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IN THIS SUPPLEMENT, we consider some additional properties of long-run dy-
namics in Section A. Section B contains two variants of our model: a two-sided
case in which the sets of observers and experts are disjoint, and a case with
delayed observability of states. A model of shifting perspectives is explored in
Section C.

A. FURTHER PROPERTIES OF LONG-RUN DYNAMICS

We write bt
ij = 1 if the link ij is broken at t.

The following corollary of Proposition 1 establishes the frequency with which
each g ∈ G is realized in the long run, where jt = (j1t � � � � � jnt) is the history-
dependent network realized at time t.

COROLLARY 2: If expertise levels are serially i.i.d., then, almost surely, the long-
run frequency

φ∞(g|h) = lim
t→∞

#
{
s ≤ t|js(h)= g

}
t

(∀g ∈G)

exists, and

φ∞(g|h) = P
(
g(i) = arg max

j∈J(i)
πj ∀i ∈ N

)
�

When expertise levels are serially i.i.d., the realized networks are also i.i.d. in
the long run, where the history-dependent long-run distribution is obtained by
selecting the best-informed long-run expert for each i. This generates a testable
prediction regarding the joint distribution of behavior in the long run: if both
j and j′ are elements of Jh(i) ∩ Jh(i

′), then i cannot link to j while i′ links
to j′. Furthermore, each pattern of linkage identified in Proposition 2 has an
associated long-run distribution: long-run efficiency is characterized by an i.i.d.
distribution on star networks, in which all players link to one player and that
player links to another; the static network g is characterized by a point mass
on g, and extreme opinion leadership is characterized by a point mass on a
specific star network.

We now prove Corollary 2 and establish some additional results regarding
long-run behavior. Let

Dλ = {
(π1� � � � �πn)||πi −πj| ≤ λ

}
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denote the set of expertise realizations such that each pair of expertise levels
are within λ of each other. For any given J, let

pJ�λ(g) = Pr
(
g(i)= arg max

j∈J(i)
πj ∀i ∈ N

∣∣π /∈ Dλ
)

denote the conditional probability distribution on g obtained by restricting ex-
pertise realizations to lie outside the set Dλ. Finally, for any probability distri-
bution p on G, let

Bε(p)= {
q|∣∣q(g)−p(g)

∣∣ < ε ∀g ∈ G
}

denote the set of probability distributions q on G such that q(g) and p(g) are
within ε of each other for all g ∈G.

We say that φt(·|h) ∈ Bε(p) eventually if there exists t such that φt(·|h) ∈
Bε(p) for all t > t. The following basic observations will also be useful in our
analysis.

OBSERVATION 1: The following are true:
1. For every ε > 0, there exists λ(ε) ∈ (0� ε) such that Pr(Dλ(ε)) < ε.
2. For every λ > 0, there exists vλ <∞ such that if vtij > vλ and πjt > πj′t +λ,

then jit 	= j′.

The first of these observations follows from the fact that Pr(Dλ) is contin-
uous and approaches 0 as λ → 0, and the second can be readily deduced us-
ing (5).

Next, we establish that, along every history, each link is eventually either
broken or free. Define

J̃h(i)=
{
j
∣∣ lim
t→∞

vtij(h) > v
}

as the set of individuals j for which the link ij becomes free eventually. For any
J : N → 2N with i /∈ J(i), we also define

H̃J = {
ht |vtij(ht) > v and bij′(ht)= 1

(∀i ∈ N�∀j ∈ J(i)�∀j′ /∈ J(i)
)}

as the set of histories in which all links ij with j ∈ J(i) are free and all links ij′

with j′ /∈ J(i) are broken. We define H̃ = ⋃
J H̃

J as the set of all histories at
which all the links are resolved in the sense that they are either free or broken.
Finally, we define the stopping time τ̃ as the first time the process enters H̃,
that is, hτ̃ ∈ H̃ but ht /∈ H̃ for any t < τ̃.

LEMMA 3: The stopping time τ̃ is finite, that is, for every h, there exists τ̃(h) <
∞ such that hτ̃(h) ∈ H̃ but ht /∈ H̃ for all t < τ̃(h). Moreover, conditional on hτ̃,
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almost surely,

Jh = J̃h = J̃hτ̃ �

where J̃hτ̃ is uniquely defined by hτ̃ ∈ H̃J̃hτ̃ . Finally, Jh = J̃h almost surely.

PROOF: Consider any h. By definition, for every i� j ∈ N with j ∈ J̃h(i), the
link ij becomes free for the first time at some τij(h). Moreover, by Lemma 1,
for every i� j ∈N with j ∈ Jh(i), we have limt v

t
ij(ht)= ∞. Hence, by Lemma 2,

for every j′ /∈ J̃, the link ij is broken for the first time at some τij(h).10 There-
fore, hτ̃(h) ∈ H̃ for the first time at τ̃(h)= maxi∈N�j∈Jh(i) τij(h).

