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Abstract. The supplementary material contains 7 appendices with additional results and some

omitted proofs. Appendix C introduces some notation. Appendix D includes a brief review of

differential geometry. Appendix E gathers the proofs of the key mathematical results in Appendix

A. Appendix F provides sufficient conditions for the µ-Donsker properties in Section 4. Appendix

G extends the theoretical analysis to include discrete covariates. Appendices H and I report the

results of 3 numerical simulations and an empirical application to the effect of race on mortgage

denials, respectively.

Appendix C. Notation

For a possibly multivariate random variable X, X denotes the interior of the support of X in

the part of the population of interest, µ denotes the distribution of X over X , and µ̂ denotes an

estimator of µ. We denote the expectation with respect to the distribution µ̃ by Eµ̃. We denote

the PE as ∆(x), the empirical PE as ∆̂(x), and ∂∆(x) := ∂∆(x)/∂x, the gradient of x 7→ ∆(x).

We also use a ∧ b to denote the minimum of a and b. For a vector v = (v1, . . . , vdv) ∈ Rdv , ‖v‖
denotes the Euclidian norm of v, that is ‖v‖ =

√
vTv, where the superscript T denotes transpose.

For a non-negative integer r and an open set K, the class Cr on K includes the set of r times

continuously differentiable real valued functions on K. The symbol  denotes weak convergence

(convergence in distribution), and →P denotes convergence in (outer) probability.

Appendix D. Background on Differential Geometry

We recall some definitions from differential geometry that are used in the analysis. For a

continuously differentiable function ∆ : B(X )→ R defined on an open set B(X ) ⊆ Rdx containing

the set X , x ∈ X is a critical point of ∆ on X , if

∂∆(x) = 0, (D.1)

where ∂∆(x) is the gradient of ∆(x); otherwise x is a regular point of ∆ on X . A value δ is

a critical value of ∆ on X if the set {x ∈ X : ∆(x) = δ} contains at least one critical point;

otherwise δ is a regular value of ∆ on X .
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In the multi-dimensional space, dx > 1, a function ∆ can have continuums of critical points.

For example, the function ∆(x1, x2) = cos(x2
1 +x2

2) has continuums of critical points on the circles

x2
1 + x2

2 = kπ for each positive integer k.

We recall now several core concepts related to manifolds from Spivak (1965) and Munkres

(1991).

Definition D.1 (Manifold). Let dk, dx and r be positive integers such that dx > dk. Suppose

that M is a subspace of Rdx that satisfies the following property: for each point m ∈ M, there

is a set V containing m that is open in M, a set K that is open in Rdk , and a continuous map

αm : K → V carrying K onto V in a one-to-one fashion, such that: (1) αm is of class Cr on K, (2)

α−1
m : V → K is continuous, and (3) the Jacobian matrix of αm, Dαm(k), has rank dk for each

k ∈ K. Then M is called a dk-manifold without boundary in Rdx of class Cr. The map αm is

called a coordinate patch on M about m. A set of coordinate patches that covers M is called an

atlas.

Definition D.2 (Connected Branch). For any subsetM of a topological space, if any two points

m1 and m2 cannot be connected via path in M, then we say that m1 and m2 are not connected.

Otherwise, we say that m1 and m2 are connected. We say that V ⊆ M is a connected branch of

M if all points of V are connected to each other and do not connect to any points in M\ V.

Definition D.3 (Volume). For a dx×dk matrix A = (x1, x2, ..., xdk) with xi ∈ Rdx , 1 6 i 6 dk 6

dx, let Vol(A) =
√

det(ATA), which is the volume of the parallelepiped P (A) with edges given

by the columns of A, P (A) = {c1x1 + · · ·+ cdkxdk : 0 6 ci 6 1, i = 1, . . . , dk}.

The volume measures the amount of mass in Rdk of a dk-dimensional parallelepiped in Rdx ,

dk 6 dx. This concept is essential for integration on manifolds, which we will discuss shortly.

First we recall the concept of integration on parameterized manifolds:

Definition D.4 (Integration on a parametrized manifold). Let K be open in Rdk , and let α :

K → Rdx be of class Cr on K, r > 1. The set M = α(K) together with the map α constitute a

parametrized dk-manifold in Rdx of class Cr. Let g be a real-valued continuous function defined

at each point of M. The integral of g over M with respect to volume is defined by∫
M
g(m)dVol :=

∫
K

(g ◦ α)(k)Vol(Dα(k))dk, (D.2)

provided that the right side integral exists. Here Dα(k) is the Jacobian matrix of the mapping

k 7→ α(k), and Vol(Dα(k)) is the volume of matrix Dα(k) as defined in Definition D.3.

The above definition coincides with the usual interpretation of integration. The integral can be

extended to manifolds that do not admit a global parametrization α using the notion of partition of

unity. This partition is a set of smooth local functions defined in a neighborhood of the manifold.

The following Lemma shows the existence of the partition of unity and is proven in Lemma 25.2

in Munkres (1991).
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Lemma D.1 (Partition of Unity on M of class C∞). Let M be a dk-manifold without boundary

in Rdx of class Cr, r > 1, and let ϑ be an open cover of M. Then, there is a collection P = {pi ∈
C∞ : i ∈ I}, where pi is defined on an open set containing M for all i ∈ I, with the following

properties: (1) For each m ∈M and i ∈ I, 0 6 pi(m) 6 1, (2) for each m ∈M there is an open

set V ∈ ϑ containing m such that all but finitely many pi ∈ P are 0 on V, (3) for each m ∈ M,∑
pi∈P pi(m) = 1, and (4) for each pi ∈ P there is an open set U ∈ ϑ, such that supp(pi) ⊆ U .

Now we are ready to recall the definition of integration on a manifold.

Definition D.5 (Integration on a manifold with partition of unity). Let ϑ := {ϑj : j ∈ J } be

an open cover of a dk-manifold without boundary M in Rdx of class Cr, r > 1. Suppose there is

an coordinate patch αj : Vj ⊆ Rdk → ϑj , that is one-to-one and of class Cr on Vj for each j ∈ J .

Denote Kj = α−1
j (M∩ ϑj). Then for a real-valued continuous function g defined on an open set

that contains M, the integral of g over M with respect to volume is defined by:∫
M
g(m)dVol :=

∑
j∈J

∑
i∈I

∫
Kj

[(pig) ◦ αj ](k)Vol(Dαj(k))dk, (D.3)

provided that the right side integrals exist, where {pi ∈ C∞ : i ∈ I} is a partition of unity on M
of class C∞ that satisfies the conditions of Lemma D.1. Munkres (1991, p. 212) shows that the

integral does not depend on the choice of cover and partition of unity.

Appendix E. Proofs of Appendix A

To analyze the analytical properties of the SPE-function, it is convenient to treat the PE as a

multivariate real-valued function

∆ : B(X )→ R,
where B(X ) ⊆ Rdx contains the set X . Let µ be a distribution function. The distribution of ∆

with respect to µ is the function F∆,µ : R→ [0, 1] with

F∆,µ(δ) =

∫
1{∆(x) 6 δ}dµ(x). (E.4)

The SPE-function is the map

∆∗µ : U ⊆ [0, 1]→ R,
defined at each point as the left-inverse function of F∆,µ, i.e.,

∆∗µ(u) := F←∆,µ(u) := inf
δ∈R
{F∆,µ(δ) > u}. (E.5)

From this functional perspective, the map u 7→ ∆∗µ(u) is the result of applying a sorting operator

to the map x 7→ ∆(x) that sorts the values of ∆ in increasing order weighted by µ. The next

subsections provide the proofs of 3 results:

1) Lemma A.1, which characterizes some analytical properties of the distribution function

δ 7→ F∆,µ(δ) and the sorted function u 7→ ∆∗µ(u),
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2) Lemma A.2, which derives the functional derivatives of F∆,µ and ∆∗µ with respect to ∆

and µ, and

3) Lemma A.3, which derives the functional derivatives of the related classification operator

Λ−∆,µ,δ with respect to ∆, µ and δ.

E.1. Proof of Lemma A.1. We use the following results in the proof of Lemma A.1.

Lemma E.1. If ∆ : B(X ) → R is C1 on an open set B(X ) ⊆ Rdx, then for any compact subset

X of B(X ), the sets of critical points and critical values of x 7→ ∆(x) on X are closed.

Proof. (1) Critical points: since x 7→ ∂∆(x) is continuous on X and X is compact, the set of

points x ∈ X such that ∂∆(x) = 0 is closed.

(2) Critical values: since x 7→ ∆(x) is continuous and X is compact, the image set ∆(X ) is a

compact set in R. For any sequence of critical values {δi}∞i>1 in ∆(X ), there is a corresponding

sequence {xi}i>1 in X such that ∆(xi) = δi. Suppose {δi}∞i>1 converges to δ0 ∈ ∆(X ). By

compactness of X , we can find a converging subsequence of {xi}i>1 with limit x0 ∈ X such that

∆(xi) = δi. Then by continuity of x 7→ ∂∆(x), ∂∆(x0) = 0. By continuity of x 7→ ∆(x),

∆(x0) = δ0, and therefore δ0 = ∆(x0) is a critical value of ∆(x). Hence the set of critical values

is closed. �

Lemma E.2. For a compact set V in a metric space D, suppose there is an open cover {θi : i ∈ I}
of V. Then there exists a finite open sub-cover of V and η > 0, such that for every point x ∈ V,

the η-ball around x is contained in the finite sub-cover.

Proof of Lemma E.2. Since V is a compact set in the metric space D (with metric ‖ · ‖D), then

any open cover {θi : i ∈ I} of V has a finite open subcover {θ̃i : i = 1, 2, ...,m} which covers V.

Let Θ = ∪mi=1θ̃i. We prove the statement of the lemma by contradiction. Suppose for any i > 0,

there exists some point xi ∈ D such that d(xi,V) := infv∈V ‖xi − v‖D < i−1 and xi /∈ Θ. Then,

by compactness of V there exists vi ∈ V such that d(xi,V) = d(xi, vi) < i−1. Let v0 be the limit

of {vi : i > 1}. By compactness of V, v0 ∈ V. Since d(xi, v0) → 0 as i → ∞ and Θ is an open

cover of V, there must be a open ball B(v0) around v0 such that B(v0) ⊆ Θ, which contradicts

with xi /∈ Θ, for i large enough. Therefore there must be an η such that the η-ball around any

x ∈ V is covered by Θ. �

Proof of Lemma A.1. The proof of statement (2) follows directly from the inverse function theo-

rem.

The proof of statement (1) is divided in two steps. Step 1 constructs a finite set of open

rectangles that covers the set M∆(δ) and has certain properties that allow us to apply a change

of variable to the derivative of δ 7→ F∆,µ(δ). Step 2 expresses the derivative as an integral on a

manifold.



THE SORTED EFFECTS METHOD 5

For a subset S ⊆ Rdx and η > 0, define Bη(S) := {x ∈ Rdx : d(x,S) = infs∈S ‖x − s‖ < η}.
Similarly, for any δ ∈ R and η > 0, define Bη(δ) := (δ − η, δ + η). Without loss of generality, we

assume that M∆(δ) only has one connected branch. We will discuss the case where M∆(δ) has

multiple connected branches at the end of the proof of this lemma.

