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APPENDIX D: DERIVATIONS AND ESTIMATION OF THE BENCHMARK
DSGE MODEL

D.1. The Model

THE ECONOMY IS POPULATED BY TWO TYPES OF AGENTS—households and
entrepreneurs—with a continuum and unit measure of each type. There are
four types of commodities: labor, goods, land, and loanable bonds. Goods pro-
duction requires labor, capital, and land as inputs. The output can be used for
consumption (by both types of agents) and for capital investment (by the en-
trepreneurs). The representative household’s utility depends on consumption
goods, land services (housing), and leisure; the representative entrepreneur’s
utility depends on consumption goods only.

D.1.1. The Representative Household
Similarly to Iacoviello (2005), the household has the utility function

oo

(S.1) EZ BtAt{log(Cht — YuChi-1) + @ log Ly, — l#sz},

t=0

where C,, denotes consumption, L, denotes land holdings, and N,, denotes
labor hours. The parameter 8 € (0, 1) is a subjective discount factor, the pa-
rameter y, measures the degree of habit persistence, and the term E is a math-
ematical expectation operator. The terms A4,, ¢,, and ¢, are preference shocks.
We assume that the intertemporal preference shock A, follows the stochastic
process

(Sz) Aletfl(l—f'/\at), ln/\at = (1 _pa)ln/_\a_{—paln/\a,tfl + &ar,

where A, > 0 is a constant, p, € (—1, 1) is the persistence parameter, and &,
is an independent and identically distributed (i.i.d.) white noise process with
mean zero and variance o2. The housing preference shock ¢, follows the sta-
tionary process

(S.3) Ing,=(1-p,)In¢+p,In@, 1+ &,,

'We are grateful to Pat Higgins, who provides invaluable research assistance. The views ex-
pressed herein are those of the authors and do not necessarily reflect the views of the Federal
Reserve Banks of Atlanta and San Francisco or the Federal Reserve System.
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where ¢ > 0 is a constant, p,, € (—1, 1) measures the persistence of the shock,
and g, is a white noise process with mean zero and variance (rfo. The labor
supply shock ¢, follows the stationary process

(5'4) Ing, =1 _Pw)lnl/_/+Pwln¢z—1+8¢t,

where ¢ > 0 is a constant, p, € (—1, 1) measures the persistence, and g, is a
white noise process with mean zero and variance (rjj.

Denote by g, the relative price of housing (in consumption units), R, the
gross real loan rate, and w, the real wage; denote by S, the household’s pur-
chase in period ¢ of the loanable bond that pays off one unit of consumption
good in all states of nature in period ¢ + 1. In period 0, the household begins
with L, _; > 0 units of housing and S_; > 0 units of the loanable bond. The
flow of funds constraint for the household is given by

S
(S.5) Cui+qu(Lp—Ly,—1) + Et <wNp +S,_1.

t

The household chooses Cy,, L, ;, Nj,;, and §, to maximize (S.1) subjegt to (S.2)-
(S.5) and the borrowing constraint §, > —S for some large number S.

D.1.2. The Representative Entrepreneur
The entrepreneur has the utility function

9]

(S.6) EZB[[IOg(Cﬁ - ')’eCe,t—l)]y

t=0

where C,, denotes the entrepreneur’s consumption and v, is the habit persis-
tence parameter.

The entrepreneur produces goods using capital, labor, and land as inputs.
The production function is given by
(S7)  Y.=Z[L! K ']'NLe,
where Y, denotes output, K, ;, N,,, and L., ; denote the inputs capital, labor,
and land, respectively, and the parameters « € (0,1) and ¢ € (0, 1) measure
the output elasticities of these production factors. We assume that the total
factor productivity Z, is composed of a permanent component Z/ and a tran-
sitory component v, such that Z, = Z"v,,, where the permanent component Z/
follows the stochastic process

(SS) th = Z)flill\zl9 InA,,=(1-p;)In /_\z +p:In A1+ &z,
and the transitory component follows the stochastic process

(S.9) Inv,,=p, Inv,,1+¢,,.
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The parameter A, is the steady-state growth rate of Z’; the parameters p.
and p,, measure the degree of persistence. The innovations ¢,, and ¢, , are
1.i.d. white noise processes that are mutually independent with mean zero and
variances given by o7 and o, respectively.

The entrepreneur is endowed with K_; units of initial capital stock and L, ,
units of initial land. Capital accumulation follows the law of motion

Q1 -\
(S10) K,=(1-8)K, 1+ |[1-=(-—"——-x) |I,
2 1[—1

where I, denotes investment, A; denotes the steady-state growth rate of invest-
ment, and (2 > 0 is the adjustment cost parameter.
The entrepreneur faces the flow of funds constraint

(S-ll) Co + qlt(Let - Le,t—l) + B
— 4] —a I B
=Z[L?, K PN~ — a’ —w,N,, + fﬁ’

where B;_; is the amount of matured debt and B;/R; is the value of new
debt. Following Greenwood, Hercowitz, and Krusell (1997), we interpret O,
as the investment-specific technological change. Specifically, we assume that
Q, = Qv,, where the permanent component Q7 follows the stochastic pro-
cess

(S12) Q' =0QF Ay, InAy=0—p)InA,+p,InA, . i+ &g,
and the transitory component follows the stochastic process
(S.13) Invy=p,Inv,, 1 +e&,,.

The parameter A, is the steady-state growth rate of QF; the parameters p,
and p, measure the degree of persistence. The innovations &, and ¢, are
i.i.d. white noise processes that are mutually independent with mean zero and
variances given by o and o7, , respectively.

The entrepreneur faces the credit constraint

(S'14) B < 0.Eqiis1Lei + Gr,i11K,],

where gy .41 is the shadow price of capital in consumption units.> Under this
credit constraint, the amount that the entrepreneur can borrow is limited by
a fraction of the value of the collateral assets—land and capital. Following

2Since the price of new capital is 1/Q,, Tobin’s g in this model is given by g, Q;, which is the
ratio of the value of installed capital to the price of new capital.
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Kiyotaki and Moore (1997), we interpret this type of credit constraints as re-
flecting the problem of costly contract enforcement: if the entrepreneur fails
to pay the debt, the creditor can seize the land and the accumulated capital;
since it is costly to liquidate the seized land and capital stock, the creditor can
recoup up to a fraction 6, of the total value of the collateral assets. We inter-
pret 6, as a “collateral shock” that reflects the uncertainty in the tightness of
the credit market. We assume that 6, follows the stochastic process

(S.15) In6,=(1—py)Inb+pylnb,_, + &4,

where 6 is the steady-state value of 6,, py € (0, 1) is the persistence parameter,
and &y, is an i.i.d. white noise process with mean zero and variance o7.

The entrepreneur chooses C,;, N, I;, L.,, K,, and B, to maximize (S.6)
subject to (S.7) through (S.15).
D.1.3. Market Clearing Conditions and Equilibrium

In a competitive equilibrium, the markets for goods, labor, land, and loan-
able bonds all clear. The goods market clearing condition implies that

I
(S.16) C, + E’ =Y,

t

where C, = C;, + C,, denotes aggregate consumption. The labor market clear-
ing condition implies that labor demand equals labor supply:

(S.17) N, =Ny =N,.
The land market clearing condition implies that
(S18) L, +L,=L,

where L is the fixed aggregate land endowment. Finally, the bond market clear-
ing condition implies that

(§.19) S, =B..
A competitive equilibrium consists of sequences of prices {w,, q;, R,}?2, and
allocations {Cy,, Ce/, I;, Ny, Nty Lis, Let, S, Bi, Ky, Y332, such that (i) taking

the prices as given, the allocations solve the optimizing problems for the house-
hold and the entrepreneur, and (ii) all markets clear.

D.2. Derivations of Excess Returns and Equilibrium Conditions
D.2.1. The Excess Returns

In this section, we provide an intuitive derivation of the first-order excess
returns in the presence of binding credit constraints.
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The representative entrepreneur has two types of assets: land and capital.
Each asset can be intuitively thought of as a Lucas tree bearing fruits and grow-
ing at a gross rate of g,. The entrepreneur can trade a portion of the tree in the
market, and the return on this tree depends on the price of a unit of the tree
as well as the marginal product (fruit) of the remaining tree. In steady state,
it should be g,/B. To see if this intuition works in the model when the en-
trepreneur faces the borrowing constraint, we first derive the expected return
on each of these assets. We begin with the return on land.

Suppose the entrepreneur purchases one unit of land at the price g, in pe-
riod ¢. Since she can pledge a fraction 6, of the present value of the land as a
collateral, the net out-of-pocket payment (i.e., the down payment) to purchase
the land is given by

(820) =g, — 0B,
t

where R, is the loan rate. The land is used for period ¢+ 1 production and yields
¢aY, /L., units of extra output. In addition, the entrepreneur can keep the
remaining value of the land in period ¢ + 1 after repaying the debt, so that the
total payoff from the land is ¢paY, 1 /L. + q1.1+1 — 0.E.qy1+1. The return on the
land from period # to ¢ 4 1 is thus given by

¢)aYt+1/L€t + g 41— othCIl,zH

qi,t+1
qi Ly R,

(S21) Ry =

We can similarly derive the return on capital, which is given by

¢aY, /K, + qk,t+l(1 —0) — 0.E/qi i1

(S.22) Rk,t+1 ==
it — 0.E, i

t

To see how these returns relate to the entrepreneur’s optimal decisions, we
denote by w,, the Lagrangian multiplier for the flow of funds constraint (S.11),
i, the multiplier for the capital accumulation equation (S.10), and w,, the
multiplier for the credit constraint (S.14). With these notations, the shadow
price of capital in consumption units is given by

Mokt
th = )
et

and the marginal utility of income, .., is equal to the marginal utility of con-
sumption:

o = 1 B Bye
“ Cet - 'ygce,t—l tCe,H—l - yeCet
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The optimal decision on the entrepreneur’s borrowing can be described by

1 e
(S23) — = BE, et | o
R, Meet Mt

The above Euler equation implies that the credit constraint is binding (i.e.,
e > 0) if and only if the interest rate is lower than the entrepreneur’s in-
tertemporal marginal rate of substitution. The entrepreneur’s optimal deci-
sions on land and capital can be described by the following two Euler equa-
tions:

Mbt

et

(524) qi = BE,

¢ Y,
Mot |:a¢ o Gtthl,H—l:

L. + 611,:+1i| +

et
Yin
K,

Moot

et

(S.25) %=BEff{M1—@ 0.E/qrcs1-

et

+ G, (1 — 6)i| +
Using (S.23), we can rewrite (S.24) and (S.25) as

(S.26) 1=ﬁEt%Rw, jell k).

et

Since consumption grows at the rate g, in equilibrium and the utility function
is of logarithmic form, (S.26) implies that R; = g,/B.

On the other hand, the loan rate R, is determined by the household’s in-
tertemporal Euler equation:

1 :
(827) — =pEM
R, Mont

where w,, is the Lagrangian multiplier for the flow of funds constraint (S.5). It
represents the marginal utility of income and is equal to the marginal utility of
consumption:

1 BYn
= A —E I+ Apm) |
& t|:Cht — YiCh,i—1 tCh,t+1 —YiCi o
It follows from (S.27) that, in steady state, R = 3 (1‘%“ S5 where A, > 0 measures

the extent to which the household is more patient than the entrepreneur. The
steady-state excess return is then given by

e g /\fl
(S28) R=R,—R=2

B1+2A,

jell, k}.