To prove the second part, observe that J̃h = J̃hτ̃ by definition. Moreover, Jh ⊆
J̃h because limt v

t
ij(ht) = ∞ whenever j ∈ Jh(i). It therefore suffices to show

that, conditional on hτ̃, each i links to each j ∈ J̃hτ̃ (i) infinitely often almost
surely. To establish this, take any i and j with j ∈ J̃hτ̃ (i). Since vτ̃ij(hτ̃) > v, we
have

γ
(
b�vτ̃ij(hτ̃)

)
< γ(b�v) ≤ γ(a�v) (∀v)�

where the first inequality is because γ is decreasing in vτ̃ij(hτ̃) and the second is
by definition of v. Hence, by continuity of γ, there exists η> 0 such that

γ
(
b−η�vτ̃ij(hτ̃)

)
< γ(a+η�v) (∀v)�

Since vtij(ht) ≥ vτ̃ij(hτ̃) > v for all continuations ht of hτ̃, this further implies
that

γ
(
b−η�vtij(ht)

)
< γ

(
a+η�vtik(ht)

)
for every history ht that follows hτ̃, for every k distinct from i and j, and for
every t. Consequently, lt+1

ij = 1 whenever πjt > b − η and πkt ≤ a + η for all
other k. Thus,

Pr
(
lt+1
ij = 1

) ≥ F(a+η)n−2
(
1 − F(b−η)

)
> 0

after any history that follows hτ̃ and any date t ≥ τ̃. Therefore, lt+1
ij = 1 oc-

curs infinitely often almost surely conditional on hτ̃. The last statement of the
lemma immediately follows from the first two. Q.E.D.

Lemma 3 establishes that at some finite (history-dependent) time τ̃(h), all
the links become either free or broken and remain so thereafter. That is when

10By Lemma 1 and definition of h, supt v
t
ij′(h) < v.
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the set J̃h(i) of free links along infinite history h becomes known. Although
the set Jh(i) of long-run experts is contained in this set, some of the free links
may not be activated after a while by chance. Lemma 3 establishes that such an
event has zero probability, and all the free links are activated infinitely often.
Eventually, all individuals learn the perspectives of their long-run experts to a
high degree, and their behavior approaches their long-run behavior, with each
individual linking to her most informed long-run expert.

Although the set of all long-run experts is known at time τ̃(h), it may take
considerably longer for behavior to approach the long-run limit. Towards de-
termining such time of convergence, for an arbitrary ε > 0, which will measure
the level of approximation, and for any J : N → 2N with i /∈ J(i), define the
event

Ĥλ�J = {
ht |vtij(ht) > vλ and bij′(ht)= 1(∀i ∈ N�∀j ∈ J(i)�∀j′ /∈ J(i)

)}
�

where vλ is as in Observation 1. Define the event

Hε =
⋃
J

Ĥλ(ε)�J�

where λ(ε) is as defined in Observation 1. When the process is in Hε, we will
have approximately the long-run behavior identified in Proposition 1. Define
the stopping time τ̂ as the first time the process enters Hε, that is, hτ̂ ∈ Hε

but ht /∈ Hε for any t < τ̂. Define also Jhτ̂ by hτ̂ ∈ Ĥλ(ε)�Jhτ̂ ; this is well-defined
because such Jhτ̂ is unique. As discussed above, τ̂ may be infinite at some his-
tories, but the total probability of such histories is zero by the last statement of
Lemma 3. When τ̂(h) is finite, we can take τ̂(h) as τ(h) in Proposition 1. The
next proposition summarizes our findings about long-run behavior.

PROPOSITION 6: For every ε ∈ (0�1/n), there exists a set Π ⊂ [a�b]n with
Pr(πt ∈ Π)≥ 1 − ε such that, for all continuations ht of all hτ̂,

1. jit(ht�πt) ∈ {j ∈ Jhτ̂ (i)|πjt ≥ πj′t − ε ∀j′ ∈ Jhτ̂ (i)} for all i ∈ N ;
2. jit(ht�πt)= arg maxj∈Jhτ̂ (i)

πjt for all i ∈ N whenever πt ∈ Π;
3. |Pr(jt(ht)= g)−pJhτ̂

(g)| ≤ ε for all g ∈ G;
4. Jh = Jhτ̂ conditional on hτ̂ almost surely.

