short rates. Buying intermediate-maturity bonds and short-selling long-
maturity and very short-maturity bonds (i.e., borrowing short term) is a butterfly trade,
common in term-structure arbitrage.!’

Proposition 5 characterizes the response of yields to short-rate and demand shocks.
The proposition assumes M, ; < 0, a property shown to hold for the equilibrium derived
in Theorem 1. The assumptions of Theorem 1 are not needed as long as that property
holds.

The characterization is simple when the two eigenvalues of M are real. The function
Ag(7) is positive, which implies that a drop in demand causes yields for all maturities to
rise, and increases in 7. The function A4, () is either positive or switches sign from positive

For a ~ 0, our model becomes approximately a one-factor model, with the factor being the short rate. This
is because shocks to the demand factors have small effects on bond yields. The effects of demand shocks are
characterized by the one-dimensional index derived in Proposition 4, with «* = «,. The only difference relative
to Proposition 4 is that yields for longer maturities may not be the most affected. This is because Proposition 4
assumes permanent demand changes, while shocks to the demand factors mean-revert.

17 An example of a butterfly trade comes from the 20072008 financial crisis. Short-rate cuts triggered by the
crisis rendered the U.S. term structure steeply upward sloping. Term structure arbitrageurs took the view that
forward rates did not drop enough to reflect the low expected future spot rates—the underreaction result of
Proposition 2. For example, a Barclays Capital report by Pradhan (2009, p. 2)), points out that while the 2-year
spot rate was 258 bps lower than the 10-year spot rate, the difference between their 2-year forward counterparts
was only 93 bps. The report goes on to advise lending at the 2-year rate 2 years forward and borrowing at the
10-year rate 2 years forward. Lending at the 2-year rate 2 years forward is a carry trade: it amounts to shorting
2-year bonds and buying 4-year bonds. Borrowing at the 10-year rate 2 years forward amounts to buying 2-
year bonds and shorting 12-year bonds. That position is layered to the carry trade to hedge term-structure
movements at intermediate maturities, and is for a smaller notional amount since the 12-year bond is more
sensitive to such movements than the 4-year bond. The overall trade is a butterfly: a short position in 2-year
bonds, a long position in 4-year bonds, and a short position in 12-year bonds. It exerts upward pressure on
thel2-year spot rate, even though it is triggered by a drop in the short rate.
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to negative when 7 crosses a threshold 7. In the latter case, a drop in the short rate causes

yields for maturities 7 > 7 to rise. The ratio j/;((?) decreases in 7, which implies that the

effect of demand shocks relative to short-rate shocks rises with maturity.

When the two eigenvalues of M are complex, the functions (A,(7), Ag(7)) exhibit an
oscillating pattern driven by the arbitrageurs’ hedging activity. Following a rise in the
short rate, prices of short-maturity bonds drop. Prices of long-maturity bonds can instead
rise because arbitrageurs can buy them to hedge demand risk. Long-maturity bonds can
thus hedge the short-rate risk of a portfolio with long positions in bonds, and earn nega-
tive expected excess returns when arbitrageurs hold such a portfolio in equilibrium. Since
arbitrageurs hold long positions when demand by preferred-habitat investors is low, low
demand can cause, through the cumulation of negative expected returns, the prices of
bonds of even longer (“very long”) maturities to rise. In that case, arbitrageurs do not use
the very-long-maturity bonds to hedge demand risk, and those bonds’ prices rise following
a drop in the short rate. This yields an oscillating pattern of price sensitivity to the short
rate as a function of maturity. The properties shown for real eigenvalues carry through
to complex ones for the first half-cycle of the oscillation (which can be longer than the
maximum maturity 7'). The functions (A,(7), Ag(7)) begin by being increasing in 7. The
function A4,(7) eventually reaches a maximum, and the function 4;(7) does so at a larger
value 7 which marks the end of the first half-cycle. We set 7 = co when the two eigenval-
ues of M are real. We refer to the largest interval of the form (0, 7) over which a given
property holds as a maximal interval.

PRrROPOSITION 5—Effect of Short-Rate and Demand Shocks: Suppose that there is one
demand factor, the matrices (I', 3) are diagonal, and M, ; < 0.

e Ifthe two eigenvalues of M are real, then Ag(7) >0, Ap(m)>0 and [%]/ < 0. More-

over, A,(t) > 0 for 7 € (0, 7) and A,(7) <0 for 7 € (T, 00), where T = oo when a ~(
ora(t)=0,and T < 0o when a ~ co.
o If the two eigenvalues of M are complex, then Ag(7) > 0 for T in a maximal interval

0, 7), Ay(7) > 0 for 7 in a maximal interval (0, 7), and [%]’ <0 for 7€ (0,7),

where 7:-_> 7> 0.If T < oo, then A,(7) > 0 for T in a maximal interval (0, 7), where
7€ (0,7).

