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APPENDIX: PROOFS

A.1. Notations and Preliminary Results

IN THIS SUBSECTION, we introduce some notations and describe some techni-
cal preliminary results which are repeatedly used in the sequel. We denote the
conditional expectation operator E[·|F ] by EF [·]; similarly, we use CovF(·� ·)
to denote the F -conditional covariance. For a random variable ξ and a con-
stant p≥ 1, we write ‖ξ‖p = (E‖ξ‖p)1/p and ‖ξ‖F�p = (EF‖ξ‖p)1/p. Recall that
Nn ≡ �T/Δn� − kn. We write

∑
i for

∑Nn
i=0. We use K to denote a generic finite

positive constant that may vary from line to line; we sometimes write Ku to
emphasize its dependence on some constant u. We write “w.p.a.1” for “with
probability approaching one.” As is typical in this type of problems, by a clas-
sical localization argument (Jacod and Protter (2012, Section 4.4.1)), we can
replace Assumption 1 with the following assumption without loss of generality.

ASSUMPTION A1: We have Assumption 1. The process (βt�Zt) takes value in
some compact set and the process Vt takes value in some convex compact set.
Moreover, the processes bt , b̃t , and σ̃t are bounded and, for some λ-integrable
function J : R �→ R, we have |δ(ω� t�u)|r ≤ J(u) and ‖δ̃(ω� t�u)‖2 ≤ J(u), for
all ω(0) ∈Ω(0), t ≥ 0, and u ∈ R.

We consider a continuous process X ′
t given by

X ′
t =X0 +

∫ t

0
bs ds+

∫ t

0

√
Vs dWs�

We then set, for each i= 0� � � � �Nn,

V̂ ′
iΔn

= 1
knΔn

kn∑
j=1

(
Δni+jX

′)2
� ṽn�i = V̂ ′

iΔn
− ViΔn�(A.1)

Lemma A1, below, collects some known, but nontrivial, estimates from Jacod
and Rosenbaum (2013); see (4.8), (4.11), (4.12), Lemma 4.2, and Lemma 4.3
in that paper.
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LEMMA A1: Suppose that Assumption A1 holds for some r ∈ [0�1). Let u≥ 1
be a constant and

ηn�i ≡
√
E

[
sup

iΔn≤u≤iΔn+knΔn
|biΔn+u − biΔn |2

∣∣FiΔn

]
�

Then, for some deterministic sequence an → 0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
∣∣V̂iΔn − V̂ ′

iΔn

∣∣u ≤KuanΔ
(2u−r)+1−u
n �

E|ṽn�i|u ≤Ku

(
k−u/2
n + (knΔn)(u/2)∧1

)
�∣∣E[(Δni+1X

′)2 − ViΔnΔn|FiΔn

]∣∣≤KΔ3/2
n

(
Δ1/2
n +ηn�i

)
�

Δn

�T/Δn�∑
i=1

ηn�i = op(1)�∣∣E[ṽ2
n�i − 2k−1

n V
2
iΔn

|FiΔn

]∣∣≤KΔ1/2
n

(
k−1/2
n + knΔ1/2

n +ηn�i
)
�

(A.2)

Lemma A2 below shows that V̂iΔn uniformly (with respect to i) approximates
the moving average of spot variance given by

V̄iΔn ≡ 1
knΔn

∫ iΔn+knΔn

iΔn

Vs ds;(A.3)

note that under Assumption A1, the variables (V̄iΔn)0≤i≤Nn are uniformly
bounded. This lemma extends a result in Li, Todorov, and Tauchen (2014) to
the case with overlapping blocks for spot variance estimation.

LEMMA A2: Suppose Assumptions A1 and 3. Then sup0≤i≤Nn |V̂iΔn − V̄iΔn | =
op(1). Consequently, the variables (V̂iΔn)0≤i≤Nn are uniformly bounded w.p.a.1.

PROOF: By Itô’s formula,

V̂ ′
iΔn

− V̄iΔn = 2
knΔn

kn∑
j=1

∫ (i+j)Δn

(i+j−1)Δn

(
X ′
s −X ′

(i+j−1)Δn

)
(bs ds+√

Vs dWs)�(A.4)

From here, standard estimates for continuous Itô semimartingales yield, for
any p≥ 1,∥∥V̂ ′

iΔn
− V̄iΔn

∥∥
p

≤Kpk
−1/2
n �(A.5)

By using a maximal inequality and picking p> 2/ς, we deduce∥∥∥ sup
0≤i≤Nn

∣∣V̂ ′
iΔn

− V̄iΔn
∣∣∥∥∥
p

≤KpΔ
−1/p
n k−1/2

n → 0�(A.6)
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Next, we note that

E

[
sup

0≤i≤Nn

∣∣V̂iΔn − V̂ ′
iΔn

∣∣] ≤ 1
knΔn

�T/Δn�∑
i=1

E
∣∣(Δni X)2

1{|Δni X|≤un} − (
Δni X

′)2∣∣(A.7)

= o
(
Δ(2−r)−(1−ς)
n

)→ 0�

where the second line is by Lemma 13.2.6 of Jacod and Protter (2012) and the
assumption that ≥ (1 − ς)/(2 − r).

The assertions of the lemma then follow from (A.6) and (A.7). Q.E.D.

A.2. Proof of Theorem 1

We need two lemmas. Lemma A3 is used to combine stable convergence
and convergence in conditional law (see Definition A1 below); it generalizes
Proposition 5 of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) to
a functional setting. Lemma A4 generalizes Theorem 3.2 in Jacod and Rosen-
baum (2013) in two ways: it concerns a functional setting and it does not re-
quire the test function to have polynomial growth in the spot variance. With-
out further mention, we remark that all variables below take values in Polish
spaces.

DEFINITION A1—Convergence in Conditional Law: Let ζn be a sequence of
random variables defined on the space (Ω�F ⊗ G�P) and let L be a transition
probability from (Ω�F ⊗ {∅�Ω(1)}) to an extension of (Ω�F ⊗G�P). We write
ζn

L|F−→ L if and only if EF [f (ζn)] P−→ ∫
f (z)L(dz) for any bounded continuous

function f . If a variable ζ defined on the extension has F -conditional law L,
we also write ζn

L|F−→ ζ.

LEMMA A3: Let ξn and ζn be two sequences of random variables defined
on (Ω�F ⊗ G�P) and let ξ and ζ be variables defined on an extension of
(Ω�F ⊗ G�P). Suppose that ξn is F -measurable, ξn

L-s−→ ξ, and ζn
L|F−→ ζ.

Then (ξn� ζn)
L-s−→ (ξ̃� ζ̃), where (ξ̃� ζ̃) is defined on an extension of the space

(Ω�F ⊗G�P) such that ξ̃ and ζ̃ are F -conditionally independent and ξ̃ (resp. ζ̃)
has the same F -conditional law as ξ (resp. ζ).

PROOF: Let f and g be bounded continuous functions and let U be an
arbitrary F -measurable real-valued bounded random variable. Denote the
F -conditional laws of ξ and ζ by L1 and L2, respectively. Since ξn is F -
measurable,

E
[
Uf(ξn)g(ζn)

]= E
[
Uf(ξn)EF

[
g(ζn)

]]
�(A.8)
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By assumption, EF [g(ζn)] P−→ ∫
g(z)L2(dz). Then, by the bounded conver-

gence theorem,

E
[
Uf(ξn)EF

[
g(ζn)

]]−E

[
Uf(ξn)

∫
g(z)L2(dz)

]
→ 0�(A.9)

Since ξn
L-s−→ ξ,

E

[
Uf(ξn)

∫
g(z)L2(dz)

]
(A.10)

→ E

[
U

(∫
f (x)L1(dx)

)(∫
g(z)L2(dz)

)]
�

Combining (A.8), (A.9), and (A.10), we see

E
[
Uf(ξn)g(ζn)

]→ E

[
U

∫ ∫
f (x)g(z)L1(dx)L2(dz)

]
�(A.11)

Finally, we realize the product transition probability L1 ⊗ L2 as the F -
conditional law of (ξ̃� ζ̃). The assertion of the lemma readily follows. Q.E.D.

LEMMA A4: Let f : B ×Z × V ×Θ �→ R
d be a function in C2�2�3�1. For θ�θ′ ∈

Θ, let ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn(θ)≡ Δn
∑
i

(
f (βiΔn�ZiΔn� V̂iΔn;θ)

− 1
kn
∂2
vf (βiΔn�ZiΔn� V̂iΔn;θ)V̂ 2

iΔn

)
�

F(θ)≡
∫ T

0
f (βs�Zs�Vs;θ)ds�

Sf
(
θ�θ′)≡ 2

∫ T

0
∂vf (βs�Zs�Vs;θ)∂vf

(
βs�Zs�Vs;θ′)ᵀV 2

s ds�

Under Assumptions 1 and 3, we have the following:
(a) Fn(θ)

P−→ F(θ) uniformly in θ ∈Θ;
(b) for each θ, Δ−1/2

n (Fn(θ)− F(θ)) L-s−→MN (0� Sf (θ�θ));
(c) if Assumption 5(ii) holds in addition, then the sequence Δ−1/2

n (Fn(·) −
F(·)) of processes converges F -stably in law under the uniform metric to a pro-
cess ζ(·) which, conditional on F , is centered Gaussian with covariance function
Sf (·� ·).

