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BY SUBIR BOSE AND LUDOVIC RENOU

THIS SUPPLEMENT DISCUSSES in detail a number of extensions and issues
raised in the manuscript “Mechanism Design With Ambiguous Communica-
tion Devices.”

S.1. DECISION-THEORETIC ISSUES

This section revisits the introductory example (Section 2) and provides an
in-depth discussion of decision-theoretic issues.

Consider an urn containing 90 balls. Each ball is marked with either (θ�ω),
(θ�ω′), (θ′�ω), or (θ′�ω′). There are 60 balls marked with θ and 30 balls
marked with θ′. Moreover, there are only two possible compositions of the urn.
With the first composition, all balls marked with θ (resp., θ′) are also marked
with ω (resp., ω′). With the second, all balls marked with θ (resp., θ′) are also
marked with ω′ (resp., ω).

A ball is drawn from the urn at random. The decision maker is offered two
bets, A and B. The bet A gives x if the ball is marked with θ and y if the
ball is marked with θ′, while the bet B gives y if the ball is marked with θ and
x if the ball is marked with θ′. Prior to choosing a bet, the decision maker
can observe whether the ball is marked with ω or ω′. The decision problem is
represented in Figure S.1; the first (resp., second) line corresponds to prizes in
state θ (resp., θ′).

The decision maker is player 1 of type θ in our mechanism design prob-
lem. The state space represents the possible types of player 2 and messages
player 1 can receive from the communication device as constructed in the main
text. Moreover, the possible composition of the urn respects the prior belief of
player 1 as well as the ambiguity in the communication device. Finally, condi-
tional on player 1 of type θ expecting player 2 to tell the truth, the bet A corre-
sponds to player 1 telling the truth, while the bet B corresponds to lying. For-
mally, the state space is {θ�θ′} × {ω�ω′} and the set of prior beliefs of the deci-
sion maker is {(2/3�0�0�1/3)� (0�2/3�1/3�0)}. We maintain the assumption of
multiple prior preferences and assume prior-by-prior updating (full Bayesian
updating).

Clearly, upon learning whether the ball is marked with ω or ω′, the decision
maker (weakly) prefers A over B.1

1A slight modification of the example would give strict preferences. For instance, assume that
the first composition of the urn has 60 balls marked with (θ�ω), 15 balls with (θ′�ω), and 15 balls
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FIGURE S.1.—The decision problem.

Consider now the ex ante plans AA, AB, BA, and BB, where the first (resp.,
second) letter corresponds to the choice of bet conditional on ω (resp., ω′). For
instance, the plan AB prescribes the choice of A if ω is revealed and the choice
of B if ω′ is revealed. Assume that the decision maker evaluates the plan AB
by “reducing” it to the bet giving x if the ball is (θ�ω) or (θ′�ω′) and y if the
ball is (θ′�ω) or (θ�ω′). Similarly, for the other plans.

We have that the decision maker strictly prefers the plan BB to the plan AA,
the plan AA to the plans AB and BA, and is indifferent between the plans AB
and BA.

To sum up, we have that conditional on either ω or ω′, the decision maker
strictly prefers A to B, but ex ante, he strictly prefers the plan BB to AA. The
decision maker’s preferences are dynamically inconsistent and our construction
precisely exploits this fact.

We briefly comment on this fundamental aspect of our analysis and refer
the reader to the special issue of Economics and Philosophy (2009) for an in-
depth discussion and further references. Dynamic consistency and Bayesian
updating are intimately related to Savage’s sure-thing principle, and ambiguity-
sensitive preferences generally entail a violation of the sure-thing principle.
Consequently, if one wants to analyze ambiguity-sensitive preferences, then
either dynamic consistency or full Bayesian updating must be relaxed, at least
to some extent. The approach we follow in this paper is to relax the assump-
tion of dynamic consistency. To analyze dynamic games with dynamically in-
consistent preferences, we assume that players are consistent planners, that is,
at every information set a player is active, he chooses the best strategy given
his opponents’ strategies and the strategies he will actually follow (for more on
consistent planning, see Strotz (1955) and Siniscalchi (2011)).

An alternative approach would be to maintain a form of dynamic consistency
and to relax the assumption of full Bayesian updating. Hanany and Klibanoff
(2007) provided such an alternative for the multiple-prior preferences. With-
out entering into details, their approach would require to update the prior

with (θ′�ω′), while the second composition has 60 balls marked with (θ�ω′), 15 balls with (θ′�ω),
and 15 balls with (θ′�ω′). Conditional on either ω or ω′, the set of posteriors is {(0�1)� (4/5�1/5)}
and, thus, the decision maker strictly prefers A to B.
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(2/3�0�0�1/3) upon observing ω and the prior (0�2/3�1/3�0) upon observ-
ing ω′, so that the plan BB remains conditionally optimal.2 Thus, according to
their updating rule, the set of priors to be updated depends on the conditioning
events (and, more generally, on the set of feasible plans and the uncondition-
ally optimal plan considered). Whether one likes this feature or not, this is
a logical implication of relaxing consequentialism so as to maintain dynamic
consistency. We refer the reader to Siniscalchi (2009, 2011) and Al-Najjar and
Weinstein (2009) for more on this issue. Furthermore, we hasten to stress that
a violation of dynamic consistency as defined in Hanany and Klibanoff (2007,
axiom DC, p. 268) is not a necessary condition for our results to hold. Indeed,
we can modify the example so that the decision maker strictly prefers BB to
AA and, conditional on either ω or ω′, is indifferent between A and B. This
does not violate axiom DC of Hanany and Klibanoff and yet f remains im-
plementable by an ambiguous mechanism as constructed above (an example
showing this is available upon request).

Yet another alternative approach is to maintain consequentialism and
(a form of) dynamic consistency, but to limit the possible attitude toward ambi-
guity. For instance, Epstein and Schneider (2003) provided a condition on the
set of priors, called rectangularity, that guarantees the absence of preference
reversals. In our example, their approach would require the set of priors to be{

(2/3�0�0�1/3)� (0�2/3�1/3�0)� (1/3�0�0�2/3)� (0�1/3�2/3�0)
}
�3

Importantly to us, regardless of the strengths and weaknesses of those ap-
proaches, ambiguous mechanisms can implement social choice functions that
are not incentive compatible with respect to prior beliefs only if (a form of)
dynamic inconsistency is assumed.

S.2. MIXED STRATEGIES

For simplicity, the paper has focused on pure strategies. This is not without
loss of generality. Indeed, players with multiple-prior preferences can be in-
different between two pure strategies and yet strictly prefer a mixture of the
two pure strategies over either one of them; this follows from the axiom of
uncertainty aversion.

We now explain how to extend the analysis to mixed strategies.4 A mixed
strategy is a mapping σi : ({∅} ∪ Hi) × Θi → Δ(Ω̂i) × Δ(Mi) such that

2We assume that the feasible set of plans is AA, AB, BA, and BB.
3With this set of priors, the social choice function f is implementable by a classical (unam-

biguous) direct mechanism. Alternatively, this follows from Epstein and Schneider’s definition
of dynamic consistency, which says that if A is conditionally preferred to B, conditional on both
events ω and ω′, then AA is unconditionally preferred to BB.

