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This supplement documents several detailed proofs from Sections 2 and 3 of the
main text of the paper, that were omitted due to space constraints. It also contains
Tables S.I–S.X and Figures S.2 and S.3, which were mentioned in the main text of the
paper.

A. OPTIMAL DIVISION OF SURPLUS: SUFFICIENT CONDITION

IN THIS SECTION, we show that the function β∗(j) in equation (15) of the main
text, characterizing the optimal division of surplus at stage j, indeed satisfies a
sufficient condition for the associated profit-maximization problem of the firm.
Our approach builds on recasting this as a dynamic programming problem.

Remember that in the main text, we reduced the problem to that of finding
a function v that maximizes

πF(v)= κ

∫ 1

0

(
1 − v′(j)(1−α)/α

)
v′(j)v(j)(ρ−α)/(α(1−ρ)) dj�(A.1)

As a reminder, κ ≡Aρ

α
( 1−ρ

1−α
)(ρ−α)/(α(1−ρ))( ρ

c
)ρ/(1−ρ) is a positive constant.

Define the value function V (j� v) associated with this problem as

V (j� v) = κ sup
v′
[j�1]

∫ 1

j

(
1 − v′(k)(1−α)/α

)
v′(k)v(k)(ρ−α)/(α(1−ρ)) dk�

where v in the argument of the value function satisfies v = v(j). The Hamilton–
Jacobi–Bellman equation associated with this problem is

−Vj(j� v)= sup
v′

{
κ
(
1 − (

v′)(1−α)/α)
v′v(ρ−α)/(α(1−ρ)) + Vv(j� v)v

′}�(A.2)

with boundary condition V (1� v) = 0. The right-hand-side problem is strictly
concave and delivers a unique solution:

α

(
1 + Vv(j� v)

κv(ρ−α)/(α(1−ρ))

)
= (

v′)(1−α)/α
�

which we can plug back into (A.2). After some simplifications, we have

−Vj(j� v) = (1 − α)

(
α

κ

)α/(1−α)

(A.3)

× (
Vv(j� v)+ κv(ρ−α)/(α(1−ρ))

)1/(1−α)
v(α−ρ)/((1−ρ)(1−α))�
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From well-known results (see, for instance, Bertsekas (2005, Proposi-
tion 3.2.1), or Liberzon (2011, Section 5.1.4)), if the value function associated
with the solution v′ that satisfies the necessary conditions for optimality also
satisfies the HJB equation (A.3), then that would be sufficient to conclude that
v′ (and thus β∗) delivers a maximum.

To prove so, let us begin by defining

J
(
j� v� v′

[j�1]
) = κ

∫ 1

j

(
1 − (

v′(k)
)(1−α)/α)

v′(k)
(
v(k)

)(ρ−α)/(α(1−ρ))
dk�

which is the functional in the main text, but with the lower limit of the integral
starting at j ∈ [0�1]. The optimization problem for this functional is analogous
to the problem in our Benchmark Model except for the lower limit of the inte-
gral. As shown in the Appendix of the main text, we must have

v(k)=
(
(1 − α)C1

1 − ρ
(k−C2)

)(1−ρ)/(1−α)

� and

v′(k) =
(
(1 − α)C1

1 − ρ
(k−C2)

)(α−ρ)/(1−α)

C1�

Here, C1 and C2 are the associated constants of integration. The key dif-
ference here from our Benchmark Model is in the initial condition, which
is now v(j) = v, while the transversality condition continues to be given by
v′(1)(1−α)/α = α. Using these two conditions, we find that C1 and C2 are implic-
itly defined by

(
(1 − α)C1

1 − ρ
(j −C2)

)(1−ρ)/(1−α)

= v� and(A.4)

1 − ρ

1 − α
(1 −C2)

(α−ρ)/(1−α) v

(j −C2)(1−ρ)/(1−α)
= αα/(1−α)�(A.5)

Note that C1 and C2 are therefore functions of j and v. Moreover, since we
must have C2 < j < 1 in order for v to be greater than 0, the constants of
integration C1 and C2 are continuously differentiable in j and v.

The value function V (j� v) is then

V (j� v) = κ sup
v′
[j�1]

∫ 1

j

(
1 − (

v′(k)
)(1−α)/α)

v′(k)
(
v(k)

)(ρ−α)/(α(1−ρ))
dk

= κ

∫ 1

j

(
1 −

((
(1 − α)C1

1 − ρ
(k−C2)

)(α−ρ)/(1−α)

C1

)(1−α)/α)
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×
(
(1 − α)C1

1 − ρ
(k−C2)

)(α−ρ)/(1−α)

×C1

(
(1 − α)C1

1 − ρ
(k−C2)

)(ρ−α)/(α(1−α))

dk�

which can be simplified to

V (j� v) = κ

∫ 1

j

(
1 − ρ

1 − α

(
(1 − α)C1

1 − ρ

)ρ/α

(k−C2)
(ρ−α)/α −C1/α

1

)
dk�

Evaluating the integral, we have

V (j� v) = κ

{
1 − ρ

1 − α

α

ρ

(
(1 − α)C1

1 − ρ

)ρ/α[
(1 −C2)

ρ/α − (j −C2)
ρ/α

]

−C1/α
1 (1 − j)

}
�

which, using equations (A.4) and (A.5), can be reduced to

V (j� v) = κ

{
1 − ρ

1 − α

α

ρ

[
Cρ(1−α)/(α(ρ−α))

1 αρ/(α−ρ) − vρ(1−α)/(α(1−ρ))
]

(A.6)

−C1/α
1 (1 − j)

}
�

By eliminating C2 from equations (A.4) and (A.5), one can see that C1 itself is
given implicitly by

(1 − α)C1

1 − ρ
(1 − j)+ v(1−α)/(1−ρ) = αα/(α−ρ)(C1)

(1−α)/(ρ−α)�(A.7)

Our final step is to show that the value function defined by equations (A.6)
and (A.7) indeed satisfies the Hamilton–Jacobi–Bellman equation in (A.3).
Implicit differentiation of (A.7) produces

dC1

dj
= − C1

αα/(α−ρ)
1 − ρ

ρ− α
C(1−ρ)/(ρ−α)

1 − (1 − j)

� and

dC1

dv
= v(ρ−α)/(1−ρ)

αα/(α−ρ)
1 − ρ

ρ− α
C(1−ρ)/(ρ−α)

1 − (1 − j)

�
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Using these expressions to (totally) differentiate V (j� v) in (A.6) with respect
to j and v, and simplifying, we obtain

Vj(j� v)= −κ
1 − α

α
C1/α

1 � and

Vv(j� v)= κ

(
1
α
C(1−α)/α

1 v(ρ−α)/(1−ρ) − v(ρ−α)/(α(1−ρ))

)
�

Plugging the above expressions for Vj(j� v) and Vv(j� v) into (A.3), it is straight-
forward to verify that the Hamilton–Jacobi–Bellman equation in (A.3) is in-
deed satisfied. This confirms that the function β∗(j) satisfies the sufficient con-
dition for a maximum. Note, finally, that because we have only one candidate
solution for a maximum that satisfies the Euler–Lagrange equation, we can
comfortably state that β∗(j) is the global maximizer within the set of piecewise
continuously differentiable real-valued functions.

B. OPTIMAL DIVISION OF SURPLUS: CONSTRAINED PROBLEM

In solving for the optimal division of surplus at each stage in the main paper,
we have not constrained the optimal bargaining share β∗(m) to be nonnega-
tive or no larger than 1. The latter assumption is without loss of generality,
since the solution to the problem satisfies β∗(m) = 1 − αm(α−ρ)/α ≤ 1. Note,
however, that in the sequential complements case (ρ > α), when m is sufi-
ciently small we necessarily have β∗(m) < 0. As argued in the main text, a
negative β∗(m) can be justified by appealing to the fact that the firm might
find it optimal to compensate certain suppliers with a payoff that exceeds their
marginal contribution. Still, it is worth exploring how the optimal division of
surplus is affected by imposing the constraint β∗(m) ≥ 0. It might seem nat-
ural that the modified solution in the complements case would be given by
β∗(m) = max{1 − αm(α−ρ)/α�0}, but we will show below that this would be an
incorrect guess.

The problem that we seek to solve can be written as

max
{v′(j)}j∈[0�1]

∫ 1

0

(
1 − v′(j)(1−α)/α

)
v′(j)v(j)(ρ−α)/(α(1−ρ)) dj

s.t. 0 ≤ v′(j)≤ 1�

with initial condition v(0) = 0. Remember that this formulation follows from
defining

v(j)≡
∫ j

0

(
1 −β(k)

)α/(1−α)
dk�

which in turn implies β(j) = 1 − v′(j)(1−α)/α.
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Observe first that in the sequential substitutes case (ρ < α), the solution to
the unconstrained problem does not violate the constraint 0 ≤ v′(j) ≤ 1, since
0 ≤ αj(α−ρ)/α < 1. Thus, the solution obtained from solving the unconstrained
problem is necessarily also that which yields the maximum for the constrained
problem.

We therefore concentrate below on the sequential complements case
(ρ > α). As mentioned above for the unconstrained problem, we necessar-
ily have that v′(j) > 0 (or β(j) < 1) for all j > 0. As we will show below,
the same will be true for the solution to the constrained problem (i.e., when
imposing v′(j) ≤ 1), and thus, for the time being, we ignore the constraint
v′(j)≥ 0.