Step 1. For any regular value δ ∈ D, the set M∆(δ) is a (dx − 1)-manifold in Rdx of class C1

by Theorem 5-1 in Spivak (1965, p. 111). Denote M̃∆(δ) := {x ∈ B(X ) : ∆(x) = δ} and

M̃∆(Bη(δ)) := ∪δ′∈Bη(δ)M̃∆(δ′) for η > 0. These enlargements of the set M∆(δ) are used to

apply a change of variable technique to integrals on M∆(δ).

By assumptions S.1-S.2, there exists η1 > 0 small enough and C > c > 0 such that:

(1) Bη1(δ) := [δ − η1, δ + η1] ⊆ ∆(X ) := {∆(x) : x ∈ X} and contains no critical values of ∆

on X , and Bη1(X ) ⊆ B(X ).

(2) inf
x∈M̃∆(Bη1 (δ))∩Bη1 (X )

‖∂∆(x)‖ > c.

(3) sup
x∈M̃∆(Bη1 (δ))∩Bη1 (X )

‖∂∆(x)‖ < C.

(4) For any η < η1, M̃∆(δ) ∩Bη(X ) is a (dx − 1)-manifold in Rdx of class C1.

Indeed, by Lemma E.1, the set of regular values is open. Therefore, there exists a small

neighborhood Bη(δ) with η > 0 such that there exists no critical value of ∆ on X in Bη(δ). Then

any η1 < η satisfies statement (1). Statements (2) and (3) follow by the compactness of X , the

continuity of mapping x 7→ ∂∆(x), and assumptions S.1 and S.2. Statement (4) is implied by

Theorem 5-1 in Spivak (1965, p. 111).

Next, we establish a finite cover of M̃∆(Bη2(δ)) ∩ Bη2(X ) with certain good properties, for

some η2 < η1.

For any η3 < η1, M̃∆(Bη3(δ)) ∩Bη3(X ) satisfies the properties (2)–(4) stated above. Consider

the rectangles θ(x) := X1(x) × ... × Xdx(x) centered at x = (x1, ..., xdx) where Xk(x) := (xk −
ak(x), xk + ak(x)), with ak(x) > 0, k = 1, 2, ..., dx. Let A(x) := sup16k6dx ak(x) be such that:

M̃∆(Bη3(δ)) ∩Bη3(X ) ⊆ ∪
x∈M̃∆(δ)∩Bη3 (X )

θ(x) ⊆ M̃∆(Bη1(δ)) ∩Bη1(X ),

which can be fulfilled by using small enough η3.

By continuity of x 7→ ∂∆(x), for small enough A(x) and any x′ ∈ θ(x), there always exists

an index i(x) ∈ {1, 2, ..., dx} such that |∂xi(x)
∆(x′)| > c

2
√
dx

since ‖∂∆(x′)‖ > c for all x′ ∈ θ(x)

by the property (2) above, where ∂x := ∂/∂x. Also we can find a finite set of θ(x)’s, denoted as

Θ := {θ(xi)}mi=1, such that Θ forms a finite open cover of M̃∆(Bη3(δ)) ∩Bη3(X ). We rename these

open rectangles as θi := θ(xi), i ∈ {1, 2, ...,m}, where θi = Xi1 × ... × Xidx and Xik := Xk(x
i),

k ∈ {1, . . . , dx}.
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For a given i ∈ {1, 2, ...,m}, consider the center of θi, denoted as xi. Without loss of generality,

we can assume that i(xi) = dx. Then, for all x′ ∈ θ(xi), |∂xdx∆(x′)| > c/2
√
dx. This means

that ∆(x) is partially monotonic in xdx on θ(xi). By the implicit function theorem, there exists

g such that g(x′1, x
′
2, ..., x

′
dx−1, δ

′) = x′dx , for any x′ = (x′1, x
′
2, ..., x

′
dx

) ∈ M̃∆(Bη3(δ)) ∩ θ(xi) and

δ′ = ∆(x′). Also by the implicit function theorem,

∂g(x′1, ..., x
′
dx−1, δ

′) =
−(∂x1∆(x′), ∂x2∆(x′), ..., ∂xdx−1

∆(x′),−1)

∂dx∆(x′)
.

So ‖∂g(x′1, ..., x
′
dx−1, δ

′)‖ 6 ‖∂∆(x′)‖
|∂xdx∆(x′)| 6

2(C+1)
√
dx

c := Λ because |∂xdx∆(x′)| > c/2
√
dx and

‖∂∆(x′)‖ 6 C. Therefore,

|g(x′1, x
′
2, ..., x

′
dx−1, δ

′)− xidx | = |g(x′1, x
′
2, ..., x

′
dx−1, δ

′)− g(xi1, x
i
2, ..., x

i
dx−1, δ)|

6 sup
x′∈θ(x),δ′=∆(x′)

‖∂g(x1, x2, ..., xdx−1, δ
′)‖ · ‖(x1 − xi1, x2 − xi2..., xdx−1 − xidx−1, δ

′ − δ)‖

6 Λ(
√
a2

1(xi) + ...+ a2
dx−1(xi) + η3),

since ‖(x1 − xi1, ..., xdx−1 − xidx−1, δ
′ − δ)‖ 6 ‖(x1 − xi1, ..., xdx−1 − xidx−1)‖ + |δ′ − δ|, with

‖(x1 − xi1, ..., xdx−1 − xidx−1)‖ 6
√
a2

1(xi) + ...+ a2
dx−1(xi) and |δ′ − δ| < η3.

We can choose a1(xi) = a2(xi) = ... = adx−1(xi) = η4 and adx(xi) = 2(1+η3)Λ(
√
dx − 1η4+η3),

using η4 small enough in order to fulfill the following property of θi: with η4 small enough,

M̃∆(Bη3(δ)) ∩ θi ⊆ Xi1 × ...×Xi,dx−1 ×
(
xidx −

adx(xi)

2(1 + η3)
, xidx +

adx(xi)

2(1 + η3)

)
,

or geometrically, the tube M̃∆(Bη3(δ)) does not intersect θi’s faces except at the ones which

are parallel to the vector (0, ..., 0, 1) ∈ Rdx . In such a case, we say that M̃∆(Bη3(δ)) intersects

θi at the axis xdx . More generally, for all i ∈ {1, 2, ...,m}, M̃∆(Bη3(δ)) intersects θi at axis

i(xi), where xi is the center of θi. This property implies that g is a well-defined injection from

Xi1× ...×Xi,dx−1×Bη3(δ) to Xi1× ...×Xi,dx , for i ∈ {1, . . . ,m}, which will allow us to perform

a change of variable in the equation (E.7). Such a property holds for any η2 < η3.

Step 2. Let η2 be such that 0 < η2 < η3. We first apply partition of unity to the open cover

Θ = {θi}mi=1 of M̃∆(Bη2(δ)) ∩Bη2(X ) of Step 1.

By Lemma D.1, for the finite open cover Θ of the manifold M̃∆(Bη2(δ))∩Bη2(X ), we can find

a set of C∞ partition of unity pj , 1 6 j 6 J on Θ with the properties given in the lemma.

Our main goal is to compute

∂δF∆,µ(δ) = lim
h→0

F∆,µ(δ + h)− F∆,µ(δ)

h
.

Denote B+
η (δ) = [δ, δ + η], for any δ ∈ R and η > 0. Denote M∆(B+

η (δ)) = ∪δ′∈B+
η (δ)M∆(δ′),

and M̃∆(B+
η (δ)) = ∪δ′∈B+

η (δ)M̃∆(δ′).
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For any 0 < η < η2, M̃∆(B+
η (δ)) ⊆ M̃∆(Bη(δ)). Therefore, the properties (1) to (4) stated in

Step 1 are satisfied when we replace M̃∆(Bη(δ)) by M̃∆(B+
η (δ)). Note that,

F∆,µ(δ + η)− F∆,µ(δ) =

∫
x∈X

1(δ 6 ∆(x) 6 δ + η)µ′(x)dx

=

∫
M∆(B+

η (δ))
µ′(x)dx =

∫
M̃∆(B+

η (δ))
µ′(x)dx =

∫
M̃∆(B+

η (δ))∩Θ
µ′(x)dx

=

∫
M̃∆(B+

η (δ))∩(∪mi=1θi)
µ′(x)

J∑
j=1

pj(x)dx =
∑

16i6m,16j6J

∫
M̃∆(B+

η (δ))∩θi
pj(x)µ′(x)dx. (E.6)

This third and fourth equalities hold because µ′(x) = 0 for any x ∈ M̃∆(B+
η (δ)) \M∆(B+

η (δ))

and x ∈ M̃∆(B+
η (δ)) \Θ, respectively.

For any i ∈ {1, 2, ...,m}, without loss of generality, suppose that M∆(B+
η (δ)) intersects θi =

Xi1 × ...×Xidx at the xdx axis. Then, |∂xdx∆(x)| > c/
√
dx on θi, and we can apply the implicit

function theorem to show existence of the C1 implicit function g : Xi1 × ...×Xi(dx−1) ×B+
η (δ)→

Xidx , such that ∆(x1, ..., xdx−1, g(x1, ..., xdx−1, δ
′)) = δ′ for all (x1, ..., xdx−1, δ

′) ∈ Xi1 × ... ×
Xi(dx−1) ×B+

η (δ). Define the injective mapping ψdx as:

ψdx : Xi1 × ...×Xi(dx−1) ×B+
η (δ)→ Xi1 × ...×Xi(dx−1) ×Xi(dx),

ψdx(x−dx , δ
′) = (x−dx , g(x−dx , δ

′)) for x−dx := (x1, x2, ..., xdx−1).

In equation (E.6), we apply a change of variable defined by the map ψdx to the (i, j)-th element

of the sum:∫
θi∩M̃∆(B+

η (δ))
pj(x)µ′(x)dx =

∫
Xi1×...×Xi(dx−1)×B+

δ (η)
(pj ◦ ψdx) · (µ′ ◦ ψdx)|det(Dψdx)|dδ′dx−dx

=

∫
Xi1×...×Xi(dx−1)

∫
B+
δ (η)

(pj ◦ ψdx) · (µ′ ◦ ψdx)

|∂xdx∆ ◦ ψdx |
dδ′dx−dx

= η

∫
Xi1×...×Xi(dx−1)

(pj ◦ ψdx) · (µ′ ◦ ψdx)

|∂xdx∆ ◦ ψdx |
dx−dx + o(η). (E.7)

The second equality follows because

Dψdx(x−d, δ) =


1 0 ... 0

0 1 ... 0

... ... ... ...

0 ... ... ∂δg(x−dx , δ)

 =


1 0 ... 0

0 1 ... 0

... ... ... ...

0 ... ... 1/∂xdx∆(x̃)

 ,
where x̃ = ψdx(x−d, δ).