4More accurately, we consider behavioral strategies. We adopt the terminology of mixed strate-
gies to simplify the exposition.
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σi({∅}� θi) ∈ Δ(Ω̂i) and σi(hi� θi) ∈ Δ(Mi) for all θi, for all hi. It is straight-
forward to modify the definition of a consistent planning equilibrium to allow
for mixed strategies.

The history (ω̂i�ωi) has positive probability under (σ∗
i � σ

∗
−i), if there exist a

type θ′
i, a probability system λ′, and a prior p′

i such that σ∗
i ({∅}� θi)[ω̂i] > 0 and

∑
θ−i�ω̂−i�ω−i

λ′(ω̂i� ω̂−i)
[
(ωi�ω−i)

]
σ∗

−i

({∅}� θ−i

)[ω̂−i]p′
i[θ−i]> 0�

The history (hi)i ∈×i∈N Hi has positive probability if each hi has positive prob-
ability. The definition of implementation becomes the following:

DEFINITION S.1: The ambiguous mechanism 〈〈(Ω̂i�Ωi)i∈N�Λ〉� 〈(Mi)i∈N�g〉〉
(partially) implements the social choice function f if there exists an equilib-
rium (σ∗�ΠH�Θ) such that

g(mi�m−i)= f (θi� θ−i)

for all (mi�m−i) such that σ∗
i (θi�hi)[mi]σ∗

−i(θ−i� h−i)[m−i]> 0, for all (θi� θ−i),
for all (hi�h−i) with positive probability.

Lastly, the definition of incentive compatibility is extended as follows:

DEFINITION S.2: A social choice function f is incentive compatible for
player i ∈ N if there exists a nonempty set of beliefs Πi ⊆ Δ(Θ−i) such that,
for all θi ∈Θi,

min
πi∈Πi

∑
θ−i∈Θ−i

ui

(
f (θi� θ−i)� θi� θ−i

)
πi[θ−i]

≥ min
πi∈Πi

∑
θ−i∈Θ−i

∑
θ′
i∈Θi

σi(θi)
[
θ′
i

]
ui

(
f
(
θ′
i� θ−i

)
� θi� θ−i

)
πi[θ−i]

for all σi(θi) ∈ Δ(Θi). The social choice function f is incentive compatible if it
is incentive compatible for each player i ∈N .

All our analysis remains valid with these modifications.
To see this, let us revisit the proof of Theorem 1. Clearly, the sufficiency

part remains valid without any modification. As for the necessary part, let us
consider a history (hi�h−i) with positive probability under (σ∗

i � σ
∗
−i), where

(σ∗
i � σ

∗
−i) is the equilibrium implementing f .
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Consider player i of type θi. By definition of an equilibrium, we have that

min
πi(hi�θi)∈ΠH�Θ

i (hi�θi)

∑
θ−i�h−i�m−i

σ∗
i (hi� θi)[mi]σ∗

−i(h−i� θ−i)[m−i]

× ui

(
g(mi�m−i)� θi� θ−i

)
πi(hi� θi)

[
(h−i� θ−i)

]
≥ min

πi(hi�θi)∈ΠH�Θ
i (hi�θi)

∑
θ−i�h−i�m−i

σi(hi� θi)[mi]σ∗
−i(h−i� θ−i)[m−i]

× ui

(
g(mi�m−i)� θi� θ−i

)
πi(hi� θi)

[
(h−i� θ−i)

]
for all σi(hi� θi) ∈ Δ(Mi). In particular, this is true for all strategies σ̄i(hi� θi)
constructed as follows. Fix any σi(θi) ∈ Δ(Θi) and define σ̄i(hi� θi) ∈ Δ(Mi)
by σ̄i(hi� θi)[mi] = ∑

θ′
i
σi(θi)[θ′

i]σ∗
i (hi� θ

′
i)[mi], for all mi. In words, under

σ̄i(hi� θi), at the history hi, player i of type θi draws a fictitious type θ′
i with

probability σi(θi)[θ′
i] and reports a message mi as if his true type was θ′

i.
As in the main text, we have that if πi(hi� θi)[(h−i� θ−i)] > 0, then h−i

has positive probability. Since the definition of implementation requires
that g(mi�m−i) = f (θi� θ−i) for all (mi�m−i) such that σ∗

i (hi� θi)[mi]σ∗
−i(h−i�

θ−i)[m−i] > 0, for all (θi� θ−i), for all histories (hi�h−i) with positive probabil-
ity, we must therefore have that

min
πi(hi�θi)∈ΠH�Θ

i (hi�θi)

∑
θ−i�h−i

ui

(
f (θi� θ−i)� θi� θ−i

)
πi(hi� θi)

[
(h−i� θ−i)

]

≥ min
πi(hi�θi)∈ΠH�Θ

i (hi�θi)

∑
θ−i�h−i�θ

′
i

σi(θi)
[
θ′
i

]
ui

(
f
(
θ′
i� θ−i

)
� θi� θ−i

)

×πi(hi� θi)
[
(h−i� θ−i)

]
for all σi(θi) ∈ Δ(Θi), where we have used the strategy σ̄i(hi� θi) ∈ Δ(Mi).

The rest of the proof is as in the main text. Theorem 2 is independent of
whether mixed strategies are considered or not and, thus, remains valid.

A closing remark is in order. Notice that the social choice function f in the
introductory example of the paper is not implementable when mixed strate-
gies are considered. It is profitable for a player to randomize uniformly be-
tween θ and θ′. The profitability from mixed deviations depends on the class
of mechanisms considered, however. Indeed, we show in Section S.5 that we
can implement f with the use of an extensive-form allocation mechanism, which
“nullifies” the benefit from mixed strategy deviations. Whether such general
mechanisms can always be used to nullify the benefit from mixed strategy de-
viation remains an important open question for future research.
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S.3. MULTIPLE ROUNDS OF COMMUNICATION

Another feature of the paper is the restriction to a single round of commu-
nication. We now consider an extension of ambiguous mechanisms to allow for
multiple rounds of communication. The main result is that this does not affect
the set of implementable social choice functions.

Given an allocation mechanism 〈M�g〉, we define the mediated extension of
〈M�g〉 as a mechanism in which T <∞ stages of mediated communication are
allowed before 〈M�g〉 is played. More precisely, there are T +1 stages. At stage
t ∈ {1� � � � �T }, players communicate through the ambiguous communication
device 〈(Ω̂i�t�Ωi�t)i∈N�Λt〉, that is, each player i sends a message ω̂i�t ∈ Ω̂i�t to,
and receives a message ωi�t ∈ Ωi�t from, the device. At stage T + 1, which is the
allocation stage, players send a message mi ∈ Mi and the designer implements
an alternative according to g. As in the paper, (i) communication is private
and simultaneous, and (ii) the alternative implemented at the allocation stage
depends only on the messages reported at that stage. The only difference is
that communication now involves multiple rounds. We call such a mechanism
a (multiple-round-communication) M-R-C ambiguous mechanism.

PROPOSITION S.1: If the social choice function f is implementable by a M-R-C
ambiguous mechanism 〈〈(Ω̂i�t�Ωi�t)i∈N�Λt〉t=1�����T � 〈(Mi)i∈N�g〉〉, then f is imple-
mentable by a two-stage ambiguous mechanism, 〈〈(Ω̂i�Ωi)i∈N〉� 〈(Mi)i∈N�g〉〉.