PROOF: Fix an arbitrary ε > 0, and set Π = [a�b]n \ Dλ(ε). Now, the first
part of the proposition holds by definition. Indeed, for any continuation ht

of hτ̂, vtij(ht) ≥ vλ(ε) whenever j ∈ Jhτ̂ (i), and the link ij is broken whenever
j /∈ Jhτ̂ (i). Hence, the statement follows from Observation 1 and from the fact
that λ(ε) < ε. The second statement also immediately follows from the first.
Now, since jit differs from arg maxj∈Jhτ̂ (i)

only when πt ∈ Dλ(ε), we have
∣∣Pr

(
jt(ht)= g

) −pJhτ̂
(g)

∣∣ ≤ Pr
(
Dλ(ε)

)
< ε�
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proving the third statement. To prove the fourth, for any j ∈ Jhτ̂ (i), observe that
Pr(j = arg maxj′∈Jhτ̂ (i)

πj′) = 1/|Jhτ̂ (i)| > 1/n. Hence, by part 3, Pr(jit = j|hτ̂) >

1/n − ε > 0 for all continuations. Therefore, by Kolmogorov’s zero-one law,
conditional on hτ̂, jit = j infinitely often, that is, j ∈ Jh(i), among any continu-
ation h almost surely. Q.E.D.

Ignoring the zero probability event in which the set of long-run experts (de-
termined by Jh) differs from the set of eventually free links (determined by J̃h),
Proposition 6 can be understood as follows. At some history-dependent time
τ̂, all individuals learn the perspectives of all their long-run experts approxi-
mately. The first part states that they link to an approximately best-informed
long-run expert thereafter. The second part states that they link to precisely
the best-informed long-run expert with high probability. The third part states
that, thereafter, the endogenous networks are approximately independently
and identically distributed with pJhτ̂

, the distribution generated by selecting
the most informed expert j ∈ Jhτ̂ (i) for each i. Since pJhτ̂

is history depen-
dent, from an ex ante perspective the long-run exogenous networks are only
exchangeable (i.i.d. with unknown distribution).

In the remainder of this section, we will prove Corollary 2, establishing the
long-run frequency of endogenous networks. The following lemma is a key
step.

LEMMA 4: For any λ ∈ (0�1), t0, J, and ht0 ∈ Ĥλ�J and for any ε > Pr(Dλ),

Pr
(
φt(·|·) ∈ Bε(pJ�λ) eventually|ht0

) = 1�

PROOF: For each g ∈ G and each continuation history h of ht0 , φt(g|h) can
be decomposed as

φt(g|h) = φt0(g|ht0)
t0

t
+φt�1(g|h)+φt�2(g|h)�

where

φt�1(g|h) = #
{
t0 < s ≤ t|jis(h)= g(i) ∀i ∈N and πs ∈ Dλ

}
t

and

φt�2(g|h) = #
{
t0 < s ≤ t|jis(h)= g(i) ∀i ∈ N and πs /∈Dλ

}
t

=
#

{
t0 < s ≤ t|g(i) = arg max

j∈J(i)
πjs ∀i ∈ N and πs /∈Dλ

}

t
�
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Here, the last equality follows from the hypothesis in the lemma and the def-
inition of vλ in Observation 1. Hence, by the strong law of large numbers, as
t → ∞,

φt�2(g|h) → Pr
(
g(i) = arg max

j∈J(i)
πjs ∀i ∈ N and πs /∈Dλ

)

= pJ�λ(g)
(
1 − Pr

(
Dλ

))
�

where the last equality is by definition. Thus, almost surely,

lim sup
t

φt(g|h) = lim sup
t

φt�1(g|h)+pJ�λ(g)
(
1 − Pr

(
Dλ

))

≤ pJ�λ(g)+ Pr
(
Dλ

)
�

where the inequality follows from the fact that lim supt φt�1(g|h) ≤ Pr(Dλ),
which in turn follows from the strong law of large numbers and the definition
of φt�1. Likewise, almost surely,

lim inf
t
φt(g|h) = lim inf

t
φt�1(g|h)+pJ�λ(g)

(
1 − Pr

(
Dλ

))

≥ pJ�λ(g)− Pr
(
Dλ

)
�

where the inequality follows from lim inft φt�1(g|h) ≥ 0 and pJ�λ(g) ≤ 1. Hence,
for any ε > Pr(Dλ), for almost all continuations h of ht0 , there exists t such
that φt(g|h) ∈ (pJ�λ(g) − ε�pJ�λ(g) + ε) for all g. That is, φt(·|h) ∈ Bε(pJ�λ)
eventually, almost surely. Q.E.D.

PROOF OF COROLLARY 2: Ignore the zero probability event in which J̃h 	=
Jh and τ̂ is infinite (see Lemma 3). Then, by the third part of Proposition 6,
Jh = Jhτ̂ almost surely, where hτ̂ is the truncation of h to the time the process
enters Hε (along h). Define

Ĥε = {
h ∈H|φt(·|h) ∈ B2ε(pJh) eventually

}
�

and observe that φt(·|h) ∈ B2ε(pJh) whenever φt(·|h) ∈ Bε(pJh�λ(ε)). But
Lemma 4 states that, conditional on hτ̂, φt(·|h) ∈ Bε(pJh�λ(ε)) eventually with
probability 1. That is, Pr(Ĥε|hτ̂)= 1 for each hτ̂. Therefore,

Pr
(
Ĥε

) = 1�

Clearly, Ĥε is increasing in ε, and as ε → 0,

Ĥε → Ĥ0 = {
h ∈ H|φt(·|h)→ pJh

}
�
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Therefore,

Pr
(
Ĥ0

) = lim
ε→0

Pr
(
Ĥε

) = 1� Q.E.D.