PROOF: Step 1. By the standard localization procedure (Jacod and Protter
(2012, Section 4.4.1)), we suppose that Assumption A1 holds without loss of
generality. In this step, we prove the assertions of the theorem under an ad-
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ditional assumption that f (·) is supported on a compact set. In step 2, we
show that this additional assumption can indeed be imposed without loss of
generality by a spatial localization argument. For notational simplicity, we set
h(β�z� v;θ) = ∂2

vf (β�z� v;θ)v2. We also denote Z̃t = (βt�Zt� Vt) and αn�i =
(Δni+1X

′)2 − ViΔnΔn.
The proof relies on the decomposition

Δ−1/2
n

(
Fn(θ)− F(θ))=

5∑
j=1

Rj�n(θ)�

where

R1�n(θ)≡ Δ1/2
n

∑
i

(
f (βiΔn�ZiΔn� V̂iΔn;θ)− f (βiΔn�ZiΔn� V̂ ′

iΔn
;θ))(A.12)

−Δ1/2
n k

−1
n

∑
i

(
h(βiΔn�ZiΔn� V̂iΔn;θ)− h(βiΔn�ZiΔn� V̂ ′

iΔn
;θ))�

R2�n(θ)≡ Δ−1/2
n

∑
i

∫ (i+1)Δn

iΔn

(
f (Z̃iΔn;θ)− f (Z̃s;θ)

)
ds(A.13)

−Δ−1/2
n

∫ T

(Nn+1)Δn

f (Z̃s;θ)ds�

R3�n(θ)≡ Δ1/2
n

∑
i

∂vf (Z̃iΔn;θ)k−1
n

kn∑
u=1

(V(i+u−1)Δn − ViΔn)�(A.14)

R4�n(θ)≡ Δ1/2
n

∑
i

(
f (βiΔn�ZiΔn� ViΔn + ṽn�i;θ)− f (βiΔn�ZiΔn� ViΔn;θ)(A.15)

− ∂vf (βiΔn�ZiΔn� ViΔn;θ)ṽn�i − k−1
n h

(
βiΔn�ZiΔn� V̂

′
iΔn

;θ))�
R5�n(θ)≡ Δ−1/2

n k−1
n

∑
i

(
∂vf (Z̃iΔn;θ)

kn∑
u=1

αn�i+u−1

)
�(A.16)

The assertions of the lemma follow from the following claims for Rj�n(·), 1 ≤
j ≤ 5: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sup
θ∈Θ

∥∥Rj�n(θ)∥∥= op(1)� for j = 1�2�

sup
θ∈Θ

∥∥Δ1/2
n Rj�n(θ)

∥∥= op(1) and Rj�n(θ)= op(1)� for j = 3�4�

sup
θ∈Θ

∥∥Rj�n(θ)∥∥= op(1)� for j = 3�4�under Assumption 5(ii),

R5�n(·) L-s−→ ζ(·)�

(A.17)

We now show these claims.
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Case j = 1: Since f (·) is compactly supported, so is h(·). Hence, ∂vf (·) and
∂vh(·) are uniformly bounded. By a mean value expansion,

sup
θ∈Θ

∥∥R1�n(θ)
∥∥≤KΔ1/2

n

∑
i

∣∣V̂iΔn − V̂ ′
iΔn

∣∣�(A.18)

By Lemma A1, the majorant side of (A.18) is op(Δ(2−r)−1/2
n ). Note that  ≥

1/2(2 − r) under Assumption 3. Hence, (A.18) further implies (A.17) for the
case j = 1.

Case j = 2: Since f (·) is uniformly bounded, it is easy to see that

sup
θ∈Θ

∥∥∥∥Δ−1/2
n

∫ T

(Nn+1)Δn

f (Z̃s;θ)ds
∥∥∥∥≤KknΔ1/2

n → 0�(A.19)

Moreover, by a standard estimate (see, e.g., pp. 153–154 in Jacod and Prot-
ter (2012)) for the Riemann approximation error of Itô semimartingales, we
deduce that for each θ,

Δ−1/2
n

∑
i

∫ (i+1)Δn

iΔn

(
f (Z̃iΔn;θ)− f (Z̃s;θ)

)
ds = op(1)�(A.20)

Next, we verify that the term on the left-hand side of (A.20) is stochastically
equicontinuous.

We decompose the left-hand side of (A.20) as R′
2�n(θ)+R′′

2�n(θ), where

R′
2�n(θ)≡ Δ−1/2

n

∑
i

∫ (i+1)Δn

iΔn

(
f (Z̃iΔn;θ)− f (Z̃s;θ)(A.21)

− ∂Z̃f (Z̃iΔn;θ)(Z̃iΔn − Z̃s)
)
ds

+Δ−1/2
n

∑
i

∫ (i+1)Δn

iΔn

∂Z̃f (Z̃iΔn;θ)E[Z̃iΔn − Z̃s|FiΔn]ds�

R′′
2�n(θ)≡ Δ−1/2

n

∑
i

∫ (i+1)Δn

iΔn

∂Z̃f (Z̃iΔn;θ)(A.22)

× (
Z̃iΔn − Z̃s −E[Z̃iΔn − Z̃s|FiΔn]

)
ds�

Note that for s ∈ [iΔn� (i+ 1)Δn],

E

[
sup
θ∈Θ

∥∥f (Z̃iΔn;θ)− f (Z̃s;θ)− ∂Z̃f (Z̃iΔn;θ)(Z̃iΔn − Z̃s)
∥∥](A.23)

≤KE‖Z̃iΔn − Z̃s‖2 ≤KΔn�
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and

sup
θ∈Θ

∥∥∂Z̃f (Z̃iΔn;θ)E[Z̃iΔn − Z̃s|FiΔn]
∥∥≤KΔn�(A.24)

From (A.23) and (A.24), it is easy to see that supθ∈Θ ‖R′
2�n(θ)‖ = op(1), so

R′
2�n(·) is stochastically equicontinuous. Next, we observe that R′′

2�n(θ) is a sum
of martingale differences. By the Burkhölder–Davis–Gundy inequality and the
boundedness of the partial derivatives of f (·), we derive, for any p≥ 1,∥∥R′′

2�n(θ)−R′′
2�n

(
θ′)∥∥p

p
(A.25)

≤KpΔ
−p/2
n E

∥∥∥∥∥∑
i

(∫ (i+1)Δn

iΔn

(
∂Z̃f (Z̃iΔn;θ)− ∂Z̃f

(
Z̃iΔn;θ′))

× (
Z̃iΔn − Z̃s −E[Z̃iΔn − Z̃s|FiΔn]

)
ds

)2
∥∥∥∥∥
p/2

≤Kp

∥∥θ− θ′∥∥p�
In particular, by taking p > dim(θ), we deduce that R′′

2�n(·) is stochastically
equicontinuous (see, e.g., Theorem 2.2.4 in van der Vaart and Wellner (1996)).
The stochastic equicontinuity of the term in (A.20) then readily follows. Hence,
(A.20) holds uniformly in θ ∈ Θ. In view of (A.19), we deduce (A.17) for the
case j = 2.

Case j = 3: We set ζ3�n�i ≡ k−1
n

∑kn
u=1(V(i+u−1)Δn − ViΔn), ζ ′

3�n�i ≡ E[ζ3�n�i|FiΔn],
and ζ ′′

3�n�i ≡ ζ3�n�i−ζ ′
3�n�i. We then decomposeR3�n(θ)=R′

3�n(θ)+R′′
3�n(θ), where

R′
3�n(θ)≡ Δ1/2

n

∑
i

∂vf (Z̃iΔn;θ)ζ ′
3�n�i�

R′′
3�n(θ)≡ Δ1/2

n

∑
i

∂vf (Z̃iΔn;θ)ζ ′′
3�n�i�

Under Assumption A1, it is easy to see E‖ζ ′
3�n�i‖ ≤KknΔn. Since ∂vf (·) is uni-

formly bounded, we further have E[supθ∈Θ ‖R′
3�n(θ)‖] ≤KknΔ1/2

n → 0. Hence,

sup
θ∈Θ

∥∥R′
3�n(θ)

∥∥= op(1)�(A.26)

For R′′
3�n(θ), we decompose it as

R′′
3�n(θ)=

kn−1∑
j=0

R′′
3�j�n(θ)�(A.27)

R′′
3�j�n(θ)≡ Δ1/2

n

∑
u≥0

0≤j+ukn≤Nn

∂vf (Z̃(j+ukn)Δn;θ)ζ ′′
3�n�j+ukn�
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Since E[ζ ′′
3�n�i|FiΔn] = 0 and ζ ′′

3�n�i is F(i+kn−1)Δn measurable, each R′′
3�j�n(θ) is a

sum of martingale differences. Moreover, by a standard estimate for Itô semi-
martingales, we have, for any p≥ 2 and all u= 1� � � � �kn,

‖V(i+u−1)Δn − ViΔn‖p ≤Kpān�p� where(A.28)

ān�p ≡
{
(knΔn)

1/p in general,
(knΔn)

1/2 when Vt is continuous.

