SUPPLEMENT TO "PREFERENCE MONOTONICITY AND INFORMATION AGGREGATION IN ELECTIONS"

(Econometrica, Vol. 81, No. 3, May 2013, 1229-1247)

By Sourav Bhattacharya

APPENDIX: Omitted Proofs

THIS APPENDIX refers to equations, lemmas, and theorems in the main text (in print) by the respective numbers as assigned in the text.

Proof of Lemma 4: First, assume that $V_{A}>t(A, \beta)>t(B, \beta)>V_{B}$ for every $\beta \in(0,1)$. Then, from Lemma 2, we have $\Theta(\beta)=\theta^{*}(\beta)$ for all $\beta \in(0,1)$. Moreover, from Corollary 1, we have $V_{A}>t(A, \beta)>\theta^{*}(\beta)>t(B, \beta)>V_{B}$. Note that $t(A, \beta)>t(B, \beta)$ implies that $\int_{\beta_{b}}^{\beta_{a}} f_{u}(z) d z>\int_{\beta_{b}}^{\beta_{a}} f_{d}(z) d z$. This has to be true as $\beta \rightarrow 0$ and $\beta \rightarrow 1$, which implies that $f_{u}(\beta)>f_{d}(\beta)$ at $\beta \in\{0,1\}$. From Lemma 2, it follows that $\Theta(0)=\left(0, V_{B}\right]$ and $\Theta(1)=\left[V_{A}, 1\right]$. Therefore, for any consequential rule $\theta, \mathcal{B}(\theta)=\{\beta: \theta \in \Theta(\beta)\}$ consists of beliefs in the open interval $(0,1)$. For all such beliefs, $t(A, \beta)>\theta^{*}(\beta)>t(B, \beta)$, that is, P wins only in state A. For each P-trivial rule $\theta<V_{B}, \mathcal{B}(\theta)=\{0\}$. Since $t(A, 0)=$ $t(B, 0)=V_{B}>\theta$ for such rules, P wins in both states. Similarly, for each Q trivial rule $\theta>V_{A}, \mathcal{B}(\theta)=\{1\}$. Since $t(A, 1)=t(B, 1)=V_{A}<\theta$ for such rules, Q wins in both states.

Next, consider some regular β such that $t(A, \beta)<t(B, \beta)$ and consider the voting rule $\theta^{*}(\beta)$. By Corollary $1, t(A, \beta)<\theta^{*}(\beta)<t(B, \beta)$, and the outcome is as described in the lemma. Similarly, for a regular β such that $t(A, \beta)=$ $t(B, \beta)=t$, there is an equilibrium sequence with induced prior converging to β for all $\theta \in(0,1) \backslash\{t\}$, and the outcome is as detailed in the lemma. Q.E.D.

Proof of Lemma 5: Suppose SPM holds. We have $t(A, \beta)-t(B, \beta)=$ $\left(q_{A}-q_{B}\right) \gamma_{I}\left[\int_{\beta_{b}}^{\beta_{a}} h(\mu) d \mu\right]>0$ by SPM. Moreover, $\frac{d t(S, \beta)}{d \beta}=q_{S} h\left(\beta_{a}\right)+(1-$ $\left.q_{S}\right) h\left(\beta_{b}\right)>0$. Since $t(S, \beta)$ is strictly monotonic, $t(S, 0)=V_{B}$, and $t(S, 1)=$ V_{A}, we must $t(S, \beta) \in\left(V_{B}, V_{A}\right)$ for all $\beta \in(0,1)$ and $S \in\{A, B\}$.

Next assume that SPM fails. Since $V_{A}>V_{B}$, it cannot be the case that $f_{u}(\mu) \leq f_{d}(\mu)$ for all $\mu \in(0,1)$. By continuity of f_{u} and f_{d} and by the assumption that $f_{u}(\mu)$ cannot be equal to $f_{d}(\mu)$ for any open interval, it must be the case that there are three numbers $0<r<s<t<1$ such that $h(s)=0$, and either (i) $h(\mu)>0$ in the interval (r, s) and $h(\mu)<0$ in the interval (s, t) or (ii) $h(\mu)<0$ in the interval (r, s) and $h(\mu)>0$ in the interval (s, t). Without loss of generality, we consider the first case.