PROOF: Suppose that the social choice function f is implementable by the
M-R-C ambiguous mechanism 〈〈(Ω̂i�t�Ωi�t)i∈N�Λt〉t=1�����T � 〈(Mi)i∈N�g〉〉, and let
(s∗�ΠH�Θ) be an equilibrium implementing f .

Consider the two-stage mechanism:〈〈(
Θi�×

t

(Ω̂i�t ×Ωi�t)

)
i∈N

�Λ

〉
�
〈
(Mi)i∈N�g

〉〉
�

with Λ constructed as follows. For each (λ1� � � � � λT ) ∈ Λ1 × · · · ×ΛT , we asso-
ciate the communication system λ defined by

λ(θ)
[
(ω̂t�ωt)

T
t=1

] := s∗(∅� θ)[ω̂1]λ1(ω̂1)[ω1] × · · ·
× s∗((ω̂t�ωt)

τ−1
t=1 � θ

)[ω̂τ]λτ(ω̂τ)[ωτ] × · · ·
× s∗((ω̂t�ωt)

T−1
t=1 � θ

)[ω̂T ]λT(ω̂T )[ωT ]�
In words, during the communication stage of the two-stage mechanism, the set
of messages sent is Θi, the set of messages received is×t(Ω̂i�t × Ωi�t) (i.e., all
possible sequences of messages sent and received under the M-R-C mecha-
nism), and the probability of receiving the profile of messages (ω̂t�ωt)

T
t=1 con-

ditional on the type profile θ being the message sent is the probability of the
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history (ω̂t�ωt)
T
t=1 under s∗ when the type profile is θ. Let H∗∗ be the set of

histories of the two-stage mechanism.
Let s∗∗ be the strategy profile defined by s∗∗

i ({∅}� θi) = θi at the initial his-
tory {∅}, and s∗∗

i ((θ̂i� (ω̂i�t�ωi�t)
T
t=1)�θi) = s∗

i ((ω̂i�t�ωi�t)
T
t=1)�θi), for all histories

(θ̂i� (ω̂i�t�ωi�t)
T
t=1), for all types θi, for all player i. Note that (ω̂i�t�ωi�t)

T
t=1 corre-

sponds to a history hT+1
i of the original M-R-C mechanism. We now argue that

since the equilibrium (s∗�ΠH�Θ) implements f , there exist assessments ΠH∗∗�Θ

such that (s∗∗�ΠH∗∗�Θ) implements f in the two-stage mechanism.
First, by definition, the history hT+1

i = (ω̂i�t�ωi�t)
T
t=1 has positive probability

under s∗ in the M-R-C mechanism if there exist a type profile (θ∗
i � θ

∗
−i) and a

collection of probability systems (λt)t such that∑
(ω̂−i�t �ω−i�t )t

λ
(
θ∗
i � θ

∗
−i

)[(
(ω̂i�t� ω̂−i�t)� (ωi�t�ω−i�t)

)T
t=1

]
> 0�

It follows that the history (θ∗
i � (ω̂i�t�ωi�t)

T
t=1) has positive probability under s∗∗.

Conversely, if (θ̂i� (ω̂i�t�ωi�t)
T
t=1) has positive probability under s∗∗, then the his-

tory hT+1
i = (ω̂i�t�ωi�t)

T
t=1 has positive probability under s∗ in the M-R-C mech-

anism.
Second, we derive the beliefs of player i of type θi at histories with positive

probabilities. (At histories with zero probability, the beliefs are arbitrary.) So,
suppose that the history (θ̂i� (ω̂i�t�ωi�t)

T
t=1) has positive probability under s∗∗

and consider the event [((θ̂−i� (ω̂−i�t�ω−i�t)
T
t=1))�θ−i]. (Remember that player

i has beliefs about the private histories and types of his opponents.) By con-
struction of s∗∗, it must be that

πi

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θi

)[((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

))
� θ−i

] = 0�

if θ̂−i = θ−i for all beliefs πi((θ̂i� (ω̂i�t�ωi�t)
T
t=1)�θi) at the history (θ̂i� (ω̂i�t�

ωi�t)
T
t=1). Similarly, by construction of s∗∗, the history (θ̂i� (ω̂i�t�ωi�t)

T
t=1) has pos-

itive probability if and only if player i’s type is θ̂i. Therefore, we have that
the beliefs of player i of type θ̂i at the history (θ̂i� (ω̂i�t�ωi�t)

T
t=1) are equal to

ΠH�Θ
i (((ω̂i�t�ωi�t)

T
t=1)� θ̂i), the beliefs player i of type θ̂i has in the M-R-C mech-

anism at the history (ω̂i�t�ωi�t)
T
t=1 under s∗, that is,

πi

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θ̂i

)[((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

))
� θ̂−i

]
= πi

(
(ω̂i�t�ωi�t)

T
t=1� θ̂i

)[
(ω̂−i�t�ω−i�t)

T
t=1� θ̂−i

]
for all θ̂, for all (ω̂t�ωt)t , for all πi. Alternatively, if player i’s type θi is different
from θ̂i, then the history (θ̂i� (ω̂i�t�ωi�t)

T
t=1) has still positive probability under

s∗∗ according to our definition, but Bayes’s rule does not apply for player i of
type θi. Thus, we can define the beliefs of player i of type θi at the history
(θ̂i� (ω̂i�t�ωi�t)

T
t=1) arbitrarily. Assume that they are ΠH�Θ

i ((ω̂i�t�ωi�t)
T
t=1� θi).
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Third, since for every history (θ̂i� (ω̂i�t�ωi�t)
T
t=1) corresponds a history hT+1

i in
the M-R-C mechanism, the strategy s∗∗

i ((θ̂i� (ω̂i�t�ωi�t)
T
t=1)� ·) must be optimal

at the history (θ̂i� (ω̂i�t�ωi�t)
T
t=1). To prove this claim, suppose by contradiction

that there exist a history (θ̂i� (ω̂i�t�ωi�t)
T
t=1), a type θi, and a profitable deviation

mi at that history, that is,

min
πi((ω̂i�t �ωi�t )

T
t=1�θi)∈Π

H�Θ
i ((ω̂i�t �ωi�t )

T
t=1�θi)

(∑
ui

(
g
(
mi�

s∗
−i

(
(ω̂−i�t �ω−i�t)

T
t=1� θ−i

))
� θi� θ−i

)
×πi

(
(ω̂i�t�ωi�t)

T
t=1� θi

)[
(ω̂−i�t�ω−i�t)

T
t=1� θ−i

])
= min

πi((θ̂i�(ω̂i�t �ωi�t )
T
t=1)�θi)∈Π

H∗∗�Θ
i ((θ̂i�(ω̂i�t �ωi�t )

T
t=1)�θi)

(∑
ui

(
g
(
mi�

s∗∗
−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
� θi� θ−i

)
×πi

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θi

)[(
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

])
> min

πi((θ̂i�(ω̂i�t �ωi�t )
T
t=1)�θi)∈Π

H∗∗�Θ
i ((θ̂i�(ω̂i�t �ωi�t )

T
t=1)�θi)

(∑
ui

(
g
(
s∗∗
i

((
θ̂i�

(ω̂i�t�ωi�t)
T
t=1

)
� θi

)
� s∗∗

−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
� θi� θ−i

)
×πi

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θi

)[(
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

])

= min
πi((ω̂i�t �ωi�t )

T
t=1�θi)∈Π

H�Θ
i ((ω̂i�t �ωi�t )

T
t=1�θi)

(∑
ui

(
g
(
s∗
i

(
(ω̂i�t�ωi�t)

T
t=1� θi

)
�

s∗
−i

(
(ω̂−i�t �ω−i�t)

T
t=1� θ−i

))
� θi� θ−i

)
×πi

(
(ω̂i�t�ωi�t)

T
t=1� θi

)[
(ω̂−i�t�ω−i�t)

T
t=1� θ−i

])
�

where the equalities follow from the construction of s∗∗ and the assessments.
This contradicts the fact that s∗ is a consistent planning equilibrium.