Clearly, the steady-state excess return is positive if and only if the patience
factor, A,, is positive.
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To see how a positive first-order excess return is related to the entrepreneur’s
credit constraint, one can derive from (S.23) the following steady-state rela-
tionship:

BAa _ f
& e

Thus, the credit constraint is binding (i.e., 1, > 0) if and only if the household
is more patient than the entrepreneur (i.e., A, > 0).
This result carries over to the dynamics of excess returns. Denote by RS, =

R; .11 — R, the excess return for asset j € {/, k}. By combining the bond Euler
equation (S.23) and the asset-pricing equation (S.26), we obtain

(S29) BEMetiRe —EUp el k.

Mt per et
As in the standard asset-pricing model, the mean excess return depends on
the asset’s riskiness measured by the covariance between the return and the
marginal utility of consumption. Unlike the standard model, however, the ex-
cess return in our model contains a first-order term that is positive if and only
if the borrowing constraint is binding (i.e., ws > 0).

D.2.2. Euler Equations

Denote by u,, the Lagrangian multiplier for the flow of funds constraint
(S.5). The first-order conditions for the household’s optimizing problem are
given by

1 By ]

S.30 =A —E I+ A1) |,
( ) i t|:Cht - thh,z—l tCh,H—l — Y1C o

A
(S31) w, ="y,

Mont

A
(5.32)  qu=BE, Bl i1+ Al 5
Mons WhrLpy

(S33) = pgE,H
R, Mont

Equation (S.30) equates the marginal utility of income and of consumption;
equation (S.31) equates the real wage and the marginal rate of substitution
(MRS) between leisure and income; equation (S.32) equates the current rela-
tive price of land to the marginal benefit of purchasing an extra unit of land,
which consists of the current utility benefits (i.e., the MRS between housing
and consumption) and the land’s discounted future resale value; and equation
(S.33) is the standard Euler equation for the loanable bond.
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Denote by u,, the Lagrangian multiplier for the flow of funds constraint
(S.11), i, the multiplier for the capital accumulation equation (S.10), and s,
the multiplier for the borrowing constraint (S.14). With these notations, the
shadow price of capital in consumption units is given by

(S34)  qu=""

et

The first-order conditions for the entrepreneur’s optimizing problem are given
by

1 - Bye
- L 5
Cet - YeCe,t—l Ce,t+1 - YeCet
(836)  w,=(1—a)Y,/N.,

1 Q1 -\ I, -\ I
S.37 — = 1——|——2A -0 —A
) q’“[ 2 (1,1 ) (1,1 )1

Me,t+1 Iy N I ?
+ BQOE, 9k, t+1 —A; 5
Mgt I, I,

Yin
K,

(8.35) Mer =

Moot

et

(S.38)  qi = BE, Feit1 [a(l — )

et

+ Qk,tﬂ(l - 6):| + ethCIk,IH,

(839) qu.=BE,

Me,r+1 |:0‘({b Y

m
+ ql,t+1i| + il 0.E.q1 111,
L, e

et et

1 e
(S.40) — = BE, et 4 Ko
R, Meet Meet

Equation (S.35) equates the marginal utility of income to the marginal utility
of consumption since consumption is the numé raire; equation (S.36) is the
labor demand equation, which equates the real wage to the marginal product of
labor; equation (S.37) is the investment Euler equation, which equates the cost
of purchasing an additional unit of investment good and the benefit of having
an extra unit of new capital, where the benefit includes the shadow value of
the installed capital net of adjustment costs and the present value of the saved
future adjustment costs; equation (S.38) is the capital Euler equation, which
equates the shadow price of capital to the present value of future marginal
product of capital and the resale value of the un-depreciated capital, plus the
value of capital as a collateral asset for borrowing; equation (S.39) is the land
Euler equation, which equates the price of the land to the present value of the
future marginal product of land and the resale value, plus the value of land
as a collateral asset for borrowing; equation (S.40) is the bond Euler equation
for the entrepreneur, which reveals that the borrowing constraint is binding
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(i.e., wp, > 0) if and only if the interest rate is lower than the entrepreneur’s
intertemporal marginal rate of substitution.

D.2.3. Stationary Equilibrium

We are interested in studying the fluctuations around the balanced growth
path. For this purpose, we focus on a stationary equilibrium by appropriately
transforming the growing variables. Specifically, we make the following trans-
formations of the variables:

<7 }]l‘ jod Cht ~ Cet =4 It il Kl
S.41 Y=—, Cu=—, Cu=—, I,= , K,= ,
G4 Y=g CGu=7n Cu=pn L=5F. K=5T

~ B 5 w - I;

Btzft’, W, T: /-LhtEMZtta fer = pecd,

~ ~ _ 4u ~

Mp = I‘thl—;a qu = T: qit = CItht:

t

where I = [Z,Q!'"#*]/0-0-$ n Appendix F.1.2, we describe the station-
ary equilibrium and derive the log-linearized equilibrium conditions around
the steady state for solving the model. To solve the log-linearized equilibrium
system requires the input of several key steady-state values. These include the
shadow value of the loanable funds %, the ratio of commercial real estate to

aggregate output %, the ratio of residential land to commercial real estate

L?’“ the ratio of loanable funds to output , the capital-output ratro =, and the

“blg ratios” C.h , Y , and . The model implies a set of restrictions between these
steady-state ratros and the parameters, and we will use these restrictions along
with the first moments of selected time series in the data to sharpen our priors
and to help identify a subset of the parameters in our estimation.

Denote by g,, = r and 8y =

ables I; and Q,. Denote by g, the steady-state value of g, and A, = g,,/_\q the
steady-state growth rate of capital stock. On the balanced growth path, invest-
ment grows at the same rate as does capital, so we have A; = A;.

The stationary equilibrium is the solution to the following system of equa-
tions:

5 1
(S42)  fun =~ _ ~E,= iell (14 A1),
Ch — ’YhCh,z—er—r/Ft Ch,t+1rt+1/r ’YhCht
(543) @=L,
Mont

(S44)  qu= BEch L (T4 Mgy G +

ht htLht
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(5.45)

(S.46)

(S.47)

(S.48)

(S.49)

(8.50)

(S.51)

(S.52)

(S.53)

(S.54)
(S.55)

(S.56)

(8.57)
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1 Mnea 1

— =BE,L (14 M)

R, B ' Mont Ft+1 o

_— 1 Bye
Mer =

éel - Yeée,t—ln—l/n
W, =(1-a)Y,/N,

=g [1_Q<f, oI
“I 2\, 0l

_Q(j, o, —L)
I, Qi

/“(‘e w1 Odp o

+ BOE,

et

O
Mbt —0 thk +1 A~
Met Qt+1

. Y, .
Qh — BE, e, 41 |:a¢> t+1 n CIl,z+1j|

I-Lez L,
I-Le t+1 I; ,thz

- Et ~ ~ >
Ce,l+1E+1/E - ’Yecet

N2
_AQ
I or }
i,,l Qt—lE—l

I‘LLZ Qz+1E+1 k1
% (iH»l Qt+1E+l _ 5\ )(
I, O !

Ezk,=BEt“gf“[ - Yeu

Il+1 Qt+1E+1

oI )

ZI Qt t
k,t+1
Qt+11—;+1

(11— 3)}

I;
Z: 0 thl t+1 Itjl

= BE, )
IJ‘et t+1 Met
7 (I=¢)a/(1-(1-d)a)
( " ) [L! KN
t le 1
- - O 01,
Kt:(l_a)Kt_thl t—1 1__< t Qt[
O.1; I, MO P
l~/z = éht + 6et +iz,
L= Ly~ Lo,

T T - I, B
Y, =Co+ 1+ qu(Let — Ley1) + By tTtl - ﬁi’
~ . I N .

B, =0E, |:q1,z+l %Lm + qk,,HK, QQtl].
t +
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We solve these 16 equations for 16 variables summarized in the vector
[la'ht) wt: élt: Rh Ileta Nt7 It, K) Cht7 Cet7 qkt, Let, th Kt7 Bt7 lafbt]/'

D.2.4. Steady State

To get the steady-state value for %, we use the stationary bond Euler equa-
tions (S.45) for the household and (S.51) for the entrepreneur to obtain

1 1+ A, 7 A
(.58 ~=PUTA) - m_ BA
R 8y fe 8y

Since A, > 0, we have i, > 0 and the borrowing constraint is binding in the
steady-state equilibrium.

To get the ratio of commercial real estate to output, we use the land Euler
equation (S.50) for the entrepreneur, the definition of fi. in (S.46), and the

solution for % in (S.58). In particular, we have

(S59) dLe_ _ Bad
Y 1—B—BA0

To get the investment-output ratio, we first solve for the investment-capital
ratio by using the law of motion for capital stock in (S.53), and then solve for
the capital-output ratio using the capital Euler equation (S.49). Specifically, we
have

I 1—-6
S.60) —=1- ,
(S.60) 7 W
K B - - B
(S.61) ?_[1—A—k(/\ae+1—5)] Ba(l— ¢),

where we have used the steady-state condition that g, = 1, as implied by the
investment Euler equation (S.48). The investment-output ratio is then given by

(S.62) I _ITK_Bald-¢)h—(1-5]
Y KY  M&—BAI+1-9)

Given the solution for the ratios ‘?’—é“ and § in (S.59) and (S.61), the binding
borrowing constraint (S.57) implies that
B = qlLe

B 0
— =0g,— + —
v gYY X,

K
(S.63) 5
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The entrepreneur’s flow of funds constraint (S.56) implies that

C, I 1-B(1+2A,)B
o) Cooao L _1-pUTINB
Y Y 8y Y

The aggregate resource constraint (S.54) then implies that

C C. 1T
(S.65) —L=1-—__.
Y Y Y
To solve for %, we first use the household’s land Euler equation (i.e., the
housing demand equation) (S.44) and the definition for the marginal utility
(S.42) to obtain
L o
s66) Ikn_ o)
G &1 —=g/R)(1—v4/R)

where the steady-state loan rate is given by (S.58).
Taking the ratio between (S.66) and (S.59) results in the solution

67 Lro P& - y)1-p- BA.6) Cy
' L. Badg,(1-g,/R)1—-y/R) Y
Finally, we can solve for the steady-state hours by combining the labor supply
equation (S.43) and the labor demand equation (S.47) to get
(1-a)g,(1=y/R) ¥
lp(gy - ’Yh) Ch

D.2.5. Log-Linearized Equilibrium System

(S.68) N=

Upon obtaining the steady-state equilibrium, we log-linearize the equilib-
rium conditions (S.42) through (S.57) around the steady state. We define the

constants £2, = (g, — B(1+Aa)¥1)(8y — y4) and . = (g, — By.)(g, — 7.). The
log-linearized equilibrium conditions are given by

(S.69)  Dyfun =—[g + V2B +A)]Coi + & ¥n(Crimr — &)
— BAaYn(8y — Yi)EiAa it
+B(1+ ;\a)gytht(éh,t-H + &yit1)s
(8.70) iy + i = 1,
(S71) Qi+ fune = BA + ADEdl fonir1 + Grira]
+[1= B+ 2)](@ — Li) + BAE A, 111,
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A a A }\a N ~
(S~72) Mone — R, =E, |:Mh,t+1 + m/\a,tﬂ - gy,t+1:| 5

(S73)  Qufres = (82 + BY)Coi + 8y ¥e(Coit — &)
+ B8y YeEi(Corit + 8rs1)s
(S.74) w,=Y,—N,,
(ST5)  Gue= 14BN, — QXA + QX (30 + 80r)
— BOXE 1 + &y + o,
B(1—6)
A

k

=

(S.76) @kt + e = Et(flk,H—l - gq,t+1 - g%H—l)