4.3. Bond Risk Premia

Demand risk strengthens the positive premia—slope relationship derived in Section 3.4.
Indeed, low demand by preferred-habitat investors implies positive bond risk premia be-
cause arbitrageurs must be induced to buy the bonds to make up for the low investor
demand. Because of the positive premia, yields are high and the term structure is upward
sloping.

Proposition 6 computes the FB and CS coefficients bgg and bcs. It shows that bgg
is positive and b¢s is smaller than 1 for at least all maturities such that the functions
(A,(7), Ap(7)) are positive and Az(7) increases in 7, and for all maturities when a is
close to zero or to infinity. Moreover, when a ~ oo and the average maturity where de-
mand shocks originate is sufficiently long, bgg exceeds 1 and increases in 7, while bcs is
negative and decreases in 7.

PROPOSITION 6—Demand Risk Strengthens Positive Premia—Slope Relationship: Sup-
pose that there is one demand factor, the matrices (I, 3) are diagonal, M,, > 0, M, <0,
and At — 0.



PREFERRED HABITAT AND THE TERM STRUCTURE 99

e The FB regression coefficient in (28) is positive for 7 < min{7, 7} and for all T when
a~0ora= oco. When a~ oo and

/‘00 O(t)rdr /Oc a(r)r?dr
0 0 (43)

>

/OO o(r)dr /Ooa(T)TdT
0 0

brg exceeds 1 and increases in T.

e The CS regression coefficient in (29) is smaller than 1 for T < min{7, 7} and for all T
when a~ 0 or a ~ oco. When a =0, bes is close to 1 and increases in . When a ~ oo
and (43) holds, b¢s is negative and decreases in 7.

4.4. Demand Effects

Suppose, as in Section 3.5, that the demand intercept 6,(7) changes to 6y(7) + Ay(7),
where A6y(7) is a general function of 7. The functions (A,(7), Az(7)) do not change,
and the effects on yields are entirely through C(7). Because there are two risk factors, the
effects are represented by two one-dimensional indices. The indices are f0°° Oy(T) A, (T)dT
and fooo 60(7) Ag(7) dt, and relate to the sensitivity of arbitrageurs’ portfolio to the short
rate and the demand factor, respectively.

While demand effects retain a global flavor because they are represented by only two
indices across a continuum of maturities, they become more localized relative to the one-
factor case. Recall from Section 3.5 that with one factor, demand changes have the same
relative effect across maturities regardless of the maturities where they originate. This
independence result does not extend to two factors. The maturities where demand shocks
originate matter because they influence how the shocks affect one index relative to the
other, and because changes to each index have a different relative effect across maturities.
Changes to the demand for long-maturity bonds have a large effect on fooo Oo(1)Ap(T)dT
relative to foOo 00(7) A, (1) d7, and changes to fow 00(7)Ag(7) d7 have alarge effect on long
rates relative to short rates. Hence, the effects of long-maturity bond demand are more
pronounced at the long end of the term structure. In comparison, changes to the demand
for short-maturity bonds have a large relative effect on f0°° 00(7) A, (1) d7, and changes to
that index have a large relative effect on short rates. Hence, the effects of short-maturity
bond demand are more pronounced at the short end.

The economic intuition is as follows. Suppose that the demand by preferred-habitat
investors for long-maturity bonds declines, in which case arbitrageurs take up the slack by
purchasing those bonds. Since bonds’ sensitivity to demand shocks relative to short-rate
shocks rises with maturity, arbitrageurs’ exposure to demand risk increases significantly,
while their exposure to short-rate risk increases more mildly. The expected excess returns
that arbitrageurs require to bear demand risk increase significantly as well. Since bonds’
sensitivity to demand shocks rises faster with maturity than their sensitivity to short-rate
shocks, long-maturity bonds experience a sharp increase in their expected excess returns
relative to short-maturity bonds. Hence, long rates increase sharply. By contrast, when
the demand by preferred-habitat investors for short-maturity bonds declines, long rates
increase less than short rates.