The last equality follows as η → 0, because by the uniform continuity of

(x−dx , δ
′) 7→ (pj ◦ ψdx) · (µ′ ◦ ψdx)/|∂xdx∆ ◦ ψdx |

∣∣∣
(x−dx ,δ

′)
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over (x−dx , δ
′) ∈ Xi1 × ...×Xi(dx−1) × B+

η (δ). In (E.7), the last component of ψdx is fixed to be

δ without being specified for simplicity. We will maintain this convention in the rest of the proof

whenever the variable of integration is x−dx (excluding xdx).

Next, we write the first term of (E.7) as an integral on a manifold, which is

η

∫
Xi1×...×Xi(dx−1)

(pj ◦ ψdx) · (µ′ ◦ ψdx)

|∂xdx∆ ◦ ψdx |
dx−dx = η

∫
M̃∆(δ)∩θi

pj(x)µ′(x)

‖ ∂∆(x) ‖
dVol. (E.8)

Summing up over i and j in (E.7) and using Definition 5.5,∑
16i6m,16j6J

∫
M̃∆(B+

η (δ))∩θi
pj(x)µ′(x)dx = η

∫
M̃∆(δ)∩Θ

µ′(x)

‖ ∂∆(x) ‖
dVol + o(η). (E.9)

Let us explain(E.8). Equation (E.8) is calculated using the following fact: The mapping α :

Xi1 × ...×Xidx−1 → Xi1 × ...×Xidx such that α(x1, ..., xdx−1) = (x1, ..., xdx−1, g(x1, ..., xdx−1, δ))

has Jacobian matrix

DαT(x−dx) =


1 0 ... 0 ∂x1g(x−dx)

0 1 ... 0 ∂x2g(x−dx)

... ... ... ... ...

0 ... ... 1 ∂xdx−1
g(x−dx)

 =


1 0 ... 0 (∂x1∆/∂xdx∆)(x̃)

0 1 ... 0 (∂x2∆/∂xdx∆)(x̃)

... ... ... ... ...

0 ... ... 1 (∂xdx−1
∆/∂xdx∆)(x̃)

 ,
where x̃ = (x1, ..., xdx−1, g(x1, ..., xdx−1, δ)). The volume of Dα is Vol(Dα) =

√
det(DαTDα),

where DαTDα = Idx−1 + ∂g∂gT. By the Matrix Determinant Lemma,

Vol(Dα)(x−dx) =
√

1 + ∂gT∂g = ‖∂∆‖/|∂xdx∆|
∣∣∣
x=x̃

.

Hence, the left hand side of equation (E.8) is:

η

∫
Xi1×...×Xi(dx−1)

(pj ◦ ψdx) · (µ′ ◦ ψdx)

‖∂∆ ◦ ψdx‖
Vol(Dα)dx−dx ,

and it can be further re-expressed as the right side of (E.8) using Definition 5.4.

By equations (E.6) and (E.9),

F∆,µ(δ + η)− F∆,µ(δ)

η
=

∫
M∆(δ)

µ′(x)

‖ ∂∆(x) ‖
dVol + o(1), (E.10)

where we use that µ′(x) = 0 for all x ∈ M̃∆(δ) \M∆(δ). Similarly, we can show that

F∆,µ(δ)− F∆,µ(δ − η)

η
=

∫
M∆(δ)

µ′(x)

‖ ∂∆(x) ‖
dVol + o(1).

Thus, we conclude that F∆,µ(δ) is differentiable at δ ∈ D with derivative

f∆,µ(δ) := ∂δF∆,µ(δ) =

∫
M∆(δ)

µ′(x)

‖ ∂∆(x) ‖
dVol.
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Finally, ifM∆(δ) has multiple branches but a finite number of them, we can repeat Step 1 and

2 in the proof above for each individual branch. Since the number of connected branches is finite,

the remainders in equation (E.10) converge to 0 uniformly. Thus, adding up the results for all

connected branches in equation (E.10), the statements of Lemma A.1 hold. �

E.2. Proof of Lemma A.2. We use the following results in the proof of Lemma A.2.

Lemma E.3 (Continuity). Let f be a measurable function defined on Bη(X ) ⊂ B(X ) which

vanishes outside X , where η > 0 is a constant. Let δ be a regular value of ∆ on X . Suppose f

is continuous on M̃∆(Bη1(δ)) ∩Bη1(X ) for any δ ∈ D and some small η1 such that 0 < η1 < η.

Then, δ 7→
∫
M∆(δ) fdVol is continuous on D.

Proof. First, we follow Step 1 in the Proof of Lemma A.1. Suppose we have a set of open rectangles

Θ = {θ1, ..., θm} such that M̃∆(Bη2(δ)) ∩Bη2(X ) ⊂ ∪mi=1θi ⊂ ∪mi=1θi ⊂ M̃∆(Bη1(δ))∩Bη1(X ) for

any η2 < η3, where η3 is a small enough positive number, η3 < η1. Moreover, let η3 be small

enough such that all δ′ ∈ Bη3(δ) are regular values. By compactness of ∪mi=1θi, f is bounded and

uniformly continuous on ∪mi=1θi.

By construction, θi, i = 1, 2, ...,m, satisfies that M̃∆(Bη3) intersects θi at axis i(θi), for any

η2 < η3.

Then, following Step 2 in the Proof of Lemma A.1, there exists a set of C∞ partition of unity

functions x 7→ pj(x) of Θ, j = 1, 2, ..., J .

Then, for any δ′ ∈ Bη3(δ), by the definition of partition of unity,

∫
M∆(δ′)

fdVol =
∑

16i6m,16j6J

∫
M̃∆(δ′)∩θi

pj(x)f(x)dVol. (E.11)

The equation (E.11) holds since f(x) = 0 for all x /∈ X .

To show that
∫
M∆(δ′) fdVol converges to

∫
M∆(δ) fdVol as δ′ converges to δ, it suffices to show

that
∫
M̃∆(δ′)∩θi

pj(x)f(x)dVol converges to
∫
M̃∆(δ)∩θi

pj(x)f(x)dVol as δ′ converges to δ, for all

i = 1, 2, ...,m and j = 1, 2, ..., J .

Without loss of generality, assume that M̃∆(Bη3(δ)) intersects θi at axis i(θi) = dx. Then,

there exists constants c > 0 and C > 0 such that ∂xdx∆(x) > c and ‖∂∆(x)‖ < C for all x ∈ θi,
i = 1, 2, ...,m.

We can apply the implicit function theorem to establish existence of the C1 function g :

Xi1 × ... × Xi(dx−1) × B+
η (δ) → Xidx , such that ∆(x1, ..., xdx−1, g(x1, ..., xdx−1, δ

′)) = δ′ for all

(x1, ..., xdx−1, δ
′) ∈ Xi1 × ...×Xi(dx−1) ×Bη(δ). Define the one-to-one mapping ψdx as:

ψdx : Xi1 × ...×Xi(dx−1) ×B+
η (δ)→ Xi1 × ...×Xi(dx−1) ×Xi(dx),
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where ψdx(x−dx , δ
′) = (x−dx , g(x−dx , δ

′)) for x−dx := (x1, x2, ..., xdx−1). Note that ψdx and g are

both C1 functions.

For any δ′ such that |δ′ − δ| < η3, by the change of variables we have:∫
M̃∆(δ′)∩θi

pj(x)f(x)dVol =

∫
X1×X2×...×Xdx−1

(pjf) ◦ ψdx(x−dx , δ
′)
‖∂∆ ◦ ψdx(x−dx , δ

′)‖
|∂xdx∆ ◦ ψdx(x−dx , δ

′)|
dx−dx .

(E.12)

Since |∂xdx∆◦ψdx(x−dx , δ
′)| = |∂xdx∆|x=ψdx (x1,...,xdx−1,δ′) > c for all δ′ ∈ Bη3(δ) and x−dx ∈ X1×

X2× ...×Xdx−1 and pj , f , ∂∆ and ∂xdx∆ are uniformly continuous functions on M̃∆(Bη3(δ))∩Bi,
conclude that the map

(pjf) ◦ ψdx
‖∂∆◦ψdx‖
|∂xdx∆◦ψdx |

is uniformly continous on X1 × ...×Xdx−1 ×Bη3(δ).

Since X1×...×Xdx−1 and is bounded, it immediately follows that δ′ 7→
∫
M̃∆(δ′)∩θi

pj(x)f(x)dVol

is continuous at δ′ = δ, and hence

δ′ 7→
∫
M∆(δ′)

fdVol =
∑

16i6m,16j6J

∫
M̃∆(δ′)∩θi

pj(x)f(x)dVol

is continuous at δ′ = δ.

This argument applies to every δ ∈ D, and by compactness of D the continuity claim extends

to the entire D. �

Lemma E.4 (Hadamard differentiability of ∆ 7→ F∆,µ and ∆ 7→ ∆∗µ ). Suppose that S.1-S.2 hold.

Then:

(a) The map F∆,µ(δ) : F→ R is Hadamard-differentiable uniformly in δ ∈ D at ∆ tangentially

to F0, with the derivative map ∂∆F∆,µ(δ) : F0 → R defined by

G 7→ ∂∆F∆,µ(δ)[G] := −
∫
M∆(δ)

G(x)µ′(x)

‖∂∆(x)‖
dVol.

(b) The map ∆∗µ(u) : F → R is Hadamard-differentiable uniformly in u ∈ U at ∆ tangentially

to F0, with the derivative map ∂∆∆∗µ(u) : F0 → R defined by:

G 7→ ∂∆∆∗µ(u)[G] := −
∂∆F∆,µ(∆∗µ(u))[G]

f∆,µ(∆∗µ(u))
.

Proof of Lemma E.4. To shows statement (a), for any Gn → G ∈ F0 under sup-norm such that

∆ + tnGn ∈ F, and tn → 0, we consider

F∆+tnGn,µ(δ)− F∆,µ(δ)

tn
.

By assumption, any function G ∈ F0 is bounded and uniformly continuous on B(X ). Hence, Gn

is uniformly bounded for n > N , since Gn → G in sup-norm.
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For any δ ∈ D we consider a procedure similar to Lemma A.1. We use the same notation as in

Step 1 of the proof of Lemma A.1. Suppose for η1 > 0 small enough, we have a rectangle cover

Θ = ∪mi=1θi ⊆ B(X ) of M̃∆(Bη1(δ)) ∩Bη1(X ) such that for all η < η1, M̃∆(Bη(δ)) intersects

each θi at some axis i(θi), 1 6 i 6 m. As before, there is a partition of unity {pj}Jj=1 on the cover

sets Θ = {θi}mi=1. As in the proof of Lemma A.1, we can rewrite∫
X [1{∆(x) + tnGn(x) 6 δ} − 1{∆(x) 6 δ}]µ′(x)dx

tn

=
∑

16i6m,16j6J

∫
M̃∆(B+

η (δ))∩θi
pj(x)

[1{∆(x) + tnGn(x) 6 δ} − 1{∆(x) 6 δ}]µ′(x)

tn
dx.

Then, for any fixed positive number |ζ|, there existN large enough such that supx∈B(X ),n>N |Gn−
G| < |ζ|. Moreover, for any x ∈ B(X ), and large enough n,

1{∆(x) + tnGn(x) 6 δ} 6 1{∆(x) + tn(G(x)− ζ) 6 δ}.