To solve the constrained problem, it is simplest to write down the Hamilto-
nian associated with the problem, where, for simplicity, we drop the argument
j and define u≡ v′:

H = (
1 − u(1−α)/α

)
uv(ρ−α)/(α(1−ρ)) + λu+ θ(1 − u)�

Here, λ is the costate variable and θ is the multiplier associated with the
constraint u ≤ 1. The first-order conditions associated with this problem
are

Hu =
(

1 − 1
α
u(1−α)/α

)
v(ρ−α)/(α(1−ρ)) + λ− θ = 0� and(B.1)

Hv = (
1 − u(1−α)/α

)
u

ρ− α

α(1 − ρ)
v(ρ−α)/(α(1−ρ))−1 = −λ′�(B.2)

Combining these to eliminate λ and λ′, we have

1 − α

α2
u1/α ρ− α

(1 − ρ)
v(ρ−α)/(α(1−ρ))−1

= −1 − α

α2
u(1−α)/α−1u′v(ρ−α)/(α(1−ρ)) − θ′�

Note that when the constraint u ≤ 1 (or β ≥ 0) does not bind, we have
θ′ = θ = 0, and this reduces to

v(ρ−α)/(α(1−ρ))u(1−α)/α−1

[
ρ− α

1 − ρ

u2

v
+ u′

]
= 0�

which is identical to equation (14) in the main text. For reasons analogous to
those in the unconstrained problem, the profit-maximizing function u must set
the term in the square brackets to 0, which implies

u= C1v
−(ρ−α)/(1−ρ)�
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where C1 is a strictly positive constant. Note that for v sufficiently small (in
particular, in the neighborhood of j = 0), and given ρ > α, we necessarily have
that u > 1, so that the constraint u≤ 1 will have to bind, implying θ > 0. Notice
then that equation (B.2) implies that λ′ = 0, which, in light of equation (B.1),
in turn implies that θ is a monotonically decreasing function of j as long as
the constraint binds. As a result, if the constraint binds at some ĵ ∈ (0�1), then
θ > 0 for all j < ĵ and so the constraint must bind as well for all j < ĵ, implying
u(j) = 1 for all j ≤ ĵ.

The solution for the optimal share for j > ĵ thus solves the differential equa-
tion

v′ = C1v
−(ρ−α)/(1−ρ)�(B.3)

with the boundary condition v′(ĵ) = 1 and the transversality condition v′(1) =
αα/(1−α). As in the unconstrained problem, equation (B.3) implies

v(j)=
(
(1 − α)C1

1 − ρ
(j −C2)

)(1−ρ)/(1−α)

� and(B.4)

v′(j)= C1

(
(1 − α)C1

1 − ρ
(j −C2)

)(α−ρ)/(1−α)

�(B.5)

but now C1 and C2 follow from solving

C1

(
(1 − α)C1

1 − ρ
(ĵ−C2)

)(α−ρ)/(1−α)

= 1� and

C1

(
(1 − α)C1

1 − ρ
(1 −C2)

)(α−ρ)/(1−α)

= αα/(1−α)�

This system yields

C1 = αα/(1−ρ)

(
1 − α

1 − ρ

(
1 − ĵ

1 − αα/(ρ−α)

))(ρ−α)/(1−ρ)

� and(B.6)

C2 = ĵ− αα/(ρ−α)

1 − αα/(ρ−α)
�(B.7)

Note, however, that at ĵ, we must also have

v(ĵ)≡
∫ ĵ

0
udk= ĵ�

Plugging (B.6) and (B.7) into (B.4) then yields

ĵ = (1 − α)αα/(ρ−α)

(1 − ρ)(1 − αα/(ρ−α))+ (1 − α)αα/(ρ−α)
�
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Finally, substituting this expression for ĵ, together with (B.6) and (B.7), into
(B.5) produces

v′(j)= αα/(1−α)

(
j − (1 − j)

(ρ− α)αα/(ρ−α)

1 − ρ

)(α−ρ)/(1−α)

�

which, given β(j) ≡ 1 − v′(j)(1−α)/α, finally implies

β∗(j)= 1 − α

(
j − (1 − j)

(ρ− α)αα/(ρ−α)

1 − ρ

)(α−ρ)/α

for j > ĵ�

Note that we can then summarize the solution to the constrained problem as

β∗(j)=

⎧⎪⎪⎨
⎪⎪⎩

1 − αj(α−ρ)/α� if α> ρ�

max
{

1 − α

(
j − (1 − j)

(ρ− α)αα/(ρ−α)

1 − ρ

)(α−ρ)/α

�0
}
�

if ρ > α�

for all j ∈ [0�1]�
In the accompanying Figure S.1, we plot the above solution (thick curve) and
compare it to that which solves the unconstrained problem (thin curve). Ob-
viously, in the sequential substitutes case, the two solutions coincide. Inter-
estingly, for all j > ĵ, we find that the optimal bargaining share received by
the firm in the unconstrained problem is higher than its bargaining share un-
der the constrained problem. Intuitively, in the constrained problem, the firm
would have preferred to incentivize upstream suppliers by offering them a pay-
off exceeding their marginal contribution, but when it is not able to do so, it
attempts to alleviate upstream investment inefficiencies by offering their full

FIGURE S.1.—Profit-maximizing division of surplus for stage m.
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marginal contribution to a larger measure of suppliers and by offering a higher
share of their marginal contribution to the remaining suppliers.

Despite these differences, notice that the optimal bargaining share β∗(j)
continues to be (weakly) increasing in the sequential complements case and
strictly decreasing in the sequential substitutes case. Hence, the statement in
Proposition 1 of the paper remains valid except for the fact that β∗(j) is now
only weakly increasing in m when ρ > α.

C. THE BENCHMARK MODEL WITH EX ANTE TRANSFERS

In Section 3.1.1 of the paper, we argue that introducing ex ante lump-sum
transfers between the firm and the suppliers has very little impact on our main
results. Because these ex ante transfers have no effect on ex post decisions
made after agents are locked in by the contracts, investment levels continue
to be characterized by equation (10) in our main text. The key implication of
introducing ex ante transfers is that the objective function of the firm is no
longer their ex post payoff (as in equation (11) of the main paper), but rather
the joint surplus created along the value chain, or

πT =A1−ρθρ

(∫ 1

0
x(j)α dj

)ρ/α

−
∫ 1

0
cx(j)dj�(C.1)

This might reflect, as in Antràs (2003) and Antràs and Helpman (2004), the
fact that the firm has full bargaining power ex ante, in the sense that it can
make take-it-or-leave-it offers to suppliers that include an initial transfer to
the firm. With a perfectly elastic supply of potential suppliers, each with an
ex ante outside option equal to 0, these ex ante transfers would thus be set
in a way that allows the firm to appropriate all the surplus created along the
value chain. Alternatively, even when both the firm and suppliers have some ex
ante bargaining power (perhaps because the number of potential suppliers is
limited), the fact that agents have access to a means to transfer utility ex ante
in a distortionary manner implies, by the Coase theorem, that the organization
of production along the value chain (i.e., which stages get integrated and which
get outsourced) will be decided efficiently, namely, in a joint-profit-maximizing
manner.

Note from equation (6) in the main text that cx(j)= α(1 −β(j))r ′(j) for all
j ∈ [0�1]. Plugging this into (C.1), we have

πT = r(1)− α

∫ 1

0

(
1 −β(j)

)
r ′(j)dj =

∫ 1

0

(
1 − α

(
1 −β(j)

))
r ′(j)dj�

After substituting in the expressions from equations (8) and (9) of the main
paper, we find that

πT = κ

∫ 1

0

(
1 − α

(
1 −β(j)

))(
1 −β(j)

)α/(1−α)
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×
[∫ j

0

(
1 −β(k)

)α/(1−α)
dk

](ρ−α)/(α(1−ρ))

dj�

where κ ≡Aρ

α
( 1−ρ

1−α
)(ρ−α)/(α(1−ρ))( ρθ

c
)ρ/(1−ρ) is a positive constant.

Defining

v(j)≡
∫ j

0

(
1 −β(k)

)α/(1−α)
dk�

we can write πT as

πT = κ

∫ 1

0

(
1 − αv′(j)(1−α)/α

)
v′(j)

[
v(j)

](ρ−α)/(α(1−ρ))
dj�(C.2)

The Euler–Lagrange equation associated with choosing the function v′(j)
from the set of piecewise continuously differentiable real-valued functions to
maximize (C.2) can be derived in a manner analogous to the case without ex
ante transfers. This Euler–Lagrange equation reduces to

v(j)(ρ−α)/(α(1−ρ))v′(j)(1−α)/α−1 1 − α

α

[
ρ− α

1 − ρ

v′(j)2

v(j)
+ v′′

]
= 0�

which, as in the case without ex ante transfers, implies

v(j)=
(
(1 − α)C1

1 − ρ
(j −C2)

)(1−ρ)/(1−α)

� and

v′(j)= C1

(
(1 − α)C1

1 − ρ
(j −C2)

)(α−ρ)/(1−α)

�

with initial condition v(0) = 0. The main difference relative to the case with-
out ex ante transfers is that the transversality condition is now v′(1)(1−α)/α = 1
(instead of v′(1)(1−α)/α = α), which implies that the optimal division of surplus
is now given instead by

β∗
T (j)= 1 − v′(j)(1−α)/α = 1 − j(α−ρ)/α�

Note that the slope of β∗
T (j) with respect to j continues to be crucially shaped

by whether ρ is higher or lower than α, just as in our Benchmark Model. It
follows then that Proposition 1, which we reproduce below, continues to hold
in the setup with ex ante transfers.

PROPOSITION C.1: The (unconstrained) optimal bargaining share β∗
T (j) is a

weakly increasing function of j in the complements case (ρ > α), while it is a
weakly decreasing function of j in the substitutes case (ρ < α).
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In sum, Proposition C.1 confirms that whether the incentive for the firm
to retain a larger surplus share increases or decreases along the value chain
continues to crucially depend on the relative size of the parameters ρ and α,
which we view as the central result of our paper.

The key difference from our Benchmark Model without ex ante transfers
relates to the level of the share β∗

T (j). In particular, note that in the sequential
complements case (ρ > α), we necessarily have β∗(j) ≤ 0 for all j ∈ [0�1], and
thus the firm finds it optimal to outsource all production stages, as discussed
in the main text. In the sequential substitutes case (α > ρ), we have β∗(0) = 0
and β∗(1) = 1, which necessarily implies that the most upstream stages will
necessarily be integrated, while the most downstream stages will necessarily be
outsourced. As a result, the cutoff stage separating the upstream integrated
stages from the downstream outsourced stages necessarily lies strictly in the
interior of (0�1).