To show that there exists $\left\{q_{A}, q_{B}\right\}$ that leads to equal vote shares in the two states for some regular β, consider $q_{A}=\frac{1}{2}+\varepsilon$ and $q_{B}=\frac{1}{2}-\varepsilon$ for $0<\varepsilon \leq$ $\frac{1}{2}$. Notice that for a given $\beta \in(0,1),\left|\beta-\beta_{s}\right|$ is strictly increasing in ε and
$\beta_{a}>\beta>\beta_{b}$. Now consider any $\beta_{1} \in(r, s)$ and $\beta_{2} \in(s, t)$. There must be some $\bar{\varepsilon}>0$ such that for all $\varepsilon<\bar{\varepsilon}$, the following is true: at $\beta=\beta_{1}$, both β_{a} and β_{b} lie in (r, s), and at $\beta=\beta_{2}$, both β_{a} and β_{b} lie in (s, t). Define $Z(\beta) \equiv$ $t(A, \beta)-t(B, \beta)=\varepsilon \gamma_{I}\left(\int_{\beta_{b}}^{\beta_{a}} h(\mu) d \mu\right)$. It is easy to see that $Z\left(\beta_{1}\right)>0$ and $Z\left(\beta_{2}\right)<0$. Since $Z(\beta)$ is continuous in β, for every $\varepsilon<\bar{\varepsilon}$, we must have some β_{e} such that $Z\left(\beta_{\varepsilon}\right)=0$. Moreover, for $\beta=\beta_{\varepsilon}$, since $Z\left(\beta_{\varepsilon}\right)=0$, it must be true that $\beta_{b}<s<\beta_{a}$. Therefore, $Z^{\prime}\left(\beta_{\varepsilon}\right)=\varepsilon \gamma_{I}\left(\frac{d \beta_{a}}{d \beta} h\left(\beta_{a}\right)-\frac{d \beta_{b}}{d \beta} h\left(\beta_{b}\right)\right)<0$. This establishes the uniqueness of β_{ε} in the range $\left[\beta_{1}, \beta_{2}\right]$ for the each $\varepsilon<\bar{\varepsilon}$. Now we have $Z(\beta)>0$ for $\left[\beta_{1}, \beta_{\varepsilon}\right)$ and $Z(\beta)<0$ for $\left(\beta_{\varepsilon}, \beta_{2}\right]$. Therefore, for each $\varepsilon<\bar{\varepsilon}$, the signal precision $\left(\frac{1}{2}+\varepsilon, \frac{1}{2}-\varepsilon\right)$ leads to a regular β_{ε} that satisfies $t\left(A, \beta_{\varepsilon}\right)=t\left(B, \beta_{\varepsilon}\right)$.
Q.E.D.

Proof of Proposition 1: First, consider some $\beta \in(0,1)$ such that $t(A, \beta)=t(B, \beta)$. In other words, $\int_{\beta_{b}}^{\beta_{a}} h(t) d t=0$. Since $\beta \in(0,1)$, we have $\frac{d \beta_{s}}{d \beta}>0$ for $s \in\{a, b\}$. After some algebra, we can show $\frac{d \beta_{a}}{d \beta} / \frac{d \beta_{b}}{d \beta}=\frac{\beta_{a}\left(1-\beta_{a}\right)}{\beta_{b}\left(1-\beta_{b}\right)}$ for any $\left\{q_{A}, q_{B}\right\}$. Now, $\frac{d t(A, \beta)}{d \beta}-\frac{d t(B, \beta)}{d \beta}=\left(q_{A}-q_{B}\right) \gamma_{I}\left(h\left(\beta_{a}\right) \frac{d \beta_{a}}{d \beta}-h\left(\beta_{b}\right) \frac{d \beta_{b}}{d \beta}\right) \neq 0$ by Assumption A3. Thus, Assumption A3 guarantees that if, for some $\beta \in(0,1)$, we have $t(A, \beta)=t(B, \beta)$, then it must be the case that β is regular. The rest of the proof follows from Lemma 4 and the observation that $t(A, \beta) \lessgtr$ $t(B, \beta) \Leftrightarrow\left(F\left(\beta_{a}, u\right)-F\left(\beta_{b}, u\right)\right) \lessgtr\left(F\left(\beta_{a}, d\right)-F\left(\beta_{b}, d\right)\right)$.
Q.E.D.

Dept. of Economics, University of Pittsburgh, 4528 Posvar Hall, 230 South Bouquet St, Pittsburgh, PA 15260, U.S.A.; sourav@pitt.edu.

