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This supplement presents numerical illustrations of the pointwise identified and
pointwise sharp identified sets derived in Section 3 and Appendix A of our main pa-
per. Consistent with the paper’s focus on identification, these should be interpreted as
describing information in principle recoverable from a large auction sample.

WE ASSUME THAT THE JOINT DISTRIBUTION F(v� s) follows a Gaussian cop-
ula Cρ(Fv� s), where the marginal distribution of values Fv(·) is Normal(μ =
100�σ = 10) and the entry cost is c = 2. The correlation parameter ρ measures
the precision of S as a measure of V , with ρ = 0 generating the LS case and
ρ → 1 approaching the S case. In what follows, we present results for ρ = 0�2,
ρ = 0�75, and ρ = 0�95, representing minimally, moderately, and highly selec-
tive entry processes, respectively. Except where noted otherwise, we assume
potential competition N varies exogenously on the set N = {2�3� � � � �16}.

Pointwise Identified Set

We first illustrate the bounds derived in Section 2. Using the equilibrium
characterization in Theorem 1, it is straightforward to calculate the set of equi-
librium entry thresholds S = {s∗

2� � � � � s
∗
16} at each value of ρ considered. These

and the corresponding ex post distributions F∗(v; s∗
N) for each N are the ob-

jects identified by a standard (N�n�b) sample.
We next use Proposition 3 to obtain identified bounds F+(·|s) and F−(·|s) on

F(·|s). These bounds imply a pointwise identified set F0 in three-dimensional
space, for which we provide two sets of graphical representations below. First,
Figure S.1 illustrates the S dimension of our bounds for two values of v
across ρ. The “stairstep” nature of these bounds in s follows from lack of in-
formation on F∗(v; s) at points outside the identified set S . Meanwhile, Fig-
ure S.2 illustrates the V dimension of our bounds at a selection of thresholds
s∗
N in S . Note the lack of informative upper (lower) bounds at the minimum

(maximum) of S , a point to which we return when discussing sharpness below.
Finally, we translate bounds on F(·|·) derived from Proposition 3 into sharp

bounds on c as in Proposition 4. In the examples considered here, these turn
out to be quite tight: c ∈ [1�990�2�010] when ρ = 0�2, c ∈ [1�977�2�024] when
ρ= 0�75, and c ∈ [1�985�2�016] when ρ= 0�95, where as above true c = 2.
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(a) Bounds at v = 95, ρ = 0�2 (b) Bounds at v = 105, ρ= 0�2

(c) Bounds at v = 95, ρ= 0�75 (d) Bounds at v = 105, ρ = 0�75

(e) Bounds at v = 95, ρ= 0�95 (f) Bounds at v = 105, ρ= 0�95

FIGURE S.1.—Bounds on F(v|s) across S, N = {2� � � � �16}.
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(a) Bounds on F(v|s∗
N) for selected N , ρ= 0�2

(b) Bounds on F(v|s∗
N) for selected N , ρ = 0�75

(c) Bounds on F(v|s∗
N) for selected N , ρ= 0�95

FIGURE S.2.—Bounds on F(v|s) across V , N = {2� � � � �16}.



4 M. GENTRY AND T. LI

(a) Sharp bounds on F(v|s∗
N) at selected N , N = {2�3� � � � �16}

(b) Sharp bounds on F(v|s∗
N) at selected N , N = {2�15�16}

(c) Sharp bounds on F(v|s∗
N) at selected N , N = {2�9�15�16}

FIGURE S.3.—Pointwise sharp bounds on F(v|s), ρ= 0�95, various N .
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Pointwise Sharp Identified Set

We next apply the refinement in Appendix A to the initial identified sets F0

derived above. In particular, we first apply the test of sharpness in Proposition 5
on a grid in V . Where appropriate, we then iterate as in Proposition 6 to obtain
the pointwise sharp identified set.

Results of this procedure are encouraging: in all three examples, our initial
bounds are pointwise sharp everywhere they are informative. Refinement is
possible at some points with uninformative initial bounds, and in these cases
Proposition 6 yields the pointwise sharp identified set in a single iteration. But
on balance, the numerical results presented here suggest that the refinement
in Appendix A will not be critical in applications.

We conclude this section with a counterexample: a data generating process
(DGP) in which initially informative bounds can be refined. This example is
of necessity somewhat artificial: bounds on c contain relatively little informa-
tion on F(·|·), so to induce refinement we need both tight bounds on c and
a large gap in identified entry thresholds. Such a pattern is most likely to ob-
tain when the DGP involves a large gap in N at low competition levels, so for
clarity we consider the extreme case N = {2�15�16}. Figure S.3(b) plots the
results, which, as expected, show substantial gains in the sharp identified set.
In practice, however, it is difficult to envision applications where such large
gaps in N arise naturally, and even adding a single intermediary point (N = 9,
Figure S.3(c)) is sufficient to dissipate most gains. This, in turn, reinforces our
assessment that the initial bounds in Proposition 3 are likely to be sufficient in
most applications.
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