From (A.28), we use the triangle inequality to deduce∥∥ζ ′′
3�n�i

∥∥
p

≤Kp‖ζ3�n�i‖p ≤Kpān�p�(A.29)

Then, by using the martingale structure of R′′
3�j�n(θ), we derive ‖R′′

3�j�n(θ)‖2 ≤
KΔ1/2

n . From here, we see that∥∥R′′
3�n(θ)

∥∥
2
≤KknΔ1/2

n → 0�(A.30)

which further implies that, for each θ,

R′′
3�n(θ)= op(1)�(A.31)

Given (A.26) and (A.31), to show (A.17) for the case j = 3, it remains to
verify that Δ1/2

n R
′′
3�n(·) is stochastically equicontinuous and that, under Assump-

tion 5(ii), so is R′′
3�n(·). Observe that for any p≥ 2 and θ�θ′ ∈Θ,∥∥R′′

3�n(θ)−R′′
3�n

(
θ′)∥∥

p
(A.32)

≤
kn−1∑
j=0

∥∥R′′
3�j�n(θ)−R′′

3�j�n

(
θ′)∥∥

p

≤KpΔ
1/2
n

kn−1∑
j=0

{
E

[
(knΔn)

−(p/2−1)
∑
u≥0

0≤j+ukn≤Nn

∥∥θ− θ′∥∥p∥∥ζ ′′
3�n�j+ukn

∥∥p]}1/p

≤Kpk
1/2
n ān�p

∥∥θ− θ′∥∥�
where the first inequality is by the triangle inequality; the second inequality is
by the Burkhölder–Davis–Gundy inequality, Hölder’s inequality, and the fact
that the map θ �→ ∂vf (·;θ) is Lipschitz; the third inequality is due to (A.29).
From here, it is easy to see that for any p> dim(θ), Δ1/2

n ‖R′′
3�n(θ)−R′′

3�n(θ
′)‖p ≤

Kp‖θ− θ′‖, which further implies the stochastic equicontinuity of Δ1/2
n R

′′
3�n(·).

Next, under Assumption 5(ii), we can take p such that{
dim(θ) < p≤ 2(1 − ς)

ς
in general,

dim(θ) < p when Vt is continuous.
(A.33)



GMM FOR HIGH-FREQUENCY DATA 9

Combining (A.32) and (A.33), we deduce ‖R′′
3�n(θ)−R′′

3�n(θ
′)‖p ≤Kp‖θ− θ′‖

and, hence, R′′
3�n(·) is stochastically equicontinuous under Assumption 5(ii).

The proof of (A.17) for the case j = 3 is now complete.
Case j = 4: We set

ζ ′
4�n�i(θ)= 1

2
∂2
vf (Z̃iΔn;θ)

(
ṽ2
n�i − 2k−1

n V
2
iΔn

)
�

ζ ′′
4�n�i(θ)= f (βiΔn�ZiΔn� ViΔn + ṽn�i;θ)− f (βiΔn�ZiΔn� ViΔn;θ)

− ∂vf (βiΔn�ZiΔn� ViΔn;θ)ṽn�i −
1
2
∂2
vf (βiΔn�ZiΔn� ViΔn;θ)ṽ2

n�i

+ k−1
n h(βiΔn�ZiΔn� ViΔn;θ)− k−1

n h
(
βiΔn�ZiΔn� V̂

′
iΔn

;θ)�
We can then decompose R4�n(θ)=R′

4�n(θ)+R′′
4�n(θ), where⎧⎪⎪⎨⎪⎪⎩

R′
4�n(θ)≡ Δ1/2

n

∑
i

(
E
[
ζ ′

4�n�i(θ)|FiΔn

]+ ζ ′′
4�n�i(θ)

)
�

R′′
4�n(θ)≡ Δ1/2

n

∑
i

(
ζ ′

4�n�i(θ)−E
[
ζ ′

4�n�i(θ)|FiΔn

])
�

By the mean value theorem, we deduce

sup
θ∈Θ

∥∥ζ ′′
4�n�i(θ)

∥∥≤K|ṽn�i|3 +Kk−1
n |ṽn�i|�(A.34)

By (A.34) and Lemma A1, we further deduce that

sup
θ∈Θ

∥∥∥∥Δ1/2
n

∑
i

ζ ′′
4�n�i(θ)

∥∥∥∥=Op
(
Δ−1/2
n

(
k−3/2
n + knΔn

))= op(1)�(A.35)

In addition, by the boundedness of ∂2
vf (·) and Lemma A1, we derive

sup
θ∈Θ

∥∥∥∥Δ1/2
n

∑
i

E
[
ζ ′

4�n�i(θ)|FiΔn

]∥∥∥∥ ≤ K(k−1/2
n + knΔ1/2

n

)+KΔn
∑
i

ηn�i(A.36)

= op(1)�

From (A.35) and (A.36), we derive

sup
θ∈Θ

∥∥R′
4�n(θ)

∥∥= op(1)�(A.37)

Turning to R′′
4�n(θ), we first note that for any p≥ 2 (recall ān�p from (A.28)),

‖ṽn�i‖p ≤Kp

∥∥V̂ ′
iΔn

− V̄iΔn
∥∥
p
+Kp‖V̄iΔn − ViΔn‖p

≤Kp

(
k−1/2
n + ān�p

)
�
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Hence, ‖ṽ2
n�i‖p = ‖ṽn�i‖2

2p ≤Kp(k
−1
n + ā2

n�2p). It is then easy to see∥∥ζ ′
4�n�i(θ)−E

[
ζ ′

4�n�i(θ)|FiΔn

]∥∥
p

(A.38)

≤Kp

∥∥ζ ′
4�n�i(θ)

∥∥
p

≤
{
Kp

(
k−1
n + (knΔn)1/p

)
in general,

Kp

(
k−1
n + knΔn

)
when Vt is continuous.

Now, we can follow the same steps that are used for analyzing R′′
3�n(θ) in the

analysis of R′′
4�n(θ), while using (A.38) in place of (A.29); we can show that

R′′
4�n(θ)= op(1) for each θ, Δ1/2

n R4�n(θ)= op(1) uniformly and, under Assump-
tion 5(ii), R′′

4�n(θ)= op(1) uniformly. Combining these results with (A.37), we
finish the proof for (A.17) with j = 4.

Case j = 5: We now show R5�n(·) L-s−→ ζ(·). We first note that the finite-
dimensional convergence follows essentially the same proof as that of
Lemma 4.5 in Jacod and Rosenbaum (2013). (To be precise, the only modi-
fication needed is to replace the weight ∂lmg(cni ) in their definition of V n�5

t by
∂vf (Z̃iΔn;θ).) The key here to show that R5�n(·) is stochastically equicontinu-
ous. Let α′

n�i ≡ E[αn�i|FiΔn] and α′′
n�i ≡ αn�i − α′

n�i. We can then decompose

R5�n(θ)=R′
5�n(θ)+R′′

5�n(θ)�(A.39)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R′

5�n(θ)≡ Δ−1/2
n k−1

n

∑
i

(
∂vf (Z̃iΔn;θ)

kn∑
u=1

α′
n�i+u−1

)
�

R′′
5�n(θ)≡ Δ−1/2

n k−1
n

∑
i

(
∂vf (Z̃iΔn;θ)

kn∑
u=1

α′′
n�i+u−1

)
�

(A.40)

Note that

sup
θ∈Θ

∥∥R′
5�n(θ)

∥∥ ≤KΔ−1/2
n k−1

n

∑
i

kn∑
u=1

∣∣α′
n�i+u−1

∣∣(A.41)

≤KΔ1/2
n +KΔn

∑
i

ηn�i
P−→ 0�

where the second inequality and the convergence follow from Lemma A1.
Moreover, by rearranging the summands in (A.40), we can rewrite R′′

5�n(θ)
as a sum of martingale differences:

R′′
5�n(θ)= Δ−1/2

n

Nn+kn−1∑
i=0

(
1
kn

(kn−1)∧i∑
j=0∨(i−Nn)

∂vf (Z̃(i−j)Δn;θ)
)
α′′
n�i�
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Note that for any p ≥ 2, ‖α′′
n�i‖p ≤ KpΔn. By using the Lipschitz continuity of

the map θ �→ ∂vf (·;θ) and the Burkhölder–Davis–Gundy inequality, we de-
duce, for any p> dim(θ),∥∥R′′

5�n(θ)−R′′
5�n

(
θ′)∥∥

p
≤Kp

∥∥θ− θ′∥∥�
Hence, R′′

5�n(·) is stochastically equicontinuous. In view of (A.41),R5�n(·) is also
stochastically equicontinuous. The proof of (A.17) for case j = 5 is now com-
plete.

Step 2. We now prove the assertions of the lemma with the compact support
condition on f relaxed. By Assumption A1, the variables {(βiΔn�ZiΔn� V̄iΔn) :
0 ≤ i ≤ Nn} take value in a compact subset K̃ ⊆ B ×Z × V . Fix some ε > 0
arbitrarily small and denote the ε-enlargement of K̃ by K̃ε, that is,

K̃ε ≡
{
(β�z� v) ∈ B ×Z × V : sup

(β′�z′�v′)∈K̃

∥∥(β�z� v)− (
β′� z′� v′)∥∥< ε}�

By Lemma A2, we see that {(βiΔn�ZiΔn� V̂iΔn) : 0 ≤ i ≤ Nn} ⊆ K̃ε w.p.a.1. By
the C∞ Urysohn’s lemma, we can find a C∞ function φ which takes value 1
on the closure of K̃ε and 0 on the complement of K̃2ε. Let f ∗(β�z� v;θ) =
φ(β�z� v)f (β�z� v;θ). We observe that f ∗ is compactly supported. Hence, the
assertions of the lemma hold for f ∗ as shown in step 1.