B. VARIATIONS OF THE MODEL

The Two-Sided Case

Suppose that the set N of individuals is partitioned to two disjoint subsets:
a set Nd of decision-makers, and a set Ne of potential experts. Only decision-
makers make observational choices, and they can observe only potential ex-
perts. The domain and the range of graphs are modified accordingly; for ex-
ample, jit ∈ Ne, and it is defined only for i ∈ Nd . The definitions of the various
patterns of long-run behavior are also adjusted accordingly. For example, opin-
ion leadership is defined by Jh(i) = {j∗} for all i ∈ Nd , and long-run efficiency
is defined by Jh(i)=Ne for all i ∈ Nd . In all other respects, the model is exactly
as in the baseline case.

Our results concerning the behavior of a single individual clearly apply also
to this variation. This includes our characterization of long-run behavior in
Proposition 1, and our bound on the expected number of long-run experts in
Proposition 3. The following result presents a crisper version of Proposition 2
for the two-sided model. In this version, within (ṽ� v−Δ), every graph emerges
as a stable network with positive probability. Since the networks that involve
segregation cannot arise outside of this region, this yields a sharp characteri-
zation.

PROPOSITION 7: Under Assumption 1, for any v0 /∈ {ṽ� v}, the following are
true:

(a) Long-run efficiency obtains with probability 1 if and only if v0 > v.
(b) Extreme opinion leadership emerges with positive probability if and only if

v0 < v, and with probability 1 if and only if v0 < ṽ.
(c) For every v0 ∈ (ṽ� v − Δ), every g : Nd → Ne emerges as a static network

with positive probability.

PROOF: The proofs of parts (a) and (b) are as in the one-sided model.
The proof of part (c) is as follows. Fix any v0 ∈ (ṽ� v − Δ), where v0 + Δ <
min{β(v0)� v}. By continuity of Δ and γ and by definition of β, there exists
ε ∈ (0� (b− a)/3) such that v0 +Δ(a+ ε�b− ε) < min{β(v0)� v},
(25) Δ(b− ε�b) > Δ(a+ ε�b− ε)�

and

(26) γ(b− ε�v0) < γ
(
a+ ε�v0 +Δ(a+ ε�b− ε)

)
�
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Fix any such ε. Finally, fix any g : Nd → Ne and denote g(Nd) = {j0� � � � � jk}.
Consider the following event Π: At any t = 0� � � � �k, the expertise levels of jt
and all i with g(i) = jt are greater than b − ε, and the expertise levels of all
other individuals are less than a+ ε. For t = k+ 1� � � � �k+K with v0 +KΔ>
β(v0 + Δ(a + ε�b − ε)), all the expertise levels are in a neighborhood of the
diagonal such that

(27) γ
(
πjt� v0 +Δ(b− ε�b)

)
< γ

(
πj′t � v0 +Δ(a+ ε�b− ε)

)
for all j� j′ ∈ Ne. There is such an open nonempty neighborhood by (25). Now,
at any t = 0� � � � �k, if jit = jt , then vt+1

ijit
> vtijit + Δ(b− ε�b) when g(i) = jt and

vt+1
ijit

< vtijit + Δ(a + ε�b − ε) when g(i) 	= jt . Hence, by (26), we have jit = jt
for all i with g(i) = jk′ with k′ ≥ t, and jit ∈ {g(i)� jt} for all other i. Thus,
vk+1
ig(i) > v0 + Δ(b − ε�b) and vk+1

ij < v0 + Δ(a + ε�b − ε) for all i and j 	= g(i).
Then, by (27), jit = g(i) for all i and all t = k+ 1� � � � �k+K. Therefore, all the
links ij with j 	= g(i) are broken at k + K + 1, and Jh(i) = {g(i)} for all i and
all h ∈ Π. Q.E.D.

Using the ideas in the previous proofs, the following result delineates a sub-
set of (ṽ� v) on which every nonempty correspondence J : Nd ⇒Ne arises with
positive probability. That is, one cannot say more than Proposition 1 about the
behavior that arises with positive probability in the long run.

PROPOSITION 8: Assume that there exists an integer m such that

v0 +mΔ< v�(28)

v0 +mΔ(b�b) > v�(29)

v0 +Δ(b�b) < β(v0)�(30)

Then, for every nonempty J : Nd ⇒Ne, there exists a positive probability event on
which Jh = J.