Fourth, consider the communication stage of the two-stage mechanism. By
construction, if player i of type θi truthfully reports θi at the initial history, the
expected payoff is

min
pi∈Pi

∑
θ−i

ui

(
f (θi� θ−i)� θi� θ−i

)
pi[θ−i]�
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Alternatively, suppose that player i of type θi announces θ̂i and follows the
plan (ω̂i�t�ωi�t)

T
t=1 �→ mi((ω̂i�t�ωi�t)

T
t=1) in the second period (to simplify nota-

tion, we do not condition on θi and θ̂i). The expected payoff to player i is then

min
pi∈Pi�λ∈Λ

∑
(θ−i�θ̂−i)�((ω̂i�t �ω̂−i�t )�(ωi�t �ω−i�t ))

T
t=1

(
ui

(
g
(
mi

(
(ω̂i�t�ωi�t)

T
t=1

)
�

s∗∗
−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
� θi� θ−i

)
× λ(θ̂i� θ̂−i)

[(
(ω̂i�t� ω̂−i�t)� (ωi�t�ω−i�t)

)T
t=1

]
× s∗∗

−i

({∅}� θ−i

)[θ̂−i]pi[θ−i]
)
�

For the deviation to be profitable, there must exist a message mi, a his-
tory (θ̂� (ω̂t�ωt)

T
t=1) with positive probability, that is, λ(θ̂i� θ̂−i)[((ω̂i�t� ω̂−i�t)�

(ωi�t�ω−i�t))
T
t=1] > 0 such that

min
pi∈Pi

∑
θ−i

ui

(
g
(
mi

(
(ω̂i�t�ωi�t)

T
t=1

)
�

s∗∗
−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
� θi� θ−i

)
pi[θ−i]

> min
pi∈Pi

∑
θ−i

ui

(
f (θi� θ−i)� θi� θ−i

)
pi[θ−i]�

Also, from the definition of a consistent planning equilibrium, it must be
the case that mi((ω̂i�t�ωi�t)

T
t=1) coincides with s∗∗

i following the private history
(θ̂i� (ω̂i�t�ωi�t)

T
t=1), for all types θi. Therefore, we must have that

min
pi∈Pi

∑
θ−i

ui

(
g
(
s∗∗
i

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θi

)
�

s∗∗
−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
� θi� θ−i

)
pi[θ−i]

> min
pi∈Pi

∑
θ−i

ui

(
f (θi� θ−i)� θi� θ−i

)
pi[θ−i]�

However, since the history (θ̂� (ω̂t�ωt)
T
t=1)) has positive probability (and so

has the history (ω̂t�ωt)
T
t=1 in the M-R-C mechanism), we have that

g
(
s∗∗
i

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θi

)
� s∗∗

−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
= g

(
s∗
i

(
(ω̂i�t�ωi�t)

T
t=1� θi

)
� s∗

−i

(
(ω̂−i�t�ω−i�t)

T
t=1� θ−i

)) = f (θi� θ−i)
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for all (θi� θ−i) (since f is implemented at all histories with positive probability)
and, consequently,

min
pi∈Pi

∑
(θ−i

ui

(
g
(
s∗∗
i

((
θ̂i� (ω̂i�t�ωi�t)

T
t=1

)
� θi

)
�

s∗∗
−i

((
θ̂−i� (ω̂−i�t�ω−i�t)

T
t=1

)
� θ−i

))
� θi� θ−i

)
pi[θ−i]

= min
pi∈Pi

∑
θ−i

ui

(
f (θi� θ−i)� θi� θ−i

)
pi[θ−i]�

a contradiction with the previous inequality. Therefore, player i of type θi

has no profitable deviation at the initial history of the two-stage mechanism.
Q.E.D.

Since multiple prior preferences with full Bayesian updating exhibit dynamic
inconsistency, it might appear puzzling that T rounds of communication are
equivalent to a single round. After all, the single round of communication may
give the players the power to commit to certain (communication) strategies
that they are unable to carry out in the mechanism with multiple rounds of
communication. To understand Proposition S.1, it is important to bear in mind
that our definition of implementation requires social choice functions to be
implemented for every history of messages sent and received that occurs with
positive probability, irrespective of whether the history is truthful or not. In
other words, if a type θi communicates as if type θ̂i, the resulting communica-
tion should give rise to posterior beliefs such that the social choice function is
still correctly implemented at the allocation stage. And since the social choice
function is correctly implemented in any case, type θi does not gain by commu-
nicating as if type θ̂i. Put differently, the power to commit—that the two-stage
mechanism provides—does not provide any real benefit.

It is important to note that the equivalence between single and multiple
rounds of communication would not be true if the definition of implemen-
tation required the social choice function to be implemented only at “truthful
histories.” (See Section S.6 for more on this issue.)

S.4. LEMMA 1

As mentioned in the main paper, condition 1 of Theorem 2, instead of be-
ing stated in terms of a set of probability systems to generate the posteriors
regardless of the message received, can be stated instead in terms of a single
probability system that generates the required posteriors over all messages;
this is the equivalence result stated as Lemma 1. We now provide the proof of
this result.

LEMMA 1: The following statements are equivalent:
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1. There exist a set of messages Ω∗
i , a probability system λ̄i :Θi ×Θ−i → Δ(Ωi),

and a finite partition {Φ1
i � � � � �Φ

k
i � � � � �Φ

|Ki|
i } of Θi ×Ω∗

i such that, for all k ∈ Ki,⋃
pi∈Pi

⋃
(θi�ωi)∈Φk

i

{
ζi(pi� θi�ωi� λ̄i)

} =Πk
i �

2. There exist a set of messages Ωi, a set of probability systems Λi, and a fi-
nite partition {Φ1

i � � � � �Φ
k
i � � � � �Φ

|Ki |
i } of Θi × Ωi such that, for all k ∈ Ki, for all

(θi�ωi) ∈ Φk
i ,⋃

pi∈Pi

⋃
λi∈Λi

{
ζi(pi� θi�ωi�λi)

} =Πk
i �

PROOF: (1) ⇒ (2). Let Ωi = Ω∗
i . For each k ∈ Ki, consider a cyclic permu-

tation ρk :Φk
i → Φk

i and write ρk
Θi
(θi�ωi) (resp., ρk

Ωi
(θi�ωi)) for the projection

of ρk(θi�ωi) onto Θi (resp., Ωi). Note that
⋃

ρk:cyclic permutation{ρk(θi�ωi)} = Φk
i .