Finally, we observe that for j = 0�1�2, we have (i) ∂jvf
∗(βt�Zt� Vt; ·) =

∂jvf (βt�Zt� Vt; ·) for all t ∈ [0�T ]; (ii) ∂jvf
∗(βiΔn�ZiΔn� V̂iΔn; ·) = ∂jvf (βiΔn�ZiΔn�

V̂iΔn; ·) for all 0 ≤ i ≤ Nn w.p.a.1. Therefore, Fn(·), F(·), and Sf (·� ·) coincide
w.p.a.1 with those defined for f ∗. The assertions of the lemma then readily
follow. Q.E.D.

PROOF OF THEOREM 1: Step 1. We outline the proof in this step. We set

h(y� z� v;θ)= ∂2
vg(y� z� v;θ)v2� h̄(β�z� v;θ)= ∂2

vḡ(β� z� v;θ)v2�(A.42)

where we note that the definition of h̄(·) in (A.42) is consistent with (3.5) be-
cause of Assumption 2(iii). The proof relies on the decomposition

Δ−1/2
n

(
Gn(θ)−G(θ))=R1�n(θ)+R2�n(θ)+R3�n(θ)�(A.43)

where

R1�n(θ)≡ Δ−1/2
n

[
Δn

∑
i

(
ḡ(βiΔn�ZiΔn� V̂iΔn;θ)

− k−1
n h̄(βiΔn�ZiΔn� V̂iΔn;θ)

)−G(θ)
]
�
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R2�n(θ)≡ Δ1/2
n

∑
i

(
g(YiΔn�ZiΔn� V̂iΔn;θ)− ḡ(βiΔn�ZiΔn� V̂iΔn;θ)

)
�

R3�n(θ)≡ Δ1/2
n k

−1
n

∑
i

(
h̄(βiΔn�ZiΔn� V̂iΔn;θ)− h(YiΔn�ZiΔn� V̂iΔn;θ)

)
�

By applying Lemma A4 with f (·)= ḡ(·), we have⎧⎪⎪⎨⎪⎪⎩
sup
θ∈Θ

∥∥Δ1/2
n R1�n(θ)

∥∥= op(1)�
R1�n(θ)

L-s−→MN
(
0� S̄g(θ�θ)

)
� for each θ ∈Θ�

R1�n(·) L-s−→ ζ1(·) under Assumption 5,

(A.44)

where ζ1(·) is a centered F -conditional Gaussian process with F -conditional
covariance function S̄g(·� ·).

In step 2, we show⎧⎪⎪⎨⎪⎪⎩
sup
θ∈Θ

∥∥Δ1/2
n R2�n(θ)

∥∥= op(1)�
R2�n(θ)

L|F−→MN
(
0� Γ̄g(θ�θ)

)
� for each θ ∈Θ�

R2�n(·) L|F−→ ζ2(·) under Assumption 5,

(A.45)

where ζ2(·) is an F -conditionally centered Gaussian process with conditional
covariance function Γ̄g(·� ·).

In step 3, we show⎧⎪⎪⎨⎪⎪⎩
sup
θ∈Θ

∥∥Δ1/2
n R3�n(θ)

∥∥= op(1)�
R3�n(θ)= op(1)� for each θ ∈Θ�
sup
θ∈Θ

∥∥R3�n(θ)
∥∥= op(1) under Assumption 5.

(A.46)

With an appeal to Lemma A3, the assertion of the theorem then follows from
(A.44), (A.45), and (A.46).

Step 2. In this step, we show (A.45). By localization, we can suppose Assump-
tion A1 without loss of generality. Furthermore, in view of Lemma A2, we can
restrict attention to the w.p.a.1 event on which V̂iΔn is uniformly bounded.

By Assumption 2(vi), it is easy to see that Δ1/2
n R2�n(·) is stochastically

equicontinuous. We further show that R2�n(·) is stochastically equicontinuous
under the F -conditional probability under Assumption 5(i). This is done by
verifying the conditions of Theorem 3 in Hansen (1996) as follows. First ob-
serve that, by Assumption 2(iv), for each θ,

lim sup
n→∞

(
Δn

∑
i

∥∥g(YiΔn�ZiΔn� V̂iΔn;θ)∥∥2

F�k

)1/2

≤K�
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Second, by Assumption 2(vi),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥g(y� z� v;θ)− g(y� z� v;θ′)∥∥≤ B(y� z� v;θ)∥∥θ− θ′∥∥�
lim sup
n→∞

(
Δn

∑
i

∥∥B(YiΔn�ZiΔn� V̂iΔn)∥∥2

F�k

)1/2

≤K�

lim sup
n→∞

(
Δn

∑
i

∥∥g(YiΔn�ZiΔn� V̂iΔn;θ)−g(YiΔn�ZiΔn� V̂iΔn;θ′)∥∥2

F�k

)1/2

≤K∥∥θ− θ′∥∥�
By Assumption 5(i),

∑
j≥1 αmix(j)

1/k′−1/k < ∞, 2 ≤ k′ < k and k′ > dim(θ).
Now, we can apply Theorem 3 of Hansen (1996) to deduce the stochastic
equicontinuity of R2�n(·) with respect to the Euclidean metric under the F -
conditional probability.

We now note that, to show (A.45), it remains to show the finite-dimensional
convergence for R2�n(·) L|F−→ ζ2(·). By the Cramer–Wold device, it suffices to
establish the following: for each θ,

R2�n(θ)
L|F−→MN

(
0� Γ̄g(θ�θ)

)
�(A.47)

for scalar-valued g(·). Since θ is fixed, we suppress it in our notations for sim-
plicity in the remaining part of this step.

The key step is to show that Γ̂ ∗
g�n ≡ EF [R2

2�n] P−→ Γ̄g. For notational simplicity,
we set

ẑn�i = (βiΔn�ZiΔn� V̂iΔn)�
z̄n�i = (βiΔn�ZiΔn� V̄iΔn)�
z̃n�i = (βiΔn�ZiΔn� ViΔn)�
ξi(β�z� v)= g(Y (β�χi)� z� v

)− ḡ(β� z� v)�

We can then rewrite

R2�n = Δ1/2
n

∑
i

ξi(ẑn�i)�(A.48)

Note that

Γ̂ ∗
g�n = Δn

∑
i

EF
[
ξi(ẑn�i)

2
]+ 2Δn

Nn∑
j=1

Nn∑
i=j

EF
[
ξi(ẑn�i)ξi−j(ẑn�i−j)

]
�(A.49)



14 J. LI AND D. XIU

We consider an approximation between Γ̂ ∗
g�n and Γ̄g given by

Γg�n ≡ Δn
∑
i

EF
[
ξi(z̃n�i)

2
]+ 2Δn

Nn∑
j=1

Nn∑
i=j

EF
[
ξi(z̃n�i)ξi−j(z̃n�i)

]
�

Below, we show that Γ̂ ∗
g�n − Γg�n and Γg�n − Γ̄g are both op(1) terms.

We start with Γ̂ ∗
g�n − Γg�n. Observe that, for i� j ≥ 0,∣∣EF

[
ξi(ẑn�i)ξi−j(ẑn�i−j)− ξi(z̃n�i)ξi−j(z̃n�i)

]∣∣(A.50)

≤Kαmix(j)
1−2/k

∥∥ξi(ẑn�i)∥∥F�k

∥∥ξi−j(ẑn�i−j)− ξi−j(z̃n�i)
∥∥
F�k

+Kαmix(j)
1−2/k

∥∥ξi−j(z̃n�i)∥∥F�k

∥∥ξi(ẑn�i)− ξi(z̃n�i)
∥∥
F�k

≤Kαmix(j)
1−2/k

(
ḡk(ẑn�i)ρk(ẑn�i−j� z̃n�i)+ ḡk(z̃n�i)ρk(ẑn�i� z̃n�i)

)
�

where the first inequality is obtained by using the triangle inequality and then
the mixing inequality; the second inequality follows from ‖ξi(·)‖F�k ≤ Kḡk(·)
and (3.6). Note that ḡk(ẑn�i) and ḡk(z̃n�i) are uniformly (w.r.t. i) bounded and
ρk(ẑn�i−j� z̃n�i)≤K‖ẑn�i−j − z̃n�i‖κ. Therefore, (A.50) further implies∣∣EF

[
ξi(ẑn�i)ξi−j(ẑn�i−j)− ξi(z̃n�i)ξi−j(z̃n�i)

]∣∣(A.51)

≤Kαmix(j)
1−2/k

(‖ẑn�i−j − z̃n�i‖κ + ‖ẑn�i − z̃n�i‖κ
)

≤Kαmix(j)
1−2/k

(
sup

0≤i≤Nn
|V̂iΔn − V̄iΔn |κ + Āκ

n�i�j

)
�

where Ān�i�j ≡ ‖z̄n�i−j − z̃n�i‖+‖z̄n�i − z̃n�i‖. Note that Assumption 4 implies that∑
j≥1 αmix(j)

1−2/k <∞. By (A.51) and the triangle inequality, we then derive∣∣Γ̂ ∗
g�n − Γg�n

∣∣ ≤K sup
0≤i≤Nn

|V̂iΔn − V̄iΔn |κ +KΔn
∑
i

Āκ
n�i�0(A.52)

+KΔn
Nn∑
j=1

Nn∑
i=j
αmix(j)

1−2/kĀκ
n�i�j�

It is easy to see that E|Ān�i�j|2 ≤K(knΔn + 1 ∧ jΔn), which implies

Δn
∑
i

Āκ
n�i�0 = op(1)�(A.53)

and

E

∣∣∣∣∣Δn
Nn∑
j=1

Nn∑
i=j
αmix(j)