PROOF: Given the stated assumptions, there clearly exists ε ∈ (0� (b− a)/3)
such that

v0 +mΔ(a+ ε�b− ε) < v�(31)

v0 +mΔ(b− 2ε�b) > v�(32)

v0 +Δ(b− ε�b− ε) < β(v0)�(33)

γ
(
a+ ε�v0 +Δ(b− ε�b− ε)

)
> γ(b− ε�v0)�(34)

where (33) and (34) follow from (30). Fix any nonempty correspondence J :
Nd ⇒Ne, and define J(Nd) = ⋃

i∈Nd
J(i). For the first m|J(Nd)| periods, con-

sider the periodic sequence of experts j∗
t ∈ J(Nd) obtained by cycling through
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the members of J(Nd). That is, j∗
1 is the first member of J(Nd), j∗

2 is the second
member of J(Nd), . . . , j∗

|J(Nd)| is the last member of J(Nd), and j∗
k|J(Nd)|+t = j∗t

t .
At any t ≤m|J(Nd)|, we have

πj�t ∈

⎧⎪⎨
⎪⎩

[b− ε�b] if j = j∗
t �

[b− 2ε�b− ε) if j ∈ J−1
(
j∗) ≡ {

i ∈ Ne|J(i) = j∗}�
[a�a+ ε] otherwise.

That is, j∗
t has the highest expertise, the decision-makers who would have j∗ be

a long-run expert according to J have the next highest levels of expertise, and
all the other individuals have the lowest levels of expertise. Note that, by (33),
in the first iteration of the cycle (the first |J(Nd)| periods), we have jit = j∗

t for
each i ∈ Ne. Since β(v)− v is non-decreasing, this further implies that jit = j∗

t

for each i ∈ Ne at every t ≤ m|J(Nd)|. Therefore, by the definition of m, at
the end of period m|J(Nd)|, we have the link ij free (i.e., vij > v) if and only if
j ∈ J(i). Q.E.D.

Observable States

Next, we consider the possibility that states are publicly observable with
some delay. In particular, we assume that there exists τ ≥ 0 such that, for all
t, θt becomes publicly observable at the end of period t + τ. Note that τ = 0
corresponds to observability of θt at the end of period t itself, as would be the
case if one’s own payoffs were immediately known. At the other extreme is
the case where the state is never observed (as in our baseline model), which
corresponds to the limit τ = ∞.

With observable states, given any history at the beginning of date t, the pre-
cision of the belief of an individual i about the perspective of individual j is

(35) vtijτ = v0
ij +

∑
{t′<t−τ:jit′=j}

1/πjt′ +
∑

{t−τ≤t′<t:jit′=j}
Δ(πit′�πjt′)�

For t ′ < t−τ, individual i retrospectively updates her belief about the perspec-
tive of her target j at t ′ by using the true value of θt′ instead of her private
signal xit′ . This causes her belief about j’s perspective to become more precise,
rising by 1/πjt′ instead of Δ(πit′�πjt′). Note that knowledge of the state does
not imply knowledge of a target’s perspective, since the target’s signal remains
unobserved.

This is the main effect of observability of past states: it retroactively improves
the precision of beliefs about the perspectives of those targets who have been
observed at earlier dates, without affecting the precision of beliefs about other
individuals, along a given history. Such an improvement only enhances the at-
tachment to previously observed individuals. This does not affect our results
concerning one individual’s behavior, such as the characterization of long-run
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behavior in Proposition 1 and the bound on the expected number of long-run
experts in Proposition 3. Nor does it affect results concerning patterns of be-
havior that are symmetric on the observer side, such as long-run efficiency and
opinion leadership in the first two parts of Proposition 2.11

Observability of states has a second effect, which relates to the asymmetry of
observers. For t ′ < t − τ, since an individual i already observes the true state
θt′ , her signal xit′ does not affect her beliefs at any fixed history, as seen in
(35). Consequently, two individuals with identical observational histories have
identical beliefs about the perspectives of all targets observed before t − τ.
This makes asymmetric linkage patterns, such as non-star-shaped static net-
works and information segregation, less likely to emerge. Nevertheless, when
τ > 0, individuals do use their private information in selecting targets until the
state is observed. Therefore, under delayed observability, individuals’ private
signals impact their target choices, leading them to possibly different paths of
observed targets. Indeed, our results about information segregation and static
networks extend to the case of delayed observability for a sufficiently long de-
lay τ.

Specifically, for a sufficiently long delay, every network emerges as the static
network with positive probability. The reason for this is quite straightforward.
Without observability, on a history under which g emerges as a static net-
work, individuals become attached to their respective targets under g arbi-
trarily strongly over time. Hence, even if individuals start observing past states
and learn more about other targets, the new information will not be sufficient
to mend those broken links once enough time has elapsed. Moreover, for any
partition of the population into sets of two or more individuals, there exists
some g ∈ G that maps each player i to a member of the same set in the parti-
tion. In this case, we have information segregation over the given partition.

To summarize, allowing for the observability of states with some delay does
not alter the main message of this paper, and in some cases gives it greater
force. The trade-off between being well-informed and being well-understood
has interesting dynamic implications because those whom we observe become
better understood by us over time. This effect is strengthened when a state is
subsequently observed, since an even sharper signal of a target’s perspective is
obtained.