D. LINKAGES ACROSS BARGAINING ROUNDS

In this section, we include the details related to the variant of our model
outlined in Section 3.1.2, in which we allow suppliers to internalize the effect
of their investment levels and their negotiations with the firm on the subse-
quent negotiations between the firm and downstream suppliers. As argued in
the paper, it now becomes important to specify precisely the implications of an
(off-the-equilibrium path) decision by a supplier to refuse to deliver its input
to the firm. The simplest case to study is one in which, once the production
process incorporates an incompatible input (say, because a supplier refused to
trade with the firm), all downstream inputs are then necessarily incompatible
as well, and thus their marginal product is zero and firm revenue remains at
r(m) if the deviation happened at stage m. (We will briefly discuss alternative
assumptions below.)

For reasons that will become apparent, it is necessary to develop our results
within a discrete-player version of the game between the firm and the suppliers,
in which each of M > 0 suppliers controls a measure 1/M of production stages.
We will later run the limit as M → ∞ to compare our results with those in the
Benchmark Model in our paper. Assuming that each supplier sets a common
investment level for all the production stages under its control (remember that
leaving aside the sequentiality of stages, the production function is symmetric
in investments), revenue generated up to supplier K <M is given by

R(K)= A1−ρθρ

[
K∑

k=1

1
M

X(k)α

]ρ/α

�

if all the suppliers upstream of K have delivered compatible inputs before
supplier K makes its own investment decision (thus respecting the natural se-
quencing of the stages). We use uppercase letters to denote variables in the
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discrete-player case, to distinguish them from the lowercase letters for the con-
tinuum case.

We solve the game by backward induction. Consider the negotiations be-
tween the firm and the most downstream supplier, M . Provided that all up-
stream suppliers have delivered compatible inputs, the value of production
generated before supplier M ’s input is given by R(M − 1). If supplier M then
provides a compatible input, the value of production will increase to R(M).
Following the reasoning in our paper, the ex post payoff for supplier M will
then be

PS(M)= (
1 −β(M)

)(
R(M)−R(M − 1)

)
�(D.1)

where β(M) = βO in the case of outsourcing and β(M) = βV > βO in the
case of integration. The firm then obtains a payoff equal to β(M)(R(M) −
R(M − 1)) in that stage of production.

Moving to the supplier immediately upstream from M , that is, M − 1, note
that the value of production up to that point is R(M − 2) and will remain at
that value if an incompatible input is produced. If that were to happen, not only
would the incremental contribution R(M−1)−R(M−2) be lost, but note that
the firm would also lose its share of rents at stage M , which is β(M)(R(M)−
R(M − 1)). In sum, the effective incremental contribution of supplier M − 1 to
the joint payoff of the firm and supplier M − 1 is given by

R(M − 1)−R(M − 2)+β(M)
(
R(M)−R(M − 1)

)
�

and thus its ex post payoff is

PS(M − 1) = (
1 −β(M − 1)

)
[
R(M − 1)−R(M − 2)+β(M)

(
R(M)−R(M − 1)

)]
= (

1 −β(M − 1)
)(
R(M − 1)−R(M − 2)

)
+β(M)

(1 −β(M − 1))
(1 −β(M))

PS(M)�

where, in the second line, we have used equation (D.1).
Iterating this formula backward, we then find that, as stated in the main text,

the profits of a supplier K ∈ {1� � � � �M − 1�M} are given by

πS(K) = (
1 −β(K)

)M−K∑
i=0

μ(K� i)
(
R(K + i)−R(K + i− 1)

)
(D.2)

− 1
M

cX(K)�
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where

μ(K� i)=

⎧⎪⎨
⎪⎩

1� if i = 0�
i∏

l=1

β(K + l)� if i ≥ 1�(D.3)

The key difference relative to our Benchmark Model is that the payoff to
a given supplier in equation (D.2) is now not only a fraction 1 − β(K) of the
supplier’s own direct contribution R(K) − R(K − 1), but also incorporates a
share μ(K� i) of the direct contribution of each supplier located i positions
downstream from K, where 1 ≤ i ≤ M − K. Note, however, that the share of
supplier K + i’s direct contribution captured by K quickly falls in the distance
between K and K + i (see equation (D.3)).

To assess the implications of this alternative setup for the choice of invest-
ment, note that a first-order Taylor approximation of the revenue function de-
livers

R(K + i)−R(K + i− 1)(D.4)

≈A1−ρθρ ρ

α

[
K+i−1∑
k=1

1
M

X(k)α

](ρ−α)/α

1
M

X(K + i)α for all i ≥ 0�

We next consider the first-order condition associated with the choice of in-
vestment by the supplier at position K. For the time being, and to build in-
tuition, consider the case in which upstream suppliers do not internalize the
effect of their investments on the investment decision of downstream suppli-
ers.

Despite this assumption (which we will relax below), the equilibrium invest-
ment choices of the current variant of the model would be expected to dif-
fer from those in our Benchmark Model because the payoff to supplier K is
now a function of the direct contribution of all suppliers downstream from K,
and these “downstream” contributions are themselves a function of supplier
K’s investments. To be more precise, plugging (D.4) into (D.2) and taking the
derivative with respect to X(K), the first-order condition is given, after some
rearrangement, by

c

ρA1−ρθρ
= (

1 −β(K)
)[K−1∑

k=1

1
M

X(k)α

](ρ−α)/α

X(K)α−1

+ (
1 −β(K)

)
1(K <M)

M−K∑
i=1

μ(K� i)
ρ− α

α

×
[

K+i−1∑
k=1

1
M

X(k)α

](ρ−2α)/α
1
M

X(K)α−1X(K + i)α�



ORGANIZING THE GLOBAL VALUE CHAIN 13

where 1(K < M) is an indicator function equal to 1 if K < M , and equal to
0 otherwise. The first term reflects the effect of supplier K’s investment on
its own direct contribution, and is the key term highlighted in the Benchmark
Model. The second term captures the effects of supplier K’s investments on
the direct contributions of downstream suppliers K′ >K.

To formally study the convergence of these terms as M → ∞, it is convenient
to study the choice of investment by a supplier with a fraction m of suppliers
upstream from him or her, that is, the supplier in position K = mM . The first-
order condition above then becomes

c

ρA1−ρθρ
= (

1 −β(mM)
)[mM−1∑

k=1

1
M

X(k)α

](ρ−α)/α

X(mM)α−1

+ (
1 −β(mM)

)
1(m< 1)

M−mM∑
i=1

μ(mM� i)
ρ− α

α

×
[

mM+i−1∑
k=1

1
M

X(k)α

](ρ−2α)/α
1
M

X(mM)α−1X(mM + i)α�

Note, however, that the term[
mM−1∑
k=1

1
M

X(k)α

](ρ−α)/α

(D.5)

converges to the Riemann integral:[∫ m

0
x(j)α dj

](ρ−α)/α

=
(

r(m)

A1−ρθρ

)(ρ−α)/ρ

when M → ∞. Let us assume that when investing to produce a compatible
input, the choice of investment by suppliers, X(k), is uniformly bounded, so
that 0 < C ≤ X(k) ≤ C for all k. We will confirm below that this is a feature
of the equilbrium (both in the Benchmark Model as well as in this extended
one), but we impose this assumption upfront to simplify the exposition. It then
follows that r(m)(ρ−α)/α is bounded for given m> 0, and the same will be true
for the term in (D.5) as M → ∞.1

As for the terms[
mM+i−1∑

k=1

1
M

X(k)α

](ρ−2α)/α

(D.6)

1For the case of the initial supplier (m = 0), these terms are irrelevant for that supplier’s in-
vestment, since no value has been generated up to that supplier.
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that appear in the second line of the first-order condition, we need to establish
that there is a uniform bound for these as i runs from 1 to M −mM . If ρ > 2α,
this upper bound is given by r(1)(ρ−2α)/α. On the other hand, if ρ < 2α, then
r(m)(ρ−2α)/α provides the necessary bound. (Recall here that m is fixed as we
are considering m’s first-order condition.) Thus, each of the terms in (D.6) is
uniformly bounded from above as M → ∞. Let C1 denote this bound. We
finally note that

∑M−mM

i=1 μ(mM� i) also remains uniformly bounded as M →
∞. To see this, note that β(k)≤ βV for k, so that

0 ≤ lim
M→∞

M−mM∑
i=1

μ(mM� i) ≤ lim
M→∞

M∑
i=1

(βV )
i = βV

1 −βV

≡ B�

With these results in hand, note that with some abuse of notation, the first
line of the first-order condition converges, as M → ∞, to

(
1 −β(m)

)( r(m)

A1−ρθρ

)(ρ−α)/ρ

x(m)α−1�

while in absolute terms, the second line satisfies

(
1 −β(mM)

)
1(m< 1)

M−mM∑
i=1

μ(mM� i)

∣∣∣∣ρ− α

α

∣∣∣∣
×

[
mM+i−1∑

k=1

1
M

X(k)α

](ρ−2α)/α
1
M

X(mM)α−1X(mM + i)α

≤ (
1 −β(mM)

)∣∣∣∣ρ− α

α

∣∣∣∣
M−mM∑

i=1

μ(mM� i)C1
1
M

Cα−1C
α

≤ (
1 −β(mM)

)∣∣∣∣ρ− α

α

∣∣∣∣C1
1
M

Cα−1C
α
B�

and the latter expression tends to 0 as M → ∞. In sum, the second term in
the first-order condition becomes negligible when M → ∞, and thus the first-
order condition collapses to

c = ρ
(
A1−ρθρ

)α/ρ(
1 −β(m)

)
r(m)(ρ−α)/ρx(m)α−1�

as in our Benchmark Model.
So far, we have ignored the fact that suppliers might internalize the effects

of their investments on the investment decisions of downstream suppliers. We
ignored this as well in the Benchmark Model, but that was without loss of gen-
erality since, in that model, a supplier K’s payoff was only a function of the
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investments of upstream suppliers, which were already fixed by the time the
Kth input was incorporated into production. In the current game, investments
by downstream suppliers are also relevant for payoffs, so this further compli-
cates the first-order condition. When allowing for these effects, the first-order
condition for X(K) now becomes

c

ρA1−ρθρ
= (

1 −β(K)
)[K−1∑

k=1

1
M

X(k)α

](ρ−α)/α

X(K)α−1

+ (
1 −β(K)

)
1(K <M)

×
{

M−K∑
i=1

μ(K� i)

[
K+i−1∑
k=1

1
M

X(k)α

](ρ−α)/α

×X(K + i)α−1 ∂X(K + i)

∂X(K)

+
M−K∑
i=1

μ(K� i)
ρ− α

α

[
K+i−1∑
k=1

1
M

X(k)α

](ρ−2α)/α

×
(

i−1∑
l=0

1
M

∂X(K + l)

∂X(K)
X(K + l)α−1

)
X(K + i)α

}
�

Using analogous arguments to those above, it is easy to show that, provided
that, as M → ∞, ∂X(K+i)

∂X(K)
→ 0 for any K <M and any i with 0 < i < M − K,

then these extra terms will again vanish and the first-order condition of this
extended game will again converge to that in our Benchmark Model. Quite
intuitively, this new force will only matter when upstream investments have a
measurable impact on downstream investments.