1−2/kĀκ
n�i�j

∣∣∣∣∣≤K
Nn∑
j=1

αmix(j)
1−2/k(knΔn+1∧ jΔn)κ/2�(A.54)
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By Kronecker’s lemma, we see Δκ/2n

∑Nn
j=1 j

κ/2αmix(j)
1−2/k → 0. From here, it fol-

lows that the right-hand side of (A.54) is o(1) and, hence,

Δn

Nn∑
j=1

Nn∑
i=j
αmix(j)

1−2/kĀκ
n�i�j = op(1)�(A.55)

By Lemma A2, (A.53), and (A.55), we see that the terms on the majorant side
of (A.52) are op(1). Hence,

Γ̂ ∗
g�n − Γg�n P−→ 0�(A.56)

Next, we show

Γg�n
P−→ Γ̄g�(A.57)

To simplify notation, we denote γg�j�s ≡ γg�j(βs�Zs�Vs) and γ̄g�s ≡ γ̄g(βs�Zs�Vs)
for j ≥ 0 and s ≥ 0. Hence, we can rewrite Γg�n as

Γg�n = Δn
∑
i

γg�0�iΔn + 2Δn
∞∑
j=1

Nn∑
i=j
γg�j�iΔn�

where empty sums are set to zero by convention. Therefore,

Γg�n − Γ̄g =
(
Δn

Nn∑
i=0

γg�0�iΔn −
∫ T

0
γg�0�s ds

)
(A.58)

+ 2
∞∑
j=1

(
Δn

Nn∑
i=j
γg�j�iΔn −

∫ T

0
γg�j�s ds

)
�

It is easy to see that γg�j(β� z� v) is continuous in (β�z� v), so the process
(γg�j�t)t≥0 is càdlàg. Hence, by invoking the Riemann approximation, we de-
duce that, for each j ≥ 0, Δn

∑Nn
i=j γg�j�iΔn − ∫ T

0 γg�j�s ds→ 0. Moreover, observe
that

∞∑
j=1

∣∣∣∣∣Δn
Nn∑
i=j
γg�j�iΔn −

∫ T

0
γg�j�s ds

∣∣∣∣∣≤K sup
t∈[0�T ]

ḡk(βt�Zt� Vt)
2 ≤K�(A.59)

where the first inequality is derived by using the mixing inequality and∑
j≥1 αmix(j)

1−2/k < ∞, and the second inequality holds because (βt�Zt� Vt)
is bounded under Assumption A1 and ḡk(·) is bounded on bounded sets. This
dominance condition (i.e., (A.59)) allows us to use the dominated convergence
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theorem to obtain the limit of the right-hand side of (A.58). From here, (A.57)
readily follows. Combining (A.56) and (A.57), we derive

EF
[
R2

2�n

]= Γ̂ ∗
g�n

P−→ Γ̄g�(A.60)

We now show that R2�n
L|F−→ MN (0� Γ̄g). We need to adapt Theorem 5.20

of White (2001) so as to accommodate the fact that the convergence of the
conditional variance in (A.60) is only in probability. Consider a subset Ω̄ of
Ω given by Ω̄≡ {Γ̄g > 0} and let Ω̄c be the complement of Ω̄. Clearly, Ω̄ is F -
measurable. In restriction to Ω̄c , EF [R2

2�n] = op(1) and, thus, the F -conditional
law of Rn�2 converges to the degenerate distribution at zero. Below, we restrict
attention on the event Ω̄, so we can assume Γ̄g > 0.

We consider an arbitrary subsequence N1 ⊆ N. By the subsequence charac-
terization of convergence in probability, it is enough to show that there exists a
further subsequence N2 ⊆ N1 such that, as n→ ∞ along N2, the F -conditional
distribution function of R2�n converges uniformly to the F -conditional distri-
bution function of MN (0� Γ̄g) on P-almost every path in Ω̄. By (A.60), we
can extract a subsequence N2 ⊆ N1 such that, along N2, EF [R2

2�n] → Γ̄ > 0 for
almost every path in Ω̄. Recall from (A.48) that R2�n = Δ1/2

n

∑
i ξi(ẑn�i). Un-

der Assumption 4, ξi(ẑn�i) forms a sequence with zero mean and α-mixing co-
efficients bounded by αmix(·) under the transition probability P

(1). Moreover,
‖ξi(ẑn�i)‖F�k ≤ Kḡk(ẑn�i) ≤ K. We are now ready to apply Theorem 5.20 in
White (2001) and Pólya’s theorem under the transition probability P

(1) and
deduce that, along N2, the F -conditional distribution function of R2�n con-
verges uniformly to the F -conditional distribution function of MN (0� Γ̄g)
for almost every path in Ω̄. We can then use a subsequence argument to
further deduce that R2�n

L|F−→ MN (0� Γ̄g). The proof of (A.45) is now com-
plete.

Step 3. It remains to show (A.46). By a componentwise argument, we can
consider R3�n(θ) to be scalar-valued without loss of generality. We denote

h̃n�i(θ)≡ h̄(βiΔn�ZiΔn� V̂iΔn;θ)− h(YiΔn�ZiΔn� V̂iΔn;θ)�

so that R3�n(θ) = Δ1/2
n k

−1
n

∑
i h̃n�i(θ). We first show that R3�n(θ) = op(1) for

fixed θ under the F -conditional probability. By Assumption 2(iii) and the F -
measurability of (βiΔn�ZiΔn� V̂iΔn), we have EF [h̃n�i(θ)] = 0. Furthermore, since
ḡk(·) is bounded on bounded sets,∥∥h̃n�i(θ)∥∥F�k ≤Kḡk(βiΔn�ZiΔn� V̂iΔn)V̂ 2

iΔn
≤K�(A.61)
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By Assumption 4, conditional on F , the α-mixing coefficient of the sequence
(h̃n�i(θ))i≥0 is bounded by αmix(·). Observe that, w.p.a.1,

EF
[
R2

3�n(θ)
] ≤ Δnk−2

n

Nn∑
i�j=0

∣∣EF
[
h̃n�i(θ)h̃n�j(θ)

]∣∣
≤KΔnk−2

n

Nn∑
i�j=0

αmix

(|i− j|)1−2/k∥∥h̃n�i(θ)∥∥F�k

∥∥h̃n�j(θ)∥∥F�k

≤Kk−2
n �

where the first inequality is by the triangle inequality; the second inequality
follows from the mixing inequality; the third inequality follows from (A.61)
and Assumption 4. From here, we deduce that R3�n(θ) = op(1) under the F -
conditional probability. Next, by using an argument similar to step 2, we can
show that Δ1/2

n R3�n(·) is stochastically equicontinuous under the F -conditional
probability and that, under Assumption 5(i), so is R3�n(·). From here, (A.46)
readily follows. This finishes the proof. Q.E.D.

A.3. Proof of Theorem 2
We first prove two lemmas. Lemma A5 is a general uniform law of large

numbers for integrated volatility functionals. This lemma is then used to prove
Lemma A6, which establishes a uniform consistency result for the estimation
of asymptotic covariance functions. Lemma A6 is also used in the proof of
Theorem 3.

LEMMA A5: Suppose (i) Assumptions A1 and 3; (ii) the function (β�z�
v�θ) �→ f (β�z� v;θ) is continuous and continuously differentiable in θ. Then

Δn
∑
i

f (βiΔn�ZiΔn� V̂iΔn;θ) P−→
∫ T

0
f (βs�Zs�Vs;θ)ds

uniformly in θ on the compact set Θ.

PROOF: By using a spatial localization procedure as in step 2 of the proof of
Lemma A4, we can assume that f is compactly supported without loss of gener-
ality. Denote β̃t ≡ (βt�Zt) for notational simplicity. Construct two processes,
β̃+
t and V̂ +

t , as follows: for each i≥ 1 and t ∈ [(i−1)Δn� iΔn), set β̃+
t ≡ β̃iΔn and

V̂ +
t ≡ V̂iΔn . Observe that, since f is bounded,

E

∣∣∣∣Δn∑
i

f (β̃iΔn� V̂iΔn;θ)−
∫ T

0
f (β̃s� Vs;θ)ds

∣∣∣∣
≤KknΔn +

∫ NnΔn

0
E
∣∣f (β̃+

s � V̂
+
s ;θ)− f (β̃s� Vs;θ)

∣∣ds�
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By Theorem 9.3.2 in Jacod and Protter (2012), we have V̂ +
s

P−→ Vs for each
s ≥ 0. By the right continuity of the process β̃, we have β̃+

s → β̃s for each

s ≥ 0, which further implies (β̃+
s � V̂

+
s )

P−→ (β̃s� Vs). By the continuity of f (·),
f (β̃+

s � V̂
+
s ;θ) P−→ f (β̃s� Vs;θ). By the bounded convergence theorem, we de-

duce
∫ NnΔn

0 E|f (β̃+
s � V̂

+
s ;θ)− f (β̃s� Vs;θ)|ds→ 0, which further yields

Δn
∑
i

f (β̃iΔn� V̂iΔn;θ) P−→
∫ T

0
f (β̃s� Vs;θ)ds�(A.62)

By condition (ii), the mapping θ �→ f (·;θ) is Lipschitz continuous. From here,
it is easy to see that Δn

∑
i f (β̃iΔn� V̂iΔn; ·) is stochastically equicontinuous.