As in Step 2 of the proof of Lemma A.1, suppose θi = Xi1 × ... ×Xidx intersects M̃∆(Bη(δ))

at i(θi) = xdx . Define the parametrization

ψdx : Xi1 × ...×Xi,dx−1 ×Bη(δ) 7→ θi,

ψdx(x−dx , δ
′) = (x−dx , g(x−dx , δ

′)),

where g(x−dx , δ
′) is the implicit function derived from equation ∆(x) = δ′, for any δ′ ∈ Bη(δ).

Therefore, for large enough n,∫
M̃∆(B+

η (δ))∩θi
pj(x)

[1{∆(x) + tnGn(x) 6 δ} − 1{∆(x) 6 δ}]µ′(x)

tn
dx

6

∫
M̃∆(Bη(δ))∩θi

[1{∆(x) + tn(G(x)− ζ) 6 δ} − 1{∆(x) 6 δ}]µ′(x)dx

tn
.

Next, by a change of variables ψ−1
dx

from θi to Xi1 × ...×Xi,dx−1 ×Bη(δ),∫
M̃∆(Bη(δ))∩θi

pj(x)
1{δ 6 ∆(x) 6 δ − tn(G(x)− ζ)}µ′(x)

tn
dx

=

∫
Xi1×...×Xi,dx−1

∫
Bη(δ)

(pj · µ′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|

1{δ 6 δ′ 6 δ − tn(G ◦ ψdx(x−dx , δ)− ζ)}
tn

dδ′dx−dx

=

∫
Xi1×...×Xi,dx−1

∫
Bη(δ)∩[δ,δ−tn(G◦ψdx (x−dx ,δ)−ζ)]

(pj · µ′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|tn

dδ′dx−dx

6 −
∫
Xi1×...×Xi,dx−1

(pj · µ′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G ◦ ψdx(x−dx , δ)− ζ)dx−dx + o(η)
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= −
∫
θi∩M̃∆(δ)

pj(x)µ′(x)
G(x)− ζ
‖ ∂∆(x) ‖

dVol + o(η)

= −
∫
θi∩M∆(δ)

pj(x)µ′(x)
G(x)− ζ
‖ ∂∆(x) ‖

dVol + o(η),

where the inequality in the above equation holds by continuity of (x−dx , δ
′) 7→ (pj ·µ′)◦ψdx(x−dx , δ

′)/|∂xdx∆◦
ψdx(x−dx , δ

′)|. More specifically, fixing η > 0 and x−dx , for tn → 0,

Bη(δ) ∩ [δ, δ − tn(G ◦ ψdx(x−dx , δ)− ζ)] = [δ, δ − tn(G ◦ ψdx(x−dx , δ)− ζ)]

and
(pj · µ′) ◦ ψdx(x−dx , δ

′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|
→ (pj · µ′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|

as δ′ → δ. The last equality above holds because µ′(x) = 0 for all x ∈ M̃∆(δ) \M∆(δ).

Since m and J are fixed for any n > N , and |G ◦ψdx(x−dx , δ)− ζ| is bounded by some absolute

constant,
∑

j pj(x) = 1 and pj(x) > 0, we can let ζ → 0 to conclude that:

lim
n→∞

F∆+tnGn,µ(δ)− F∆,µ(δ)

tn
6

m∑
i=1

J∑
j=1

−
∫
θi∩M∆(δ)

pj(x)µ′(x)
G(x)

‖ ∂∆(x) ‖
dVol.

The right side is given by:

−
∫
M∆(δ)

µ′(x)G(x)

‖∂∆(x)‖
dVol.

On the other hand,

1(∆(x) + tnGn(x) 6 δ) > 1(∆(x) + tn(G(x) + ζ) 6 δ)

for some ζ > 0. So,∫
M̃∆(B+

η (δ))∩θi
pj(x)

[1{∆(x) + tnGn(x) 6 δ} − 1{∆(x) 6 δ}]µ′(x)

tn
dx

>

∫
M̃∆(Bη(δ))∩θi

[1{∆(x) + tn(G(x) + ζ) 6 δ} − 1{∆(x) 6 δ}]µ′(x)dx

tn
.

And, by a change of variables ψ−1
dx

from θi to Xi1 × ...×Xi,dx−1 ×Bη(δ),∫
M̃∆(Bη(δ))∩θi

pj(x)
1{δ 6 ∆(x) 6 δ − tn(G(x) + ζ)}µ′(x)

tn
dx

=

∫
Xi1×...×Xi,dx−1

∫
Bη(δ)

(pj · µ′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|

1{δ 6 δ′ 6 δ − tn(G ◦ ψdx(x−dx , δ) + ζ)}
tn

dδ′dx−dx

=

∫
Xi1×...×Xi,dx−1

∫
Bη(δ)∩[δ,δ−tn(G◦ψdx (x−dx ,δ)+ζ)]

(pj · µ′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|tn

dδ′dx−dx

> −
∫
Xi1×...×Xi,dx−1

(pj · µ′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G ◦ ψdx(x−dx , δ) + ζ)dx−dx − o(η)
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= −
∫
θi∩M̃∆(δ)

pj(x)µ′(x)
G(x) + ζ

‖ ∂∆(x) ‖
dVol− o(η)

= −
∫
θi∩M∆(δ)

pj(x)µ′(x)
G(x) + ζ

‖ ∂∆(x) ‖
dVol− o(η).

Let ζ → 0 and η → 0, it follows that

lim
n→∞

F∆+tnGn,µ(δ)− F∆,µ(δ)

tn
> −

∫
M∆(δ)

µ′(x)G(x)

‖∂∆(x)‖
dVol.

Combining the two inequalities, we conclude that F∆,µ(δ) is Hadamard-differentiable at ∆

tangentially to F0 with derivative

∂∆F∆,µ(δ)[G] = −
∫
M∆(δ)

µ′(x)G(x)

‖∂∆(x)‖
dVol.

To show that the result holds uniformly in δ ∈ D, we use the equivalence between uniform

convergence and continuous convergence (e.g., Resnick (1987, p.2)). Take a sequence δn in D that

converges to δ ∈ D. Then, the preceding argument applies to this sequence and ∂∆F∆,µ(δn)[G]→
∂∆F∆,µ(δ)[G] by uniform continuity of δ 7→ ∂∆F∆,µ(δ)[G] on D, which holds by Lemma E.3

because G, µ′, and ‖∂∆‖ are continuous on X and D excludes neighborhoods of the critical values

of ∆ in X .

Tho show statement (b), note that by statement (a), Hadamard differentiability of the quantile

map, see e.g., Lemma 3.9.20 in van der Vaart and Wellner (1996), and the chain rule for Hadamard

differentiation, the inverse map ∆∗µ(u) is Hadamard differentiable at ∆ tangentially to F0 with

the derivative map

∂∆∆∗µ(u)[G] = −
∂∆F∆,µ(δ)[G]

∂δF∆,µ(δ)

∣∣∣∣
δ=∆∗µ(u)

=
∂∆F∆,µ(∆∗µ(u))[G]

f∆,µ(∆∗µ(u))
,

uniformly in the index u ∈ U = {u ∈ (0, 1) : ∆∗µ(u) ∈ D, f∆,µ(∆∗µ(u)) > ε}. �

Proof of Lemma A.2 . To show Statement (a), Consider tn → 0 and (Gn, Hn)→ (G,H) ∈ D0 :=

F0×H as n→∞, such that (∆ + tnGn, µ+ tnHn) ∈ D. Let ∆n := ∆ + tnGn and µn := µ+ tnHn.

Then, we can decompose

F∆n,µn(δ)− F∆,µ(δ) = [F∆n,µn(δ)− F∆n,µ(δ)] + [F∆n,µ(δ)− F∆,µ(δ)].

By Lemma E.4,

F∆n,µ(δ)− F∆,µ(δ)

tn
= −

∫
M∆(δ)

G(x)µ′(x)

‖∂∆(x)‖
dVol + o(1).

Let g∆,δ := 1(∆(x) 6 δ). By definition of F∆n,µn(δ),

F∆n,µn(δ)− F∆n,µ(δ)

tn
= Hn(g∆n,δ).
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Note that

Hn(g∆n,δ)−H(g∆,δ) = [Hn(g∆n,δ)−Hn(g∆,δ)] + [Hn −H](g∆,δ).

The second term goes to 0 by the assumption Hn → H in H. For the first term, we further

decompose

|Hn(g∆n,δ)−Hn(g∆,δ)| 6 |Hn(g∆n,δ)−H(g∆n,δ)|+ |Hn(g∆,δ)−H(g∆,δ)|+ |H(g∆n,δ)−H(g∆,δ)|.

The first two terms go to 0 by ‖Hn − H‖G → 0. Moreover, H(g∆n,δ) → H(g∆,δ) because

g∆n,δ(X) = 1(∆n(X) 6 δ) → g∆,δ(X) = 1(∆(X) 6 δ) in the L2(µ) norm, since ∆n → ∆ in

the sup norm and ∆(X) has an absolutely continuous distribution, and since we require the

operator H to be continuous under the L2(µ) norm.

We conclude that for any δ ∈ D,

F∆n,µn(δ)− F∆,µ(δ)

tn
→ −

∫
M∆(δ)

G(x)µ′(x)

‖∂∆(x)‖
dVol +H(g∆,δ) = ∂∆,µF∆,µ(δ)[G,H].

By an argument similar to the proof of Lemma E.4, it can be shown that the convergence is

uniform in δ ∈ D.

Statement (b) follows by statement (a) and the Hadamard differentiability of the quantile map

uniformly in the quantile index, see, e.g., Lemma 3.9.20 in van der Vaart and Wellner (1996). �

E.3. Proof of Lemma A.3. We will denote the functions in the classes FM and FI by ϕt(x)

whenever we want to distinguish x = (x1, . . . , xdx), the argument of the function, from t :=

(t1, . . . , tdz), the index of the function in the class. Otherwise, we will use ϕ(x). To analyze Λ−∆,µ,δ
it is convenient to introduce the operator Υ∆,µ,δ : D̃→ R defined by

Υ∆,µ,δ(ϕ) :=

∫
ϕ(x)1{∆(x) 6 δ}dµ(x),

since Λ−∆,µ,δ(ϕ) = Υ∆,µ,δ(ϕ)/Υ∆,µ,δ(1).

Let M̃∆(Bη(δ)) := ∪δ′∈Bη(δ)M̃∆(δ′), where M̃∆(δ) := {x ∈ B(X ) : ∆(x) = δ} and Bη(δ) :=

(δ−η, δ+η) for any δ ∈ V and η > 0. When ϕt ∈ FI we make the following technical assumption

to deal with the discontinuity of the indicator functions:

AS.1. Define the set Z̃k,η(δ, tk) := {x−k : (xk, x−k) ∈ M̃∆(Bη(δ)), xk = tk} for any η > 0,

δ ∈ V, k = 1, 2, ..., dx, and tk ∈ R. Then, for any ε > 0, there exist η0 > 0 such that for any

η < η0,
∫
Z̃k,η(δ,tk)

dµ(x−k) 6 ε holds uniformly over all δ ∈ V, tk ∈ R and k = 1, 2, ..., dx.