It thus suffices to show that, for any K and any i = 1� � � � �K − 1, we indeed
have ∂X(K)

∂X(K−i)
→ 0 as M → ∞. For this, consider the objective function of sup-

plier K in equation (D.2). We will simply show that, as M → ∞, the effect of
any upstream investment X(K − i) on this payoff is negligible, thus implying
that the choice of investment X(K) obtained by maximizing πS(K) in (D.2)
cannot possibly be measurably affected by these upstream investments. More
specifically, simple differentiation of (D.2) after plugging in (D.4) delivers

∣∣∣∣ ∂πS(K)

∂X(K − i)

∣∣∣∣ = (
1 −β(K)

)M−K∑
i=0

μ(K� i)

×
(
ρA1−ρθρ

∣∣∣∣ρ− α

α

∣∣∣∣
[

K+i−1∑
k=1

1
M

X(k)α

](ρ−2α)/α
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×X(K − i)α−1 1
M2

X(K + i)α

)

≤ (
1 −β(K)

)M−K∑
i=0

μ(K� i)

×
(
ρA1−ρθρ

∣∣∣∣ρ− α

α

∣∣∣∣C1
1
M2

Cα−1C
α
)

≤ (
1 −β(K)

)
ρA1−ρθρ

∣∣∣∣ρ− α

α

∣∣∣∣C1
1
M2

Cα−1C
α
B�

which clearly goes to 0 when M → ∞ at a faster rate than c/M does. Conse-
quently, we have ∂X(K)

∂X(K−i)
→ 0 as M → ∞, and this completes the proof of the

following result:

PROPOSITION D.1: The investment levels associated with this more general
game that allows for linkages across bargaining stages delivers the same investment
levels as our Benchmark Model when M → ∞, that is, when there is a continuum
of suppliers.

As argued in the main text, since investment levels are identical to those in
the Benchmark Model, the total surplus generated along the value chain will
also remain unaltered. Hence, when ownership structure along the value chain
is decided in a joint-profit-maximizing manner, as in the model with ex ante
transfers outlined in Section C, the introduction of linkages across bargaining
stages delivers the exact same predictions as the model without these linkages.

In the absence of ex ante transfers, the choice of ownership structure of this
expanded model becomes significantly more complicated due to the fact that
the ex post rents obtained by the firm in a given stage are now lower than in
the Benchmark Model, and more so the more upstream the supplier is. This is
apparent from equation (D.2) above, which implies that the profits of the firm
would be

πF =R(M)−
M∑
k=1

β(k)

M−k∑
i=0

μ(k� i)
(
R(k+ i)−R(k+ i− 1)

)
�

Other things equal, relative to our Benchmark Model, there is an additional
incentive for the firm to integrate relatively upstream suppliers, regardless of
the relative size of ρ and α, because of what in our paper we have termed the
rent extraction effect. Unfortunately, a simple explicit formula for πS and πF

cannot be obtained even in the limiting case M → ∞, thus precluding an ana-
lytical characterization of ownership structure decisions along the value chain.
We would hypothesize, however, that Proposition 2 in our paper would survive
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in the sequential substitutes case (since this new force should only reinforce
the incentive to integrate upstream suppliers), while our results regarding the
sequential complements case might become more nuanced in the absence of
lump-sum transfers.

Our derivations above have relied on the strong assumption that once the
production process incorporates an incompatible input, all downstream inputs
are then necessarily incompatible as well. We have also worked out a variant
of the game in which, when a supplier refuses to deliver an input and that
stage is completed with an incompatible input, the production process con-
tinues without implying that the marginal productivity of downstream invest-
ments is driven down to 0. Of course, such a deviation would still affect the
subsequent negotiations between the firm and downstream suppliers because,
by providing an incompatible input, a supplier still affects the marginal pro-
ductivity of downstream investments and thus affects the amount of surplus
that the firm will obtain in subsequent negotiations. Foreseeing this, a supplier
contemplating a deviation might insist on obtaining a share of its effective con-
tribution, rather than a share of its direct contribution, as in our Benchmark
Model. Without delving into the details, when solving for the payoffs of this
variant of the game, we find that the ex post payoff of a supplier K in the
discrete-player case with M suppliers can again be represented as

πS(K) = (
1 −β(K)

)M−K∑
i=0

μ̃(K� i)
(
R(K + i)−R(K + i− 1)

)

− 1
M

cX(K)�

and thus is a weighted sum of shares of direct contributions of all suppliers
located downstream from K, where 1 ≤ i ≤ M −K. The key difference is that
the weights are no longer simply given by the expression in (D.3), but instead
are now given by

μ̃(K� i)=
M−K−i∑

j=0

(−1)jμ(K� i+ j)a(i� j)�

where μ(K� i) is given by (D.3) and

a(i� j)=

⎧⎪⎨
⎪⎩

1� if i = 0�
j∑

k=0

a(i− 1�k)� if i > 0�

An important difference between this solution and the one developed above
is that even for i = 0 (i.e., even focusing on the direct contribution of supplier
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K), the share of surplus accruing to supplier K is no longer given by 1 −β(K),
but instead is given by

μ̃(K�0) = 1 +
M−K∑
j=1

(−1)j
j∏

l=1

β(K + l)

= 1 −β(K + 1)+β(K + 1)β(K + 2)

−β(K + 1)β(K + 2)β(K + 3)+ · · · �
and thus depends on all ownership decisions downstream from K. As a result,
even when the effect on X(K) of supplier K obtaining a share of the direct
contributions of downstream suppliers is negligible (as shown above in our
simpler extended model), the investment levels will differ from those in the
Benchmark Model. In particular, in that case, X(K) would effectively solve

(
1 −β(K)

)(
1 +

M−K∑
j=1

(−1)j
j∏

l=1

β(K + l)

)(
R(K)−R(K − 1)

)

− 1
M

cX(K)�

and would thus depend directly on all β(K + i) with 0 ≤ i ≤ M − K. Again,
the fact that we cannot analytically characterize the convergence of this ob-
jective function when M → ∞ precludes a straightforward comparison of the
implications of this model with those of our Benchmark Model.

E. HYBRID MODELS WITH BOTH SIMULTANEOUS
AND SEQUENTIAL PRODUCTION

In this section, we provide more details regarding the two extensions briefly
outlined in Section 3.1.3 of the main paper.

E.1. A Spider With Snake Legs

First, we develop a variant of our model where production resembles a “spi-
der,” following the terminology of Baldwin and Venables (2013). Specifically,
the final good combines a continuum of measure 1 of modules or parts in-
dexed by n, which are put together simultaneously according to a symmetric
technology featuring a constant elasticity of substitution, 1/(1 − ζ) > 1, across
the services of the different modules. Preferences for final goods are still given
by equation (2) in the main text, so, denoting by X(n) the services of module
n ∈ [0�1], revenues for the final-good producer are given by

r = A1−ρ

(∫ 1

0
X(n)ζ dn

)ρ/ζ

�(E.1)
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Production of each module n in turn involves a continuum of measure 1 of
stages, indexed by j, which must be carried out sequentially in a predetermined
order, just as in our Benchmark Model. More specifically, the production tech-
nology for each module n is given by

X(n)= θ

(∫ 1

0
xn(j)

αI(j)dj
)1/α

�(E.2)

which is analogous to equation (1) in the Benchmark Model. The assem-
bly of each module is controlled by a module producer who decides which of
its module-specific inputs to integrate, just as the final-good producer in our
Benchmark Model decided which stages to integrate. We assume that contract-
ing and bargaining between each module producer and their module-specific
suppliers is completely analogous to the setup described in our Benchmark
Model involving the final-good producer and its suppliers.

The main difference with the Benchmark Model is that the revenue captured
by module producer n is not determined by demand conditions, but rather by
the share of final-good revenue (E.1) captured by module producer n in its
negotiations with the final-good producer. We will assume that this division of
surplus is not fixed by an initial contract (a natural assumption when the ser-
vices X(n) are not contractible), but is rather decided ex post once all modules
have been produced. As in Acemoglu, Antràs, and Helpman (2007), we use the
Shapley value to determine the (simultaneous) division of ex post surplus be-
tween the firm and the continuum of module producers, with each module pro-
ducer’s threat point being associated with the possibility of withholding their
services X(n). Given final-good revenue in (E.1), we can appeal to Lemma 1
in Acemoglu, Antràs, and Helpman (2007) to conclude that the payoff for each
module producer would be given by

rn =
(

ρ

ρ+ ζ

)
A1−ρX(n)ζX(−n)ρ−ζ�(E.3)

where X(−n) denotes the symmetric level of module services of all modules
other than n. Naturally, in equilibrium we have X(n) =X(−n), and each mod-
ule producer ends up with a share ρ/(ρ + ζ) of final-good revenue. But when
calculating the effects of different levels of module services on a module pro-
ducer’s revenue, the relevant formula is (E.3), with ζ governing the elasticity
of revenue with respect to each module producer’s level of services (see Ace-
moglu, Antràs, and Helpman (2007) for more details).