The pointwise convergence (A.62) then implies the asserted uniform conver-
gence. Q.E.D.

For Lemma A6 below, we need some additional notations. We consider two
R-valued functions φ1 and φ2 on R and set, for l ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ̂n
(
θ�τ� τ′)≡ Ŝn

(
θ�τ� τ′)+ Γ̂n

(
θ�τ� τ′)�

Ŝn
(
θ�τ� τ′)≡ 2Δn

Nn∑
i=0

m̂′
n�i(g�θ)m̂

′
n�i(g�θ)

ᵀV̂ 2
iΔn
φ1(iΔnτ)φ2

(
iΔnτ

′)�
Γ̂n
(
θ�τ� τ′)≡ Γ̂0�n

(
θ�τ� τ′)

+
Bn∑
l=1

w(l�Bn)
(
Γ̂l�n

(
θ�τ� τ′)+ Γ̂l�n

(
θ�τ′� τ

)ᵀ)
�

Γ̂l�n
(
θ�τ� τ′)≡ Δn

Nn∑
i=l
δ̂n�i(g�θ)δ̂n�i−l(g�θ)ᵀφ1(iΔnτ)φ2

(
(i− l)Δnτ′)�

We also set, for l ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ
(
θ�τ� τ′)≡ S(θ�τ� τ′)+ Γ (θ�τ� τ′)�

S
(
θ�τ� τ′)≡ 2

∫ T

0
∂vḡ(βs�Zs�Vs;θ)∂vḡ

(
βs�Zs�Vs;θ′)ᵀ

× V 2
s φ1(sτ)φ2

(
sτ′)ds�

Γ
(
θ�τ� τ′)≡ Γ0

(
θ�τ� τ′)+

∑
l≥1

(
Γl
(
θ�τ� τ′)+ Γl

(
θ�τ′� τ

)ᵀ)
�

Γl
(
θ�τ� τ′)≡

∫ T

0
CovF

(
g
(
Y (βs�χi)�Zs�Vs;θ

)
�

g
(
Y (βs�χi−l)�Zs�Vs;θ

))
φ1(sτ)φ2

(
sτ′)ds�

LEMMA A6: Let T be a compact subset of R, θ̃ be a Θ-valued F -measurable
random variable, and θ̃n be a sequence of Θ-valued estimators. Suppose (i) As-
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sumptions 1–4 and 7; (ii) the functions φ1 and φ2 are Lipschitz continu-

ous; (iii) θ̃n − θ̃ = op(B
−1
n ). Then Σ̂n(θ̃n� τ� τ

′)
P−→ Σ(θ̃� τ� τ′) uniformly in

τ�τ′ ∈ T .

PROOF: Step 1. As is typical in this type of problem, by a polarization argu-
ment, we can consider a one-dimensional setting without loss of generality. We
henceforth suppose that g(·) is scalar-valued. By localization, we also suppose
that Assumption A1 holds. In view of Lemma A2, we can restrict attention to
the w.p.a.1 event on which the variables (V̂iΔn)1≤i≤Nn are uniformly bounded.
Since g is fixed, we write m̂n�i(θ), m̂′

n�i(θ), and δ̂n�i(θ) in place of m̂n�i(g�θ),
m̂′
n�i(g�θ), and δ̂n�i(g�θ). Below, we also denote

φn�i�j
(
τ�τ′)≡φ1(iΔnτ)φ2

(
(i− j)Δnτ′)�

We complete the proof by showing

sup
τ�τ′∈T

∣∣Ŝn(θ̃n� τ� τ′)− S(θ̃� τ� τ′)∣∣= op(1)�(A.63)

sup
τ�τ′∈T

∣∣Γ̂n(θ̃n� τ� τ′)− Γ (θ̃� τ� τ′)∣∣= op(1)�(A.64)

In this step, we show (A.63). We set⎧⎪⎨⎪⎩Sn
(
θ�τ� τ′)≡ 2Δn

Nn∑
i=0

μ̂′
n�i(θ)

2V̂ 2
iΔn
φn�i�0

(
τ�τ′)�

μ̂′
n�i(θ)≡ ∂vḡ(βiΔn�ZiΔn� V̂iΔn;θ)� i≥ 0�

By applying Lemma A5 to the function f (β�z� v;θ�τ� τ′)≡ 2∂vḡ(β�z� v;θ)2 ×
v2φ1(tτ)φ2(tτ

′), we derive

sup
τ�τ′∈T

∣∣Sn(θ̃� τ� τ′)− S(θ̃� τ� τ′)∣∣= op(1)�(A.65)

We now show the following claim:

Δn
∑
i

∣∣m̂′
n�i(θ̃n)− μ̂′

n�i(θ̃)
∣∣2 ≤ Op(1)‖θ̃n − θ̃‖2 +Op

(
k−1
n + knΔn

)
(A.66)

= op(1)�

We set, for each i≥ 0,

μ̄′
n�i(θ)≡ 1

kn

kn−1∑
j=0

∂vḡ(β(i+j)Δn�Z(i+j)Δn� V̂iΔn;θ)�
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First, by the mean value theorem and a standard estimate for Itô semimartin-
gales, we deduce∥∥μ̄′

n�i(θ̃)− μ̂′
n�i(θ̃)

∥∥
F�2(A.67)

≤Kk−1
n

kn−1∑
j=0

[‖β(i+j)Δn −βiΔn‖F�2 + ‖Z(i+j)Δn −ZiΔn‖F�2
]

≤K(knΔn)1/2�

Next, note that

m̂′
n�i(θ̃)− μ̄′

n�i(θ̃)

= 1
kn

kn−1∑
j=0

(
∂vg(Y(i+j)Δn�Z(i+j)Δn� V̂iΔn; θ̃)

− ∂vḡ(β(i+j)Δn�Z(i+j)Δn� V̂iΔn; θ̃)
)
�

where each term in the sum has zero F -conditional mean because of Assump-
tion 2(iii). By a use of the mixing inequality and Assumption 2(iv), we derive∥∥m̂′

n�i(θ̃)− μ̄′
n�i(θ̃)

∥∥
F�2 ≤Kk−1/2

n �(A.68)

Finally, by Assumption 2(vi),

Δn
∑
i

∣∣m̂′
n�i(θ̃n)− m̂′

n�i(θ̃)
∣∣2(A.69)

≤KΔn
∑
i

(
1
kn

kn−1∑
j=0

B(Y(i+j)Δn�Z(i+j)Δn� V̂iΔn)

)2

‖θ̃n − θ̃‖2

≤Op(1)‖θ̃n − θ̃‖2�

Using (A.67), (A.68), and (A.69), we readily deduce (A.66).
Now, we note that

sup
τ�τ′∈T

∣∣Ŝn(θ̃n� τ� τ′)− Sn
(
θ̃� τ� τ′)∣∣(A.70)

= sup
τ�τ′∈T

∣∣∣∣Δn∑
i

(
m̂′
n�i(θ̃n)

2 − μ̂′
n�i(θ̃)

2
)
V̂ 2
iΔn
φn�i�0

(
τ�τ′)∣∣∣∣

≤KΔn
∑
i

∣∣m̂′
n�i(θ̃n)

2 − μ̂′
n�i(θ̃)

2
∣∣�
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From (A.66), it is easy to see that the majorant side of (A.70) is op(1) by using
the Cauchy–Schwarz inequality. Combining this with (A.65), we have (A.63).

Step 2. In this step, we show (A.64). We first complement the notations
ĝn�i(θ), m̂n�i(θ), and δ̂n�i(θ) with the following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

gn�i(θ)≡ g(YiΔn�ZiΔn� ViΔn;θ)�
mn�i(θ)≡ k−1

n

kn−1∑
j=0

g(Y(i+j)Δn�Z(i+j)Δn� ViΔn;θ)�

μn�i(θ)≡ EF
[
g(YiΔn�ZiΔn� ViΔn;θ)

]= ḡ(βiΔn�ZiΔn� ViΔn;θ)�
δn�i(θ)≡ gn�i(θ)−mn�i(θ)� δ̄n�i(θ)≡ gn�i(θ)−μn�i(θ)�

(A.71)

We note that Γ̂n(θ̃n� τ� τ′) can be written as

Γ̂n
(
θ̃n� τ� τ

′) = Δn

Nn∑
i=0

δ̂n�i(θ̃n)
2φn�i�0

(
τ�τ′)(A.72)

+ 2
Bn∑
j=1

w(j�Bn)Δn

Nn∑
i=j
δ̂n�i(θ̃n)δ̂n�i−j(θ̃n)φn�i�j

(
τ�τ′)�

We consider a progressive list of approximations between Γ̂n(θ̃n� τ� τ
′) and

Γ (θ̃� τ� τ′) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ̂ (1)
n

(
θ̃� τ� τ′)≡ Δn

Nn∑
i=0

δ̄n�i(θ̃)
2φn�i�0

(
τ�τ′)

+ 2
Bn∑
j=1

w(j�Bn)Δn

Nn∑
i=j
δ̄n�i(θ̃)δ̄n�i−j(θ̃)φn�i�j

(
τ�τ′)�

Γ̂ (2)
n

(
θ̃� τ� τ′)≡ Δn

Nn∑
i=0

EF
[
δ̄n�i(θ̃)

2
]
φn�i�0

(
τ�τ′)