=

b0 A
—(fpr + 0;) +
o A

iy 6\ . iy 0 R
+ (1 - &—_>Etﬂe,t+l + &—_Et(qk,t#—l - gq,t+1)
Mee Ag Me Ay

Y . .
+ Ba(l - ¢)=E/(Y, ;1 — K),
K
(S-77) élt + I:Let = %gyé(ét + Ilbt) + <1 - %gﬂ)Etﬁ«e,m

—+ %gyéEt(E][’;+1 + gy,m—l) + BEIQZ,HI

+(1—B—=BAOE [V — L.,

P . . .
(878) Mer — R, = 1+ /—\a [Et(,u‘e,t+1 - gy,t+1) + /\al-th],
(8.79)  Y,=adL.,i+a(d—$)K. i+ (1-a)N,
(I—da .
1— (=) (82 + &4ils
T 1-8\ .
(880) K, = (K1 — 8yt — 8l + 1- I,
Ak Ak
T
(S81) Y,=—Cp+—C.,+ =1,
Y Y Y

S82) 0=—-L,+ —L,,
(S.82) 7 Lo+ 5 La
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(S83) oY, =

1B . . 1B ~ =
+ _§(Bt—l —8y) — ﬁ?(Bt —R,),

Y

5 A —q Le N - A
(584) B, =0+ gyeqlé Ez(q1,z+1 + L.+ gy,t+1)

—qlLe A > A
+({1- gye? E/(Gi,is1 + Ki — gg.041)-

The terms &.,, &, and g,, are given by
(585) gzt = ;\zt + i)zt - ﬁz,t—l,

(586) ng = }\qt + ﬁqt - ﬁq,t—la

1 i (1-$a .
I-(1-do T T-d-da

The technology shocks follow the processes
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(S.90) Ay =poAgit+ &g
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The preference shocks follow the processes

~

(8.92)  Au = paast + &,
(893) é[ = p(pgaz—] + é(pl)
(S94) = pyihis + By

The liquidity shock follows the process
(S.95) 0, =pyb,_s + 4.

We use Sims’s (2002) algorithm to solve the 19 rational expectations equa-
tions, (S.69) through (S.87), for the 19 unknowns summarized in the column
vector

A

X = [,u'ht’ Wy, qlta Rt7 Mers Mbrs Nt’ It: K, Chta
~ n A A AoA n -
Cet; qkla th Let; Kt> Bt, gyt, gzla ng] 9
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where x, is referred to as a vector of state variables. The system of solved-out
equations forms a system of state equations.

D.3. Estimation

We log-linearized the model around the steady state in which the credit con-
straint is binding. We use the Bayesian method to fit the linearized model to
six quarterly U.S. time series: the relative price of land (g;**), the inverse of
the relative price of investment (QP**), real per capita consumption (CP*#),
real per capita investment in consumption units (/P°**), real per capita non-
financial business debt (BP**), and per capita hours (LP**). All these series
are constructed to be consistent with the corresponding series in Greenwood,
Hercowitz, and Krusell (1997), Cummins and Violante (2002), and Davis and
Heathcote (2007). The sample period covers the first quarter of 1975 through
the fourth quarter of 2010.

A system of measurement equations links the observable variables to the
state variables. A standard Kalman-filter algorithm can then be applied to the
system of measurement and state equations in form the likelihood function.
Multiplying the likelihood by the prior distribution leads to a posterior kernel
(proportional to the posterior density function).

In our model with credit constraints, we find that the posterior kernel is full
of thin and winding ridges as well as local peaks. Finding the mode of the
posterior distribution has proven a difficult task. Indeed, the popular Dynare
software fails to find the posterior mode with its various built-in optimizing
methods.

To see how such difficulty arises, we first use Dynare 4.2 to estimate our
model. We choose many sets of reasonably calibrated parameters as different
starting points, and the Dynare program has difficulty to converge. For quasi-
Newton based optimization methods (e.g., options mode_compute=1 to 5 in
Dynare), we encounter the message “POSTERIOR KERNEL OPTIMIZA-
TION PROBLEM! (minus) the Hessian matrix at the ‘mode’ is not positive
definite!,” meaning that the results are unreliable. One method (with the op-
tion mode_compute=6 in Dynare), which triggers a Monte Carlo based opti-
mization routine, is very inefficient and seems to be able to converge to a local
peak only.

In the examples given in Liu, Wang, and Zha (2013),’> we summarize all the
output produced by different methods of Dynare:

(i) When the method “options mode_compute=1" is used, the program
converges with ill-behaved Hessian matrix. According to these estimated re-

3The complete set of materials—source code, figures, and tables—is stored in the zip file
“data_and_programs.zip.” In the zip file, the estimated results under different methods can be
found under the subdirectory “/Output.”
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sults, a housing demand shock plays almost no role in macroeconomic fluc-
tuations. Instead, at the fourth year horizon, a permanent investment-specific
technology shock contributes to 67.64% of investment fluctuations and a labor
supply shock contributes to 61.68% of consumption fluctuations.

(i) The method “options mode_compute=2" (Lester Ingber’s Adaptive
Simulated Annealing) is no longer available for Dynare 4.2.

(iii) The method “options mode_compute=2" cannot converge and the
solver stops prematurely.

(iv) When the method “options mode_compute=4" is used, the program
converges with ill-behaved Hessian matrix. According to these estimated re-
sults, a housing demand shock contributes to a majority of fluctuations in the
land price (for example, 76.44% at the fourth year horizon) but little in other
macroeconomic variables. Instead, at the fourth year horizon, a permanent
investment-specific technology shock contributes to a majority of fluctuations
in investment (81.12%) and consumption (78.9%).

(v) When the method “options mode_compute=5" is used, the program
converges with ill-behaved Hessian matrix. According to these estimated re-
sults, a housing demand shock has a numerically zero impact on any variable.
At the fourth year horizon, contributions to investment fluctuations are 42.17%
from a preference shock, 15.21% from a labor supply shock, 18.15% from a
permanent investment-specific technology shock, and 16.26% from a collateral
shock.

(vi) When the method “options mode_compute=6" is used, the program
converges but the converged results turn out to be at a local posterior peak.
A housing demand shock plays almost no role in affecting any macroeconomic
variables. A preference shock affects most of fluctuations in the land price.
A permanent investment-specific technology shock explains a majority of fluc-
tuations in macroeconomic variables (78.90% for consumption and 81.12% for
investment at the fourth year horizon).

As we have discussed before, we have experimented with different sets of
reasonably guessed parameter values as starting points, and none of the op-
tions in the optimization routine in Dynare can achieve decent convergence.

Our own optimization routine, based on Sims, Waggoner, and Zha (2008)
and coded in C/C++, has proven to be both efficient and able to find the
posterior mode.* Given an initial guess of the values of the parameters, our
program uses a combination of a constrained optimization algorithm and a
hill-climbing quasi-Newton optimization routine, with the Broyden—Fletcher—
Goldfarb—Shanno (BFGS) updates of the inverse of the Hessian, to find a local

“The source code (with the main function file “dsgelinvl_estmcme.c”) can be downloaded
from http://www.tzha.net/articles#creditconstraints. The user must be familiar with C/C++ and
needs a C/C++ compiler to link the C code (in the zip file “C_Cpp_Library4LWZpaper.zip”) to
the C library (in the zip file “C_Cpp_Library4ALWZpaper.zip”). After linking and compiling all
the C functions, the user needs to generate an executable file for obtaining the estimation.
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peak. We use this initial local peak to run Markov chain Monte Carlo (MCMC)
simulations, and then use simulated draws as different starting points for our
optimization routine to find a potentially higher peak. We iterate this process
until it converges. The computation typically takes three and a half days on a
single processor but less time if one avails oneself of a multiprocessor com-
puter (a cluster of nodes, for example).

Once we complete the posterior mode estimation using our own program,
we use the estimated results as a starting point for the Dynare optimization
routine. The Dynare program converges instantly.> We are currently working
with Dynare to use their preprocessor and compile part of our C/C++ code
into Dynare so that the general user will be able to use our estimation proce-
dure.

D.4. Convergence

In this paper, we use the Bayesian criterion to compare several models.
Specifically, we compute the marginal data density (MDD) for each model
and compare the MDDs. There are two related issues. One is to use the MDD
to select a model. Potential problems of taking this approach blindly were ad-
dressed in Sims (2003), Geweke and Amisano (2011), and Waggoner and Zha
(2012). The other pertains to the accuracy of estimating the MDD.

In this section, we focus on discussing the second issue. We adopt two tech-
niques. First, we use an extremely long sequence, ten millions, of MCMC
draws.® We divide this sequence into ten subsequences of one million draws
and then compute the MDD from the entire sequence and from each of the
subsequences. The variation among the subsequences is very small (under 1 in
log value for all models studied in the paper).

Second, we use draws from the prior as starting points for multiple MCMC
chains, each of which has a length of one million draws. Selecting an appro-
priate starting point is crucial for reliable MCMC draws. If the initial value is
in an extremely low-probability region, an unreasonably long burn-in period
would be required to obtain convergence of the MCMC chain. Most parame-
ter values drawn from the prior have extremely low likelihood values. Thus, we
draw from the prior until it reaches a reasonable likelihood value. We use ten
such randomly selected starting points and record the minimum and maximum
values of the MDDs calculated from these chains. The difference is under 4 in
log value for all the models.

5See the complete set of results stored under the subdirectories /Output/
Method4FromLWZmode and /Output/Method5FromLWZmode.

®On a standard desktop computer with dual cores, the computation would have taken more
than two months. We utilize a cluster of computers to reduce an exceedingly large amount of
computing time.
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D.5. Linear versus Nonlinear Models

In addition to the benchmark model, we estimate two variants of the bench-
mark model in which we fix the value of A, at a relatively high value (0.012)
or a low value (0.0015). We find that the parameter estimates with A, fixed
a priori do not change our main results obtained from the benchmark model
(where A, is estimated). Figure S.1 displays the estimated sample paths of the
Lagrangian multiplier for the credit constraint for the benchmark model and
the two variants. As one can see, the multipliers are above zero.

In general, the estimated parameter values for the benchmark model are
almost indistinguishable from those for the model with A, fixed at 0.012. Fig-
ure S.2 shows the impulse responses to both a TFP shock and a housing de-
mand shock for these two models. It is clear that, for the most part, the re-
sponses are hard to distinguish by eyes.

As discussed in the main text of the paper, the results reported in Figure S.1
by no means imply that the original nonlinear model has binding constraints
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FIGURE S.1.—Lagrangian multipliers for the benchmark model (solid lines), the model with
A = 0.012 (dashed lines), and the model with A, = 0.0015 (dotted-dashed lines). Note that the
right column is the same plot as the left column except the vertical axis is restricted to between 0
and 1 so that one can easily see how far the Lagrangian multipliers are away from zero.
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FIGURE S.2.—Impulse responses to a positive shock to neutral technology growth (left col-
umn) and to a positive shock to housing demand (right column). Lines marked by asterisks repre-
sent the responses for the benchmark model; thin solid lines represent the model with A, = 0.012.
Note that the results are so close that some lines are on top of one another.

always. It is possible, and even probable, that the original nonlinear model has
occasionally binding constraints. In that case, one must estimate the original
nonlinear model with occasionally binding constraints. Such a task is infeasible
and beyond the scope of the paper.

From Figure S.3 to Figure S.6, however, we compare the impulse responses
in the benchmark log-linearized model with those from two alternative nonlin-
ear models for several key macroeconomic variables. We display the impulse
responses to a positive housing demand shock and a positive collateral shock
with one standard deviation as well as with three standard deviations. We solve
two different nonlinear models, one in which we impose that the credit con-
straint is always binding (so that the multiplier for the credit constraint may be
negative) and the other in which we allow the credit constraint to be occasion-
ally binding (so that the multiplier is greater than or equal to zero). For both
nonlinear models, we use a shooting algorithm to compute impulse responses,
and we use the parameter estimates obtained from our log-linearized model.