C. SHIFTING PERSPECTIVES

In our baseline model, we assumed that all perspectives were fixed: each in-
dividual assumes that θt is i.i.d. with a known distribution, and does not update

11To be precise, with observable states we have long-run efficiency whenever v0 > v, opinion
leadership with positive probability when v0 < v, and opinion leadership with probability 1 when
v0 < ṽ (as in the first two parts of Proposition 2). However, the probability of opinion leadership
may be 1 even when v0 > ṽ. Indeed, when τ = 0, opinion leadership emerges with probability 1
whenever v0 < ṽ′, where ṽ′ > ṽ is defined by β(ṽ′)− ṽ′ = 1/b.
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her beliefs about this distribution as she observes realizations of θt or signals
about θt . We now consider the possibility that individuals recognize that they
do not know the mean of θt and update their perspectives over time. We take

(36) θt = μ+ zt�

where the random variables (μ�z1� z2� � � �) are stochastically independent and

μ∼i N(μi0�1)�(37)

zt ∼N(0�1/α0)�(38)

Recall that ∼i indicates the belief of individual i, who believes that θt is i.i.d.
with mean μ and variance 1, but does not know the mean μ; she believes—
initially—that μ is normally distributed with mean μi0 and precision α0. We
refer to the mean μi0 as the initial perspective of i, and to the precision α0 as
the initial firmness of her perspective. We assume that θt is publicly observed at
the end of the period t—as in the case of τ = 0 in our discussion of observable
states. This simplifies the analysis because individuals update their perspectives
purely based on θt , rather than the signals and opinions they observe at t.

At the end of period t, the perspective of an individual i is

(39) μit ≡E(μ|θ1� � � � � θt)= α0

α0 + t
μi0 + t

α0 + t

θ1 + · · · + θt

t
�

and the firmness of her perspective (i.e., the precision of the belief about μ) is

(40) αt ≡ α0 + t�

Note that the perspective μit is a convex combination of the initial perspective
μi0 and the empirical average θt = (θ1 + · · · + θt)/t of the realized states with
deterministic weights α0/αt and t/αt , respectively.12 As time progresses, the
weight α0/αt of the initial perspective decreases and eventually vanishes, while
the weight t/αt of the empirical average approaches 1.

Individuals other than i have two sources of information about the revised
perspective μit : (i) the past opinions of i, which are endogenously and privately
observed and are the only sources of information about the initial perspective
μi0, and (ii) the realization of past states, which are exogenously and publicly
observed and provide information about the data that individual i uses to up-
date her perspective.

In earlier periods, their main information comes endogenously from the first
source, as in our baseline model. However, in the long run, the accumulated

12Note also that the perspective μit is a random variable, as it depends on an empirical average,
while its firmness αt is deterministic and increasing in t.
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data coming from the public source dominates the privately obtained informa-
tion, as the perspective approaches the empirical average of the realized states.
They eventually learn the perspective of each individual so precisely that they
choose their targets based purely on expertise levels, as in the case of known
perspectives. Hence efficiency is the only possible outcome in the long run.
Nevertheless, the speed of convergence is highly dependent on the initial firm-
ness α0 of each perspective. The long-run behavior can be postponed indefi-
nitely by considering firmer and firmer initial perspectives. Moreover, under
such firm perspectives, the belief dynamics will also be similar to those in our
baseline model, which corresponds to infinite initial firmness. Hence, the be-
havior will be similar to the long-run behavior in the baseline model in those
arbitrarily long stretches of time before the perspectives are learned—as we
establish below.

Effect of Learning on Choosing Targets

We next describe how individuals choose their targets. We show that, in com-
parison with the baseline model, there is a stronger motive to listen to better-
understood targets vis-à-vis better-informed ones, and this motive decreases
over time and approaches the baseline model in the limit. That is, learning
strengthens path dependence early on.

At the beginning of period t, the belief of any individual j about the state is

θt ∼j N(μj(t−1)�1 + 1/αt−1)�

This is as in our baseline model, except that the individual faces additional un-
certainty about the underlying distribution, so the variance is 1 + 1/αt−1 rather
than 1. Her opinion is accordingly

yjt = 1
1 + π̂jt

μj + π̂jt

1 + π̂jt

xjt�

where

(41) π̂jt = πjt/(1 + 1/αt−1)�

That is, opinions are formed as in our baseline model, but with individuals hav-
ing effectively lower expertise, reflecting their uncertainty about the underly-
ing process. The effective expertise level π̂jt approaches the nominal expertise
level πjt of our baseline model as t → ∞. This modification can be incorpo-
rated into our earlier analysis by modifying the distribution of expertise levels
at each period, taking the bounds of expertise to be

(42) at = a/(1 + 1/αt−1) and bt = b/(1 + 1/αt−1)�

which converge to the original bounds a and b, respectively, as t → ∞.
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Writing vtij for the precision of the belief of i about the perspective μj(t−1) of
player j at the beginning period t, the opinion yjt provides a noisy signal