+ 2
Bn∑
j=1

w(j�Bn)Δn

×
Nn∑
i=j

EF
[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]
φn�i�j

(
τ�τ′)�

Γ̂ (3)
n

(
θ̃� τ� τ′)≡ Δn

Nn∑
i=0

EF
[
δ̄n�i(θ̃)

2
]
φn�i�0

(
τ�τ′)

+ 2Δn
Nn∑
j=1

Nn∑
i=j

EF
[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]
φn�i�j

(
τ�τ′)�

(A.73)
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First consider Γ̂n(θ̃n� τ� τ′)− Γ̂ (1)
n (θ̃� τ� τ′). Observe that

sup
τ�τ′∈T

∣∣Γ̂n(θ̃n� τ� τ′)− Γ̂ (1)
n

(
θ̃� τ� τ′)∣∣(A.74)

≤K
Bn∑
j=0

Δn

Nn∑
i=j

∣∣δ̂n�i(θ̃n)δ̂n�i−j(θ̃n)− δ̄n�i(θ̃)δ̄n�i−j(θ̃)
∣∣

≤K
Bn∑
j=0

Δn

Nn∑
i=j

(∣∣δ̂n�i(θ̃n)∣∣∣∣δ̂n�i−j(θ̃n)− δ̄n�i−j(θ̃)
∣∣

+ ∣∣δ̂n�i(θ̃n)− δ̄n�i(θ̃)
∣∣∣∣δ̄n�i−j(θ̃)∣∣)

≤KBn
(
Δn

∑
i

(
δ̂n�i(θ̃n)

2 + δ̄n�i(θ̃)2
))1/2

×
(
Δn

∑
i

∣∣δ̂n�i(θ̃n)− δ̄n�i(θ̃)
∣∣2)1/2

�

where the first inequality follows from the triangle inequality and the uniform
boundedness of w(j�Bn) and φn�i�j(τ� τ′); the second inequality is by the trian-
gle inequality; the third inequality follows from the Cauchy–Schwarz inequal-
ity.

We observe that

Δn
∑
i

∣∣δ̂n�i(θ̃n)− δ̄n�i(θ̃)
∣∣2 ≤KΔn

∑
i

∣∣δ̂n�i(θ̃n)− δ̂n�i(θ̃)
∣∣2(A.75)

+KΔn
∑
i

∣∣δ̂n�i(θ̃)− δn�i(θ̃)
∣∣2

+KΔn
∑
i

∣∣δn�i(θ̃)− δ̄n�i(θ̃)
∣∣2�

From Assumption 2(vi), it is easy to see

Δn
∑
i

∣∣δ̂n�i(θ̃n)− δ̂n�i(θ̃)
∣∣2 ≤Op(1)‖θ̃n − θ̃‖2�(A.76)

By Assumption 2(v), we have, for 0 ≤ i≤Nn,

EF
∣∣δ̂n�i(θ̃)− δn�i(θ̃)

∣∣2(A.77)

≤K|V̂iΔn − ViΔn |2κ +Kk−1
n

kn−1∑
j=0

|V̂(i+j)Δn − V(i+j)Δn |2κ�
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We note that |V̂iΔn −ViΔn |2κ ≤K|V̂iΔn − V̂ ′
iΔn

|2κ∧1 +K|V̂ ′
iΔn

−ViΔn |2κ for all i w.p.a.1
and, by (A.2) and Assumption 3,

E
[∣∣V̂iΔn − V̂ ′

iΔn

∣∣2κ∧1 + ∣∣V̂ ′
iΔn

− ViΔn
∣∣2κ] ≤K(Δ(2−r)

n + k−κ
n + (knΔn)κ

)
(A.78)

≤Kk−κ
n �

Combining (A.77) and (A.78), we deduce

Δn
∑
i

∣∣δ̂n�i(θ̃)− δn�i(θ̃)
∣∣2 =Op

(
k−κ
n

)
�(A.79)

Third, following the same argument for (A.66), we deduce

Δn
∑
i

∣∣δn�i(θ̃)− δ̄n�i(θ̃)
∣∣2 =Op

(
k−1
n + knΔn

)
�(A.80)

Plugging (A.76), (A.79), and (A.80) into (A.75), we deduce

Δn
∑
i

∣∣δ̂n�i(θ̃n)− δ̄n�i(θ̃)
∣∣2 ≤Op(1)‖θ̃n − θ̃‖2 +Op

(
k−κ
n

)
�(A.81)

By Assumption 2(iv), it is easy to see that E|δ̄n�i(θ̃)|2 ≤ KE|gn�i(θ̃)|2 ≤ K.
From this estimate and (A.81), we further deduce that

Δn
∑
i

(∣∣δ̂n�i(θ̃n)∣∣2 + ∣∣δ̄n�i(θ̃)∣∣2)=Op(1)�(A.82)

Plugging (A.81) and (A.82) into (A.74), we deduce

sup
τ�τ′∈T

∣∣Γ̂n(θ̃n� τ� τ′)− Γ̂ (1)
n

(
θ̃� τ� τ′)∣∣ ≤ Op(Bn)‖θ̃n − θ̃‖ +Op

(
Bnk

−κ/2
n

)
(A.83)

= op(1)�

where the equality follows from our assumptions that θ̃n − θ̃ = op(B
−1
n ) and

Bnk
−κ/2
n = o(1).

Next, we consider Γ̂ (1)
n (θ̃� τ� τ′)− Γ̂ (2)

n (θ̃� τ� τ′). We denote⎧⎪⎨⎪⎩
ζn�i�j ≡ δ̄n�i(θ̃)δ̄n�i−j(θ̃)−EF

[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]
�

ζ̄n�j
(
τ�τ′)≡ Δn

Nn∑
i=j
ζn�i�jφn�i�j

(
τ�τ′)�(A.84)

We can then rewrite

Γ̂ (1)
n

(
θ̃� τ� τ′)− Γ̂ (2)

n

(
θ̃� τ� τ′)= ζ̄n�0

(
τ�τ′)+ 2

Bn∑
j=1

w(j�Bn)ζ̄n�j
(
τ�τ′)�(A.85)
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By the mixing inequality, for i� j ≥ 0 and l ≥ i,∣∣EF [ζn�i�jζn�l�j]
∣∣≤Kαmix

(
(l− i− j)+)1−2/k‖ζn�i�j‖F�k‖ζn�l�j‖F�k�(A.86)

where (·)+ denotes the positive part. By the Cauchy–Schwarz inequality and
Assumption 2(iv),

‖ζn�i�j‖F�k ≤Kḡ2k(βiΔn�ZiΔn� ViΔn; θ̃)ḡ2k(β(i−j)Δn�Z(i−j)Δn� V(i−j)Δn; θ̃)(A.87)

≤K�
Therefore, |EF [ζn�i�jζn�l�j]| ≤Kαmix((l− i− j)+)1−2/k. From here, it follows that,
for all j ≥ 0 and τ�τ′ ∈ T ,

∥∥ζ̄n�j(τ�τ′)∥∥
2
=
∥∥∥∥∥Δn

Nn∑
i=j
ζn�i�jφn�i�j

(
τ�τ′)∥∥∥∥∥

2

(A.88)

≤ KΔn
(

Nn∑
i=j

Nn∑
l=i

E
∣∣EF [ζn�i�jζn�l�j]

∣∣)1/2

≤ KΔn
(

Nn∑
i=j

Nn∑
l=i
αmix

(
(l− i− j)+)1−2/k

)1/2

≤ KΔ1/2
n (j + 1)1/2�

Then, by the triangle inequality and the boundedness of the kernel function
w(·� ·), we derive from (A.85) that

E
∣∣Γ̂ (1)
n

(
θ̃� τ� τ′)− Γ̂ (2)

n

(
θ̃� τ� τ′)∣∣≤KΔ1/2

n

Bn∑
j=0

(j + 1)1/2 =O(Δ1/2
n B

3/2
n

)
�

Since Bn = o(kκ/2n ) by Assumption 7 and kn ≤ KΔ−1/2
n by Assumption 3, we

have Bn = o(Δ−1/4
n ). Hence, for any τ�τ′ ∈ T ,

Γ̂ (1)
n

(
θ̃� τ� τ′)− Γ̂ (2)

n

(
θ̃� τ� τ′)= op(1)�(A.89)

We further show that Γ̂ (1)
n (θ̃� ·� ·)− Γ̂ (2)

n (θ̃� ·� ·) is stochastically equicontinu-
ous. Let τ1, τ′

1, τ2, and τ′
2 be generic elements in T . We observe∥∥ζ̄n�j(τ1� τ

′
1

)− ζ̄n�j
(
τ2� τ

′
2

)∥∥
4

=
∥∥∥∥∥Δn

Nn∑
i=j
ζn�i�j

(
φn�i�j

(
τ1� τ

′
1

)−φn�i�j
(
τ2� τ

′
2

))∥∥∥∥∥
4

≤KΔ1/2
n (j + 1)1/2

∥∥(τ1� τ
′
1

)− (
τ2� τ

′
2

)∥∥�
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where the inequality is derived by using an argument similar to (A.88), but
generalized to the case with L4-norm by using Theorem 3 of Yoshihara (1978);
the condition

∑
j≥1 jαmix(j)