To show a formal result on localization, we consider the simple case where the change
A6,(7) represents a decrease in demand for a specific short maturity 71 or a specific long
maturity 7, > 7. We denote the resulting changes in the yield y;” by Ay,? and Ay,7,
respectively.
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PROPOSITION 7—Localization of Demand Effects: When there is one demand factor,
a change in the demand intercept from 0y(7) to 6y(7) + A6y(T) affects yields only through
f0°° AOy(T)A,(t)dT and fooo A6y (1) Ag(7) d7. When additionally the matrices (I, X) are di-
agonal, M, <0, a(7) is nonincreasing, and the change A6,(7) is a Dirac function with point
mass at Ty < Torat T, € (7, T),

Ay AT > Ay Ay (44)

Equation (44) states that the product of the “local effects” that the changes have on
the maturity where they originate exceeds the product of the “cross-effects” on the other
maturity. Local effects are thus stronger than cross-effects.

We expect full localization when there is a large number of demand factors and arbi-
trageurs are highly risk-averse. Indeed, suppose that a demand shock originating at matu-
rity 71 has its largest effect at maturity 7, # ;. For this to happen, arbitrageurs must hold
nonzero positions in at least the bonds of one of the two maturities. Highly risk-averse
arbitrageurs, however, hold nonzero positions only if their exposure to all risk factors is
zero, which is infeasible with a large number of factors. Proposition 1 implies a full local-
ization result for the effects of short-rate shocks: since the function A4,(7) converges to
zero when the arbitrageurs’ risk-aversion coefficient a goes to infinity, the effects of short-
rate shocks become localized at the zero maturity. We can derive the same localization
result with one and two demand factors, using closed-form solutions for the large a limit.
Extending the full localization result for the effects of demand shocks requires extending
our solutions to a large number of demand factors and is left for future work.

5. CALIBRATION AND POLICY ANALYSIS

In this section, we calibrate our model and analyze the effects of different policies by
central banks. Since the model can be given both a nominal and a real interpretation, we
calibrate it using nominal yields and then again using real yields. In all calibrations we
assume that there is one demand factor which is independent of the short rate. We leave
the correlated case, which seems more relevant for the nominal calibration, for future
work. The independent case is a natural first case to investigate, and it yields a remarkably
similar analysis of central-bank policies across the nominal and real calibrations.

5.1. Calibration

The equilibrium term structure is determined by the parameters (7, k,, o,) of the short-
rate process, the parameters (kg, o) of the demand-factor process, the risk-aversion co-
efficient a of arbitrageurs, and the functions («(7), 0o(7), 6(7)) that describe the demand
slope and intercept of preferred-habitat investors.

The values of (7, 0y(7)) affect only the long-run averages of yields and of agents’ posi-
tions. They do not matter for our policy analysis, which concerns how yields and positions
respond to shocks. We sketch a calibration of these parameters in Section 5.3, where we
compute unconditional moments of bond returns.

We set a(7) = ae %" and 6(7) = 0(e %™ — e~ %7) for 7 < T, and a(1) = 6(7) =0 for
7> T. This is the same exponential specification as in Theorem 1, except that we take the
maximum bond maturity T to be finite. We set T = 30 years, the maximum maturity for
U.S. government bonds.
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The values of (6(7), o) matter only through their product because (6(7), B,) affects
the demand of preferred-habitat investors only through their product as well. We can
hence normalize o to an arbitrary value, and we set it equal to o,.

We calibrate the remaining eight parameters (k,, 0;, kg, a, @, 6, 8,, 04) using U.S. data
on bond yields and trading volume, as well as estimates of demand elasticity from the
literature. For bond yields, we use the Gurkaynak, Sack, and Wright (GKS) data sets,
which report daily spot rates extracted from government bond prices. The data set on
nominal yields goes from June 1961 to the present. We start our main sample of nominal
yields in November 1985, because this is the earliest when all maturities from 1 to 30
years are included, and end it in January 2020. The data set on real yields goes from
January 1999 to the present, and includes all maturities from 2 to 20 years. We start our
sample of real yields in January 1999 and end it in January 2020. In addition to our main
sample of nominal yields, we consider a subsample covering the same period as the sample
of real yields. We source nominal and real yields at the end of each month. For bond
trading volume, we use the Federal Reserve 2004 data set, which reports daily volume by
primary dealers in the Treasury market, split into buckets based on the bonds’ remaining
time to maturity. Volume on real bonds (Treasury inflation-protected securities (TIPS))
is approximately 3% of total volume, and is not split into maturity buckets until March
2020. For that reason, we use the volume split for nominal bonds in all calibrations. We
do not include T-bills in our volume calculations because of their special features (e.g.,
extensive use as collateral). T-bills are also not included in the GKS data sets. The data
set on volume goes from April 2013 to the present. We end it in January 2020, and use
averages within that period in all calibrations. For demand elasticity, we use estimates
from Krishnamurthy and Vissing-Jorgensen (2012; KVJ)."®

Table I reports the calibrated parameters and the empirical moments used to determine
them, for the main sample of nominal yields. Appendix C reports the same information
for the subsample of nominal yields and the sample of real yields. We express yields and
their volatilities in percentage terms throughout this section; for example, a yield of 0.02
is expressed as 2.