Let ρ :Θi × Ωi → Θi × Ωi be the permutation obtained from the permuta-
tions (ρk)k∈Ki

, that is, ρ(θi�ωi) := ρk(θi�ωi) if (θi�ωi) ∈ Φk
i . Define λρ

i by
λρ
i (θi� θ−i)[ωi] := λ̄i(ρΘi

(θi�ωi)� θ−i)[ρΩi
(θi�ωi)] and let Λi be the union of

{λρ
i } over all permutations ρ such that each ρk defining ρ is a cyclic permu-

tation.
For each k ∈ Ki, for each (θi�ωi) ∈ Φk

i , we then have that⋃
pi∈Pi

⋃
λ
ρ
i ∈Λi

{
ζi

(
pi�θi�ωi�λ

ρ
i

)} =
⋃
pi∈Pi

⋃
(θi�ωi)∈Φk

i

{
ζi

(
pi�ρ(θi�ωi)� λ̄i

)}

= Πk
i �

(2) ⇒ (1). Let Ω∗
i = Ωi ×Λi and define λ̄i as

λ̄i(θi� θ−i)
[
(ωi�λi)

] = 1
|Λi|λi(θi� θ−i)[ωi]

for all (θi� θ−i). Clearly, the posterior belief upon receiving the message
(ωi�λi) is the same as the posterior belief upon receiving the message ωi when
the communication device is λi, that is, ζi(pi� θi� (ωi�λi)� λ̄i)= ζi(pi� θi�ωi�λi)
for all (θi�ωi) ∈Θi ×Ωi. Q.E.D.

Remark that condition (B) together with the nonemptyness of each Πk
i im-

ply that, for each (θi�ωi), there exist θ−i and λi such that λi(θi� θ−i)[ωi]> 0. To
the contrary, assume that there exists (θi�ωi) such that, for all θ−i and all λi,
λi(θi� θ−i)[ωi] = 0. It follows that for all pi,

∑
θ−i

λi(θi� θ−i)[ωi]pi[θ−i] = 0 and,
therefore,

⋃
pi∈Pi

⋃
λi∈Λi

{ζi(pi� θi�ωi�λi)} = ∅ = Πk
i , a contradiction. There-

fore, each (θi�ωi) has positive probability under λ̄i. This fact is used in the
proof of Theorem 2.
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S.5. A MULTISTAGE ALLOCATION MECHANISM

Yet another essential feature of the class of mechanisms we consider is that
the allocation mechanism is static. We now consider a simple example to show
how a multistage allocation mechanism can expand the set of implementable
social choice functions.

There are two players, labeled 1 and 2, two types θ and θ′ for each player,
and two alternatives x and y . Types are private information. We assume that
players have multiple-prior preferences (Gilboa and Schmeidler (1989)) with
Pi the set of priors of player i ∈ {1�2} and ui his utility function. Suppose that
u1(x�θ) = 1, u1(y�θ)= 0, that player 1 of type θ′ and player 2 of both types are
indifferent between all alternatives. Assume Pi = {pi} = {1/3}.5

The designer aims at (partially) implementing the social choice function f
defined by f (θ�θ) = x, f (θ�θ′)= y , f (θ′� θ)= y , and f (θ′� θ′)= x.

Suppose now that the players can commit to playing behavioral mixed strate-
gies. In that case, the social choice function f is not implementable by an
ambiguous mechanism. Regardless of his beliefs, player 1 can guarantee a
payoff of 1/2 by mixing uniformly between θ and θ′. So, to satisfy the in-
centive compatibility constraints (IC), we need to find a finite collection of
finite beliefs’ sets (Πk

i )k such that minΠk
i ≥ 1/2 for each k (i.e., we need that

minπk
i ∈Πk

i
1πk

i + 0(1 − πk
i ) ≥ 1/2). However, to generate the sets Πk

i , we also
need that the prior belief 1/3 belongs to the convex hull of

⋃
k Π

k
i , which is

impossible (see condition (iii) in Theorem 2).
Yet, we claim that the social choice function is implementable by a more

general ambiguous mechanism. The mechanism has three stages. In the first
stage, player 2 reports either θ or θ′ to the designer. Following player 2’s report,
the designer sends either ω or ω′ to player 1. There are two possible probability
systems, λ and λ′. The first probability system λ is fully specified by λ(ω|θ) = 1
and λ(ω′|θ′) = 1, while λ′(ω′|θ) = 1 and λ′(ω|θ′) = 1 fully specify the second
probability system. Player 1 is not active in the first stage. In the second stage,
player 1 reports either θ or θ′ to the designer. If player 1 reports θ, the designer
implements f (θ�θ) (resp., f (θ�θ′)) if player 2 reported θ (resp., θ′) in the
first stage. Alternatively, if player 1 reports θ′, the mechanism moves to the
third and final stage. In the third stage, player 1 has again to report θ or θ′. If
player 1 reports θ′, the designer implements f (θ′� θ) (resp., f (θ′� θ′)) if player
2 reported θ (resp., θ′) in the first stage. Alternatively, if player 1 reports θ, the
designer implements y , regardless of player 2’s report. (Player 2 is not active
at the second and third stage.) The distinctive feature of this mechanism is the
multistage allocation mechanism. See Figure S.2 for a graphical illustration.

5The convention being pi is the probability that the other player’s type is θ. All our arguments
remain valid if Pi = [p

i
�pi] with p

i
< 1 − pi . Alternatively, if p

i
≥ 1 − pi , f is implementable

with a classical direct mechanism, so that there is no need for nontrivial ambiguous mechanisms.
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FIGURE S.2.—The mechanism.

We now argue that both players have an incentive to truthfully reveal their
types at all stages. Since player 1 of type θ′ and player 2 of either type are in-
different between all alternatives, they clearly have an incentive to truthfully
reveal their types. So, let us focus on player 1 of type θ. Consider the his-
tory (ω�θ′), that is, player 1 has received the message ω from the designer
at the first stage and has reported θ′ at the second stage. By construction of
the ambiguous communication device, player 1’s set of beliefs is {0�1}, that
is, he believes that player 2 is either of type θ with probability 1 or of type θ′

with probability 1. At (ω�θ′), player 1 is indifferent between reporting θ, which
guarantees a payoff of zero, and reporting θ′. Moreover, no mixture between θ
and θ′ is strictly preferred to reporting θ.6 Consequently, it is optimal for player
1 of type θ to truthfully report θ at the third stage following the history (ω�θ′).
Let us move to the history (ω). At (ω), player 1’ set of beliefs is {0�1} and so
he is indifferent between reporting θ and any mixing between θ and θ′ (condi-
tional on reporting θ at the third stage and, thus, obtaining y for sure). So, it is
optimal for player 1 of type θ to truthfully report θ at ω. A similar argument
holds at ω′, so that f is indeed implementable by the constructed mechanism.

S.6. A WEAKER NOTION OF IMPLEMENTATION

Our notion of implementation requires the social choice function to be im-
plemented at all histories having positive probability under the equilibrium
strategies.7 This section presents a weaker definition of equilibrium.

6This follows from the c-independence of the multiple prior preferences (Gilboa and Schmei-
dler (1989)).