The next result shows that (∆, µ, δ) 7→ Υ∆,µ,δ is Hadamard differentiable.

Lemma E.5 (Hadamard differentiability of (∆, µ, δ) 7→ Υ∆,µ,δ). Assume that Assumptions S.1

and S.2 hold and δ ∈ D. Then,

(a) The map Υ∆,µ,δ(ϕ) : D̃ → R is Hadamard-differentiable uniformly in ϕ ∈ FM at (∆, µ, δ)

tangentially to D̃0.
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(b) If in addition Assumption AS.1 holds, the map Υ∆,µ,δ(ϕ) : D̃→ R is Hadamard-differentiable

uniformly in ϕ ∈ FI at (∆, µ, δ) tangentially to D̃0.

(c) The derivative map ∂∆,µ,δΥ∆,µ,δ(ϕ) : D̃→ R is defined by:

(G,H,K) 7→ ∂∆,µ,δΥ∆,µ,δ(ϕ)[G,H,K] :=

∫
M∆(δ)

ϕ(x)
K −G(x)

‖∂∆(x)‖
dVol +H(h∆,δ,ϕ),

where h∆,δ,ϕ := ϕ(x)1{∆(x) 6 δ}.

Proof of Lemma E.5. Statements (a) and (b) follow by similar arguments. For brevity, we focus

on the proof of Statement (b) and mention the changes needed for the proof of Statement (a),

which is simpler.

To show Statement (b), consider sn → 0 and (Gn, Hn,Kn) → (G,H,K) ∈ D̃0 as n → ∞,

such that (∆ + snGn, µ + snHn, δ + snKn) ∈ D̃. Let ∆n := ∆ + snGn, µn := µ + snHn, and

δn := δ + snKn. Then, we can decompose

Υ∆n,µn,δn(ϕ)−Υ∆,µ,δ(ϕ) = [Υ∆n,µn,δn(ϕ)−Υ∆n,µ,δn(ϕ)] + [Υ∆n,µ,δn(ϕ)−Υ∆,µ,δ(ϕ)]. (E.13)

The first term of (E.13) satisfies

Υ∆n,µn,δn(ϕ)−Υ∆n,µ,δn(ϕ)

sn
= Hn(h∆n,δn,ϕ) = H(h∆,δ,ϕ) + o(1).

The first equality follows from linearity of µ 7→ Υ∆n,µ,δn(ϕ) and h∆n,δn,ϕ = ϕ(x)1{∆n(x) 6 δn}.
To show the second equality note that

Hn(h∆n,δn,ϕ)−H(h∆,δ,ϕ) = Hn(h∆n,δn,ϕ)−Hn(h∆,δ,ϕ) + [Hn −H](h∆,δ,ϕ),

where the second term goes to zero by the assumption Hn → H in H̃. For the first term, we

further decompose

|Hn(h∆n,δn,ϕ)−Hn(h∆,δ,ϕ)| 6 |Hn(h∆n,δn,ϕ)−H(h∆n,δn,ϕ)|

+ |Hn(h∆,δ,ϕ)−H(h∆,δ,ϕ)|+ |H(h∆n,δn,ϕ)−H(h∆,δ,ϕ)|.

By definition of the space H̃, the first two terms go to 0 by ‖Hn −H‖G̃ → 0.

Moreover, H(h∆n,δn,ϕ)→ H(h∆,δ,ϕ) because

h∆n,δn,ϕ(X) = ϕ(X)1(∆n(X) 6 δn)→ h∆,δ,ϕ(X) = ϕ(X)1(∆(X) 6 δ)

in the L2(µ) norm, since ∆n → ∆ in the sup norm and ∆(X) has an absolutely continuous

distribution, and since we require the operator H to be continuous under the L2(µ) norm.

Next we show that the second term of (E.13) satisfies

Υ∆n,µ,δn(ϕ)−Υ∆,µ,δ(ϕ)

sn
=

∫
M∆(δ)

ϕ(x)
K −G(x)

‖∂∆(x)‖
µ′(x)dVol + o(1).
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The proof follows the same steps as the proof of Lemma E.4 after noticing that we can write

Υ∆n,µ,δn(ϕ) = Υ
∆̃n,µ,δ

(ϕ),

where ∆̃n = ∆ + snG̃n with G̃n = Gn −Kn, and replacing µ′(x) by µ̃′(x) = ϕ(x)µ′(x).

Specifically, following the notation in the proof of Lemma A.1,

Υ
∆̃n,µ,δ

(ϕ) =

m∑
i=1

J∑
j=1

∫
M̃∆(Bη(δ))∩θi

pj(x)ϕ(x)
1{δ 6 ∆(x) 6 δ − snG̃n(x)}

sn
µ̃′(x)dx.

Without loss of generality, assume that θi intersects with M̃∆(Bη(δ)) at the axis xki = xdx .

When ϕ(x) ∈ FI , each component in the above summation satisfies:

∫
M̃∆(Bη(δ))∩θi

pj(x)ϕ(x)
1{δ 6 ∆(x) 6 δ − snG̃n(x)}µ̃′(x)

sn
dx

=

∫
Xi1×...×Xi,dx−1

∫
Bη(δ)

(pj · ϕ · µ̃′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|
× 1{δ 6 δ′ 6 δ − snG̃n ◦ ψdx(x−dx , δ

′)}
sn

dδ′dx−dx

=

∫
X̃ cdx,η(δ,tdx )

∫
Bη(δ)

(pj · µ̃′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|
× 1{δ 6 δ′ 6 δ − snG̃n ◦ ψdx(x−dx , δ

′)}
sn

dδ′dx−dx

+

∫
X̃dx,η(δ,tdx )}

∫
Bη(δ)

(pj · µ̃′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|
× 1{δ 6 δ′ 6 δ − snG̃n ◦ ψdx(x−dx , δ

′)}
sn

dδ′dx−dx ,

where X̃dx,η(δ, tdx) := [Xi1 × ...×Xi,dx−1] ∩ Z̃dx,η(δ, tdx) and X̃ cdx,η(δ, tdx) := Xi1 × ...×Xi,dx−1 \
X̃dx,η(δ, tdx). When ϕ(x) ∈ FM , then we could simply let X̃dx,η(δ, tdx) = ∅ in the rest of the proof.

Partition t = (tx, ty) corresponding to Z = (X,Y ). Although x 7→ ϕ(x) = 1(x 6 tx)µ(ty | x)

is a discontinuous function, δ 7→ ϕ(x) ◦ ψdx(x−dx , δ) is continuous for those x such that x−dx ∈
X̃ cdx,η(δ, tdx) and δ = ∆(x). Accordingly, we partition the integral in two regions because the

integrand is not necessarily continuous on X̃dx,η(δ, tdx) × Bη(δ). We use Assumption AS.1 to

bound the integral in this region. Thus, for any ε > 0, for η being small enough, the area of

X̃dx,η(δ, tdx), defined as
∫
X̃dx,η(δ,tdx )

µ′(x−dx)dx−dx , is less than or equal to ε by AS.1 uniformly

over δ and tdx . Then, for large enough n, k = 1, 2, ..., dx and some arbitrarily small ζ > 0, by
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continuity of the integrand,

∫
X̃ cdx,η(δ,tdx )

∫
Bη(δ)

(pj · µ̃′) ◦ ψdx(x−dx , δ
′)

|∂xdx∆ ◦ ψdx(x−dx , δ
′)|
× 1{δ 6 δ′ 6 δ − snG̃n ◦ ψdx(x−dx , δ

′)}
sn

dδ′dx−dx

6 −
∫
X̃ cdx,η(δ,tdx )

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx + o(η)

= −
∫
Xi1×...×Xi,dx−1

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx

+

∫
X̃dx,η(δ,tdx )

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx + o(η),

where G̃ = G−K.

The inequality above holds by continuity of the integrand (x−dx , δ
′) 7→ (pj ·µ̃′)◦ψdx(x−dx , δ

′)/|∂xdx∆◦
ψdx(x−dx , δ

′)| on X̃ cdx,η(δ, tdx)×Bη(δ), and

∣∣∣∣∣
∫
X̃dx,η(δ,tdx )

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx

∣∣∣∣∣ 6
∫
X̃dx,η(δ,tdx )

Cdx−dx 6 Cε,

for

C := sup
x−dx∈Xi1×...×Xi,dx−1

∣∣∣∣ (pj · µ̃) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)

∣∣∣∣ ,

which is bounded from above, because all components in C are bounded from above and |∂xdx∆◦
ψdx(x−dx , δ)| is bounded away from zero. Similarly, for sn large enough,

∣∣∣∣∣
∫
X̃dx,η(δ,tdx )

∫
Bη(δ)

(pj · ψdx)× (1{δ 6 ∆ 6 δ − snG̃n(x)}µ̃′) ◦ ψdx
sn|∂xdx∆ ◦ ψdx |

dδ′dx−dx

∣∣∣∣∣ 6 Cε.
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Therefore, combining the previous results

∫
M̃∆(Bη(δ))∩θi

pj(x)ϕ(x)
1{δ 6 ∆(x) 6 δ − snG̃n(x)}

sn
µ̃′(x)dx

6 −
∫
X̃ cdx,η(δ,tdx )

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx + o(η) + Cε

= −
∫
Xi1×...×Xi,dx−1

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx

+

∫
X̃dx,η(δ,tdx )

(pj · µ̃′) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx + o(η) + Cε

6 −
∫
Xi1×...×Xi,dx−1

(pj · µ̃) ◦ ψdx(x−dx , δ)

|∂xdx∆ ◦ ψdx(x−dx , δ)|
(G̃ ◦ ψdx(x−dx , δ)− ζ)dx−dx + o(η) + 2Cε

= −
∫
θi∩M̃∆(δ)

pj(x)ϕ(x) · µ̃′(x)
G̃(x)− ζ
‖∂∆(x)‖

dVol + o(η) + 2Cε

= −
∫
θi∩M∆(δ)

pj(x)ϕ(x) · µ̃′(x)
G̃(x)− ζ
‖∂∆(x)‖

dVol + o(η) + 2Cε,

where ζ, η and ε can be arbitrarily small for large enough n.

Similarly, we can show that

∫
M̃∆(Bη(δ))∩θi

pj(x)ϕ(x)
1{δ 6 ∆(x) 6 δ − snG̃n(x)}

sn
µ̃′(x)dx

> −
∫
θi∩M∆(δ)

pj(x)ϕ(x) · µ̃′(x)
G̃(x)− ζ
‖∂∆(x)‖

dVol− o(η)− 2Cε

Since we can choose η and ε to be arbitrarily small, we conclude that for any ϕ ∈ FI ,

Υ∆n,µn,δn(ϕ)−Υ∆,µ,δ(ϕ)

sn
→
∫
M∆(δ)

ϕ(x)
K −G(x)

‖∂∆(x)‖
µ′(x)dVol +H(ϕ(x)1{∆(x) 6 δ}).