We determine the first seven parameters in Table I by equating the first seven empirical
moments to their model-generated counterparts. This requires solving a seven-equation
nonlinear system. The formulas for the seven model-generated moments are provided in
Appendix C. The seven moments concern volatilities and correlations of yields and yield
changes, and fractions of volume at different maturity buckets. Data on yields and rela-
tive volume cannot identify the arbitrageurs’ risk-aversion coefficient a separately from
the parameters («, 6) that characterize the slope of preferred-habitat demand and the
magnitude of demand shocks, respectively. Only the products (a«, a@) can be identified.
Intuitively, yields can be volatile because arbitrageurs are highly risk-averse (high a) and
demand shocks are small (low 6), or because arbitrageurs are less risk-averse and demand
shocks are larger.”” We determine «, the eighth parameter in Table I, based on KVJ’s es-
timates, and deduce (a, #) from the products (ac, af).

8The data set of nominal yields is available at https://www.federalreserve.gov/pubs/feds/2006/200628/
200628abs.html and is described in Gurkaynak, Sack, and Wright (2007). The data set of real yields is avail-
able at https://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html. The Federal Reserve 2004 data
set (which reports additional information to volume) is available at https://www.newyorkfed.org/markets/gsds/
search.

Formally, (37) shows that the matrix M that determines (A4,(7), Ag(7)) through the ODE (36) depends
on (a, a, 6) only through the products (aa, af). Hence, (A,(7), Ag(7)) has that property as well, and so do
the moments of returns and volume computed in Appendix C.


https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
https://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html
https://www.newyorkfed.org/markets/gsds/search
https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
https://www.newyorkfed.org/markets/gsds/search
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TABLE I
CALIBRATION OF MODEL PARAMETERS FOR THE MAIN SAMPLE OF NOMINAL YIELDS

Parameter Value Empirical Moment Value
Ky 0.125 VVar(y?) 2.62
Mean reversion of 7, Volatility 1-year yield

—Levels
g, 0.0146 Var(y, — ") 1.27
Diffusion of r, Volatility 1-year yield

— Annual changes
Kp 0.053 LYY JVar(y™) 2.20
Mean reversion of B, Volatility r-year yield

— Levels, average over 7
ab 3155 S0 Var(y D -y ™) 0.796
Arbitrageur risk aversion Volatility r-year yield
x Preferred habitat demand shock — Annual changes, average over 7
aa 35.3 S 30 Corr(y, =y v = 9™) 0.504
Arbitrageur risk aversion Correlation 1-year yield with 7-year yield
x Preferred habitat demand slope — Annual changes, average over 7

> <7< Volume(7)

o 0.297 m 0.199
Preferred habitat demand shock Relative volume for maturities 7 € (0, 2]
— short maturities
8 0.307 R 0.094
Preferred habitat demand shock Relative volume for maturities 7 € (11, 30]
— long maturities
a 5.21 Estimate in KVJ (2012) —0.746

Preferred habitat demand slope

The empirical moment next to each parameter in Table I is the one identifying that
parameter. We address identification formally in Appendix C, where we compute a seven-
by-seven table of elasticities of the first seven moments with respect to the first seven
parameters. The elasticity table validates the mapping in Table I except for the fourth and
fifth moments, for which cross-effects from the fifth and fourth parameter, respectively,
are important.

The mean-reversion k, and diffusion o, of the short rate r, have their largest effect on
the 1-year yield y{". An increase in o, raises the volatility of that yield and the volatility of
yield changes. A decrease in «, raises the yield’s volatility, but has a weaker effect on the
volatility of yield changes because it implies that the short rate mean-reverts more slowly.
Since shocks to the demand factor have a weak effect on the 1-year yield, the volatility of
that yield identifies «,, and the volatility of annual changes to that yield identifies o,.

The mean reversion kg of the demand factor 8, and the magnitude parameter 6 of de-
mand shocks have their largest effect on long-maturity yields. As with (k,, o;), the volatil-
ity of yields identifies kz and the volatility of annual changes to yields identifies a6. We
average volatilities across all maturities. Using volatilities at long maturities only does not
sharpen the identification.