Plugging X(n) in (E.2) into (E.3), we have that the revenue available for
each module producer and its suppliers to bargain over is given by

rn = Ã1−ζθζ

(∫ 1

0
xn(j)

αI(j)dj
)ζ/α

�(E.4)
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where Ã is a positive term that each module producer takes as given.2 It should
then be clear that the characterization of the negotiations between each mod-
ule producer and its suppliers, as well as the optimal ownership structure along
each module’s value chain, will be isomorphic to those in our Benchmark
Model, except for the fact that the concavity of revenue is governed by the
degree of substitution across modules—as captured by ζ—rather than by the
elasticity of demand for the final good (as the parameter ρ did in our Bench-
mark Model). In sum, if ζ > α, then module inputs will be sequential comple-
ments and the propensity to integrate will once again be increasing with the
downstreamness of module inputs, while the converse statement applies when
ζ < α and module inputs are sequential substitutes.

This extension with a “spider”-like production structure has some bearings
on our empirical strategy, which we briefly discussed toward the end of Sec-
tion 5.3 of our main paper. If production were more aptly described by a “spi-
der,” this would call for using a proxy for the elasticity of substitution across
module services in order to empirically distinguish between the sequential sub-
stitutes and sequential complements cases. Toward this end, we experimented
with using the Broda–Weinstein import demand elasticities for more aggregate
product categories (at the SITC Rev. 3, three-digit level), in place of the im-
port demand elasticities for highly disaggregate products (at the HS ten-digit
level) that we have been using for our baseline empirical specification. The
Broda–Weinstein elasticities for SITC three-digit categories were estimated in
part using the substitution seen across constituent products within each SITC
three-digit category in the U.S. import data (see footnote 22, Broda and We-
instein (2006)). To the extent that this speaks to the elasticity of substitution
across module services, this would provide a first-pass look at whether the data
continue to support our model’s predictions when allowing for a “spider”-like
production structure.

The results from this exploration are reported in Tables S.IX and S.X, which
can be found toward the end of this Supplement. This yields patterns quali-
tatively similar to our baseline results in the main paper, albeit with reduced
significance levels. That said, several caveats from this exercise need to be kept
in mind. First, our proxy for ζ is a crude one at best, given the loose mapping
made from the SITC three-digit category elasticities to the degree of substitu-
tion across module services in typical production processes. The above discus-
sion moreover puts aside the organizational decision faced by the final-good
producer over his/her module producers, which, in principle, could also get
reflected in the extent of intrafirm trade observed in the data.

E.2. A Snake With Spider Legs

Consider next an alternative hybrid model in which we revert back to the
“snake”-like sequential production structure in our Benchmark Model. How-

2More specifically, Ã1−ζ = ρA1−ρX(−n)ρ−ζ/(ρ+ ζ).
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ever, we now allow each stage input j to itself be composed of a unit measure
of distinct components produced simultaneously, each by a different supplier,
under a symmetric technology featuring a constant elasticity of substitution,
1/(1 − ξ) > 1, across components. More formally, firm revenue is now again
given by

r = A1−ρθρ

(∫ 1

0
x(j)αI(j)dj

)ρ/α

�(E.5)

as in our Benchmark Model. However, x(j) is now given by

x(j)=
(∫ 1

0
xj(n)

ξ dn

)1/ξ

�

where xj(n) denotes the services provided by component n ∈ [0�1] toward the
input of the stage-j supplier. Notice that when ξ → 1, this formulation captures
situations in which firms might contract with multiple suppliers to provide “es-
sentially” the same intermediate input.

The main difference with respect to our Benchmark Model is that the firm
now bargains with a continuum of suppliers at each stage m rather than just
with a single supplier. Nevertheless, the total surplus over which these agents
negotiate continues to be given by

r ′(m) = ρ

α

(
A1−ρθρ

)α/ρ
r(m)(ρ−α)/ρx(m)α

= ρ

α

(
A1−ρθρ

)α/ρ
r(m)(ρ−α)/ρ

(∫ 1

0
xm(n)

ξ dn

)α/ξ

�

To determine how this surplus is distributed among the firm and the suppliers
at stage m, we follow Acemoglu, Antràs, and Helpman (2007) in using the
Shapley value associated with each player. An individual supplier’s threat point
is affected by whether that supplier is integrated by the firm or not. In the case
of outsourcing, the supplier can threaten to withhold the entirety of its input
services xm(n), while in the case of integration, it can only threaten to withhold
a share 1 − δ of these input services. We can then appeal to Lemmas 1 and 3
in Acemoglu, Antràs, and Helpman (2007) to conclude that the payoff of a
supplier n in stage m will be given by

PSm(n)= (
1 −β(m)

)ρ
α

(
A1−ρθρ

)α/ρ
r(m)(ρ−α)/ρxm(n)

ξxm(−n)α−ξ�(E.6)
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where xm(−n) is the (symmetric) investment level chosen by all suppliers other
than n, and

β(m) =

⎧⎪⎪⎨
⎪⎪⎩

ξ

α+ ξ
� if the firm outsources stage m�

ξ

α+ ξ

1 − δα+ξ

1 − δξ
>

ξ

α+ ξ
� if the firm integrates stage m�

Note that the payoff in (E.6) is analogous to that in the Benchmark Model—
see equation (6) in the main paper—except for the fact that the concavity
of the payoff with respect to the supplier’s investment is governed by ξ and
not α.

Suppliers will then choose investments to maximize PSm(n) − cxm(n). Solv-
ing for the first-order condition of the problem and imposing symmetry (i.e.,
xm(n)= xm(−n)), we find that

xm(n)=
[(

1 −β(m)
)ρ(A1−ρθρ)α/ρ

c

ξ

α

]1/(1−α)

r(m)(ρ−α)/(ρ(1−α))�(E.7)

which is identical to equation (7) in the Benchmark Model except for the term
ξ/α inside the square brackets. Following then analogous steps as in the main
text—see the derivation of equations (8)–(11)—we finally find that firm profits
are given by

πF = A
ρ

α

(
1 − ρ

1 − α

)(ρ−α)/(α(1−ρ))(
ρθ

c

ξ

α

)ρ/(1−ρ) ∫ 1

0
β(j)

(
1 −β(j)

)α/(1−α)
(E.8)

×
[∫ j

0

(
1 −β(k)

)α/(1−α)
dk

](ρ−α)/(α(1−ρ))

dj�

where again the only difference is the presence of the extra term ξ/α.
It should be clear, however, that this term has no impact on the optimal
choice of the function β∗(j) that determines the ex post division of sur-
plus. Thus, regardless of the particular value of ξ, it will continue to be
the case that the incentive to integrate decreases or increases along the
value chain depending on the relative magnitudes of ρ and α. Note, how-
ever, that because ξ shapes the bargaining share associated with integra-
tion or outsourcing, this parameter will indeed affect the actual interval of
stages that the firm will find optimal to integrate. (In other words, ξ will af-
fect where the cutoff stage between integration and outsourcing occurs in
both the sequential complements and substitutes cases.)



ORGANIZING THE GLOBAL VALUE CHAIN 23

TABLE S.I

SUMMARY STATISTICSa

Variable 10th 25th Median 75th 90th Mean Std. Dev.

Share of intrafirm trade (year=2000) 0�107 0�209 0�372 0�535 0�659 0�382 0�207
Share of intrafirm trade (year=2005) 0�132 0�222 0�386 0�557 0�650 0�392 0�203
Share of intrafirm trade (year=2010) 0�133 0�236 0�404 0�560 0�663 0�402 0�209

Of seller industries:
DUse_TUse 0�265 0�456 0�646 0�798 0�885 0�614 0�228
DownMeasure 0�316 0�370 0�492 0�744 0�907 0�559 0�222
Final use/Output 0 0�011 0�313 0�781 0�919 0�396 0�373

Skill intensity, log(s/l) −1�723 −1�541 −1�306−1�006−0�766 −1�276 0�382
Physical capital intensity, log(k/l) 3�875 4�244 4�747 5�263 6�091 4�835 0�825
log(equipment k/l) 3�271 3�785 4�311 4�852 5�664 4�368 0�904
log(plant k/l) 2�930 3�273 3�67 4�186 4�855 3�796 0�757
Materials intensity,

log(materials/l) 4�054 4�311 4�734 5�258 5�711 4�841 0�719
R&D intensity,

log(0�001 + R&D/Sales) −6�908 −6�908 −6�239−4�300−2�912 −5�436 1�764
Dispersion 1�636 1�744 1�844 1�988 2�16 1�882 0�224

Value-added/Value of shipments 0�355 0�435 0�511 0�594 0�645 0�509 0�116
Input “Importance” 0�0003 0�0009 0�002 0�003 0�0066 0�0034 0�0066
Intermediation 0�28 0�31 0�339 0�498 0�61 0�401 0�127
Own contractibility 0 0 0 0�6 0�993 0�263 0�386

Of buyer industries:
Import elasticity, ρ 3�154 4�900 7�695 10�468 18�465 10�217 11�117

Skill intensity, log(s/l) −1�693 −1�485 −1�295−1�034−0�766 −1�260 0�348
Physical capital intensity, log(k/l) 3�999 4�392 4�755 5�131 5�574 4�767 0�629
log(equipment k/l) 3�410 3�873 4�318 4�686 5�142 4�284 0�702
log(plant k/l) 3�054 3�365 3�676 4�042 4�533 3�746 0�570
Materials intensity,

log(materials/l) 4�212 4�533 4�861 5�221 5�643 4�900 0�579
R&D intensity,

log(0�001 + R&D/Sales) −6�904 −6�655 −5�675−4�551−3�328 −5�408 1�361
Dispersion 1�710 1�787 1�907 2�007 2�122 1�908 0�177

Buyer contractibility 0 0�003 0�067 0�297 0�653 0�207 0�283

aTabulated based on the 253 IO2002 manufacturing industries in the regression sample. For details on the con-
struction of the data variables, please see the Data Appendix.
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TABLE S.II