1 + π̂jt

π̂jt

yjt = θt + εjt + 1
π̂jt

μj(t−1)�

as in the baseline model. Once again, the variance of the additive noise in the
signal observed by i is

γ
(
π̂jt� v

t
ij

) ≡ 1
π̂jt

+ 1
π̂2

jt

1
vtij

�

This leads to the same behavior as in the baseline model, with effective exper-
tise replacing nominal expertise:

(43) jit = min
{

arg min
j 	=i

γ
(
π̂jt� v

t
ij

)}
�

Here, individual i simply discounts the expertise levels of her potential tar-
gets, making expertise less valuable vis-à-vis familiarity, tilting the scale to-
wards better-understood targets. That is, in the short run, learning actually
increases the attachment to previously observed targets, leading to stronger
path-dependence. Towards stating this formally, we define the marginal rate of
substitution of expertise level πjt for the precision vtij of variance at t as

MRSt
π�v ≡ −∂γ

(
π̂jt� v

t
ij

)
/∂πjt

∂γ
(
π̂jt� v

t
ij

)
/∂vtij

= 1
1 + αt−1

+ 2vtij/∂πjt�

In the baseline model, the marginal rate of substitution is

MRSπ�v ≡ −∂γ
(
πjt� v

t
ij

)
/∂πjt

∂γ
(
πjt� v

t
ij

)
/∂vtij

= 1 + 2vtij/∂πjt �

The following proposition immediately follows from the above expressions.

PROPOSITION 9: The marginal rate of substitution of πjt for the precision vtij of
variance is higher in the model with learning:

MRSt
π�v > MRSπ�v�

Moreover, MRSt
π�v is decreasing in t and converges to MRSπ�v as t → ∞. In par-

ticular, for any i, j, and j′ with fixed vtij > vtij′ , if i prefers j to j′ at t in the baseline
model, she also prefers j to j′ at t in the model with learning.
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That is, learning increases attachment to familiar targets at the expense of
more informed ones when we fix beliefs about the other players’ perspectives.
However, the beliefs about the other players’ perspectives are different under
learning—as we show next.

Belief Dynamics

The updating of beliefs about perspectives is somewhat more interesting.
At any history h at the beginning of a date t, write vtij = 1/Var(μj(t−1)|h) and
vtij0(h) = 1/Var(μj0|h) for the precisions of the beliefs of i about the current
and the initial perspective of j, respectively. By (39), the variance of the current
perspective μj(t−1) is

(44) Var(μj(t−1)|h)= 1
vtij0(h)

(
α0

αt

)2

+ 1
t

(
t

αt

)2

�

Here, the first term reflects the uncertainty about the initial perspective and
depends on previous observations. The second term reflects the flow of public
information, depending only on time and the firmness of beliefs. Then, the
precision of beliefs about the current perspective is

(45) vtij = 1/Var(μj(t−1)|h)= α2
t v

t
ij0(h)

α2
0 + tvtij0(h)

�

Since αt = α0 + t, we observe that vtij is an increasing function of both vtij0 (re-
flecting the information gathered by observing the opinions directly) and t (re-
flecting the flow of public information).

To determine vtij , we next determine vtij0. As in the baseline model, observa-
tion of yjt by i provides the following signal about μj(t−1):

(1 + π̂jt)yjt − π̂jtθt = μj(t−1) + π̂jtεjt �

Together with (39), this leads to the following signal about μj0:

αt−1

α0
(1 + π̂jt)yjt −

[
θ1 + · · · + θt−1

α0
+ αt−1

α0
π̂jtθt

]
= μj0 + αt−1

α0
π̂jtεjt �

The precision of this signal (i.e., the inverse of the variance of the additive
noise term at−1

α0
π̂jtεjt) is

Δt(πjt)= α2
0(1 + αt−1)

2

α4
t−1

1
πjt

�
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As in the baseline model, this leads to the following closed-form solution:

(46) vtij0 = v0 +
t−1∑
s=1

Δs(πjs)l
s
ij�

where lsij is 1 if i links to j at s and 0 otherwise. By substituting (46) into (45),
we also obtain a formula for vtij .

Note that one applies to each variance 1/πjs a weight that is decreasing in
s, where the weight is approximately (α0/αs−1)

2. That is, earlier observations
add more precision to the belief about μj0—because those opinions reflect the
initial perspective more strongly. As time progresses, the opinions become less
valuable sources of information about the initial perspective, and their impact
on vt+1

ij0 eventually becomes negligible. Note also that the precisions vtij0 are
uniformly bounded from above.

Long-Run Behavior and the Robustness of the Baseline Model

Since the precisions vtij0 are uniformly bounded, the long-run behavior is
driven by the flow of public information. Indeed, by (45), when t � α0, vtij is
approximately t, regardless of history. Hence, for any fixed α0, as t → ∞, vtij
also goes to ∞, leading to long-run efficiency.