The slope parameter « of preferred-habitat demand affects how shocks to the short rate
are transmitted to longer maturities. An increase in « weakens the transmission (Proposi-
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tion 2), and this makes yield changes at short and long maturities less correlated. Hence,
the correlation between annual changes to the 1-year yield and to other yields identifies
aa. (As we explain in Appendix C, however, there are important cross-effects from a6 to
correlation and from aa to volatility.) As with (kg, 0), we average the correlation across
all maturities

The parameters (8,, 64) control the maturities where demand shocks originate via the
specification 6(7) = (e~ — e~%"). Hence, they affect how volume is split across matu-
rities. An increase in 8, raises the relative volume for short maturities and lowers that for
long maturities. An increase in 8, has the same effects, with the decline in long-maturity
volume being relatively more pronounced. Hence, the relative volume for maturities 2
years and below identifies 8,, and the relative volume for maturities 11 years and above
identifies 8.

Our moment-matching exercise indicates slow mean reversion for the short rate («x, =
0.125, half-life of shocks 5.55 years) and even slower mean reversion for the demand
factor (kg = 0.053, half-life of shocks 13.1 years). The corresponding parameters for the
subsample of nominal yields and the sample of real yields are two to three times larger,
implying faster mean reversion. In all samples, demand shocks originate at short and
intermediate maturities, consistent with the fact that only 9.4% of volume concerns bonds
with remaining time to maturity longer than 11 years.

Figure 1 compares the empirical moments, represented by the crosses, to the model-
generated ones, represented by the solid lines, for the main sample of nominal yields.
Appendix C shows the same comparisons for the subsample of nominal yields and the
sample of real yields. The comparisons are remarkably similar across the three figures.
The figures depend only on the first seven parameters in Table I, and not on the separate
values of @ and («, 0).

The top two panels in Figure 1 report the volatility of yields and the volatility of annual
yield changes, as functions of maturity. The model-generated moments coincide with the
empirical ones for the 1-year maturity and on average, by construction. While the empir-
ical moments are decreasing functions of maturity, the model-generated ones are inverse
hump-shaped. The inverse hump shape seems to be driven by the independence between
the short rate and the demand factor, as these factors have their largest effects at dif-
ferent ends of the term structure. The middle-left panel reports the correlation between
annual changes to the 1-year yield and to other yields, as a function of maturity. The
model-generated moments coincide with the empirical ones on average, by construction.

The remaining panels in Figure 1 report moments not used in the calibration. The
middle-right panel reports the first principal component of annual yield changes as a
function of maturity, scaled to 1 for the 1-year maturity. The model-generated moments
are close to the empirical ones, and so is the fraction of variation explained by the first
principal component (76.5% in the model and 81.3% in the data). Hence, our calibration
captures closely the empirical factor structure of yields.

The bottom two panels in Figure 1 report the coefficients of the FB and CS regressions
(28) and (29), respectively, with A7 =1 (returns and yield changes are evaluated over
1 year). The model generates less predictability than is found in the data, especially for
long maturities. For those maturities, the model-generated predictability, as measured by
the deviation between the FB and CS coefficients and their EH value, is about 60% of
its empirical counterpart. The model-generated coefficients have the same monotonicity
as in the data. If the model is calibrated to match the FB-CS coefficients instead of the
volatility of annual yield changes, then it overshoots that volatility for long maturities,
because af must take a larger value.
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FIGURE 1.—Model-generated and empirical moments for the main sample of nominal yields.

To determine the slope parameter a of preferred-habitat demand, we use KVJ’s esti-
mates of the elasticity of the demand for government debt. KVJ regress the yield spread
between long-maturity AAA-rated corporate bonds and government bonds on the log-
arithm of government debt to gross domestic product (GDP), and find a coefficient of
—0.746 (Table 1, panel A). Hence, a 0.01 (1 bp) drop in the yield spread is associated

with a 0.0134 (= g4k) increase in the logarithm of debt to GDP. Assuming that debt to
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GDP originally takes its average value, which is 43.9% in KVI’s sample (1919-2008), it
increases by 0.0059 (= 43.9% x (¢"°3* — 1)). To map this estimate into our model, we
interpret the increase in debt to GDP as the slope of preferred-habitat demand for gov-
ernment debt. We also assume that the drop in the yield spread results from an increase in
government bond yields across all maturities, and use GDP as the unit of account. KVJ’s
estimate implies a = 5.21.