To show that the result holds uniformly in ϕ ∈ FI , we use the equivalence between uniform

convergence and continuous convergence (e.g., Resnick (1987, p.2)). Take a sequence ϕn ∈ FI that

converges to ϕ ∈ FI in the L1(µ) norm, i.e.,
∫
X |ϕ

n − ϕ|dµ→ 0 as n→∞. Then, the preceding

argument applies to this sequence and ∂∆,µ,δΥ∆,µ,δ(ϕ
n)[K,G,H] → ∂∆,µ,δΥ∆,µ,δ(ϕ)[K,G,H] by

linearity of the map ϕ 7→ ∂∆,µ,δΥ∆,µ,δ(ϕ)[K,G].

�

Proof of Lemma A.3. Note that Λ−∆,µ,δ(ϕ) = Υ∆,µ,δ(ϕ)/Υ∆,µ,δ(1), where Υ∆,µ,δ(1) =
∫

1(∆(x) 6

δ)dµ(x) = F∆,µ(δ).
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By Lemma E.5, Υ∆,µ,δ(ϕ) and Υ∆,µ,δ(1) are Hadamard-differentiable at (∆, µ, δ) tangentially

to D̃0. Then, by the chain rule for Hadamard-differentiable mappings, Λ−∆,µ,δ(ϕ) is Hadamard-

differentiable at (∆, µ, δ) tangentially to D̃0 since Υ∆,µ,δ(1) > 0. The derivative map is obtained

from

∂∆,µ,δΛ
−
∆,µ,δ(ϕ) =

∂∆,µ,δΥ∆,µ,δ(ϕ)

F∆,µ(δ)
− Λ∆,µ,δ(ϕ)

∂∆,µ,δΥ∆,µ,δ(1)

F∆,µ(δ)
,

after replacing the expressions of ∂∆,µ,δΥ∆,µ,δ(ϕ) and ∂∆,µ,δΥ∆,µ,δ(1) from Lemma E.5 and group-

ing terms.

�

Appendix F. Sufficient Conditions for µ-Donsker Properties in Section 4

Lemma F.1 (Sufficient conditions for G being µ-Donsker). Suppose S.1-S.2 hold, and V is the

union of a finite number of compact intervals. Suppose that F satisfies:

sup
∆̃∈F

sup
x∈B(X )

‖∂∆̃(x)− ∂∆(x)‖+ sup
∆̃∈F

sup
x∈B(X )

|∆̃(x)−∆(x)| < c0.

Let N(ε,F , ‖ · ‖∞) be the ε-covering number of the class F under L∞ norm. Suppose that∫ 1
0

√
logN(ε2,F , ‖ · ‖∞)dε <∞. If c0 is small enough, then G is µ-Donsker.

Proof of Lemma F.1. Since V is a union of finite number of closed intervals, for any ζ > 0, we can

construct a collection of closed intervals I := {[ai, bi] : i = 1, 2, ..., r} such that: (1) |bi − ai| < ζ,

(2) [ai, bi] ⊂ V, (3) ∪ri=1[ai, bi] = V, (4) ai 6 bi 6 ai+1 6 bi+1, for all i = 1, 2, ..., r − 1, and (5)

r 6 C0
ζ , where C0 is a constant.

Using S.1 and S.2 and the assumptions of the Lemma, there exists η > 0 small enough such

that the following conditions hold:

(1) There exist constants c and C such that ‖∂∆(x)‖ 6 C for all x ∈ X and ‖∂∆(x)‖ > c in

M̃∆(Bη(δ)) for some small η > 0 and all δ ∈ D.

(2) Uniformly in ∆̃ ∈ F ,

c

2
6 inf

x∈M̃∆(Bη(δ))
‖∂∆̃(x)‖ 6 sup

x∈M̃∆(Bη(δ))

‖∂∆̃(x)‖ 6 c

2
+ C.

Moreover, using arguments similar to those used to show Lemma A.1, we can verify that:

(3) Uniformly in ∆̃ ∈ F , uniformly in δ ∈ V,

f
∆̃,µ

(δ) =

∫
M

∆̃
(δ)

µ′(x)

‖∂∆̃(x)‖
dVol < K1,

for some finite constant K1.
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Define the norm ‖g‖22,µ :=
∫
X g(x)2µ′(x)dx. For η > 0 small enough, for any δ ∈ V and ∆̃ ∈ F ,

‖1(∆̃ 6 δ)− 1(∆̃ 6 δ + η)‖22,µ =

∫
1(δ 6 ∆̃(x) 6 δ + η)µ′(x)dx =

∫
δ′∈B+

η (δ)
f

∆̃,µ
(δ′)dδ′ 6 K1η.

Similarly, ‖1(∆̃ 6 δ)− 1(∆̃ 6 δ − η)‖22,µ 6 K1η.

Let Bζ,∞(∆1), ..., Bζ,∞(∆qζ ) be a set of ζ-balls centered at ∆1, ...,∆qζ under sup norm that

covers F , where qζ = N(ζ,F , ‖ · ‖∞). Then, [∆j − ζ,∆j + ζ] are covering brackets of F , j =

1, 2, ..., qζ . For any ∆̃ ∈ [∆j−ζ,∆j +ζ] and δ ∈ [ai, bi], i = 1, 2, ..., r, then the bracket [1(∆j +ζ 6

ai), 1(∆j − ζ 6 bi)] covers 1(∆̃ 6 δ). For ζ small enough, the size of the bracket [1(∆j + ζ 6

ai), 1(∆j − ζ 6 bi)] under the norm ‖ · ‖2,µ is:

‖1(∆j + ζ 6 ai) − 1(∆j − ζ 6 bi)‖22,µ = ‖1(∆j 6 bi + ζ) − 1(∆j 6 ai − ζ)‖22,µ 6 3K1ζ,

since |bi − ai| < ζ by construction. Therefore, for ζ small enough, {[1(∆j + ζ 6 ai), 1(∆j − ζ 6
bi)] : j = 1, 2, ..., qζ , i = 1, 2, ..., r}, form a set of

√
3K1ζ-brackets under the norm ‖ · ‖2,µ that

covers G. The total number of brackets is rqζ 6
C0
ζ N(ζ,F , ‖ · ‖∞). Or equivalently, for ζ small

enough,

N[](ζ,G, ‖ · ‖2,µ) 6
3K1C0

ζ2
N(ζ2/(3K1),F , ‖ · ‖∞).

Then by assumption,

∫ 1

0

√
log(N[](ζ,G, ‖ · ‖2,µ))dζ 6

∫ 1

0

√
log

(
3K1C0

ζ2
N(ζ2/(3K1),F , ‖ · ‖∞)

)
dζ

.
∫ 1

0

√
log

(
3K1C0

ζ2

)
dζ +

∫ 1

0

√
log(N(ζ2/(3K1),F , ‖ · ‖∞))dζ <∞.

We conclude that G is µ-Donsker by Donsker theorem (van der Vaart, 1998, Theorem 19.5). �

Lemma F.2 (Sufficient conditions for G̃ being µ-Donsker). Suppose S.1-S.2 hold, and V is the

union of a finite number of compact intervals. Suppose that F satisfies:

sup
∆̃∈F

sup
x∈B(X )

‖∂∆̃(x)− ∂∆(x)‖+ sup
∆̃∈F

sup
x∈B(X )

|∆̃(x)−∆(x)| < c0.

Let N(ε,F , ‖ · ‖∞) be the ε-covering number of the class F under L∞ norm. Suppose that∫ 1
0

√
logN(ε2,F , ‖ · ‖∞)dε <∞. If c0 is small enough, then G̃ is µ-Donsker.

Proof of Lemma F.2. First, FI and FM are both µ-Donsker. By Lemma F.1, the class F is µ-

Donsker. Since the class of the product of two functions from Donsker classes is Donsker, G̃ is

µ-Donsker. �
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Appendix G. Extension of Theoretical Analysis to Discrete variables

We consider the case where the covariate X includes discrete components. Without loss of

generality we assume that the first component of X is discrete and the rest are continuous.

Accordingly, we consider the partition X = (D,C). Let Xc|d denote the interior of the support of

C conditional on D = d, Xd denote the support of D, µc|d denote the distribution of C conditional

on D = d, µd denote the distribution of D, and πd(d) = P(D = d). As above, dx = dim(X), and

D is a compact set consisting of regular values of ∆ on X := ∪d∈Xd{d} × X c|d, where X c|d is the

closure of Xc|d.

We adjust S.1-S.4 to hold conditionally at each value of the discrete covariate.

S.1′. The set Xd is finite. For any d ∈ Xd: the set Xc|d is open and its closure X c|d is

compact; the distribution µc|d is absolutely continuous with respect to the Lebesgue measure

with density µ′c|d; and there exists an open set B(Xc|d) containing X c|d such that c 7→ ∆(d, c) is

C1 on B(Xc|d), and c 7→ µ′c|d(c) is continuous on B(Xc|d) and is zero outside Xc|d, i.e. µ′(x) = 0

for any x ∈ B(Xc|d) \ Xc|d.

S.2′. For any d ∈ Xd and any regular value δ of ∆ on X c|d,M∆|d(δ) := {c ∈ X c|d : ∆(d, c) = δ}
is either a (dx − 2)− manifold without boundary on Rdx−1 of class C1 with finite number of

connected branches, or an empty set.

S.3′. ∆̂, the estimator of ∆, obeys a functional central limit theorem, namely,

an(∆̂−∆) G∞ in `∞(B(X )),

where an is a sequence such that an → ∞ as n → ∞, and c 7→ G∞(d, c) is a tight process that

has almost surely uniformly continuous sample paths on B(Xc|d) for all d ∈ Xd.

Let B(X ) := ∪d∈Xd{d}×B(Xc|d); F denote a set of continuous functions on B(X ) equipped with

the sup-norm; V be any compact subset of R; H be the set of all bounded operators H : g 7→ H(g)

uniformly continuous on G = {1(f 6 δ) : f ∈ F , δ ∈ V} with respect to the L2(µ) norm, which

are represented as:

H(g) =
∑
d∈Xd

Hd(d)

∫
g(c, d)dµc|d(c) +

∑
d∈Xd

πd(d)Hc|d(g(·, d)),

where d 7→ Hd(d) is a function that takes on finitely many values and g 7→ Hc|d(g) is a bounded

linear operator on G. Equip the space H with the sup norm ‖ · ‖G : ‖H‖G = supg∈G |H(g)|. Let

µ(x) = µd(d)µc|d(c) and µ̂(x) = µ̂d(d)µ̂c|d(c).

S.4′. The function x 7→ µ̂(x) is a distribution over B(X ) obeying in H,

bn(µ̂− µ) H∞,
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where H∞ ∈ H a.s., bn is a sequence such that bn → ∞ as n → ∞, and H∞ can be represented

as:

H∞(g) =
∑
d∈Xd

Hd,∞(d)

∫
g(c, d)dµc|d(c) +

∑
d∈Xd

πd(d)Hc|d,∞(g(·, d)).

We generalize Lemmas A.1 and A.2 to the case where X includes discrete components.