Figures S.3 and S.5 show that, when the shock is moderate, the difference
between all these models is negligible. Figures S.4 and S.6 show that, when the
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FIGURE S.3.—Impulse responses to a moderate positive housing demand shock (one standard
deviation) in the benchmark model. Lines marked by asterisks represent the impulse responses
for the log-linearized model; solid lines represent the original nonlinear model but with the credit
constraint imposed to be always binding; dashed lines represent the original nonlinear model with
the credit constraint allowed to be occasionally binding. Note that solid and dashed lines are on
top of each other so that one cannot distinguish by eyes.

shock is large, the difference remains small. Even when the constraint is occa-
sionally binding, as shown in the initial responses of the multiplier in Figures
S.4 and S.6 in response to a large shock, much of the difference is driven by
other parts of nonlinearity in the model rather than the occasionally binding
constraint: although the responses of the Lagrangian multiplier following large
shocks to housing demand (or credit limit) are very different between the lin-
earized model and the nonlinear model, the responses of the land price and
macroeconomic variables are very similar. For the impulse responses to other
structural shocks, we obtain similar results.

While the preceding exercise is reassuring, it would be misleading to infer
that one can simply calibrate the original nonlinear model with the estimates
obtained from the log-linearized version. As shown in Section D.3, the estima-
tion of the log-linearized version has already posed a challenging task, as many
estimation procedures have been inadequate and, consequently, misleading
conclusions may be drawn if the model parameters are not properly estimated.
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FIGURE S.4.—Impulse responses to a large positive housing demand shock (three standard
deviations) in the benchmark model. Lines marked by asterisks represent the impulse responses
for the log-linearized model; solid lines represent the original nonlinear model but with the credit
constraint imposed to be always binding; dashed lines represent the original nonlinear model with
the credit constraint allowed to be occasionally binding.

This lesson is particularly true for the nonlinear model with occasionally bind-
ing constraints. We are in the process of developing a robust empirical method
that can tackle the estimation of such a model.

D.6. Estimation Issues

In this section, we discuss several estimation challenges we have faced during
this project.

We use our own algorithm to estimate the log-linearized model and the cor-
responding model with regime-switching volatilities. One natural question is
why we do not use Dynare to estimate these models. Dynare does not yet have
capability to estimate the DSGE model with Markov-switching features. For
the benchmark model, one could use Dynare. But because the posterior dis-
tribution is full of thin winding ridges as well as local peaks, finding its mode
has proven to be a difficult task. To see exactly how such difficulty arises, we
first use Dynare 4.2 to estimate our model. We choose many sets of reasonably
calibrated parameters as different starting points, but the Dynare program has
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FIGURE S.5.—Impulse responses to a moderate positive collateral shock (one standard devia-
tion) in the benchmark model. Lines marked by asterisks represent the impulse responses for the
log-linearized model; solid lines represent the original nonlinear model but with the credit con-
straint imposed to be always binding; dashed lines represent the original nonlinear model with
the credit constraint allowed to be occasionally binding. Note that solid and dashed lines are on
top of each other so that one cannot distinguish by eyes.

difficulty converging. Most options in Dynare lead to an ill-behaved Hessian
matrix due to thin winding ridges in the posterior distribution. One option,
similar to a simulated annealing algorithm, converges but to a local posterior
peak (see details in Section D.3 of this Supplemental Material).

Our own optimization routine, based on Sims, Waggoner, and Zha (2008)
and coded in C/C++, has proven to be both efficient and able to find the pos-
terior mode. The routine relies, in part, on the Broyden—Fletcher—Goldfarb-
Shanno (BFGS) updates of the inverse of the Hessian matrix. When the inverse
Hessian matrix is close to being numerically ill-conditioned, our program resets
it to a diagonal matrix. Given an initial guess of the values of the parameters,
our program uses a combination of a constrained optimization algorithm and
an unconstrained BFGS optimization routine to find a local peak. We then
use the local peak to generate a long sequence of Markov chain Monte Carlo
(MCMC) posterior draws. These simulated draws are randomly selected as dif-
ferent starting points for our optimization routine to find a potentially higher
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FIGURE S.6.—Impulse responses to a large positive collateral shock (three standard devia-
tions) in the benchmark model. Lines marked by asterisks represent the impulse responses for
the log-linearized model; solid lines represent the original nonlinear model but with the credit
constraint imposed to be always binding; dashed lines represent the original nonlinear model
with the credit constraint allowed to be occasionally binding.

peak. We iterate this process until the highest peak is found. The computation
typically takes four and a half days on a cluster of five dual-core processors.
We are in the process of collaborating with the Dynare team to incorporate
our estimation software into the Dynare package.

APPENDIX E: LAND PRICES AND QUANTITY

In this appendix, we discuss some issues related to the measurement of land
prices and quantities.

E.1. The Price of Land

The house value is composed of two diametrically different components:
(1) the cost of structures that is specific to the cost of basic materials and the
productivity of the construction industry relative to other sectors of the econ-
omy and (2) the price of land. As documented in Davis and Heathcote (2007),
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it is changes in the price of land, not those in the cost of structures, that con-
stitute a driving force behind large house price fluctuations at both low and
business-cycle frequencies.

The land price in our benchmark model is based on the Federal Housing
Finance Agency (FHFA) house price index. The FHFA series is used in the lit-
erature (Chaney, Sraer, and Thesmar (2012)) because it has a comprehensive
geographic coverage. The FHFA publishes the house price index for each of
all 50 states based on all transactions. The disadvantage of the FHFA series is
that it covers only conforming (conventional) mortgages. On the other hand,
the CoreLogic house price index series, provided by CoreLogic Databases, has
the same time series pattern as the Case—Shiller—Weiss (CSW) house price in-
dex but covers far more counties than does the CSW house price index. Indeed,
the CoreLogic data cover all 50 states and, unlike the FHFA data, include both
conforming and nonconforming mortgages.

The purchase-only FHFA house price index (Haver Data key: USPHPI@
USECON) is available only from 1991Q1 to present. For 1975Q1 to 199004,
the FHFA house price index is spliced to be consistent with the purchase-only
series. We then follow the methodology of Davis and Heathcote (2007) and
compute the FHFA land-price index. The series is seasonally adjusted.

Both FHFA and CoreLogic data are all transactions, but the CoreLogic data
include nonconforming mortgages. Why do we not use the CoreLogic data in
place of the FHFA data? The reason is that the CoreLogic house price data
have serious problems in the early part of the sample. First of all, the number
of repeat sales in the early part of the sample is much less than in the later part.
For example, the total number of repeat sales per year as a percentage of the
total number of existing single-family home sales from the National Associa-
tion of Realtors does not exceed 15% until 1980.

Second, the geographic coverage of the CoreLogic index is not as broad in
the early part of the sample. For example, the CoreLogic index did not include
all states until 2000. By contrast, the FHFA publishes an all-transactions state
index for each of the U.S. states all the way back until 1975. Thus, the FHFA
had comprehensive geographic coverage even in the early part of the sample.’

Third, CoreLogic overweighs certain states, especially California and Flori-
da, in the early part of the sample. We compute the share of single-family
homes in the United States that are in California and Florida using the 10-year
Census® and linearly interpolate them. Then we compute the share of repeat
sales in the CoreLogic data by year that are in California and Florida. From
1976 to 1981, for example, roughly 40% of the sales in the CoreLogic sample
are in California or Florida.

"Given the very large swings in FHFA home prices for some states in the early part of the
sample, there probably exist small sample issues for some states early on.
8The data are available at http://www.census.gov/hhes/www/housing/census/historic/units.html.
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To overcome these problems in the early part of the sample, we seasonally
adjust FHFA home price index for 1975Q1-1980Q4 and splice this index to-
gether with Haver Data’s seasonally adjusted CoreLogic home price index for
the third month of a quarter (Haver Data key: USLPHPIS@USECON) for
198101 to present. We then follow the methodology of Davis and Heathcote
(2007) and compute the CoreLogic land price index.

E.2. The Quantity of Land: Model Implications and Some Evidence

As we discuss in the paper (Section 4.3), our model implies a land-
reallocation effect when the land price rises. The mechanism works in the
following way. Following a positive housing demand shock, the land price rises
and the entrepreneur’s net worth increases. The entrepreneur is able to bor-
row more to finance investment and production. As production expands, the
entrepreneur needs to acquire more land and labor (as well as capital). The
expansion in production raises the household’s wealth and triggers competing
demand for land between the household and the entrepreneur. Such compet-
ing demand for land further pushes up the land price. The extent to which land
is reallocated depends on parameter values, although the competition for land
between the two sectors raises the land price unambiguously.

In our estimated model, the entrepreneur ends up with owning moderately
more land in equilibrium. Figure S.7 shows the impulse responses land hold-
ings by the household and by the entrepreneur following a positive housing
demand shock. The figure shows that the quantity of land reallocated between
the two sectors is small. With estimated parameters, the entrepreneur’s land
holdings increase by a bit less than 3% of total land (and symmetrically, the
household’s land holdings decrease by a bit less than 3% of total land).

To examine whether the model’s land reallocation mechanism is empirically
plausible, we need data on land quantities. Unfortunately, land quantity, espe-
cially commercial land quantity, is poorly measured and extremely unreliable.
The main measures of land quantity that we can find were constructed by Davis
and Heathcote (2007) based on data from the Bureau of Economic Analysis
(BEA) and Bureau of Labor Statistics (BLS).

The BEA-BLS measure shows that total land quantity has grown slightly
over time. If some residential land is converted into commercial land in pe-
riods when land prices boom, then we should expect to see residential land
growth slow down when land prices are rising. Figure S.8 displays the real land
price (left scale) and the growth rate of residential land (right scale). The fig-
ure is based on the CoreLogic data, whose broad coverage of mortgage types
is likely to improve the quality of the measurement of the land quantity, espe-
cially for the period after 1990. The figure shows that residential land growth
slowed down substantially during the land-price booms in the first half of the
2000s. Since aggregate land supply grows slowly, we take this observation as
suggestive evidence that land flows from the household sector to the business
sector when land prices rise.



26 Z.LIU, P. WANG, AND T. ZHA

Housing demand shock

0.005

—-0.005
-0.01
-0.015

Household’s land

-0.02
-0.025[
-0.03

0.03
0.0251
0.02
0.015
0.01
0.005

Entrepreneur’s land

—-0.005

Quarters

FIGURE S.7.—Impulse responses of land in each sector following a positive housing demand
shock in the benchmark model.

To obtain the quantity of commercial land directly, the best matched series
is probably measured by the land in nonfarm business sector, which is available
only on an annual basis. As the growth rate of commercial land before 2001 is
extrapolated by the BLS relying on the strong assumption that land-structure
ratios are based on data from 2001 for all counties in Ohio, the quality of the
series before 2001 is extremely poor because of this highly unreliable extrapola-
tion. Even for residential land, Davis and Heathcote (2007) are most confident
in their land estimate only from 2000 on. The BLS measure suggests that com-
mercial land growth accelerated from a little under 1% in 2001 to about 2% in
2006 during the booming years of land prices. Thus, the available data do not
seem to contradict our model’s implications.

While the data do not seem to contradict our theoretical predictions about
reallocation between residential land and commercial land, we caution against
overinterpretation. The quality of data on land quantities is so poor and their
measurement is so fragmentary that future studies into this issue are war-
ranted.