CORRELATIONS OF INDUSTRY VARIABLES WITH DOWNSTREAMNESSa

Correlation With:

DUse_TUse DownMeasure

Of seller industries:
Skill intensity, log(s/l) −0�081 0�072
Physical capital intensity, log(k/l) −0�400*** −0�374***
log(equipment k/l) −0�413*** −0�418***
log(plant k/l) −0�347*** −0�272***
Materials intensity, log(materials/l) −0�209*** −0�142**
R&D intensity, log(0�001 + R&D/Sales) −0�144** −0�072
Dispersion −0�225*** −0�072

Value-added/Value of shipments 0�177*** 0�134**
Input “Importance” −0�031 −0�095
Intermediation 0�317*** 0�249***
Own contractibility −0�355*** −0�348***

Of buyer industries:
Import elasticity, ρ 0�046 0�104*

Skill intensity, log(s/l) −0�053 0�034
Physical capital intensity, log(k/l) −0�255*** −0�319***
log(equipment k/l) −0�284*** −0�364***
log(plant k/l) −0�174*** −0�204***
Materials intensity, log(materials/l) −0�112* −0�193***
R&D intensity, log(0�001 + R&D/Sales) −0�132** −0�104*
Dispersion −0�137** −0�136**

Buyer contractibility −0�189*** −0�239***

a ***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
Calculated from the 253 IO2002 manufacturing industries in the regression sample.
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TABLE S.III

DOWNSTREAMNESS AND THE INTRAFIRM IMPORT SHARE: DIRECT PLUS FINAL USE SHAREa

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

log(s/l) −0�001 0�030 0�046 0�122* 0�025 −0�170* 0�005 −0�119
[0�045] [0�044] [0�043] [0�068] [0�054] [0�088] [0�021] [0�081]

log(k/l) 0�052* 0�050*
[0�028] [0�027]

log(equipment k/l) 0�101*** 0�033 0�175*** 0�161** 0�028* 0�116**
[0�036] [0�049] [0�045] [0�066] [0�017] [0�052]

log(plant k/l) −0�079* −0�005 −0�168** −0�095 −0�054*** −0�104**
[0�048] [0�061] [0�068] [0�071] [0�020] [0�048]

log(materials/l) 0�054 0�046 0�051 0�020 0�063 0�037 0�019 0�067
[0�034] [0�034] [0�033] [0�051] [0�046] [0�059] [0�014] [0�049]

log(0�001 + R&D/Sales) 0�056*** 0�052*** 0�051*** 0�049*** 0�049*** 0�088*** 0�032*** 0�071***
[0�009] [0�009] [0�009] [0�014] [0�014] [0�019] [0�004] [0�016]

Dispersion 0�088 0�086 0�137* 0�051 0�249** 0�234 0�108*** 0�135
[0�072] [0�074] [0�079] [0�110] [0�105] [0�149] [0�041] [0�121]

DFShare 0�034 −0�149* 0�236***
[0�051] [0�076] [0�065]

DFShare × 1(Elas < Median), β1 −0�109 −0�079 −0�145 −0�057 −0�068
[0�068] [0�069] [0�103] [0�037] [0�092]

DFShare × 1(Elas > Median), β2 0�165*** 0�194*** 0�407*** −0�044 0�290***
[0�062] [0�063] [0�118] [0�027] [0�106]

1(Elas > Median) −0�165** −0�160** −0�422*** −0�008 −0�296***
[0�069] [0�068] [0�096] [0�034] [0�084]

(Continues)
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TABLE S.III—Continued

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

p-value: Joint significance of β1 and β2 [0�0059] [0�0028] [0�0001] [0�1244] [0�0028]
p-value: Test of β2 −β1 = 0 [0�0020] [0�0018] [0�0000] [0�7547] [0�0009]
Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes No No
Country-year fixed effects? No No No No No No Yes Yes

Observations 2783 2783 2783 1375 1408 2783 207,991 207,991
R-squared 0�27 0�31 0�32 0�35 0�30 0�59 0�18 0�58

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered by industry. Columns 1–6 use industry-year observations
controlling for year fixed effects, while columns 7–8 use country-industry-year observations controlling for country-year fixed effects. Estimation is by OLS. In all columns, the
industry factor intensity and dispersion variables are a weighted average of the characteristics of buyer industries (the industries that buy the input in question), constructed as
described in Section 4.3 of the main text. Columns 4 and 5 restrict the sample to observations where the buyer industry elasticity is smaller (respectively, larger) than the industry
median value. “Weighted” columns use the value of total imports for the industry-year or country-industry-year, respectively, as regression weights.
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TABLE S.IV

DOWNSTREAMNESS AND THE INTRAFIRM IMPORT SHARE: FINAL USE SHAREa

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

log(s/l) −0�018 0�005 0�022 0�071 0�017 −0�206*** −0�003 −0�142**
[0�045] [0�043] [0�042] [0�067] [0�053] [0�071] [0�020] [0�060]

log(k/l) 0�063** 0�059**
[0�027] [0�026]

log(equipment k/l) 0�123*** 0�079* 0�171*** 0�136** 0�047*** 0�117***
[0�034] [0�044] [0�048] [0�066] [0�015] [0�045]

log(plant k/l) −0�099** −0�041 −0�175** −0�077 −0�068*** −0�100**
[0�048] [0�060] [0�076] [0�080] [0�020] [0�049]

log(materials/l) 0�050 0�041 0�048 0�021 0�064 0�034 0�017 0�052
[0�033] [0�033] [0�033] [0�050] [0�045] [0�059] [0�013] [0�045]

log(0�001 + R&D/Sales) 0�058*** 0�055*** 0�055*** 0�056*** 0�048*** 0�095*** 0�034*** 0�075***
[0�009] [0�009] [0�009] [0�014] [0�014] [0�018] [0�004] [0�014]

Dispersion 0�092 0�093 0�152* 0�087 0�252** 0�272* 0�118*** 0�179
[0�073] [0�076] [0�080] [0�114] [0�111] [0�161] [0�044] [0�121]

FShare 0�069** 0�017 0�167***
[0�032] [0�040] [0�048]

FShare × 1(Elas < Median), β1 0�020 0�045 −0�063 0�021 0�003
[0�040] [0�040] [0�071] [0�021] [0�059]

FShare × 1(Elas > Median), β2 0�124*** 0�149*** 0�288*** −0�019 0�243***
[0�048] [0�046] [0�071] [0�019] [0�059]

1(Elas > Median) −0�006 −0�002 −0�168*** 0�019 −0�133***
[0�034] [0�034] [0�052] [0�018] [0�047]

(Continues)
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TABLE S.IV—Continued

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

p-value: Joint significance of β1 and β2 [0�0335] [0�0046] [0�0001] [0�3173] [0�0002]
p-value: Test of β2 −β1 = 0 [0�0840] [0�0752] [0�0001] [0�1311] [0�0010]
Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes No No
Country-year fixed effects? No No No No No No Yes Yes

Observations 2783 2783 2783 1375 1408 2783 207,991 207,991
R-squared 0�29 0�30 0�32 0�33 0�30 0�61 0�18 0�60

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered by industry. Columns 1–6 use industry-year observations
controlling for year fixed effects, while columns 7–8 use country-industry-year observations controlling for country-year fixed effects. Estimation is by OLS. In all columns, the
industry factor intensity and dispersion variables are a weighted average of the characteristics of buyer industries (the industries that buy the input in question), constructed as
described in Section 4.3 of the main text. Columns 4 and 5 restrict the sample to observations where the buyer industry elasticity is smaller (respectively, larger) than the industry
median value. “Weighted” columns use the value of total imports for the industry-year or country-industry-year, respectively, as regression weights.
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TABLE S.V

DOWNSTREAMNESS AND THE INTRAFIRM IMPORT SHARE: DUse_TUse (YEAR-BY-YEAR)a

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Year: 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Unweighted regressions:
DUse_TUse × 1(Elas < Median), β1 −0�162** −0�160* −0�181** −0�143* −0�149** −0�169** −0�178** −0�172** −0�189** −0�197** −0�212***

[0�079] [0�082] [0�081] [0�081] [0�075] [0�068] [0�070] [0�069] [0�081] [0�084] [0�081]
DUse_TUse × 1(Elas > Median), β2 0�230*** 0�221*** 0�224*** 0�173** 0�179** 0�199*** 0�209*** 0�211*** 0�193** 0�173** 0�163**

[0�071] [0�074] [0�073] [0�073] [0�071] [0�069] [0�074] [0�073] [0�075] [0�078] [0�077]
1(Elas > Median) −0�216*** −0�197*** −0�210*** −0�164** −0�169*** −0�182*** −0�185*** −0�180*** −0�196*** −0�199*** −0�199***

[0�066] [0�070] [0�068] [0�068] [0�064] [0�059] [0�062] [0�062] [0�069] [0�072] [0�071]
p-value: Joint significance of β1 and β2 [0�0005] [0�0014] [0�0006] [0�0101] [0�0042] [0�0004] [0�0004] [0�0005] [0�0019] [0�0040] [0�0026]
p-value: Test of β2 −β1 = 0 [0�0002] [0�0004] [0�0002] [0�0029] [0�0011] [0�0001] [0�0001] [0�0001] [0�0004] [0�0009] [0�0006]
Observations 253 253 253 253 253 253 253 253 253 253 253
R-squared 0�33 0�31 0�32 0�31 0�32 0�34 0�34 0�37 0�34 0�32 0�34

Weighted regressions:
DUse_TUse × 1(Elas < Median), β1 −0�177 −0�151 −0�201** −0�214** −0�210** −0�153* −0�134 −0�111 −0�152 −0�161 −0�206*

[0�114] [0�101] [0�091] [0�097] [0�098] [0�088] [0�098] [0�084] [0�113] [0�130] [0�116]
DUse_TUse × 1(Elas > Median), β2 0�560*** 0�526*** 0�533*** 0�515*** 0�486*** 0�489*** 0�482*** 0�457*** 0�452*** 0�455*** 0�472***