The value @ = 5.21 is an upper bound for two reasons. First, instrumental-variables
estimation of the KVJ regression generates a more negative coefficient and, hence, a
smaller slope for preferred-habitat demand. Second, our model takes as given the re-
turns that preferred-habitat investors earn outside the government bond market (Ap-
pendix B). These returns, however, could change in equilibrium when government bond
yields change, resulting in a lower effective demand elasticity. In the extreme case where
returns outside the government bond market move one-to-one with government bond
yields, a change in these yields should not affect preferred-habitat demand, resulting in
an effective slope of zero. In the intermediate case where returns outside the government
bond market adjust by x € (0, 1), the effective slope is a(1 — x).

For a =5.21 and aa = 35.3, the coefficient of arbitrageur risk aversion is a = 6.78. To
map a into a coefficient of relative risk aversion (RRA), we recall that if arbitrageurs have
wealth W and a VNM utility function U, then a = —2 %) Hence, the coefficient of RRA

Uw)
isy=— U[/Jf(”;‘ﬂ)w = aW. The macrofinance literature generally assumes that vy is larger than

1 and does not exceed 10. For y = 2 and a = 6.78, arbitrageur wealth is W = 29.5%, which
is 29.5% of GDP since we are using GDP as the unit of account. Such a value seems large.
Suppose that we identify arbitrageurs with hedge funds, which are sophisticated investors
with relatively broad mandates. The assets of hedge funds in the fixed-income, macro,
and balanced categories in the last quarter of 2019 added up to $1.2 trillion, which was
5.6% (= 53135) of U.S. GDP in that year.”* Smaller values of W correspond to smaller
values of « since W is proportional to « holding (a«, y) fixed. Since smaller values seem
plausible for both W and «, for separate reasons for each parameter, we use a parameter
range. We use a = 5.21 as the upper bound of the range for « and use a = 1.04 as the
lower bound. The lower bound corresponds to an x = 80% adjustment of returns outside
the government-bond market to government-bond yields.! The upper bound «a = 5.21
corresponds to an upper bound 29.5% for W and a lower bound 6.78 for a. The lower
bound « = 1.04 corresponds to a lower bound 5.9% for W and an upper bound 33.9 for a.

5.2. Policy Analysis

The first policy that we analyze is a forward-guidance announcement about the path of
short rates. We model this announcement as a change A7 in the long-run mean 7 of the
short rate r,. We assume that the change is unanticipated, takes place at time zero, and
reverts deterministically to zero at a rate «;.

Figure 2 shows the announcement’s effect on the term structure at time zero for the
calibration based on the main sample of nominal yields. The figures for the other two

DSee https://www.barclayhedge.com/solutions/assets-under-management/hedge-fund-assets-under-
management/.

“Duffee (1998) finds that a unit drop in the Treasury bill rate causes the spread between corporate and
government bonds to rise by values ranging from 0.02 for intermediate-term AAA-rated corporate bonds to
0.42 for long-term BBB-rated bonds. An 80% adjustment of corporate bond yields to government bond yields
(i-e., a rise in the spread by 0.2) lies within these estimates.


https://www.barclayhedge.com/solutions/assets-under-management/hedge-fund-assets-under-management/
https://www.barclayhedge.com/solutions/assets-under-management/hedge-fund-assets-under-management/
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FIGURE 2.—Effect of a forward-guidance announcement about the path of short rates for the calibration
based on the main sample of nominal yields.

calibrations, and the equations describing the announcement’s effect, are provided in Ap-
pendix C. In each panel of Figure 2, the solid line represents the announcement’s effect,
and the dashed line represents the same effect when arbitrageurs are risk-neutral and the
EH holds. The change AF is negative, that is, the announcement is that future short rates
will be lower, and is set to —4 (—400 bps). The change reverts to zero at the rate k; =0.1
(half-life 6.93 years) in the left panel and «; = 0.2 (half-life 3.47 years) in the right panel.
When k7 = 0.1, yields are more affected because the same is true for expected future
short rates.

For both values of «, yields underreact relative to their EH counterparts. This reflects
the underreaction result of Proposition 2. The extent of underreaction increases with
maturity. When - = 0.1, underreaction is 25.6% for the 2-year yield, 35.1% for the 5-year
yield, 49.6% for the 10-year yield, 76.1% for the 20-year yield, and 102.6% for the 30-year
yield. When «; = 0.2, these numbers rise to 25.7%, 35.7%, 51.6%, 81.6%, and 111.4%,
respectively. Thus, forward guidance is effective in changing yields for short maturities,
but less so for longer maturities. To engineer a decline in the 10-year yield by 0.5 (50 bps),
for example, central banks need to lower the average of expected short rates over the next
10 years by about twice as much (100 bps). The calibration based on the sample of real
yields generates a similar number. The calibration based on the subsample of nominal
yields implies instead that the average of expected short rates must drop by about three
times as much (150 bps).