E.3. Commercial and Residential Real Estate Prices

In our paper, we use prices of residential real estate as a proxy for those
of commercial real estate for three main reasons. First, prices of commercial
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FIGURE S.8.—Log real land prices (on the left scale) and quarterly changes of land quantity
(on the right scale). The shaded area marks NBER recession dates.

real estate are not as well measured as those of residential real estate. Second,
the data history is much shorter for commercial real estate than for residential
real estate. Third, the two series are highly correlated. Figure S.9 displays the
CoreLogic national house price index and the RCA-based national commercial
real estate price index (both series come from the HAVER data analytics).
Despite the short sample for commercial real estate prices, one can see clearly
that the two series, residential and commercial real estate prices, are strongly
correlated.

APPENDIX F: SOME VARIATIONS IN THE MODEL, THE DATA, AND THE
ESTIMATION APPROACH

In this appendix, we discuss a few variations in our model setup, the data
that we use, and our estimation approach.
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FE1. Model With Working Capital and Growth of Land Supply

This section presents a variation of our benchmark model by incorporating
working capital and growth in land supply.

F1.1. The Model

As in the benchmark model, the economy consists of two types of agents—
a representative household and a representative entrepreneur. There are four
types of commodities: labor, goods, land, and loanable bonds. The representa-
tive household’s utility depends on consumption goods, land services (hous-
ing), and leisure; the representative entrepreneur’s utility depends on con-
sumption goods only. Goods production requires labor, capital, and land as
inputs. The entrepreneur needs external financing for investment spending.
Imperfect contract enforcement implies that the entrepreneur’s borrowing ca-
pacity is constrained by the value of collateral assets, consisting of land and
capital stocks.

We add two variations here. First, we assume that a fraction ¢,, of firms’
wage payments needs to be financed by working capital, which is repaid within
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the period and carries no interest. This modification implies that the total
amount of debt, including the intertemporal loans and the working capital,
is limited by the value of the firms’ collateral assets (land and capital). Second,
we assume that aggregate land endowment grows at a constant rate of A;. To
maintain balanced growth, we assume that existing land holdings in each sector
also grow at the same rate absent any shocks. Shocks that drive land realloca-
tion would lead to different growth rates of land held in the two sectors.

We obtain two main results. First, absent working capital (i.e., ¢, = 0), the
model with exogenous land growth has an identical steady-state equilibrium
and fluctuations around the steady state as in the benchmark model. Second,
the parameter estimates in the model with working capital are very similar to
those in the benchmark model.

FE1.1.1. The Representative Household. Similarly to Iacoviello (2005), the
household has the utility function

(8'96) EZ :BtAt{lOg(Cht — 'YhCh,t—l) + (Ptlothz - l!/zNht},

t=0

where C,, denotes consumption, L, denotes land holdings, and N,, denotes
labor hours. The parameter 8 € (0, 1) is a subjective discount factor, the pa-
rameter y, measures the degree of habit persistence, and the term E is a math-
ematical expectation operator. The terms A4,, ¢,, and ¢, are preference shocks.
We assume that the intertemporal preference shock A, follows the stochastic
process

(897) At = At—l(l + )\at); In )\at = (1 - pa) In ;\a + P In )\a,t—l + &,

where A, > 0 is a constant, p, € (—1, 1) is the persistence parameter, and &,,
is an independent and identically distributed (i.i.d.) white noise process with
mean zero and variance o. The housing preference shock ¢, follows the sta-
tionary process

(S98) Ine,=(1-p,)Ing+p,lng,_;+ &4,

where ¢ > 0 is a constant, p, € (—1, 1) measures the persistence of the shock,
and &, is a white noise process with mean zero and variance o.. The labor
supply shock ¢, follows the stationary process

(S.99) Ing,=(—py)Inh+p,Inegs,_; + &y,

where ¢ > 0 is a constant, p, € (—1, 1) measures the persistence, and ¢, is a
white noise process with mean zero and variance o,

Denote by g, the relative price of housing (in consumption units), R, the
gross real loan rate, and w, the real wage; denote by S, the household’s pur-
chase in period ¢ of the loanable bond that pays off one unit of consumption
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good in all states of nature in period ¢ 4 1. In period 0, the household begins
with L, _; > 0 units of housing and S_; > 0 units of the loanable bond. The
flow of funds constraint for the household is given by

< N
(5.100)  Cpr + qu(Lpt — ALy 1) + Et <wNp + 81,
t
where we have imposed the implicit assumption that the household’s Iand hold-
ing grows “naturally” at the constant rate A,.
The household chooses Cy,, Ly, Ny, and S, to r_naximize (5.96) subject to
(5.97)—(5.100) and the borrowing constraint S, > —S for some large number S.

F1.1.2. The Representative Entrepreneur. 'The entrepreneur has the utility
function

(S.101) E B[log(Cer — ¥eCer1)],

t=0

where C,, denotes the entrepreneur’s consumption and v, is the habit persis-
tence parameter.

The entrepreneur produces goods using capital, labor, and land as inputs.
The production function is given by
(8.102) Y, =Z[L? K ']'NL=,
where Y, denotes output, K, ;, N, and L., ; denote the inputs capital, labor,
and land, respectively, and the parameters « € (0, 1) and ¢ € (0, 1) measure
the output elasticities of these production factors. We assume that the total
factor productivity Z, is composed of a permanent component Z/ and a tran-
sitory component v, such that Z, = Z'v,,, where the permanent component Z/
follows the stochastic process

(5-103) th = Z;p_1/\zt, InA,;=({1-p;)n /_\z +p:InA; o+ e,
and the transitory component follows the stochastic process
(5.104) Inv,=p, Inv,, 1+ e,,.

The parameter A, is the steady-state growth rate of Z!; the parameters p,
and p,, measure the degree of persistence. The innovations ¢, and ¢,,, are
i.i.d. white noise processes that are mutually independent with mean zero and
variances given by o7 and o, respectively.

The entrepreneur is endowed with K_; units of initial capital stock and L_; ,
units of initial land. Capital accumulation follows the law of motion

Q1 -\
(S.105) K,=(1—8)K,_1+[1——< —/\1) }L,
2\I,
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where I, denotes investment, A; denotes the steady-state growth rate of invest-
ment, and (2 > 0 is the adjustment cost parameter.
The entrepreneur faces the flow of funds constraint

(S.106) Cor+ qu(Les — MiLes1) + Bis
— « —a I B
=Z[L? K PN — 51[ — w,N,, + ﬁi’

where B;_; is the amount of matured debt and B;/R; is the value of new
debt. Following Greenwood, Hercowitz, and Krusell (1997), we interpret Q,
as the investment-specific technological change. Specifically, we assume that
O, = Q/v,, where the permanent component Q; follows the stochastic pro-
cess

(S107) QF=QF Ay, InAy=0—p)InA,+p,InA,, i+ &g,
and the transitory component w, follows the stochastic process
(S.108) Invy, =p,, Inv,, 1 +&,,.

The parameter A, is the steady-state growth rate of Qf; the parameters p,
and p, measure the degree of persistence. The innovations &, and ¢, are
i.i.d. white noise processes that are mutually independent with mean zero and
variances given by o and o;, , respectively.

The entrepreneur’s consumption, investment, and production can be partly
financed externally. In addition, a fraction ¢,, of the wage payments need to
be financed externally. In particular, the entrepreneur faces the borrowing con-
straint

(S.109) B, < HtEt[¢qu,t+th + ¢15\1q1,t+1Let] - ¢wthetha

where g, .41 is the shadow price of capital in consumption units.” Under this
credit constraint, the amount that the entrepreneur can borrow is limited by
a fraction of the value of the collateral assets—land and capital—net of the
required repayment of working capital. The constants ¢, and ¢, represent the
fractions of capital and land that can be pledged as collateral. Note that the
collateral value of land grows at the rate A;, as does the entrepreneur’s land
holdings.

Following Kiyotaki and Moore (1997), we interpret this type of credit con-
straints as reflecting the problem of costly contract enforcement: if the en-
trepreneur fails to pay the debt, the creditor can seize the land and the accu-
mulated capital; since it is costly to liquidate the seized land and capital stock,

°Since the price of new capital is 1/Q,, Tobin’s g in this model is given by g, Q;, which is the
ratio of the value of installed capital to the price of new capital.
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the creditor can recoup up to a fraction 6, of the total value of the collateral
assets. We interpret 6, as a “collateral shock” that reflects the tightness of the
credit market. We assume that 6, follows the stochastic process

(S.110) In6,=(1—py)Inb+ pyInb,_; + &4,

where 6 is the steady-state value of 8, p, € (0, 1) is the persistence parameter,
and &y, is an i.i.d. white noise process with mean zero and variance o;.

The entrepreneur chooses C,,, N, I;, L., K,, and B, to maximize (S.101)
subject to (S.102) through (S.110).

F.1.1.3. Market Clearing Conditions and Equilibrium. In a competitive equi-
librium, the markets for goods, labor, land, and loanable bonds all clear. The
goods market clearing condition implies that

I,
(S11) G+ 5 =Y,

where C, = C;, + C,, denotes aggregate consumption. The labor market clear-
ing condition implies that labor demand equals labor supply:

(S.112) N,=N,=N,.

The land market clearing condition implies that

(S113) Ly +L,=AL,

where L is the fixed aggregate land endowment. Finally, the bond market clear-
ing condition implies that

(S.114) S, =B..

A competitive equilibrium consists of sequences of prices {w,, g, R,}?2, and
allocations {Cy, Cer, 11, Ny, Nety Lyg, Let, S, Br, Ky, Y122, such that (i) taking
the prices as given, the allocations solve the optimizing problems for the house-
hold and the entrepreneur, and (ii) all markets clear.

F.1.2. Derivations

F1.2.1. Euler Equations. Denote by u,, the Lagrangian multiplier for the
flow of funds constraint (S.100). The first-order conditions for the household’s
optimizing problem are given by

1 _E BYn
Chni — ¥ Chia tCh,z+1 = YuCi

(8115) Mpt = Al|: (1 + )la,t+1):|a

A
(S.116) w, = —y,,
Mont
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- A
(S117) qu = BB Rg, 0 + =21,
Mope WhrLpy
1
(S.118) — = BE, :U«h,t+1.
R, Mone

Equation (S.115) equates the marginal utility of income and of consumption;
equation (S.116) equates the real wage and the marginal rate of substitution
(MRS) between leisure and income; equation (S.117) equates the current rel-
ative price of land to the marginal benefit of purchasing an extra unit of land,
which consists of the current utility benefits (i.e., the MRS between housing
and consumption) and the land’s discounted future resale value; and equation
(S.118) is the standard Euler equation for the loanable bond.

Denote by u., the Lagrangian multiplier for the flow of funds constraint
(S.106), wy, the multiplier for the capital accumulation equation (S.105), and
Wy, the multiplier for the borrowing constraint (S.109). With these notations,
the shadow price of capital in consumption units is given by

(S.119) gy = 24

et

The first-order conditions for the entrepreneur’s optimizing problem are given
by

1 B B.
- L s
Cet - ’Yece,t71 Ce,t+1 - 'Yecet
Y,

et

; (s -n) a(is-a) ]
S.122 — = 1——|— =2 — O — — A | —
5122 5 q"’[ 2(1,1 ! I M1

Mee,t+1 I < I :
+ BQEZ—qk,t+1 — )\I — s
et It It

(S.120)  pre =

Mobt

et

(S.121) (1-a)

= |:1 + du Rti|wt7

Mo

et

. Y,
(S.123)  qu = BE,Fet [a I‘gl +qk,,+1<1—8>} + 220, E qi.rs15

et t

. Yoi | - .
(S.124) g, = BE, et [a¢ AL +Alqz,m] +%0t¢sztql,l+1,
t

et Let e
1 e
(S.125) — = pE,Fert 4 B
Rl‘ Meer Meet

Equation (S.120) equates the marginal utility of income to the marginal utility
of consumption since consumption is the numéraire. Equation (S.121) is the
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labor demand equation. Since part of the wage payment needs to be externally
financed by working capital (¢, > 0), the effective cost of labor exceeds the
market wage rate if the borrowing constraint is binding. Equation (S.122) is
the investment Euler equation, which equates the cost of purchasing an addi-
tional unit of investment good and the benefit of having an extra unit of new
capital, where the benefit includes the shadow value of the installed capital
net of adjustment costs and the present value of the saved future adjustment
costs. Equation (S.123) is the capital Euler equation, which equates the shadow
price of capital to the present value of future marginal product of capital and
the resale value of the un-depreciated capital, plus the value of capital as a col-
lateral asset for borrowing. Equation (S.124) is the land Euler equation, which
equates the price of the land to the present value of the future marginal prod-
uct of land and the resale value, plus the value of land as a collateral asset for
borrowing. Equation (S.125) is the bond Euler equation for the entrepreneur,
which reveals that the borrowing constraint is binding (i.e., u, > 0) if and only
if the interest rate is lower than the entrepreneur’s intertemporal marginal rate
of substitution.