[0�163] [0�165] [0�153] [0�141] [0�128] [0�130] [0�114] [0�114] [0�121] [0�131] [0�133]
1(Elas > Median) −0�458*** −0�418*** −0�449*** −0�449*** −0�423*** −0�385*** −0�368*** −0�346*** −0�403*** −0�439*** −0�461***

[0�101] [0�099] [0�093] [0�093] [0�088] [0�084] [0�088] [0�081] [0�102] [0�125] [0�114]
p-value: Joint significance of β1 and β2 [0�0004] [0�0007] [0�0000] [0�0000] [0�0000] [0�0001] [0�0000] [0�0000] [0�0003] [0�0009] [0�0002]
p-value: Test of β2 −β1 = 0 [0�0001] [0�0001] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0001] [0�0006] [0�0001]
Observations 253 253 253 253 253 253 253 253 253 253 253
R-squared 0�60 0�59 0�63 0�63 0�63 0�63 0�62 0�64 0�60 0�59 0�59

Additional buyer industry controls included:
Industry controls for: 1(Elas > Median), log(s/l), log(equipment k/l), log(plant k/l), log(materials/l), log(0�001 + R&D/Sales), Dispersion

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Year-by-year regressions are estimated by OLS, with robust standard errors. The upper panel
reports unweighted regressions, while the lower panel reports results using the value of total imports in the industry-year as regression weights. All regressions include additional
buyer industry control variables for factor intensity and dispersion (constructed as described in Section 4.3 of the main text), whose coefficients are not reported.
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TABLE S.VI

DOWNSTREAMNESS AND THE INTRAFIRM IMPORT SHARE: DownMeasure (YEAR-BY-YEAR)a

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Year: 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Unweighted regressions:
DownMeasure × 1(Elas < Median), β1 0�078 0�081 0�065 0�068 0�038 0�014 0�015 0�004 −0�017 −0�033 −0�041

[0�076] [0�075] [0�074] [0�075] [0�070] [0�066] [0�065] [0�066] [0�072] [0�074] [0�075]
DownMeasure × 1(Elas > Median), β2 0�286*** 0�306*** 0�300*** 0�277*** 0�291*** 0�306*** 0�314*** 0�322*** 0�287*** 0�289*** 0�297***

[0�082] [0�084] [0�082] [0�083] [0�084] [0�084] [0�085] [0�086] [0�087] [0�094] [0�094]
1(Elas > Median) −0�088 −0�084 −0�088 −0�082 −0�104 −0�114* −0�110* −0�117* −0�127* −0�146** −0�152**

[0�067] [0�069] [0�067] [0�068] [0�066] [0�063] [0�063] [0�062] [0�066] [0�068] [0�068]
p-value: Joint significance of β1 and β2 [0�0020] [0�0011] [0�0013] [0�0032] [0�0028] [0�0014] [0�0012] [0�0011] [0�0045] [0�0072] [0�0051]
p-value: Test of β2 −β1 = 0 [0�0564] [0�0422] [0�0302] [0�0587] [0�0184] [0�0046] [0�0036] [0�0023] [0�0055] [0�0046] [0�0031]
Observations 253 253 253 253 253 253 253 253 253 253 253
R-squared 0�32 0�31 0�32 0�32 0�33 0�35 0�35 0�37 0�34 0�32 0�34

Weighted regressions:
DownMeasure × 1(Elas < Median), β1 −0�069 −0�046 −0�081 −0�113 −0�132 −0�102 −0�136 −0�094 −0�128 −0�155 −0�182

[0�134] [0�125] [0�118] [0�120] [0�121] [0�111] [0�118] [0�102] [0�119] [0�127] [0�121]
DownMeasure × 1(Elas > Median), β2 0�565*** 0�572*** 0�571*** 0�562*** 0�532*** 0�550*** 0�526*** 0�514*** 0�490*** 0�477*** 0�505***

[0�130] [0�126] [0�114] [0�105] [0�095] [0�093] [0�089] [0�090] [0�105] [0�126] [0�115]
1(Elas > Median) −0�372*** −0�356*** −0�370*** −0�389*** −0�382*** −0�373*** −0�381*** −0�351*** −0�390*** −0�425*** −0�439***

[0�102] [0�094] [0�088] [0�086] [0�085] [0�081] [0�089] [0�080] [0�093] [0�109] [0�101]
p-value: Joint significance of β1 and β2 [0�0001] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0002] [0�0000]
p-value: Test of β2 −β1 = 0 [0�0003] [0�0002] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0001] [0�0002] [0�0000]
Observations 253 253 253 253 253 253 253 253 253 253 253
R-squared 0�62 0�63 0�66 0�67 0�66 0�67 0�66 0�68 0�63 0�60 0�61

Additional buyer industry controls included:
Industry controls for: 1(Elas > Median), log(s/l), log(equipment k/l), log(plant k/l), log(materials/l), log(0�001 + R&D/Sales), Dispersion

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Year-by-year regressions are estimated by OLS, with robust standard errors. The upper panel
reports unweighted regressions, while the lower panel reports results using the value of total imports in the industry-year as regression weights. All regressions include additional
buyer industry control variables for factor intensity and dispersion (constructed as described in Section 4.3 of the main text), whose coefficients are not reported.
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TABLE S.VII

ROBUSTNESS CHECKS WITH THE COUNTRY-INDUSTRY-YEAR SPECIFICATIONS: DUse_TUsea

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6)
Weighted Weighted Weighted Weighted Weighted Weighted

DUse_TUse × 1(Elas < Median), β1 −0�067 −0�098 −0�047 −0�107 −0�109 −0�104
[0�074] [0�078] [0�072] [0�073] [0�075] [0�074]

DUse_TUse × 1(Elas > Median), β2 0�368*** 0�375*** 0�340*** 0�292*** 0�304*** 0�325***
[0�134] [0�102] [0�118] [0�095] [0�092] [0�073]

Value-added/Value shipments −0�092 −0�026
[0�264] [0�163]

Input “Importance” −4�275*** −4�610***
[0�995] [0�744]

Intermediation −0�425*** −0�386***
[0�137] [0�115]

Own contractibility 0�193*** −0�002 −0�002
[0�067] [0�133] [0�125]

Own contractibility 0�276* 0�306*
× Country Rule of Law [0�165] [0�162]

Buyer contractibility −0�514*** −0�612*** −0�594***
[0�100] [0�167] [0�168]

Buyer contractibility 0�150 0�082
× Country Rule of Law [0�200] [0�199]

(Continues)
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TABLE S.VII—Continued

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6)
Weighted Weighted Weighted Weighted Weighted Weighted

p-value: Joint significance of β1 and β2 [0�0017] [0�0002] [0�0038] [0�0006] [0�0003] [0�0000]
p-value: Test of β2 −β1 = 0 [0�0004] [0�0000] [0�0009] [0�0001] [0�0001] [0�0000]

Additional buyer industry controls included:
1(Elas > Median), log(s/l), log(equipment k/l), log(plant k /l),

log(materials/l), log(0�001 + R&D/Sales), Dispersion
Country-year fixed effects? Yes Yes Yes Yes Yes Yes

Observations 207,991 207,991 207,991 207,991 174,274 174,274
R-squared 0�59 0�61 0�60 0�62 0�62 0�65

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered by industry. All columns use country-industry-year observations
controlling for country-year fixed effects. Estimation is by OLS. The Value-added/Value shipments, intermediation, input “Importance,” and own contractibility variables refer to
characteristics of the seller industry (namely, the industry that sells the input in question), while the buyer contractibility variable is a weighted average of the contractibility of
buyer industries (the industries that buy the input in question). The contractibility variables are further interacted with a country rule of law index in columns 5–6. All columns
include additional control variables whose coefficients are not reported, namely: (i) the level effect of the buyer industry elasticity dummy, and (ii) buyer industry factor intensity
and dispersion variables, constructed as described in Section 4.3 of the main text. “Weighted” columns use the value of total imports for the country-industry-year as regression
weights.
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TABLE S.VIII

ROBUSTNESS CHECKS WITH THE COUNTRY-INDUSTRY-YEAR SPECIFICATIONS: DownMeasurea

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6)
Weighted Weighted Weighted Weighted Weighted Weighted

DownMeasure × 1(Elas < Median), β1 −0�010 −0�052 0�042 −0�083 −0�098 −0�144
[0�093] [0�091] [0�091] [0�090] [0�090] [0�090]

DownMeasure × 1(Elas > Median), β2 0�439*** 0�397*** 0�429*** 0�394*** 0�398*** 0�317***
[0�089] [0�085] [0�088] [0�074] [0�075] [0�054]

Value-added/Value shipments 0�130 0�173
[0�207] [0�131]

Input “Importance” −2�660*** −3�511***
[0�600] [0�544]

Intermediation −0�411*** −0�353***
[0�124] [0�113]

Own contractibility 0�220*** −0�001 −0�018
[0�065] [0�130] [0�116]

Own contractibility 0�313* 0�337**
× Country Rule of Law [0�163] [0�158]

Buyer contractibility −0�506*** −0�586*** −0�578***
[0�095] [0�169] [0�166]

Buyer contractibility 0�120 0�064
× Country Rule of Law [0�200] [0�202]

(Continues)
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TABLE S.VIII—Continued

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6)
Weighted Weighted Weighted Weighted Weighted Weighted

p-value: Joint significance of β1 and β2 [0�0000] [0�0000] [0�0000] [0�0000] [0�0000] [0�0000]
p-value: Test of β2 −β1 = 0 [0�0001] [0�0000] [0�0005] [0�0000] [0�0000] [0�0000]

Additional buyer industry controls included:
1(Elas > Median), log(s/l), log(equipment k/l), log(plant k/l),

log(materials/l), log(0�001 + R&D/Sales), Dispersion
Country-year fixed effects? Yes Yes Yes Yes Yes Yes

Observations 207,991 207,991 207,991 207,991 174,274 174,274
R-squared 0�61 0�62 0�62 0�64 0�64 0�66