7As noted in the discussion at the end of Section S.3, this was crucial in establishing why a
mechanism with one round of communication can implement any social choice function that a
mechanism with T > 1 rounds of communication is able to implement.
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We say that the history ((ω̂i�ωi)� (ω̂−i�ω−i)) has positive probability under s∗

at (θi� θ−i) if there exists λ ∈ Λ such that

λ
(
s∗
i

({∅}� θi

)
� s∗

−i

({∅}� θ−i

))[
(ωi�ω−i)

]
> 0�

and (s∗
i ({∅}� θi)� s

∗
−i({∅}� θ−i))= (ω̂i� ω̂−i).

Consider now the following weaker definition of implementation:

DEFINITION S.3: The ambiguous mechanism 〈〈(Ω̂i�Ωi)i∈N�Λ〉� 〈(Mi)i∈N�g〉〉
(partially) implements the social choice function f if there exists a pure equi-
librium (s∗�ΠH�Θ) such that

g
(
s∗
i (hi� θi)� s

∗
−i(h−i� θ−i)

) = f (θi� θ−i)

for all (hi�h−i) having positive probability under s∗ at (θi� θ−i), for all (θi� θ−i).

Intuitively, this weaker notion requires f to be implemented only at “truth-
ful” histories. We refer the reader to the main text for a discussion of this
weaker concept. We now provide a characterization of the implementable so-
cial choice functions (in this weaker sense).

Suppose the social choice function f is implementable by the mechanism〈〈
(Ω̂i�Ωi)i∈N�Λ

〉
�
〈
(Mi)i∈N�g

〉〉
�

and let s∗ be an implementing equilibrium.
Denote f̃ :Hi ×Θi ×H−i ×Θ−i → X the social choice function defined by

f̃ (hi� θi�h−i� θ−i) := g
(
s∗
i (hi� θi)� s

∗
−i(h−i� θ−i)

)
for all (hi� θi�h−i� θ−i).

By definition of an equilibrium, for all histories hi of player i consistent with
s∗
i (i.e., on-path histories), we must have that

min
πi(hi�θi)∈ΠH�Θ

i (hi�θi)

∑
(θ−i�h−i)

πi(hi� θi)[h−i� θ−i]

× ui

(
g
(
s∗
i (hi� θi)� s

∗
−i(h−i� θ−i)

)
� θi� θ−i

)
≥ min

πi(hi�θi)∈ΠH�Θ
i (hi�θi)

∑
(θ−i�h−i)

πi(hi� θi)[h−i� θ−i]

× ui

(
g
(
s∗
i

(
h′
i� θ

′
i

)
� s∗

−i(h−i� θ−i)
)
� θi� θ−i

)
for all (h′

i� θ
′
i), for all i. Hence, the social choice function f̃ must be incentive

compatible: player i of type (hi� θi) must have an incentive to truthfully reveal
his private information. Note that this is true in particular for all histories of
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the form (s∗
i ({∅}� θ′

i)�ωi), that is, when player i of type θi reports as if his type
is θ′

i at the communication stage.
Moreover, since the mechanism implements f , we must have that f̃ (hi� θi�

h−i� θ−i) = f (θi� θ−i) for all histories (hi�h−i) having positive probabilities un-
der s∗ at (θi� θ−i), that is, for all histories (ω̂i�ωi)i such that ω̂i = s∗

i ({∅}� θi) for
all i and λ((ω̂i� ω̂−i))[(ω−i�ω−i)] > 0 for some λ ∈ Λ.

From the definition of an equilibrium, we must also have that for all i, for all
θi, for all (θ′

i� θ
′′
i ),

min
λ∈Λ�pi∈Pi

∑
θ−i�(ωi�ω−i)

(
ui

(
f̃
((
s∗
i

(
θ′
i� {∅})�ωi

)
� θ′′

i �

(
s∗
−i

(
θ−i� {∅})�ω−i

))
� θ−i

)
� θi� θ−i

)
× λ

((
s∗
i

(
θ′
i� {∅})� s∗

−i

(
θ−i� {∅})))[

(ωi�ω−i)
]
pi[θ−i]

≤ min
λ∈Λ�pi∈Pi

∑
θ−i�(ωi�ω−i)

(
ui

(
f̃
((
s∗
i

(
θi� {∅})�ωi

)
� θi�

(
s∗
−i

(
θ−i� {∅})�ω−i

))
� θ−i

)
� θi� θ−i

)
× λ

((
s∗
i

(
θi� {∅})� s∗

−i

(
θ−i� {∅})))[

(ωi�ω−i)
]
pi[θ−i]

= min
pi∈Pi

∑
θ−i

ui

(
f (θi� θ−i)� θi� θ−i

)
pi[θ−i]�

This inequality states that player i of type θi has an incentive to communicate
as type θi at the initial communication stage. In other words, it is not profitable
for player i of type θi to communicate as type θ′

i at the initial communication
stage (thus to generate histories of the form (s∗

i (θ
′
i� {∅})�ωi)) and to pretend

to be type θ
′′
i at the allocation stage.

To sum up, implementation of a social choice function f would imply that
there exist a set of transition probabilities Λ, a set of messages (Ωi)i, a social
choice function f ∗ :×i(Θi × Ωi) ××i Θi → X , belief sets ΠH�Θ

i such that f ∗

is incentive compatible at the allocation stage (with the updated posteriors),
f ∗(hi� θi�h−i� θ−i) = f (θi� θ−i) for all truthful histories (hi�h−i), and f ∗ is also
incentive compatible at the initial stage.8

Conversely, we can repeat the arguments in the main text to show that one
can implement any f for which there are a set of transition probabilities Λ, a
set of messages (Ωi)i, and a social choice function f ∗ that satisfy the properties
above.

8f ∗ is the restriction of f̃ to the histories (ω̂i�ωi)i of the form ω̂i = s∗
i ({∅}� θ′

i) for some θ′
i , for

all i, and λ((ω̂i� ω̂−i))[(ωi�ω−i)] > 0 for some λ ∈Λ.
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As a final remark, note that the stronger definition in the paper requires
f ∗(hi� θi�h−i� θ−i) = f (θi� θ−i) for all histories (hi�h−i) (truthful and untruth-
ful), so that the incentive compatibility constraints are trivially satisfied at the
initial stage, and f ∗ is essentially independent of the private histories. (With
the stronger definition of implementation, the players are indifferent between
truthful and untruthful reporting to the communication device at the commu-
nication stage; the social choice function is implemented at the allocation stage
in any case.)

S.7. CONTINUUM

In economic applications, it is sometimes convenient to assume that sets
of types, alternatives, messages, etc., are subsets of complete separable met-
ric spaces. This section generalizes our results to the environments frequently
found in applications. It is important to stress that we do not aim at the most
general assumptions; rather, we aim at extending our results to the environ-
ments frequently encountered in applications.

So, assume that the space of alternatives X is a subset of a complete sepa-
rable metric space, for example, X is a subset of Rn+� in allocation problems
(transfers and quantities of the � goods). For each i, we assume that Θi is a
closed and bounded interval, which we assume to be [0�1]. We assume the set
of priors Pi consist of priors pi having continuous and strictly positive densi-
ties. For any prior pi, let pd

i be the associated density. As usual, strategies are
assumed to be measurable maps.