F1.2.2. Stationary Equilibrium. We are interested in studying the fluctua-
tions around the balanced growth path. For this purpose, we focus on a station-
ary equilibrium by appropriately transforming the growing variables. Specifi-
cally, we make the following transformations of the variables:

5 Y, =~ Ci =~ Ce = I, 5 K,
S126) Y, =—, Cy=—, C,= , = , K/,= >
(G120 Y=, Cu=Tr Ce=Tn L=51 K=0T

. B - w . I; - ~

BtE_t’ wt:Tt’ ILL//LIEMZ [’ Iu’EIEM’L’ZI;’ /"thE/"LhtI-;’

t t t
~ A ~ ~ L = LL
qi = @y 9kt = thQt, L, = l: L,=—= t;

A;

where T}, = [Z,Q!'#*(A})a]/0-0=h),
Denote by g, = % and g, = & the growth rates for the exogenous vari-

ables I and Q,. Denote by g, the steady-state value of g,, and by A, = g, A,
the steady-state growth rate of capital stock. On the balanced growth path,
investment grows at the same rate as does capital, so we have A; = ;.

The stationary equilibrium is the solution to the following system of equa-
tions:

- 1
(S-127) Mht = = = —E/ = 'B’Yh = (1 + )\a,tﬂ),
Chi — vn Ch,t—lrt—l/rz Ch,r+1r:+1/rt — YuCh
(8.128) i, =L,
Mont
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(S.129) G = BE (1 4 Ay )it +

2

Mops ,U«htLht
1
(8130) — = BE, P 1oy p i,
¢ Mone Lt
1 .
(S131) fiu = By

< ~ - Et ~ ~
Cet - 'Yece,t—lrt—l/-rz' Ce,t+lrt+1/rt - 'YeCez

(S.132) d-aoX [t e. 2R ],
N, Meet

_ QI oL - >2
S.133) 1= l——(=———"—-A
( ) th|: 2 (I;1 QF]E—] !
_Q(L oI —x,)i oI }
I, Qi I Qi
/vLe t+1 QtI; q
et Qriilin foret

5 <it+1 Quilin 5 )(% erm)z
P - ' ~ P
I, O I, Od,

+ BAE,

(S.134) G =BE~ i”“[ (1— ¢y Xen + Gt A 2, (1_5)}
et z Qt+lE+l
th 0 ¢kE Qk t+1 QQ[ 5
et t+1
. Y, i _ T
(8.135) qu= BEtM~ ad I:a(b AL +4q. t+1] &Ot(f)lthl,tHila
et et Meet I;
1 /*Lc t+1 Ft /lbt
$.136) — =BE, ey
( ) Rt B :uet I_;+l Mot
. 7,0, \ U-#i-t-ow o
(8.137) Y, = (ﬁ) (R0 [ [ RI-0]" N1~
t—1%t—
. _ 0.0, [ (z( I, or . >z]
S.138) K, =(1-906)K,_ +l1l—==——=—-A 1,
( ) = K, o, 5 i 0. I [

(8.139) Y, =C+C..+1,
(S.140) L =L + L.,
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o s N B
(8141) Yl:Cet+lt+qlt(Let_Le,t—l)+Bl—l 11+thz__ta
I R,
I
(S 142) B _0E|:¢qut+lK QQ + h1q1,41 Itjl ] ¢ RN, .
t+1 t

We solve these 16 equations for 16 variables summarized in the vector
[/:Lht’ ﬁ)t’ qlt’ Rta /:Leta Nt, ita Yh Cht) Ceh ékn Leta th kta Bta /:th]/'

F1.2.3. Steady State. To solve the model’s equilibrium dynamics, we log-
linearize the stationary equilibrium conditions summarized in (S.127)—(S.142)
around a deterministic steady state. The set of steady-state values required for
solving the model include the shadow value of the loanable funds @ , the labor
LIILE

income share “¥, the ratio of commercial real estate to aggregate output

L h

the ratio of r651dentlal land to commercial real estate =2, the ratio of loanable

funds to output = 3 the capital-output ratlo =, and the “blg ratios” Cf’, CY‘, and
I
7.

To get the steady-state value for £ “l’ , we use the stationary bond Euler equa-

tions (S.130) for the household and (S 136) to obtain

1 14+ A, T A
(5.143) = PUHTAD - py _ Bhe
R 8 Be 8

Since A, > 0, we have [, > 0 and the borrowing constraint is binding in the
steady-state equilibrium.
Given 22, (S.132) implies that the labor share (denoted by s,) is given by

wN 1l—«
w/_\a.

+¢ =
1+ A,

To get the ratio of commercial real estate to output, we use the land Euler
equation (S.135) for the entrepreneur, the definition of f, in (S.131), and the
solution for 2 in (S.143). In particular, we have

s.145) ILe__ Bad
Y 1-B-BA.0¢

To get the investment-output ratio, we first solve for the investment-capital
ratio by using the law of motion for capital stock in (S.138) and then solve for
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the capital-output ratio using the capital Euler equation (S.134). Specifically,
we have

(S.146)

I
K Ak
R L -1
(S.147) == [1 - )\E(/\a(?q&k +1- 6)] Ba(l—¢),
k
where we have used the steady-state condition that g, = 1, as implied by the

investment Euler equation (S.133). The investment-output ratio is then given
by

(S.148) I _ITK_Bal=¢)h—d=0)]
Y KY A—BOd,+1-9)

Given the solution for the ratios ‘“;e and % in (S.145) and (S.147), the bind-
ing borrowing constraint (S.142) implies that

é CIIL 0 K

Rs,.
/\q Y

(S.149)

The entrepreneur’s flow of funds constraint (S.141) implies that

C. I B/1 1
(3.150) 1=T+T+T(———)+sn.
y v v\lg R

The aggregate resource constraint (S.139) then implies that

C c. I
(S151) ZL=1-Z=-=
Y Yy v

To solve for , we first use the household’s land Euler equation (i.e., the

housing demand equatlon) (S.129) and the definition for the marginal ut111ty
(S.127) to obtain

qiLy, o(8y — Yn)
S.152 — = )
( ) C, gv(l_gy/R)(l_Yh/R)

where the steady-state loan rate is given by (S.143).
Taking the ratio between (S.152) and (S.145) results in the solution

Ly @(gy—v)(1—B— B0 Ch
S.153) h— G
( ) Le ,Ba(;bgy(l - gy/R)(l - y11/R) Y
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Finally, we can solve for the steady-state hours by combining the labor supply
equation (S.128) and the labor demand equation (S.132) to get

g&(1—v/R) s, ¥

(S.154) N = n 2
gY_Yh l//Ch

F1.2.4. Log-Linearized Equilibrium System. Upon obtaining the steady-
state equilibrium, we log-linearize the equilibrium conditions (S.127) through
(S.142) around the steady state. We define the constants (2, = (g, — B(1 +
A) Y (g, — vi) and Q, = (g, — BY.)(g, — ¥.)- The log-linearized equilibrium
conditions are given by

(S.155) Dufune = —[g2 + V2B +A)]Coi + & ¥i(Crimr — &)
— BAaYn(8y — Yi)EiAa it
+ B+ A)gVE(Chrsr + £yis1),
(S.156) 1, + fun = Py,
(SA57) G+ fane = BA+ ADElfonip1 + Groii]
+[1 =B+ 2] (@ — L) + BAE g1,
(S.158) fu —R, =E, [ﬂh,m + HA—‘}\Xa,Hl - é’y,m},

(8159) Qellel = _(gi + B’)é)ée,t + g'y’)/e(ée,tfl - g'yl)
+ BgyVeEt(ée,zH + gy,zﬂ),

s 7 gbwi\a

(S.160) Y, —N, — (Ry + fipe — fler) + 101,

TS S
(S.161) Guu= 1+ B2, — QN + QX2 (8 + 80r)
— BOXE [ 1 + &yivr + g1,

. . Ly 0 R A (1-9)
(S162)  Gur + fru = @%(M, )+ B/\—

e q k

iy 0 . i, O . .
+ (1 - &%>Etﬂe,t+l + &%Et(qk,t-kl - gq,t+1)

MHe A4

Et(ék,t-#l - gq,t+1 - gy,t-H)

Y A N
+ Ba(l — d))EEz(YzH -K)),



(S.163)

(S.164)

(S.165)

(S.166)

(S.167)

(S.168)

(S.169)

(S.170)
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Qi + flee = %gyéd)l(ét + ) + (1 - %g«yé(f)l)Etﬁe,zH

+ %g«/é@Et(@z,m + &yit1)

+ BEGri1 + (1 — B— BAOG)E Y1 — L],

. A 1 N S A
Mot — R, = 1+ 1 [E (Be,iv1 — &yas1) + )\a/-'l/bt],

Vi=a¢L,, 1+a(l—$)K, 1+ (1—a)N,
(1-¢)a

- m[gﬂ + 8al,
N 1-6 4 . . 1—-6)\-~
K[ = Ak [K[—] - gyt - gqt] + 1 - )\k Il7
. C C. I
YIZThChz+TCLt+ ~It5
Y Y
Ly~ L.
0= Ttht + TLet:
L L
U SRS S o
IZTCe,t‘f'? z‘f‘ql? (Let_Le,z—1)+Sn(wz+Nz)

1 1B ~ 4
+g_?(Bt 1= gyt) _?(Bt_Rt)7

A N . Y
Bt=0t+gy0¢ ql BE(q11+1+Let+gyt+1)
+ Oﬂ__E (qk t+1 +Kt gq,t+1) - d)wsnRz(ﬁ)t +Nt +1’ét)
A YB B

The terms &.,, ., and g,, are given by

(S.171)
(S.172)

(S.173)

8= Azl‘ + Vyy — Uz 115
8qt = Agr + Vg — Vg1,

1 R (1—¢>)a A
"o T — )t

8yt =
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The technology shocks follow the processes

~ ~

(S174) Ay =p.A.1+ &
(S8175) .= pu. 21 + 80t
(S.176) Ay = pyAgio1 + Eqir
(S.177) Dy = Py, Pyio1 + &y
There preference shocks follow the processes

(S.178)  Aur = pulast + Ears
(S.179) 4)[ = p¢¢t—1 + é¢,[,
(S180) i, = pyihios + &y

The liquidity shock follows the process
(S.181) 6, = pyb,_; + 2.

We solve the 19 equations (S.155) through (S.173) for the 19 unknowns in
the vector

Xy = [I-tha wt; qltaRty /-’Leta I*LhtyNHIty Yt, Cht7
~ n A A N A “ -
Ceta qkt’LhtaLeta Kttha gyta gzta gqt] .