The second policy that we analyze is QE. We assume that QE purchases concern
government bonds only, and we model them as a decrease Af,(7) in the intercept of
preferred-habitat demand. (Equation (5) defines the demand intercept with a negative
sign.) We assume that the decrease is unanticipated, takes place at time zero, and reverts
deterministically to zero at a rate k.

Figure 3 shows the effect of QE on the term structure at time zero for the calibration
based on the main sample of nominal yields. The figures for the other two calibrations,
and the equations describing the effect of QE, are provided in Appendix C. In each panel
of Figure 3, the dotted, dashed—dotted, dashed, diamond, and triangle lines represent
the effect of QE purchases of 2-, 5-, 10-, 20-, and 30-year bonds, respectively. The solid
line represents the effect of QE purchases that conform to the maturity distribution used
by the Federal Reserve during QEL1, as reported in D’Amico and King (2013). All lines
are drawn for a change A6,(7) in the intercept of preferred-habitat demand that satisfies
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FIGURE 3.—Effect of QE, for the calibration based on the main sample of nominal yields.

fom Afy(1)dT = —0.12, that is, QE purchases are 12% of GDP. This is approximately the
value of government bonds purchased by the Federal Reserve during QE1, QE2, and
QE3. The demand change mean-reverts to zero at the rate k7 = 0.1 (half-life 6.93 years)
in the left panel and k; = 0.2 (half-life 3.47 years) in the right panel.

Figure 3 is the only one in this section that depends on the separate values of a and
(a, 6) rather than only on the products (a6, aa). An increase in the coefficient of arbi-
trageur risk aversion a holding (a6, aa) constant results in a proportionate increase in
the effects of QE. Relative effects across maturities do not change, that is, Figure 3 looks
the same after rescaling the y-axis. We use the value of a that generates the average effect
across the lower bound a = 6.78 and the upper bound a = 33.9.

The effects of QE on the term structure are larger when «, = 0.1, that is, when QE is
unwound over a longer period. Intuitively, QE lowers the yield of a bond because it lowers
the risk premia that arbitrageurs require to hold the bond. Moreover, the yield depends
not only on the risk premium that arbitrageurs require in the current instant, but on an
average of risk premia during the bond’s life. When QE is expected to be unwound more
slowly, risk premia in that average are impacted more.

The effects of QE have a global flavor as in Proposition 4, with some localization as
in Proposition 7. Consistent with Proposition 4, an increase in demand for bonds with
longer maturities generates a larger downward shift in the term structure. For example,
the term structure shifts downward more when QE purchases concern 30-year bonds than
when they concern 2-year bonds. That downward shift, however, is not larger across all
maturities: yields for maturities ranging from 1 to 3 years are more sensitive to purchases
of 2-year bonds than of 30-year bonds. More generally, and consistent with Proposition
7, an increase in demand for bonds with short (long) maturities has more pronounced
effects at the short (long) end of the term structure. For example, purchases of 2- and 5-
year bonds have an effect that peaks at short and intermediate maturities, while purchases
of 20- and 30-year bonds have an effect that peaks at long maturities. These features are
robust to different values of .

The effects of QE in Figure 3 are somewhat smaller than in the literature. Wiliams
(2014) summarizes a number of QE studies in the United States as suggesting that bond
purchases of $600 billion by the Federal Reserve reduced the 10-year yield by 0.15-0.25
(15-25 bps). Taking U.S. GDP at that time to be $15 trillion, the $600 billion purchases
are 4% of GDP. Hence, QE purchases of 12% of GDP should reduce the 10-year yield by
0.45-0.75. The corresponding effect in Figure 3, in the case where the maturities of QE
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purchases conform to the distribution used by the Federal Reserve during QE1, is 0.24
when ky = 0.1 and 0.19 when «, = 0.2. When «k, = 0.1, the range of the effect between
the upper and lower bound of « is 0.08-0.39. The calibration based on the subsample of
nominal yields generates the range 0.11-0.54, and that based on the sample of real yields
generates 0.09-0.44.

The discrepancy between our calibrations and the estimates from QE studies could
arise because some of the observed effect of QE was due to forward guidance about the
path of short rates. Additionally, arbitrageur risk aversion during the QE period could
have been larger than average because of capital losses and tighter regulation. The latter
explanation is consistent with the calibration based on the subsample of nominal yields
generating larger effects than those based on the main sample.