(k−2)/k <∞ is used here. It then follows that∥∥Γ̂ (1)
n

(
θ̃� τ1� τ

′
1

)− Γ̂ (2)
n

(
θ̃� τ1� τ

′
1

)− (
Γ̂ (1)
n

(
θ̃� τ2� τ

′
2

)− Γ̂ (2)
n

(
θ̃� τ2� τ

′
2

))∥∥
4

≤K∥∥(τ1� τ
′
1

)− (
τ2� τ

′
2

)∥∥�
Hence, Γ̂ (1)

n (θ̃� ·� ·) − Γ̂ (2)
n (θ̃� ·� ·) is stochastically equicontinuous. In view of

(A.89), we deduce

sup
τ�τ′∈T

∣∣Γ̂ (1)
n

(
θ̃� τ� τ′)− Γ̂ (2)

n

(
θ̃� τ� τ′)∣∣= op(1)�(A.90)

Turning to Γ̂ (2)
n (θ̃� τ� τ′)− Γ̂ (3)

n (θ̃� τ� τ′), we first note that

sup
τ�τ′∈T

∣∣Γ̂ (3)
n

(
θ̃� τ� τ′)− Γ̂ (2)

n

(
θ̃� τ� τ′)∣∣

≤K
Nn∑

j=Bn+1

Δn

Nn∑
i=j

∣∣EF
[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]∣∣
+K

Bn∑
j=1

∣∣1 −w(j�Bn)
∣∣Δn Nn∑

i=j

∣∣EF
[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]∣∣�
Observe

E

[
Nn∑

j=Bn+1

Δn

Nn∑
i=j

∣∣EF
[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]∣∣]≤K
Nn∑

j=Bn+1

αmix(j)
1−2/k → 0�

where the inequality is by the triangle inequality and the mixing inequality and
the convergence is due to

∑
j≥1 αmix(j)

1−2/k <∞ and Bn → ∞. Similarly,

E

[
Bn∑
j=1

∣∣1 −w(j�Bn)
∣∣Δn Nn∑

i=j

∣∣EF
[
δ̄n�i(θ̃)δ̄n�i−j(θ̃)

]∣∣]

≤K
Bn∑
j=1

∣∣1 −w(j�Bn)
∣∣αmix(j)

1−2/k�

Note that for each j, 1 −w(j�Bn)→ 0 as n→ ∞. Since
∑

j≥1 |1 −w(j�Bn)| ×
αmix(j)

1−2/k ≤K∑
j≥1 αmix(j)

1−2/k <∞, the majorant side of the above inequal-
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ity converges to zero as n→ ∞ by the dominated convergence theorem. By
these convergence results, we deduce

sup
τ�τ′∈T

∣∣Γ̂ (2)
n

(
θ̃� τ� τ′)− Γ̂ (3)

n

(
θ̃� τ� τ′)∣∣= op(1)�(A.91)

We now show that

Γ̂ (3)
n

(
θ̃� τ� τ′) P−→ Γ

(
θ̃� τ� τ′)�(A.92)

By essentially the same argument as step 2 of the proof of Theorem 1, we can
show (A.92) for fixed τ�τ′ ∈ T . By using the mixing inequality and the Lipschitz
continuity of φ1(·) and φ2(·), it is easy to see that Γ̂ (3)

n (θ̃� ·� ·) is stochastically
equicontinuous. Therefore, (A.92) holds uniformly in τ�τ′ ∈ T . Combining this
with (A.83), (A.90), and (A.91), we deduce (A.64). The proof of the lemma is
now complete. Q.E.D.

PROOF OF THEOREM 2: (a) From the uniform consistency of Gn(·) shown
in Theorem 1(a), we deduce θ̂n

P−→ θ∗ under Assumption 6 by a standard ar-
gument for extreme estimation (see, e.g., Newey and McFadden (1994)). From
the proof of Theorem 1, we note that it only requires the function ḡ(·) to be in
C2�2�3�1. Therefore, we can also apply Theorem 1(a) with g(·) replaced by ∂θg(·)
and deduce that, uniformly in θ ∈Θ,

∂θGn(θ)
P−→

∫ T

0
∂θg(βs�Zs�Vs;θ)ds =H(θ)�(A.93)

where the equality follows from Assumption 2(iii). From (A.93), after some
routine manipulation, it is easy to see that the estimator θ̂n has the asymptoti-
cally linear representation

Δ−1/2
n

(
θ̂n − θ∗)= −(

HᵀΞH
)−1
HᵀΞΔ−1/2

n Gn

(
θ∗)+ op(1)�(A.94)

The assertion in part (a) then follows from (A.94) and Theorem 1(b).
(b) By (A.93) and θ̂n

P−→ θ∗, we see Hn
P−→H. By Lemma A6 (with φ1(·)

and φ2(·) being identically 1), we see Σ̂g�n(θ̂n)
P−→ Σg(θ

∗� θ∗). The assertion of
part (b) then readily follows from (3.14) and (3.16).

(c) Observe that, with A≡ (Iq −H(HᵀΞH)−1HᵀΞ)Σg(θ
∗� θ∗)1/2, we have

Δ−1/2
n Gn(θ̂n)=AΣg

(
θ∗� θ∗)−1/2

Δ−1/2
n Gn

(
θ∗)+ op(1)�

The assertion of part (c) then follows from the fact that Σg(θ∗� θ∗)−1/2Δ−1/2
n ×

Gn(θ
∗)

L-s−→N (0� Iq) and AᵀΞA is idempotent with rank q-dim(θ). Q.E.D.
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A.4. Proof of Theorem 3

PROOF OF THEOREM 3: Step 1. In this step, we consider the asymptotic
property of the test in restriction to ΩH0 . By a mean value expansion, we have

Mn(θ̂n� τ)=Mn

(
θ∗� τ

)+ ∂θMn(θ̄n�τ� τ)
(
θ̂n − θ∗)�

where θ̄n�τ is some mean value between θ̂n and θ∗. Since θ̂n
P−→ θ∗,

supτ∈T ‖θ̄n�τ − θ∗‖ converges to zero in (outer) probability. By Theorem 1(a),
we have uniformly in θ and τ,

∂θMn(θ�τ)
P−→

∫ T

0
∂θψ̄(βs�Zs�Vs;θ)φ(τs)ds�

Here, we have used the fact that because ψ(·) satisfies Assumption 2(iii),
∂θψ(·)= ∂θψ̄(·). Therefore, uniformly in τ ∈ T ,

∂θMn(θ̄n�τ� τ)
P−→

∫ T

0
∂θψ̄

(
βs�Zs�Vs;θ∗)φ(τs)ds�(A.95)

From (A.94), we derive the following representation for Mn(θ̂n� τ): uniformly
in τ,

Δ−1/2
n Mn(θ̂n� τ)= [

Iq1

���−D(τ)]Δ−1/2
n

(
Mn

(
θ∗� τ

)
Gn

(
θ∗) )

+ op(1)�

Recall that

g̃(y� z� v;τ)≡ (
ψ
(
y� z� v;θ∗)φ(tτ)�g(y� z� v;θ∗))�

Note that the τ-indexed process (Mn(θ
∗� τ)�Gn(θ

∗))τ∈T is associated with
g̃(·;τ) as in (3.3). Since the index τ is a scalar, we verify Assumption 5 (with
θ there replaced by τ), so we can use Theorem 1(c) to show that the sequence
Δ−1/2
n (Mn(θ

∗� τ)�Gn(θ
∗)) of τ-indexed processes converges stably in law to a

process which, conditional on F , is centered Gaussian with covariance func-
tion Σg̃(τ� τ′). From here, it follows that

Δ−1/2
n Mn(θ̂n� ·) L-s−→ ζ̃(·)�

where the process ζ̃(·) is, conditional on F , centered Gaussian with covariance
function

C
(
τ�τ′)≡ [

Iq1

���−D(τ)]Σg̃(τ�τ′)[Iq1

���−D(τ′)]ᵀ�
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By Lemma A6, we see that Σ̂g̃�n(θ̂n� τ� τ′)
P−→ Σg̃(τ� τ

′) uniformly in τ�τ′ ∈ T .

Similarly to (A.95), we also have D̂n(τ)
P−→D(τ) uniformly in τ ∈ T . Hence,

Ĉn
(
τ�τ′) P−→C

(
τ�τ′) uniformly.(A.96)

By the continuous mapping theorem, we have, in restriction to ΩH0 ,

K̂n
L-s−→ sup

τ∈T
max

1≤j≤q1

∣∣ζ̃j(τ)∣∣√
Cjj(τ� τ)

�(A.97)

Moreover, the F -conditional law of the simulated Gaussian process ζ̃Sim
n (·)

converges (under any metric for the weak convergence of probability mea-
sures) in probability to the F -conditional law of ζ̃(·). Therefore, cvαn

P−→ cvα,
where cvα denotes the F -conditional (1 − α)-quantile of the limiting variable
in (A.97). From here, it follows that P(K̂n > cv

α
n |ΩH0)→ α.

Step 2. We now consider the case with misspecification. By condition (iv),
θ̂n

P−→ θ† and, hence, by Theorem 1(a),

Mn(θ̂n� τ)
P−→M

(
θ†� τ

)
uniformly.

In restriction to ΩHa , under Assumption 8, there exists some τ ∈ T such
that M(θ†� τ) �= 0 by Proposition 4 in Li, Todorov, and Tauchen (2016).
Hence, supτ∈T |Mn(θ̂n� τ)| P−→ supτ∈T |M(θ†� τ)| > 0. Moreover, we note that
(A.96) is valid in restriction to ΩHa as well. Hence, the sequence cvαn =
Op(1). From here, we see that K̂n diverges to ∞ in probability and
P(K̂n > cv

α
n |ΩHa)→ 1. Q.E.D.
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