The state variables consist of the predetermined variables and the exogenous
forcing processes summarized in the vector

8= [Ch,t—l, Ce,t—la 1,4, Le,t—ly K, 1,Bi 4,

~

A A N A N A A
/\227Vt7 )\qta I‘Lta )\aty (Pta wta Ot] .

We use Chris Sims’s gensys algorithm to solve the model.

FE1.2.5. Estimation Results. To estimate the model, we follow the litera-
ture by calibrating the value of ¢,, at 0.75 (Christiano, Motto, and Rostagno
(2010)). Since growth of land supply does not affect equilibrium dynamics,
we set A; = 1, corresponding to no growth in aggregate land supply, consistent
with the evidence on land quantity discussed in Appendix E of this Supplemen-
tal Material.

As shown in Tables S.I and S.II, the estimated parameters in the model with
working capital (in the columns under the heading “WK”) are similar to those
in the benchmark model (in the column under “Bench”). The estimation re-
sults are even closer to those in the benchmark model when the value of ¢, is
calibrated to be less than 0.75.
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TABLE S.1
POSTERIOR MODE ESTIMATES OF STRUCTURAL PARAMETERS?

Parameter Bench Alt Regime WK CoreLogic No Patience Latent IST
Vi 0.4976 05660  0.4922  0.4988 0.5323 0.5392 0.5819
Ve 0.6584  0.8398 0.6592 0.6674 0.5444 0.7375 0.6335
0 0.1753 63513  0.1642  0.1603 0.2923 0.1997 0.1831
100(g, — 1) 0.4221 0.3736 0.4493 0.4072 0.4352 0.3200 0.4335
100(A, — 1) 1.2126 1.2484 1.2206 1.2071 1.1889 1.2110 1.3750
B 0.9855 09706  0.9848  0.9860 0.9852 0.9884 0.9853
Aa 0.0089 0.0239 0.0099 0.0083 0.0094 0.0050 0.0093
1% 0.0457  0.0495 0.0436 0.0468 0.0447 0.0535 0.0449
¢ 0.0695 0.0694 0.0696 0.0695 0.0698 0.0694
13 0.0368 0.0369 0.0364 0.0370 0.0369 0.0378 0.0351

4The columns of numbers are the posterior mode estimates in various models. “Bench” denotes the benchmark
model; “Alt” denotes the alternative model in which land is not used as collateral; “Regime” denotes the Markov
regime-switching model; “WK” denotes the model with working capital; “CoreLogic” denotes the benchmark model
estimated using land prices constructed based on the CoreLogic home price index; “No patience” denotes the bench-
mark model with no patience shocks; and “Latent IST” denotes the benchmark model estimated by treating the
investment-specific technology shocks as a latent variable.

E.2. Other Variations in the Model and the Data

This section presents a few other variations of the benchmark model and
some alternative data for estimation.

F2.1. DSGE Model Estimated With CoreLogic Data

The land-price series we use for the benchmark model is based on the FHFA
home price index. In Appendix E of this Supplemental Material, we discuss
advantages and disadvantages of using this price index series relative to using
other land-price indices. To examine whether our main findings are robust to
different land-price series, we fit our model to the data in which the FHFA
land-price series is replaced by the CoreLogic land-price series.

Tables S.I and S.II show that the estimated parameters using CoreLogic data
are similar to those using the FHFA data, except that the volatility of hous-
ing demand shocks is substantially higher. The CoreLogic data imply a more
volatile land-price series because CoreLogic has a broader coverage of home
prices than does FHFA: it includes both conforming loans and jumbo loans
and it covers distressed home sales including short sales and foreclosures.

With the CoreLogic land-price data, housing demand shocks account for
over 50% of investment fluctuations (see Table S.I11I, the column under “Core-
Logic”). Thus, our results are robust with this different measure of land prices.

F2.2. Regime-Switching Models: VAR and DSGE

Our land-price series spans the sample from 1975 to 2010, covering several
recession periods with changes in macroeconomic volatility (Stock and Watson
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TABLE S.II
POSTERIOR MODE ESTIMATES OF SHOCK PARAMETERS?

Parameter Bench Alt RS WK CL No Patience Latent IST
Pa 0.9055 0.0883 0.9034 0.9479 0.9040 0.9928
o 0.4263 0.8798 0.4256 0.4040 0.5333 0.6826 0.4671
P, 0.0095 0.8770 0.0106 0.0501 0.3804 0.8782 0.0000
Py 0.5620 0.4172 0.5494 0.5671 0.6649 0.5719 0.5856
Py, 0.2949 0.4471 0.2836 0.2838 0.3947 0.3246 0.2914
Po 0.9997 0.9690 0.9995 0.9998 0.9999 0.9998 0.9979
Py 0.9829 0.9749 0.9816 0.9959 0.9810 0.9886 0.9997
Do 0.9804 0.9623 0.9793 0.9894 0.9884 0.9852 0.9663
a, 0.1013 3.8118 0.0887 0.0941 0.1463 0.0001
o, 0.0042 0.0012 0.0042 0.0043 0.0033 0.0033 0.0057
o, 0.0037 0.0063 0.0037 0.0036 0.0044 0.0071 0.0037
oy 0.0042 0.0057 0.0042 0.0041 0.0041 0.0041 0.0062
Ty, 0.0029 0.0001 0.0029 0.0030 0.0029 0.0029 0.0001
o,(1) 0.0462 0.1985 0.0316 0.0485 0.1080 0.0436 0.0566
0,(2) 0.0785

oy 0.0073 0.0106 0.0073 0.0076 0.0081 0.0079 0.0087
oy 0.0112 0.0171 0.0112 0.0114 0.0237 0.0116 0.0116
Pu 0.9792

) 205 0.9664

2The columns of numbers are the posterior mode estimates in various models. “Bench” denotes the benchmark
model; “Alt” denotes the alternative model in which land is not used as collateral; “Regime” denotes the Markov
regime-switching model; “WK” denotes the model with working capital; “CoreLogic” denotes the benchmark model
estimated using land prices constructed based on the CoreLogic home price index; “No patience” denotes the bench-
mark model with no patience shocks; and “Latent IST” denotes the benchmark model estimated by treating the
investment-specific technology shocks as a latent variable.

TABLE S.III

CONTRIBUTIONS (IN PERCENT) TO INVESTMENT FLUCTUATIONS FROM A HOUSING
DEMAND SHOCK?

Horizon Bench WK No Patience Latent IST CoreLogic High Vol Low Vol
1Q 35.46 37.26 34.10 41.10 55.74 60.49 19.19
4Q 41.19 40.17 39.31 46.35 58.68 66.31 23.39
8Q 38.71 38.18 37.27 39.02 57.90 63.96 21.59
16Q 33.70 34.99 31.74 28.48 54.60 58.85 18.16
24Q 30.67 33.51 28.66 23.48 52.18 55.46 16.19

2The column labeled by “Bench” reports the contributions in the benchmark model; the column “WK” reports
those in the model with working capital; the column “No patience” reports the results in the benchmark model with no
patience shocks; the column “Latent IST” reports those in the benchmark model estimated by treating the investment-
specific technology shocks as a latent variable; the column “CoreLogic” reports the results from the benchmark model
with the CoreLogic data on the land price; and the columns “High vol” and “Low vol” report the contributions under
the high- and low-volatility regimes from the regime-switching benchmark model.
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(2003), Sims and Zha (2006), Taylor (2007)). It is therefore important to inves-
tigate how our results are affected when volatility changes are explicitly taken
into account.

We first fit our bivariate BVAR with a regime-switching process on the
volatility of a shock to land prices, following the approach of Sims, Waggoner,
and Zha (2008). We find that the best-fit model is a Markov-switching BVAR
with two volatility regimes. Figure S.10 shows that the high-volatility regime is
associated with the periods in the late 1970s, the early 1980s, and the recent
deep recession; and that the low-volatility regime corresponds to the Great
Moderation period. In Figure S.11, we display the joint dynamics of land prices
and business investment for both volatility regimes. Comparing to the impulse
responses estimated from the constant-parameter BVAR model (reported in
Figure 2 of the paper), the qualitative patterns of the impulse responses do not
change. The main difference lies in the magnitude of responses to the land-
price shock under the two volatility regimes.
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FIGURE S.10.—The posterior probability of the regime with a high volatility from the
regime-switching BVAR model. The shaded area marks NBER recession dates.
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FIGURE S.11.—Impulse responses to a shock to the land price from a Markov-switching BVAR
model.

To examine implications of regime shifts in shock volatility in our DSGE
model, we generalize the benchmark model to allow for regime shifts in the
volatility of a housing demand shock, with the following heteroskedastic pro-
cess:

(S182) Ine,=(1—py)Ine+p,Ine, 1+ 0,(s) e,

where the shock volatility o,(s,) varies with the regime s,. We assume that
the shock volatility switches between two regimes (s, = 1 or s, = 2), with the
Markov transition probabilities summarized by the matrix P = [p;], where
pij =Prob(s, =ils,=j) for i, j€{1,2}, pn=1— pn,and pyy=1- py;.

We estimate this regime-switching DSGE model using the approach de-
scribed in Liu, Waggoner, and Zha (2011). In the estimation, we adopt the
same prior distributions for the parameters and use the same data set as in our
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benchmark model. The posterior mode estimates of the structural parameters
and the shock parameters are very similar to those in the benchmark model, as
shown in Tables S.I and S.II (in the columns under the heading “RS”).

The estimated volatility of a housing demand shock has two distinct regimes:
a low-volatility regime (regime 1 with o, = 0.03) and a high-volatility regime
(regime 2 with o, = 0.08). The posterior mode estimates of the Markov-
switching probabilities (p;; = 0.9794 and p,, = 0.9662) indicate that both
regimes are highly persistent, although the low-volatility regime is more per-
sistent than the high-volatility regime.

Figure S.12 shows the probability of the high-volatility regime throughout
the sample periods. It indicates that the high-volatility regime is associated with
periods of large declines in land prices (covering the two recessions between
1978 and 1983 and the recent deep recession).

According to the estimated variance decompositions, a housing demand
shock accounts for about 20% of investment fluctuations in the low-volatility
regime and 55-65% in the high-volatility regime (see the last two columns in
Table S.III). Since the high-volatility regime captures periods with both large
recessions and large declines in the land price, a housing demand shock plays
a more important role for explaining the dynamics in land prices and business

1 = T TIT T - T ” aant 1
Land price (left scale)
Regime probability (right scale)

05 410.8

!
o
(2]

Land price

N
—
<

Probability of high volatility regime

b

5 L 0
1975 1980 1985 1990 1995 2000 2005 2010 2015

FIGURE S.12.—Log real land prices (left scale) and the posterior probability of the regime with
larger volatility from the regime-switching model (right scale). The shaded area marks NBER
recession dates.
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investment during recessions. This finding is consistent with Claessens, Kose,
and Terrones (2011), who found that a recession is typically deeper than other
recessions if there is a sharp fall in housing prices.

In addition, we estimate our DSGE model by increasing the number of
volatility regimes to three, and compute the marginal data density for each of
the three models: the benchmark DSGE model (2344.0), the DSGE with two
volatility regimes (2354.1), and the DSGE model with three volatility regimes
(2353.2). According to these marginal data density results, the data favor the
DSGE with two volatility regimes. We did not estimate a DSGE model with
possible shifts in coefficients partly because there is no consensus on which
parameters should be allowed to switch regime and partly because the task
of solving and estimating a DSGE model with coefficients switching regime
continues to be daunting. (Farmer, Waggoner, and Zha (2009) and Famer,
Waggoner, and Zha (2011) discussed conceptual issues regarding a regime-
switching rational expectations model.) Computing time for obtaining the ac-
curate marginal data density for the DSGE model with two or three volatility
regimes is two and a half weeks on a cluster of dual-core computers.