Figure 3 suggests that central banks seeking to maximize the effects of QE on yields
should concentrate their purchases at long maturities. Moreover, such purchases have
particularly large effects on long-maturity yields. In the extreme case where QE purchases
of 12% of GDP are concentrated at the 30-year maturity and where x, = 0.1, the 10-year
yield drops by 0.66 (instead of 0.24, under the maturity distribution used by the Federal
Reserve during QE1) and the 30-year yield drops by 2.51 (instead of 0.29). Of course, it
is not possible to buy 12% of GDP worth of 30-year bonds because their supply is below
that amount.

Even less extreme tilts toward long maturities, in a way consistent with available supply,
can generate sizeable effects. The Federal Reserve’s purchases during QE1 incorporated
a mild tilt: the average maturity of purchased bonds was 6.5 years, while that of all avail-
able coupon bonds was 5.7 years. To evaluate the effects of a stronger tilt, suppose that the
Federal Reserve did not change the total value of its purchases during QE1 but bought
15% of all available supply in any given maturity before moving to a shorter maturity
(hence not buying short maturities at all). The ceiling of 15% is not overly high: D’Amico
and King (2013) report that it was exceeded for the 6-8 and 10-12 maturity buckets. Un-
der the modified maturity distribution, QE purchases of 12% of GDP lower the 10-year
yield by 0.33 (instead of 0.24) and the 30-year yield by 0.59 (instead of 0.29).

5.3. Unconditional Moments

To compute unconditional moments of bond returns, we must choose values for
(7, 0o(7)). We assume that 6y(7) is proportional to 0(7), thus setting 6y(7) = 6y(e %" —
e™®7) for 7 < T, and 6,(7) =0 for 7 > T. We determine (7, 6,) by equating empirical
averages of yields to their model-generated counterparts. Since the estimation concerns
first moments, we use the longest period available in the GKS data set: we focus on nom-
inal yields and start the sample from June 1961. The empirical average of the 1-year
yield is 5.01. The empirical average of the 7-year yield, which is the longest maturity cov-
ered during the entire sample period, is 5.90. Our model matches these moments when
(7, a6y) = (4.80, 289).

The model-generated average yield rises with maturity, from 5.01 for the 1-year bond to
6.99 for the 30-year bond. The unconditional instantaneous expected excess return rises
with maturity as well, from 0.40% for the 1-year bond to 5.08% for the 30-year bond. The
unconditional Sharpe ratio drops from 0.320 for the 1-year bond to 0.206 for the 30-year
bond, but does so non-monotonically by first rising, until the 7-year maturity, to 0.365. The
rise in expected return with maturity reflects the rise in the yield, and is consistent with
the empirical evidence. Empirical Sharpe ratios, by contrast, decline with maturity across
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the entire maturity range.”” The increase in the Sharpe ratio that our model generates
for short maturities reflects the inverse hump shape of volatility shown in Figure 1, and
seems to be driven by the independence between the short rate and the demand factor.
The unconditional correlation between bond returns and the stochastic discount factor
rises from 0.842 for the 1-year bond to 1 for the 7-year bond, and subsequently drops to
0.563 for the 30-year bond. The formulas for the model-generated moments are provided
in Appendix C.

6. CONCLUSION

We model the term structure of interest rates that results from the interaction between
investors with preferences for specific maturities and risk-averse arbitrageurs. Our model
formalizes the preferred-habitat view of the term structure and embeds it into a modern
no-arbitrage framework. We use our model to study three main questions: how shocks to
the short rate, including monetary-policy actions by central banks, are transmitted to long
rates; how bond risk premia depend on the shape of the term structure; how changes in
preferred-habitat demand, including large-scale bond purchases by central banks, affect
the term structure. We provide qualitative answers as well as quantitative ones through a
calibration exercise.

Our approach can be extended in a number of directions. One direction is to derive
optimal debt issuance by governments or corporations when investors have preferences
for specific maturities. Work along these lines includes Greenwood, Hanson, and Stein
(2010), Guibaud, Nosbusch, and Vayanos (2013), and Bigio, Nuno, and Passadore (2019).
Another direction is to broaden the asset-pricing implications by allowing arbitrageurs to
trade additional assets. Work along these lines includes Gourinchas, Ray, and Vayanos
(2020) and Greenwood et al. (2020), who study the joint determination of bond prices
and exchange rates. A third direction is to analyze broader macroeconomic settings in
which term-structure shifts affect investment and output. Work along these lines includes
Ray (2019), who embeds our model within a new Keynesian framework.
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