Define D := F×H and D0 := F0 ×H, where F is the set of continuous functions on B(X ) and

F0 is a subset of F containing uniformly continuous functions.

Lemma G.1 (Properties of F∆,µ and ∆∗µ with discrete X). Suppose that S.1′ and S.2′ hold. Then,

δ 7→ F∆,µ(δ) is differentiable at any δ ∈ D, with derivative function f∆,µ(δ) defined as:

f∆,µ(δ) := ∂δF∆,µ(δ) =
∑
d∈Xd

πd(d)

∫
M∆|d(δ)

µ′c|d(c)

‖∂c∆(d, c)‖
dVol.

The map δ 7→ f∆,µ(δ) is uniformly continuous on D.

(1) The map F∆,µ(δ) : D → R is Hadamard differentiable uniformly in d ∈ D at (∆, µ)

tangentially to D0, with derivative map ∂∆,µF∆,µ(δ) : D0 → R defined by:

(G,H) 7→ ∂∆,µF∆,µ(δ)[G,H] := −
∑
d∈Xd

πd(d)

∫
M∆|d(δ)

G(d, c)µ′c|d(c)

‖∂c∆(d, c)‖
dVol(c)

+
∑
d∈Xd

Hd(d)

∫
1{∆(d, c) 6 δ}µ′c|d(c)dc

+
∑
d∈Xd

πd(d)Hc|d(1{∆(·, d) 6 δ}).

(2) The map ∆∗µ(u) : D→ R is Hadamard differentiable uniformly in u ∈ U at (∆, µ) tangentially

to D0, with derivative map ∂∆,µ∆∗µ(u) : D0 → R defined by:

(G,H) 7→ ∂∆,µ∆∗µ(u)[G,H] := −
∂F∆,µ(∆∗µ(u))[G,H]

f∆,µ(∆∗µ(u))
,

where U = {ũ ∈ [0, 1] : ∆∗µ(ũ) ∈ D, f∆,µ(∆∗µ(ũ)) > ε} for fixed ε > 0.

Proof of Lemma G.1. Note that F∆,µ(δ) =
∑

d∈Xd πd(d)
∫
c∈Xd 1(∆(d, c) 6 δ)µ′c|d(c)dc. Given the

results of Lemma A.1, for each d,

∂δ

∫
Xc|d

1(∆(d, c) 6 δ)µ′c|d(c)dc =

∫
M∆|d(δ)

µ′c|d(c)

‖∂c∂(d, c)‖
dVol.

Therefore, averaging over d ∈ Xd,

f∆,µ(δ) := ∂δF∆,µ(δ) =
∑
d∈Xd

πd(d)

∫
M∆|d(δ)

µ′c|d(c)

‖∂c∆(d, c)‖
dVol,

where we use that Xd is a finite set.
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Next we prove the statements (1) and (2). Let Gn ∈ F and Hn ∈ H such that Gn → G ∈ F0

and Hn → H ∈ H. Let ∆n = ∆ + tnGn and µn = µ+ tnHn, where tn → 0 as n→∞.

As in the proof of Lemma A.2, we decompose

F∆n,µn(δ)− F∆,µ(δ) = [F∆n,µn(δ)− F∆n,µ(δ)] + [F∆n,µ(δ)− F∆,µ(δ)].

Applying the same argument as in the proof of Lemma A.2 to each d and averaging over d ∈ Xd,
for any δ ∈ D

F∆n,µ(δ)− F∆,µ(δ)

tn
= −

∑
d∈Xd

µd(d)

∫
M∆|d(δ)

G(d, c)µ′c|d(c)

‖∂c∆(d, c)‖
dVol + o(1),

where we use that Xd is a finite set. By assumption S.4′ and a similar argument to the proof of

Lemma A.2,

F∆n,µn(δ)− F∆n,µ(δ)

tn
= H(g∆,δ) + o(1), g∆,δ(c, d) = 1{∆(c, d) 6 δ}

We conclude that for any δ ∈ D,

F∆n,µn(δ)− F∆,µ(δ)

tn
→ −

∑
d∈Xd

µd(d)

∫
M∆|d(δ)

G(d, c)µ′c|d(c)

‖∂c∆(d, c)‖
dVol +H(g∆,δ) = ∂∆,µF∆,µ(δ)[G,H].

By an argument similar to the proof of Lemma A.2, it can be shown that the convergence is

uniform in δ ∈ D. This shows statement (1).

Statement (2) follows from statement (1) and Theorem 3.9.20 of van der Vaart and Wellner

(1996) for inverse maps, using an argument analogous to the proof of statement (b) in Lemma

A.2. �

We are now ready to derive a functional central limit theorem for the empirical SPE-function.

As in Theorem 4.1, let rn := an ∧ bn, the slowest of the rates of convergence of ∆̂ and µ̂, where

rn/an → s∆ ∈ [0, 1] and rn/bn → sµ ∈ [0, 1].

Theorem G.1 (FCLT for ∆̂∗µ(u) with discrete X). Suppose that S.1′-S.4′ hold, the convergence

in S.3′ and S.4′ holds jointly, and ∆̂ ∈ F with probability approaching 1. Then, the empirical

SPE-process obeys a functional central limit theorem, namely in `∞(U),

rn(∆̂∗µ̂(u)−∆∗µ(u)) ∂∆,µ∆∗µ(u)[s∆G∞, sµH∞], (G.14)

as a stochastic process indexed by u ∈ U , where U is defined in Lemma G.1.

Remark G.1 (Bootstrap FCLT for ∆̂∗µ(u) with discrete X). The exchangeable bootstrap is

consistent to approximate the distribution of the limit process in (G.14) under the same conditions

as in Theorem 4.3, replacing S.1-S.4 by S.1′-S.4′. Accordingly, we do not repeat the statement

here. �
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Remark G.2 (CA with discrete covariates). The results of the classification analysis can also be

extended to the case where X contains discrete components following analogous arguments as for

the SPE. We omit the details for the sake of brevity. �

Proof of Theorem G.1. The result follows from Lemma G.1 and Lemma B.1. �

Appendix H. Some Numerical Illustrations

We evaluate the accuracy of the asymptotic approximations to the distribution of the empiri-

cal SPE in small samples using numerical simulations. In particular, we compare pointwise 95%

confidence intervals for the SPE based on the asymptotic and exact distributions of the empirical

SPE. The exact distribution is approximated numerically by simulation. The asymptotic distri-

bution is obtained analytically from the FCLT of Theorem 4.1, and approximated by bootstrap

using Theorem 4.3. We first consider two simulation designs where the limit process in Theorem

4.1 has a convenient closed-form analytical expression. The designs differ on whether the PE-

function x 7→ ∆(x) has critical points or not. We hold fix the values of the covariate vector X

in all the calculations, and accordingly we treat the distribution µ as known. For the bootstrap

inference, we use empirical bootstrap with B = 3, 000 repetitions. All the results are based on

3, 000 simulations. The last design is calibrated to mimic the gender wage gap application.

Design 1 (No critical points). We consider the PE-function

∆(x) = x1 + x2, x = (x1, x2),

with the covariate vector X uniformly distributed in X = (−1, 1) × (−1, 1). The corresponding

SPE is

∆∗µ(u) = 2(
√

2u− 1)1(u 6 1/2) + 2(1−
√

2(1− u))1(u > 1/2),

where we use that ∆(X) has a triangular distribution with parameters (−2, 0, 2). The sample size

is n = 441 and the values of X are held fixed in the grid {−1,−0.9, . . . , 1} × {−1,−0.9, . . . , 1}.
Figure 1 plots x 7→ ∆(x) on X , and u 7→ ∆∗µ(u) on (0, 1). Here we see that x 7→ ∆(x) does not

have critical values, and that u 7→ ∆∗µ(u) is a smooth function.

To obtain an analytical expression of the limit Z∞(u) of Theorem 4.1, we make the following

assumption on the estimator of the PE:

√
n(∆̂(x)−∆(x)) = exp[∆(x)]

n∑
i=1

Zi/
√
n,

where Z1, . . . , Zn is an i.i.d. sequence of standard normal random variables. Hence

Z∞(u) ∼ N(0, exp[2∆∗µ(u)]),

so that ∆̂∗µ(u)
a∼ N(∆∗µ(u), exp[2∆∗µ(u)]/n), where

a∼ denotes asymptotic approximation to the

distribution.
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Figure 1. PE-function and SPE-function in Design 1. Left: PE function x 7→
∆(x). Right: SPE function u 7→ ∆∗µ(u).

Table 1 reports biases and compares the standard deviations of the empirical SPE with the

asymptotic standard deviations, exp[∆∗µ(u)]/
√
n, at the quantile indices u ∈ {0.1, 0.2, . . . , 0.9}.

The biases are small relative to dispersions and the asymptotic approximations are very close

to the exact standard deviations. We also find that 95% confidence intervals constructed using

the asymptotic approximations, ∆̂∗µ(u) ±1.96 exp[∆∗µ(u)]/
√
n, have coverage probabilities close to

their nominal levels at all indices. These asymptotic confidence intervals are not feasible in general,

either because ∆∗µ(u) are unknown or more generally because it is not possible to characterize

analytically the distribution of Z∞(u). In practice we propose approximating this distribution by

bootstrap. In this case the empirical bootstrap version of the empirical SPE is constructed from

the bootstrap PE

∆̃(x) = ∆(x) + exp[∆(x)]

n∑
i=1

ωiZi/n,

where (ω1, . . . , ωn) is a multinomial vector with dimension n and probabilities (1/n, . . . , 1/n)

independent of Z1, . . . , Zn. The last column of the table shows that the empirical coverages of

bootstrap 95% confidence intervals are close to their nominal levels at all quantile indices.

Design 2 (Critical points). We consider the PE-function

∆(x) = x3 − 3x,
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Table 1. Properties of Empirical SPE in Design 1

Bias Std. Dev. Pointwise Coverage (%)

u (× 100) Exact Asymptotic Asymptotic Bootstrap†

0.1 0.016 0.014 0.014 95.10 95.03

0.2 0.024 0.021 0.021 95.10 95.03

0.3 0.032 0.029 0.029 95.10 95.03

0.4 0.044 0.039 0.039 95.10 95.03

0.5 0.053 0.047 0.048 95.10 95.03

0.6 0.065 0.058 0.058 95.10 95.03

0.7 0.088 0.078 0.079 95.10 95.03

0.8 0.119 0.105 0.106 95.10 95.03

0.9 0.177 0.157 0.158 95.10 95.03

Notes: 3, 000 simulations with sample size n = 441.

†3,000 bootstrap repetitions. Nominal level is 95%.

with covariate X uniformly distributed on X = (−3, 3). Figure 2 plots x 7→ ∆(x) on X , and

u 7→ ∆∗µ(u) on (0, 1).1 Here we see that x 7→ ∆(x) has two critical points at x = −1 and x = 1

with corresponding critical values at δ = 2 and δ = −2. The SPE-function u 7→ ∆∗µ(u) has two

kinks at u = 1/6 and u = 5/6, the ∆∗µ pre-images of the critical values.