Let λ :×i Ω̂i → Δ(×i Ωi) be a probability kernel, that is, λ(ω̂) is a probabil-
ity measure on the product algebra B

(×i Ωi)
for each ω̂, and λ(·)[Eω] is measur-

able for each event Eω in the product algebra B
(×i Ωi)

. Let λi :×i Ω̂i → Δ(Ωi)

be the marginal probability kernel, that is, for each ω̂ ∈ Ω̂ and Eωi
∈ BΩi

,
λi(ω̂)[Eωi

] := λ(ω̂)[Eωi
×Ω−i].

An important technical requirement is that players have well-defined con-
ditional probabilities for all possible histories of messages sent and received
(ω̂i�ωi). If λ is a regular conditional probability, then these conditional prob-
abilities are well-defined. So, to guarantee the existence of regular conditional
probabilities, we assume that the sets of messages (Ω̂i�Ωi) are compact sub-
sets of complete and separable metric spaces. (See Faden (1985).) With these
technical preliminaries completed, we now consider the results in the paper.

Theorem 1 goes through with only minor modifications. Given an ambigu-
ous mechanism and for any pure strategy equilibrium, “history with positive
probability” means “for all histories in the support of one of the measures over
histories induced by the equilibrium and the mechanism.” To be more precise,
fix an equilibrium s∗, a probability system λ, and a prior pd

i . We define the mea-
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sure over Ωi induced by λ, pi, and s∗ as follows. For each Eωi
and ω̂i, consider

the integral

μs∗�λ�pd
i
(ω̂i)[Eωi

] :=
∫
Θ−i

λ
(
ω̂i� s

∗
−i

({∅}� θ−i

))[Eωi
×Ω−i]pd

i (θ−i) dθ−i�

The integral is well-defined (since the map ω̂−i �→ λ(ωi� ·)[Eωi
× Ω−i] is mea-

surable and bounded, s∗
−i is measurable and

∫
Θ−i

pd
i (θ−i) dθ−i = 1 < +∞), and

μs∗�λ�pd
i
(ω̂i) is clearly a probability measure on (Ωi�BΩi

) for each ω̂i. The his-
tory (ω̂i�ωi) has “positive probability” under s∗ if there exist θi, λ, and pd

i

such that s∗
i ({∅}� θi) = ω̂i and ωi is in the support of the measure μs∗�λ�pd

i
(ω̂i)

over Ωi, where we define the support as the closure of {ωi ∈ Ωi :ωi ∈ Nωi
�⇒

μs∗�λ�pd
i
(ω̂i)[Nωi

] > 0;Nωi
an open set}. Naturally, with an infinite type space,

the partition {Φk
i } cannot be assumed to be finite.

Theorem 2 is more delicate. First, we need to verify that the equivalence
result (i.e., Lemma 1) still holds in this more general setting. Second, we need
to find the appropriate generalization of condition (2).

For simplicity, we assume throughout that Φi = {Θi ×Ωi} (i.e., the partition
has the single element Θi × Ωi). (The arguments extend straightforwardly to
nontrivial partitions, as in the main text.) In what follows, we restrict the prob-
ability kernel λ to admit positive and continuous densities λd .9

Let us suppose first that Lemma 1 holds (we verify later that it does) and
consider the generalization of condition (2) of Theorem 2. Consider the set of
priors Pi and the set of posteriors Πi and write Pd

i and Πd
i for the correspond-

ing set of densities. In that case, λi has the density λd
i given by λd

i (θ)[ωi] :=∫
Ω−i

λd(θ)[(ωi�ω−i)]dω−i and ζi(pi� θi�ωi�λi) has the density given by

ζd
i

(
pd

i � θi�ωi�λ
d
i

)[θ−i] = λd
i (θi� θ−i)[ωi]pd

i (θ−i)∫
Θ−i

λd
i (θi� θ−i)[ωi]pd

i (θ̃−i) dθ̃−i

�

The second part of Theorem 2 reads then: There exist a finite measure space
(Ai�BAi

) and measurable functions μ :Ai × Pd
i → R++ and κ :Ai × Pd

i → Πd
i

such that
(i) The function κ is surjective.

(ii) For each α, for each (pd
i � p̃

d
i ),

μ
(
α�pd

i

)(
κ
(
α�pd

i

)
/pd

i

) = μ
(
α� p̃d

i

)(
κ
(
α� p̃d

i

)
/p̃d

i

)
�

(iii) The function μ(·�pd
i ) is a positive density for each pd

i , and pd
i =∫

μ(α�pd
i )κ(α�p

d
i )dα for each pd

i .

9For an example without this restriction, see next section.
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The proof is almost identical to the proof in the main text and left to the
reader. In a nutshell, probability densities operate as regular probabilities. For
instance, we clearly have that

pd
i (θ−i) =

∫
Θi×Ωi

(∫
Θ−i

λd
i (θi� θ−i)[ωi]pd

i (θ−i) dθ−i

)

× ζd
i

(
pd

i � θi�ωi�λ
d
i

)[θ−i]d(θi�ωi)

for all θ−i, which is essentially condition (iii) above. It is routine to replicate
the other arguments in the proof of Theorem 2.

The remaining task is to verify the validity of Lemma 1. The essence of the
argument consists in showing that there exists a family of measurable bijections
on Φi such that the set of posteriors obtained from a collection of probability
kernels Λd

i regardless of the messages received is equal to the set of posteriors
obtained from a unique probability kernel λ̄d

i by conditioning over all messages,
that is, ⋃

pd
i ∈Pd

i

⋃
(θi�ωi)∈Θi×Ωi

{
ζd
i

(
pd

i � θi�ωi� λ̄
d
i

)} =
⋃

pd
i ∈Pd

i

⋃
λdi ∈Λd

i

{
ζd
i

(
pd

i � θi�ωi�λ
d
i

)}

for all (θi�ωi). See Section S.4 for a more formal statement.
Fix λ̄i as in part (1) of Lemma 1 and consider its associated density, λ̄d

i .
We now construct a collection of probability systems Λd

i such that the above
equality is satisfied. To that end, for any pair (ω′

i�ω
′′
i ) ∈ Ωi × Ωi, define the

function g(ω′
i�ω

′′
i )

:Ωi → Ωi as

g(ω′
i�ω

′′
i )
(ωi)=

⎧⎨
⎩
ω′′

i if ωi =ω′
i,

ω′
i if ωi =ω′′

i ,
ωi if ωi ∈Ωi \

{
ω′

i�ω
′′
i

}
.

The function g(ω′
i�ω

′′
i )

is a transposition of ω′
i and ω′′

i and, hence, a bijection
from Ωi to Ωi. It is also a measurable function. To see this, consider any Borel
set E ∈ BΩi

and note that g−1
(ω′

i�ω
′′
i )
(E) = E if (ω′

i�ω
′′
i ) ∈ E × E and (ω′

i�ω
′′
i ) ∈

(BΩi
\E)× (BΩi

\E), while g−1
(ω′

i�ω
′′
i )
(E)= (E \ {ω′

i})∪{ω′′
i } if ω′

i ∈E and ω′′
i /∈E

(resp., g−1
(ω′

i�ω
′′
i )
(E) = (E \ {ω′′

i }) ∪ {ω′
i}) if ω′′

i ∈ E and ω′
i /∈ E). Since singletons

are closed sets in metric spaces, Ωi \ {ω′
i} is open. Hence, E ∩ (Ωi \ {ω′

i}) =
E \ {ω′

i} is a Borel set and so is (E \ {ω′
i})∪ {ω′′

i }. Similar arguments show that
(E \ {ω′′

i })∪ {ω′
i} is a Borel set.