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered by industry. All columns use country-industry-year observations
controlling for country-year fixed effects. Estimation is by OLS. The Value-added/Value shipments, intermediation, input “Importance,” and own contractibility variables refer to
characteristics of the seller industry (namely, the industry that sells the input in question), while the buyer contractibility variable is a weighted average of the contractibility of
buyer industries (the industries that buy the input in question). The contractibility variables are further interacted with a country rule of law index in columns 5–6. All columns
include additional control variables whose coefficients are not reported, namely: (i) the level effect of the buyer industry elasticity dummy, and (ii) buyer industry factor intensity
and dispersion variables, constructed as described in Section 4.3 of the main text. “Weighted” columns use the value of total imports for the country-industry-year as regression
weights.
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TABLE S.IX

ALTERNATIVE ELASTICITY MEASURE CAPTURING CROSS-PRODUCT SUBSTITUTABILITY: DUse_TUsea

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

log(s/l) 0�005 0�003 0�016 0�077 −0�028 −0�132* −0�001 −0�085
[0�044] [0�044] [0�043] [0�062] [0�061] [0�079] [0�021] [0�076]

log(k/l) 0�044 0�048
[0�029] [0�029]

log(equipment k/l) 0�087** 0�015 0�197*** 0�169*** 0�026 0�118**
[0�036] [0�045] [0�054] [0�056] [0�016] [0�050]

log(plant k/l) −0�063 −0�018 −0�156** −0�098 −0�052*** −0�110**
[0�047] [0�058] [0�077] [0�063] [0�020] [0�048]

log(materials/l) 0�058* 0�057* 0�063* 0�104** 0�019 0�033 0�023* 0�065
[0�035] [0�034] [0�034] [0�044] [0�052] [0�060] [0�014] [0�051]

log(0�001 + R&D/Sales) 0�055*** 0�054*** 0�053*** 0�056*** 0�034** 0�094*** 0�031*** 0�072***
[0�009] [0�009] [0�009] [0�011] [0�016] [0�017] [0�004] [0�015]

Dispersion 0�081 0�088 0�129* 0�034 0�291** 0�179 0�113*** 0�091
[0�070] [0�070] [0�077] [0�089] [0�134] [0�136] [0�040] [0�113]

DUse_TUse −0�018 −0�083 0�055
[0�054] [0�081] [0�074]

DUse_TUse × 1(Elas < Median), β1 −0�072 −0�046 −0�005 −0�099*** 0�066
[0�078] [0�080] [0�103] [0�032] [0�077]

DUse_TUse × 1(Elas > Median), β2 0�025 0�039 0�449*** −0�052 0�299**
[0�074] [0�074] [0�155] [0�034] [0�150]

1(Elas > Median) −0�075 −0�073 −0�285*** −0�036 −0�149*
[0�069] [0�068] [0�104] [0�029] [0�087]

(Continues)
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TABLE S.IX—Continued

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

p-value: Joint significance of β1 and β2 [0�6020] [0�7064] [0�0138] [0�0052] [0�1356]
p-value: Test of β2 −β1 = 0 [0�3514] [0�4049] [0�0081] [0�2776] [0�1167]
Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes No No
Country-year fixed effects? No No No No No No Yes Yes

Observations 2783 2783 2783 1419 1364 2783 207,991 207,991
R-squared 0�273 0�277 0�286 0�355 0�276 0�568 0�180 0�576

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered by industry. The buyer industry elasticity used in this table
is constructed from the SITC Rev. 3 three-digit U.S. import elasticities from Broda and Weinstein (2006), which are partially estimated off the substitution seen across HS10
constituent product codes for each SITC three-digit category. Columns 1–6 use industry-year observations controlling for year fixed effects, while columns 7–8 use country-
industry-year observations controlling for country-year fixed effects. Estimation is by OLS. In all columns, the industry factor intensity and dispersion variables are a weighted
average of the characteristics of buyer industries (the industries that buy the input in question), constructed as described in Section 4.3 of the main text. Columns 4 and 5 restrict
the sample to observations where the buyer industry elasticity is smaller (respectively, larger) than the industry median value. “Weighted” columns use the value of total imports
for the industry-year or country-industry-year, respectively, as regression weights.



O
R

G
A

N
IZ

IN
G

T
H

E
G

L
O

B
A

L
V

A
L

U
E

C
H

A
IN

37
TABLE S.X

ALTERNATIVE ELASTICITY MEASURE CAPTURING CROSS-PRODUCT SUBSTITUTABILITY: DownMeasurea

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

log(s/l) −0�011 −0�010 0�004 0�058 −0�019 −0�170*** 0�000 −0�108**
[0�045] [0�044] [0�042] [0�063] [0�057] [0�061] [0�021] [0�054]

log(k/l) 0�062** 0�063**
[0�027] [0�028]

log(equipment k/l) 0�123*** 0�042 0�246*** 0�228*** 0�038** 0�174***
[0�035] [0�046] [0�050] [0�059] [0�017] [0�047]

log(plant k/l) −0�093* −0�038 −0�206*** −0�144** −0�061*** −0�144***
[0�047] [0�058] [0�075] [0�064] [0�020] [0�048]

log(materials/l) 0�050 0�051 0�059* 0�099** 0�023 0�018 0�019 0�037
[0�033] [0�033] [0�032] [0�044] [0�049] [0�058] [0�013] [0�044]

log(0�001 + R&D/Sales) 0�058*** 0�058*** 0�057*** 0�060*** 0�038** 0�105*** 0�032*** 0�082***
[0�010] [0�009] [0�010] [0�012] [0�016] [0�017] [0�004] [0�014]

Dispersion 0�087 0�089 0�148* 0�051 0�302** 0�239* 0�120*** 0�143
[0�072] [0�071] [0�078] [0�092] [0�133] [0�135] [0�043] [0�106]

DownMeasure 0�101* 0�052 0�208***
[0�055] [0�075] [0�078]

DownMeasure × 1(Elas < Median), β1 0�060 0�113 0�008 −0�035 0�098
[0�071] [0�073] [0�111] [0�034] [0�086]

DownMeasure × 1(Elas > Median), β2 0�139* 0�172** 0�505*** −0�006 0�428***
[0�083] [0�082] [0�104] [0�033] [0�096]

1(Elas > Median) −0�050 −0�044 −0�312*** −0�020 −0�200***
[0�065] [0�064] [0�092] [0�030] [0�076]

(Continues)
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TABLE S.X—Continued

Dependent Variable: Intrafirm Import Share

(1) (2) (3) (4) (5) (6) (7) (8)
Elas < Median Elas ≥ Median Weighted Weighted

p-value: Joint significance of β1 and β2 [0�1867] [0�0460] [0�0000] [0�5887] [0�0001]
p-value: Test of β2 −β1 = 0 [0�4600] [0�5665] [0�0004] [0�5223] [0�0036]
Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes No No
Country-year fixed effects? No No No No No No Yes Yes

Observations 2783 2783 2783 1419 1364 2783 207,991 207,991
R-squared 0�283 0�284 0�303 0�350 0�312 0�611 0�177 0�603

a ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered by industry. The buyer industry elasticity used in this table
is constructed from the SITC Rev. 3 three-digit U.S. import elasticities from Broda and Weinstein (2006), which are partially estimated off the substitution seen across HS10
constituent product codes for each SITC three-digit category. Columns 1–6 use industry-year observations controlling for year fixed effects, while columns 7–8 use country-
industry-year observations controlling for country-year fixed effects. Estimation is by OLS. In all columns, the industry factor intensity and dispersion variables are a weighted
average of the characteristics of buyer industries (the industries that buy the input in question), constructed as described in Section 4.3 of the main text. Columns 4 and 5 restrict
the sample to observations where the buyer industry elasticity is smaller (respectively, larger) than the industry median value. “Weighted” columns use the value of total imports
for the industry-year or country-industry-year, respectively, as regression weights.
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FIGURE S.2.—Partial scatterplots of the relationship between downstreamness and the in-
trafirm import share: DUse_TUse. Notes: The residuals plotted on the vertical axis are pre-
dicted from a regression of the intrafirm trade share on: (i) the buyer industry control vari-
ables, namely: 1(Elas > Median), log(s/l), log(equipment k/l), log(plant k/l), log(materials/l),
log(0�001 + R&D/Sales), Dispersion, and (ii) year fixed effects. The upper panel uses residuals
from an unweighted OLS regression, while the lower panel is obtained from a weighted OLS re-
gression using the value of total imports in an industry-year as weights. These are plotted against
DUse_TUse on the horizontal axis, for industry-year observations corresponding to the substi-
tutes case (Elas < Median) on the left column, and for observations from the complements case
(Elas > Median) on the right column. In the upper panel, an OLS prediction line is included; in
the bottom panel, a weighted OLS prediction line is included (using total imports in the indus-
try-year as weights). The slope of the prediction lines in all four graphs is significant at the 1%
level based on robust standard errors.
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FIGURE S.3.—Partial scatterplots of the relationship between downstreamness and the in-
trafirm import share: DownMeasure. Notes: The residuals plotted on the vertical axis are pre-
dicted from a regression of the intrafirm trade share on: (i) the buyer industry control vari-
ables, namely: 1(Elas > Median), log(s/l), log(equipment k/l), log(plant k/l), log(materials/l),
log(0�001 + R&D/Sales), Dispersion, and (ii) year fixed effects. The upper panel uses residuals
from an unweighted OLS regression, while the lower panel is obtained from a weighted OLS re-
gression using the value of total imports in an industry-year as weights. These are plotted against
DownMeasure on the horizontal axis, for industry-year observations corresponding to the substi-
tutes case (Elas < Median) on the left column, and for observations from the complements case
(Elas > Median) on the right column. In the upper panel, an OLS prediction line is included;
in the bottom panel, a weighted OLS prediction line is included (using total imports in the in-
dustry-year as weights). The slope of the prediction lines in each graph is significant at the 1%
level based on robust standard errors, except in the top-left graph (Substitutes case, unweighted
regression) where the slope has a negative point estimate but is not statistically significant.
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