To obtain an analytical expression of the limit Z∞(u) of Theorem 4.1, we make the following

assumption on the estimator of the PE:

√
n(∆̂(x)−∆(x)) = (x/2)2

n∑
i=1

Zi/
√
n,

where Z1, . . . , Zn is an i.i.d. sequence of standard normal variables. This assumption is analyti-

cally convenient because after some calculations we find that for u /∈ {1/6, 5/6},

Z∞(u) ∼ N(0, S(∆∗µ(u))2/(4n)),

where

S(δ) = 1(δ < −2)∆̆1(δ)2 + 1(−2 < δ < 2)

3∑
k=1

∆̆k(δ)
2|∆̆k(δ)

2 − 1|−1∑3
j=1 |∆̆j(δ)2 − 1|−1

+ 1(δ > 2)∆̆1(δ)2,

and ∆̆1(δ), ∆̆2(δ) and ∆̆3(δ) are real roots of ∆(x) − δ = 0 sorted in increasing order.2 Hence,

∆̂∗µ(u)
a∼ N(∆∗µ(u), S(∆∗µ(u))2/(4n)).

1We obtain u 7→ ∆∗µ(u) analytically using the characterization of Chernozhukov, Fernández-Val, and Galichon

(2010) for the univariate case.
2The equation ∆(x)− δ = x3− 3x− δ = 0 has three real roots when δ ∈ (−2, 2), and one real root when δ < −2

or δ > 2.
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Figure 2. PE-function and SPE-function in Design 2. Left: PE function x 7→
∆(x). Right: SPE function u 7→ ∆∗µ(u).

Table 2 reports biases and compares the standard deviations of the empirical SPE in sam-

ples of size n = 601 with the asymptotic standard deviations at the quantile indices u ∈
{1/12, 2/12, . . . , 11/12}, where the values of X are held fixed in the grid {−3,−2.99, . . . , 3}. The

biases are small relative to dispersion except at the kinks u = 1/6 and u = 5/6 . The asymptotic

approximation is close to the exact standard deviation, except for the quantiles at the kinks where

the asymptotic standard deviations are not well-defined because ∆̆k(δ)
2−1 = 0. We also find that

pointwise 95% confidence intervals constructed using the asymptotic distribution and empirical

bootstrap have coverage probabilities close to their nominal levels. Interestingly, the bootstrap

provides coverages close to the nominal levels even at the kinks.

Design 3 (Calibration to CPS data). This design is calibrated to the interactive linear model

with additive error for the conditional expectation in the gender wage gap application of Section

3. More specifically, we generate log wages as

Yi = P (Ti,Wi)
′β + σεi, i = 1, . . . , n,

where the covariates Xi = (Ti,Wi) are fixed to the values in the 2015 CPS data set, P (T,W ) =

(TW, (1 − T )W ), β and σ2 are the least squares estimates of the regression coefficients and

residual variance in the data set, (ε1, . . . , εn) is a sequence of i.i.d. standard normal random

variables independent of Xi, and n = 32, 523, the sample size in the application. For each
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Table 2. Properties of Empirical SPE in Design 2

Bias Std. Dev. Pointwise Coverage (%)

u (× 100) Exact Asymptotic Asymptotic Bootstrap†

1/12 0.068 0.126 0.127 95.67 95.80

1/6 -2.393 0.054 – – 95.67

1/4 -0.005 0.025 0.025 95.83 95.77

1/3 -0.016 0.028 0.028 95.80 95.90

5/12 0.045 0.030 0.030 95.63 95.47

1/2 0.023 0.030 0.031 92.73 97.53

7/12 -0.020 0.030 0.030 95.20 95.80

2/3 0.049 0.028 0.028 95.53 95.67

3/4 0.039 0.025 0.025 95.53 95.73

5/6 2.447 0.053 – – 95.73

11/12 0.068 0.126 0.127 95.67 95.80

Notes: 3, 000 simulations with sample size n = 601.

†3,000 bootstrap repetitions. Nominal level is 95%.
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Figure 3. Bias, standard deviation and root mean square error of empirical and

bias corrected SPE functions. Results obtained from 500 repetitions of a design

calibrated to the CPS 2015 data.

simulated sample {(Yi, Xi) : 1 6 i 6 n}, we reestimate the model by least squares, obtain the

empirical SPE-function on the treated over a grid of percentile indexes U = {0.02, 0.03, . . . , 0.98},
and construct a 90% uniform confidence band for the SPE-function using Algorithm 2.1 with

standard exponential weights and B = 200. We repeat this procedure 500 times.
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Figure 3 reports bias, standard deviation (Std. Dev.) and root mean squared error (RMSE)

of the empirical and bias corrected SPE functions, see Remark 2.3. We find that the empirical

SPE displays negative bias in the lower tail and positive bias in the upper tail, which are reduced

by the bootstrap bias correction. The correction slightly increases dispersion, but reduces overall

rmse for most percentiles, specially at the tails. Table 3 reports the empirical coverage of 90%

confidence bands constructed around the empirical and bias corrected SPE functions. Here we

find that the uncorrected bands undercover the entire SPE function, whereas the corrected bands

have coverage above the nominal level. One possible reason for the overcoverage of the bootstrap

corrected bands is that we keep the covariates fixed across samples, which is not accounted by the

bootstrap procedure. To sum up, we find that the bootstrap corrections of Remark 2.3 reduce

the bias of the empirical SPE and improve the coverage of the confidence bands in finite samples.

Table 3. Coverage of 90% Confidence Bands

Uncorrected Bootstrap Bias Corrected

Coverage 0.82 0.98

Notes: 500 simulations and 200 bootstrap repetitions.

DGP calibrated to CPS 2015.

Appendix I. Effect of Race on Mortgage Denials

To study the effect of race in the bank decisions of mortgage denials or racial mortgage denial

gap, we use data on mortgage applications in Boston from 1990 (see Munnell, Tootell, Browne,

and McEneaney (1996)). The Federal Reserve Bank of Boston collected these data in relation

to the Home Mortgage Disclosure Act (HMDA), which was passed to monitor minority access to

the mortgage market. Providing better access to credit markets can arguably help the disadvan-

taged groups escape poverty traps. Following Stock and Watson (2011, Chap 11), we focus on

white and black applicants for single-family residences. The sample includes 2, 380 observations

corresponding to 2, 041 white applicants and 339 black applicants.

We estimate a binary response model where the outcome variable Y is an indicator for mortgage

denial, the key covariate T is an indicator for the applicant being black, and the controls W

contain financial and other characteristics of the applicant that banks take into account in the

mortgage decisions. These include the monthly debt to income ratio; monthly housing expenses

to income ratio; a categorial variable for “bad” consumer credit score with 6 categories (1 if no

slow payments or delinquencies, 2 if one or two slow payments or delinquencies, 3 if more than two

slow payments or delinquencies, 4 if insufficient credit history for determination, 5 if delinquent

credit history with payments 60 days overdue, and 6 if delinquent credit history with payments 90

days overdue); a categorical variable for “bad” mortgage credit score with 4 categories (1 if no late

mortgage payments, 2 if no mortgage payment history, 3 if one or two late mortgage payments,
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and 4 if more than two late mortgage payments); an indicator for public record of credit problems

including bankruptcy, charge-offs, and collective actions; an indicator for denial of application

for mortgage insurance; two indicators for medium and high loan to property value ratio, where

medium is between .80 and .95 and high is above .95; and three indicators for self-employed,

single, and high school graduate.

Table 4. Descriptive Statistics of Mortgage Applicants

All Black White

Deny 0.12 0.28 0.09

Black 0.14 1.00 0.00

Debt-to-income ratio 0.33 0.35 0.33

Expenses-to-income ratio 0.26 0.27 0.25

Bad consumer credit 2.12 3.02 1.97

Bad mortgage credit 1.72 1.88 1.69

Credit problems 0.07 0.18 0.06

Denied mortgage insurance 0.02 0.05 0.02

Medium loan-to-value ratio 0.37 0.56 0.34

High loan-to-value ratio 0.03 0.07 0.03

Self-employed 0.12 0.07 0.12

Single 0.39 0.52 0.37

High school graduate 0.98 0.97 0.99

number of observations 2,380 339 2,041

Table 4 reports the sample means of the variables used in the analysis. The probability of having

the mortgage denied is 19% higher for black applicants than for white applicants. However, black

applicants are more likely to have socio-economic characteristics linked to a denial of the mortgage.

Figure 4 plots estimates and 90% confidence sets of the population APE and SPE-function of

being black. The PEs are obtained as described in Example 1 of the main text using a logit model

with P (X) = X = (T,W ) and µ̂ equal to the empirical distribution of X in the whole sample. The

confidence bands are constructed using Algorithm 2.1 with multinomial weights (empirical boot-

strap) and B = 500, and are uniform for the SPE-function over the grid U = {.02, .03, . . . , .98}.
We monotonize the bands using the rearrangement method of Chernozhukov, Fernández-Val,

and Galichon (2009). After controlling for applicant characteristics, black applicants are still

on average 5.3% more likely to have the mortgage denied than white applicants. Moreover, the

SPE-function shows significant heterogeneity, with the PE ranging between 0 and 15%. Thus,

there exists a subgroup of applicants that is 15% more likely to be denied a mortgage if they were

black, and there is a subgroup of applicants that is not affected by racial mortgage denial gap.

Table 5 shows the results of the classification analysis, answering the question “who is affected

the most and who the least?” The table shows that the 10% of the applicants most affected by
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Figure 4. APE and SPE (introduced in this paper) of being black on the proba-

bility of mortgage denial. Estimates and 90% bootstrap uniform confidence bands

(derived in this paper) based on a logit model are shown.

racial mortgage denial gap are more likely to have either of the following characteristics relative

to the 10% of the least affected applicants: self employed, single, black, high debt to income ratio,

high expense to income ratio, high loan to value ratio, medium or high loan-to-income ratio, bad

consumer or credit scores, and credit problems.
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Table 5. Who is affected the most and who the least? Classification Analysis –

Averages of Characteristics of the Mortgage Applicants Least and Most Affected

by Racial Discrimination

Characteristics 10% Most Affected 10% Least Affected

of the Group PE > .11 PE < .018

Deny 0.44 (0.03) 0.11 (0.04)

Black 0.37 (0.04) 0.07 (0.02)

Debt-to-income 0.39 (0.01) 0.25 (0.02)

Expenses-to-income 0.28 (0.01) 0.21 (0.02)

Bad consumer credit 4.64 (0.25) 1.31 (0.09)

Bad mortgage credit 1.99 (0.07) 1.37 (0.12)

Credit problems 0.45 (0.05) 0.05 (0.02)

Denied mortgage insurance 0.01 (0.01) 0.06 (0.04)

Medium loan-to-house 0.58 (0.06) 0.07 (0.04)

High loan-to-house 0.13 (0.03) 0.02 (0.01)

Self employed 0.18 (0.05) 0.05 (0.03)

Single 0.59 (0.05) 0.11 (0.06)

High school grad 0.93 (0.03) 1.00 (0.01)

Std. errors in parentheses obtained by bootstrap with 200 repetitions.