PROPOSITION 10: In the model with learning, for any fixed α0, we have long-
run efficiency.

PROOF: Since vtij0 ≥ v0 and vtij is an increasing function of vtij0, we can con-
clude from (45) that

vtij(h)≥ α2
t v0

α2
0 + tv0

= (α0 + t)2v0

α2
0 + tv0

(∀h ∈H)�

Hence, for every history h ∈H,

lim
t→∞

vtij(h)≥ lim
t→∞

(α0 + t)2v0

α2
0 + tv0

= ∞�
Q.E.D.

Despite this, the long-run outcome can be postponed indefinitely by choos-
ing firmer initial beliefs, and the medium-run behavior is similar to the long-
run behavior of our baseline model. This can be deduced from (45) and (46)
as follows. In (45), for any fixed (t� vtij0), limα0→∞ vtij = vtij0. At the same time, in
(46),

lim
α0→∞

vtij0 = v0 +
t−1∑
s=1

lsij/πjs ≡ vtij�
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where vtij is the precision of the belief of i about the perspective of j in the
baseline model with observable states. Hence,

(47) lim
α0→∞

vtij = v0 +
t−1∑
s=1

lsij/πjs ≡ vtij�

That is, the beliefs as functions of past behavior remain close to those in the
baseline model when the initial conviction in perspectives is sufficiently high.
Since past behavior is also a function of past beliefs, this further implies that
both behavior and beliefs remain close to their counterparts in the baseline
model. This is formalized in the next result. The first part states that, with high
probability, individuals choose their target between dates t and t + l according
to the long-run behavior without learning. The second part states that the pos-
sible patterns of behavior within that (arbitrarily long) time interval coincide
with the patterns possible under the long-run behavior of the baseline model.

PROPOSITION 11: For every ε > 0 and any positive integer l, there exist a date
t <∞ and α<∞ such that

Pr
(
jit(h) ∈ arg max

j∈Jh(i)
πjt ∀t ∈ {t� t + 1� � � � � t + l}

)
> 1 − ε (∀α0 > α)�

where Jh(i) is the set of long-run experts in the baseline model with observable
states. Moreover, for any mapping J : N → 2N \ {∅}, we have Pr(Jh = J) > 0 if
and only if

Pr
(
jit(h) ∈ arg max

j∈Jh(i)
πjt ∀t ∈ {t� t + 1� � � � � t + l}∣∣ht ∈HJ

)
> 1 − ε

(∀α0 > α)

for some positive probability event HJ .

PROOF: Fix some positive ε and l as in the proposition. There then ex-
ists ε′ > 0 such that Pr(Πε′

) > (1 − ε/4)1/l where Πε′ = {π||πi − πj| > ε′}.
There also exists finite t such that Pr(H ′) > 1 − ε/4 for H ′ = {h ∈ H|τ(h) < t}
where the τ(h) is defined for ε′/2 in Proposition 1. Note that there exists
λ > 0 such that whenever (π1t � � � � �πnt) ∈ Πε′ and t ≥ t > τ(h), we have
γ(πj∗it (h)t� v

t
ij∗it (h)

(h)) < γ(πjt� v
t
ij(h))− λ for all j ∈ N \ {i� j∗

it(h)} where j∗
it(h) =

arg maxj∈Jh(i)πjt and vtij(h) is the precision of belief of i about the perspective
of j in the baseline model under observable states. One can further show that



COMMUNICATION WITH UNKNOWN PERSPECTIVES 17

there exists λ′ ∈ (0�λ) such that the probability of the event

H ′′ = {
h ∈ H|γ(

πj∗it (h)t� v
t
ij∗it (h)

(h)
)
< γ

(
πjt� v

t
ij(h)

) − λ′

∀t ≤ t� j ∈N \ {
i� j∗

it(h)
}}

also exceeds 1 − ε/4. Consider the set Ĥ of histories in the intersection of the
events H ′, H ′′, and that all the realizations of expertise levels between t and
t + l are in Πε′ . Clearly, Pr(Ĥ) > 1 − ε, as the probabilities of the excluded
events add up to 3ε/4. Note, however, that, since vtij(h)≥ v0 throughout, there
then exists λ′′ > 0 such that, for all

∥∥vti(h)− vti(h)
∥∥ < λ′′ ⇒ γ

(
πj∗it (h)t� v

t
ij∗it (h)

(h)
)
< γ

(
πjt� v

t
ij(h)

)
∀h ∈ Ĥ� t ≤ t + l� j ∈ N \ {

i� j∗
it(h)

}
�

But, since the limit in (47) is uniform over all histories with t ≤ t + l, there also
exists α such that ‖vti(h)− vti(h)‖ < λ′′ for all histories with t ≤ t + l whenever
α0 >α.

The second part of the proposition can be obtained from the first part using
Proposition 6. Q.E.D.
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