For each ω′
i ∈ Ωi, we also have⋃

ω′′
i ∈Ωi

{
g−1
(ω′

i�ω
′′
i )

(
ω′

i

)} =Ωi�
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For any (θi� θ−i), define the function λd
i�(ω′

i�ω
′′
i )
(θi� θ−i) :Ωi → R by λd

i�(ω′
i�ω

′′
i )
(θi�

θ−i)[ωi] := λ̄d
i (θi� θ−i)[g−1

(ω′
i�ω

′′
i )
(ωi))], for each ωi. The function takes positive

values and integrates to the unity, since it agrees with the density λ̄d
i (θi� θ−i)

almost everywhere, hence it is a density.
It follows that

ζd
i

(
pd

i � (θi�ωi)�λ
d
i�(ω′

i�ω
′′
i )

)[θ−i]

=
pd

i (θ−i)λ̄
d
i (θi� θ−i)[g−1

(ω′
i�ω

′′
i )
(ωi)]∫

θ̃−i

pd
i (θ̃−i)λ̄

d
i (θi� θ̃−i)[g−1

(ω′
i�ω

′′
i )
(ωi)]dθ̃−i

for all θ−i, where λd
i�(ω′

i�ω
′′
i )

is the density kernel obtained from the construction
above. We therefore have

ζd
i

(
pd

i � θi�ωi�λ
d
i�(ω′

i�ω
′′
i )

)[θ−i]

=

⎧⎪⎨
⎪⎩
ζd
i

(
pd

i � θi�ωi� λ̄
d
i

)[θ−i] if ωi = ω′
i�ω

′′
i ,

ζd
i

(
pd

i � θi�ω
′
i� λ̄

d
i

)[θ−i] if ωi = ω′′
i ,

ζd
i

(
pd

i � θi�ω
′′
i � λ̄

d
i

)[θ−i] if ωi = ω′
i.

Clearly, ζd
i (p

d
i � θi�ωi�λ

d
i�(ω′

i�ω
′′
i )
) is a density. Finally, taking the union over all

the transpositions gives the desired result.
Conversely, fix a collection Λd

i as in part (2) of Lemma 1. We need to modify
the construction of λ̄d

i , since Λd
i is not assumed to be finite. We assume that

the ambiguous mechanism that can implement the social choice function f is
of such a form that there exists a measure ν on Λ (and, thus, on Λi) having
continuous positive density νd . With this assumption, we have that

λ̄d
i

(
θi� θ

d
−i

)[(
ωi�λ

d
i

)] = λd
i (θi� θ−i)[ωi]νd

(
λd
i

)
�

Naturally, more general measure-theoretic constructions are possible, but that
is beyond the scope of this supplement.

S.8. A PUBLIC GOOD EXAMPLE

We now consider a simple version of the public goods problem; in particular,
we consider a continuum type space to illustrate some of the points made in
the last section. There are two agents 1 and 2 with quasi-linear preferences.
The project, if built gives gross utility of 1 to each. Utility is 0 if the project
is not built. Each agent i has a privately known cost θi of building the project
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with θi ∈ [0�2].10 The common prior on θi is given by some distribution F with
density f > 0.

The set of physical allocations is given by X = {1�2� 1
2 �1 ⊗ 1

2 �2�0} with x de-
noting a generic element. The physical allocation x = i corresponds to agent
i building the project, x = 1

2 �1 ⊗ 1
2 �2 corresponds to the construction of the

project being allocated randomly to either agent with probability 1/2, and
x = 0 corresponds to the project not being built. Denote ti ∈ R the transfer
received by player i from player j; ti can be negative.

The Social Choice Function

The social choice function maps profile of costs (θ1� θ2) to a physical alloca-
tion x(θ1� θ2) and transfers (t1(θ1� θ2)� t2(θ1� θ2)). The designer aims at imple-
menting the efficient, egalitarian (envy-free), and budget balanced allocation.
Formally, for i� j = 1�2� i = j, the physical allocation is

x(θi� θj) =

⎧⎪⎪⎨
⎪⎪⎩
i if θi < θj ,
j if θi > θj ,
1
2
�i⊗ 1

2
�j if θi = θj .

The transfer ti is

ti(θi� θj)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−θj

2
if x = j,

θi

2
if x = i,

0 if x = 1
2 �i⊗

1
2 �j,

with tj(θj� θi)= −ti(θi� θj) for all (θi� θj) to have ex post budget balance. Note
that the net utility of each agent is 1 − 1

2 min(θ1� θ2) at every state (θ1� θ2).
It is straightforward to check that the social choice function is not incentive

compatible and hence is not implementable by using any classical mechanism.
It is also easy to check that the social choice function is incentive compatible
with respect to beliefs Πi, where Πi is (the convex hull of) D, the set of all
Dirac measures on [0�2].11 We leave these as exercises for the reader and in
the rest of the section show the construction of the required posterior belief
set Πi through the use of a suitable ambiguous communication device.

10Since total utility when the project is built is 2, it is more convenient to have the type space
as [0�2] rather than [0�1] and then to scale the cost.

11For any c ∈ [0�2], the Dirac measure μc is such that, for any Borel measurable subset B ⊆
[0�2], μc[B] = 1 if c ∈ B and μc[B] = 0 for c /∈ B. Then, D = ⋃

c μc .



MECHANISM DESIGN WITH AMBIGUOUS COMMUNICATION 21

Constructing the Ambiguous Communication Device

Let the message spaces12 Ω̂i = Ωi = [0�2]. Let A = [0�2] be the index set
such that Λi is given by Λi = ⋃

α∈A{λα
i }α∈A. We have λα =×i=1�2 λ

α
i .

Consider first the probability system λ0
i (ω̂i� ω̂−i)[ωi] where

λ0
i (ω̂i� ω̂j)[ωi] =

{
1 if ωi = ω̂j,
0 otherwise.

For any number w ∈ [0�2] and y ∈ [0�2], define the number z = w + y
(mod 2) as z =w + y if w + y ≤ 2 and z = w+ y − 2 if w + y > 2.

Consider now the following bijections. For any α ∈ (0�2], define ρα : (0�2] →
(0�2] as

ρα(ωi)= ωi + α (mod 2)�

Define λα
i as

λα
i (ω̂i� ω̂−i)[ωi] = λ0

i (ω̂i� ω̂−i)
[
ρα(ωi)

]
�

Consider any message ωi ∈ (0�2] received by agent i (upon having sent a
message ω̂i, which may not be equal to θi, the true cost of agent i). Assuming
agent j is sending message truthfully to the ambiguous communication device,
for every number c ∈ (0�2], there exists a λα

i , such that the posterior beliefs of
agent i is

ζθi
(
F� ω̂i�ωi�λ

α
i

)[θj] =
{

1 if θj = c,
0 otherwise.

On receiving message ωi = 0, posterior belief of player i is, however, not D.
In fact, it is a singleton; i believes with certainty that θj = 0. This, however,
does not create any problem regarding implementation since there is no gain-
ful deviation from truthful reporting of cost at the allocation stage if an agent
believes with certainty that the other agent’s cost is zero.
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