Although it is infeasible to estimate DSGE models with coefficients switch-
ing regimes, we explore estimation of various bivariate (land-price and invest-
ment) BVAR models with both volatility regimes and coefficient regimes. We
compute the marginal data density for each model. The BVAR model with
three volatility regimes has the highest marginal data density (632.3). The
marginal data density is 613.2 for the BVAR model with no regime switch-
ing, 623.6 for the BVAR model with two volatility regimes, and 632.0 for the
BVAR model with four volatility regimes. When we allow the coefficients for
the land-price equation in the BVAR model to switch between two regimes,
where the Markov process controlling coefficient changes is independent of
the three-regime volatility Markov process, the marginal data density (627.2)
becomes considerably lower. These results confirm the finding by Sims and Zha
(2006) that once volatility changes are allowed, it is difficult to find changes in
coefficients favored by the data.

F.2.3. No Patience Shocks

An intertemporal preference (patience) shock A, has been used in the
DSGE literature as one of important shocks in driving business cycles (Smets
and Wouters (2007)). In our estimated model, the patience shock accounts for
a nontrivial fraction of investment fluctuations (about 15-20%). Therefore,
it is important to examine whether abstracting from this shock would change
the model’s quantitative implications in a significant way. We reestimate the
model without patience shocks. The estimation results are shown in Tables S.I
and S.II (under the heading “No patience”). The estimates are broadly sim-
ilar to those in the benchmark model. Without patience shocks, we find that
a housing demand shock remains the most important driving force for invest-
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ment dynamics, accounting for about 30-40% of investment fluctuations (see
Table S.I11, the column under “No patience”).

F2.4. Latent IST Shocks

Justiniano, Primiceri, and Tambalotti (2011) argued that if the price of in-
vestment goods is not used in fitting the model, investment-specific shocks can
be interpreted as “financial” shocks and may have a large impact on macroeco-
nomic fluctuations. When we reestimate the model by treating the IST shocks
as a latent variable (i.e., without fitting to the time series data of the rela-
tive price of investment), we find that the estimation results are similar to the
benchmark model and a housing demand shock still accounts for 23-46% of
investment fluctuations (see Table S.III, the column under “Latent IST”).

E2.5. How Important is Land as a Collateral Asset?

In the data, real estate represents a large fraction of firms’ tangible assets
and, as discussed in the Introduction, changes in the real estate value have
a significant impact on firms’ investment spending. In our benchmark model,
we assume that land is a collateral asset for firms. A positive housing demand
shock raises the land price and thereby expands the firm’s borrowing capacity,
enabling the firm to finance expansions of investment and production.

How important is land as a collateral asset in our macroeconomic model?
To answer this question, we study an alternative model specification with the
general setup of a collateral constraint as

(S-183) B, < etEt[wlql,t+1Let + kak,t+1Kta 1,

where ), is the weight put on land value and w, is the weight put on capital
value. The weight parameters w, and w; cannot be identified separately, but
one can identify the relative weight w,/w;. This model nests our benchmark
model as a special case when w,/w, = 1.

We estimate this alternative model using the same set of time series data.
The estimation implies that the relative weight for capital value w;/w; is 1.2.
As shown in Figure S.13, the impulse responses to both a TFP shock and a
housing demand shock are very close to those from the benchmark model
(compare the dotted-dashed lines and the asterisk lines).

F2.6. Frisch Labor Supply Elasticity

In the benchmark model, we assume that labor is indivisible so that the util-
ity of leisure is linear and aggregate labor supply elasticity is infinity (Hansen
(1985), Rogerson (1988)). We now consider the alternative specification of the
utility function

14+n

= N
(5.184) EZB’Az{IOg(Cm —v,Cpi21) + @, log Ly, — !,l/tl ‘T‘t”fl },
=0




48 Z.LIU, P. WANG, AND T. ZHA

x 102  Permanent technology shock 0.037 Housing demand shock

1

0.036
0.035
0.034
0.033

Land price

0032} %
0.031}

0.03

4 0.029

0.05

0.04
0.03

0.02|

Investment

0.002 -0.01
4 8 16 20 4 8 16 20
Quarters Quarters

FIGURE S.13.—Impulse responses to a positive shock to neutral technology growth (left col-
umn) and to a positive shock to housing demand (right column). Lines marked by asterisks rep-
resent the responses for the benchmark model; dashed lines represent the model with a general
form of the disutility function of labor; dotted-dashed lines represent the model with flexible rela-
tive weight on capital value in the credit constraint; dotted lines represent the model with external
adjustments costs to capital. Note that the results are so close that some lines are on top of one
another.

where 1 > 0 is the inverse Frisch elasticity of labor supply.
With this utility function, all equilibrium conditions are identical except that
the labor supply equation (S.116) is changed into

A
(S.185) w, = —"4s,N;.
Mont

This change affects the steady-state labor as well as the log-linearized version
of the labor supply decision. In particular, the steady-state solution for labor
(S.154) becomes

(1 _ a)gy(l _ yh/R) z}l/(lw)

(S.186) N=: * .
(,Zl(gy_')/h) Ch
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The linearized labor supply equation (S.156) is replaced by

(S.187) 1, + fun = G, + nN..

We reestimate the benchmark model with the disutility function of labor re-
placed by this more flexible form. The posterior mode estimate for 7 is about
2.1. The estimates for the other parameters are similar to those in the bench-
mark model. As shown in Figure S.13, the impulse responses of the land price
and business investment to a TFP shock and to a housing demand shock do not
differ much from those in the benchmark model (compare the dashed lines and
the asterisk lines).

E2.7. External Capital Producers

In the benchmark model, capital adjustment is internal to the entrepreneurs,
so that the price of capital reflects the shadow value of capital that is spe-
cific to the entrepreneurs and does not reflect the market value of cap-
ital. In this sense, capital is less pledgable than land for external financ-
ing. We now consider an alternative specification such that capital adjust-
ment is done by an external capital producer (Carlstrom and Fuerst (1997),
Bernanke, Gertler, and Gilchrist (1999)). Entrepreneurs still accumulate cap-
ital, but they need to purchase new capital at a market price. We assume that
the capital producers are owned by the household sector, so that capital is as
pledgable as land as a collateral for borrowing.

There is a continuum of identical capital producers. The representative cap-
ital producer purchases one unit of investment goods at the price 1/Q, and
transforms the goods into usable capital. The transformation from investment
goods to capital incurs an adjustment cost. Capital goods are then sold to the
entrepreneurs at the market price g,.

The capital producer chooses investment /, to maximize the cum-dividend
(including dividend) value

o) . ) Q I ) B 2 I )
(5188) V=Y E,pt {qk,ﬂ-[l _2 (— - A,) ]Lﬂ- - —}
j=0 e 2 Qt+j

ht Iipj

The first-order condition is given by

1 0/ 1, -\’ I, < I,
S189) — =g |1——= —A - — — A | —
(5.189) 5 = [ 2 (L_l ’) (L_l ’)L_l]

Mop,t4+1 Iz+1 < It+1 g
+ BQEI 9rk,1+1 — A —_. ] -
Mont I, I,

This equation replaces the investment Euler equation (S.122) in the bench-
mark model.
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The representative entrepreneur purchases capital goods from the capital
producers at the market price gy,. The entrepreneur’s problem is given by

(8.190) E) B'[log(Cer — ¥eCe.-t)],

t=0
subject to the flow-of-funds constraint

(8-191) Ce+ qlt(Let - Le,tfl) +B.+ C]kt(Kz+1 —(1- S)Kz)

A B
=Z[L?, K PN —wN,, + ﬁ’,
t

and the borrowing constraint
(5-192) B, < HtEt[ql,H—lLet + qk,H—th]'

The flow-of-funds constraint (S.191) here differs from (S.106) in the bench-
mark model in that the entrepreneur does not pay any internal investment
adjustment costs, but instead, the entrepreneur acquires capital at the market
price.

This change does not affect the capital Euler equation (S.123) in the bench-
mark model, which is rewritten here for convenience of references:

Yin
K,

+ G, (1 — 8)i| + ﬂetEtQk,HL

et

(S.193) gy, = BE,Z ;’“ [a(l —¢)

et

In equilibrium, capital goods market clearing implies that gross investment
equals new capital goods produced (net of adjustment costs) so that

2
(S.194) K,y —(1-8K, = [1 - Q<i — I\,) }1,.
2\I
This equation corresponds to the capital law of motion (S.105) in the bench-
mark model.

To summarize, if capital goods are produced by an external sector, then we
need to change two equilibrium conditions in the benchmark model. First, the
investment Euler equation should be replaced by (S.189). Second, the flow-of-
funds constraint for the entrepreneur should be replaced by (S.191).

These changes do not affect the steady-state conditions (since the steady-
state adjustment cost is zero). They do affect the log-linearized equilibrium
dynamics. In particular, the log-linearized investment Euler equation (S.161)
is replaced by

(8.195) Gu=(1+ B+ X)) 2N, — QX1+ QX2 (G + 840)
- ,8(1 + Xa)‘!z/\ilzt[fﬂrl + gy,tJrl + gq,hq]a
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and the linearized flow-of-funds equation for the entrepreneur (S.169) is re-
placed by

A T NLe - r
(th +1,)+ ql? (Lo — Le,t—l)

I

I

“C..+
Y

(S.196) aY, =

~

1B 4 R 1B 5 4
+ _y?(Bt—l —8y) — E?(Bt —R).

The estimated results for this alternative model are similar to those for the
benchmark. Figure S.13 displays the impulse responses of the land price and
business investment to a TFP shock and to a housing demand shock for both
models. As one can see, the results do not differ much (compare the dotted
lines and the asterisk lines).

E.3. Stock Prices, Land Prices, and Investment

In our model, there are two types of collateral assets: land and capital. We
choose to fit our model to land prices but not to stock prices. We find that
shocks to land prices can explain a substantial fraction of investment fluctu-
ations. We choose not to fit the model to stock prices because our model, as
most of the DSGE models in the literature, is not equipped with the necessary
frictions and shocks to explain the joint dynamics between stock prices and
macroeconomic variables.

To examine the joint dynamics between land prices, business investment, and
stock prices in the U.S. data, we estimate a recursive Bayesian VAR with these
three variables, where the land price is ordered first, investment second, and
the stock price third. This identification implies that stocks prices respond to
all variables instantly, consistent with the argument put forth in the literature
(for example, Leeper, Sims, and Zha (1996) and Bloom (2009)).

Figure S.14 displays the impulse responses estimated from the BVAR model.
The first column reports the responses following a shock to the land price.
The shock leads to persistent increases in the land price, investment spend-
ing, and the stock price. The second column shows the responses following a
shock to the stock price. This stock-price shock leads to a large increase in the
stock price as well as a persistent increase in investment spending. The land
price, however, does not seem to respond to the stock-price shock and, if any-
thing, the point estimates show that the land price actually declines slightly.
This BVAR evidence suggests that the positive co-movements between land
prices and investment spending are driven by land-price shocks rather than
stock-price shocks.

Further, Figure S.14 shows that, following a land-price shock, the stock price
rises but the magnitude of its increase is much smaller than that for the land
price. This evidence supports our model’s implication that, following a housing



52 Z.LIU, P. WANG, AND T. ZHA

Shock to land price Shock to stock price

0.06

0.04

0.02

Land price

-0.02

0.03

0.02 N ' e

©
[=}
=

Investment

0.12

©
\

©
=}
o
=

©
o
>

Stock price
\
|
i
i
|
i
i
|

o
o
g
\
\

o
o
o
?

o

4 8 16 24 4 8 16 24
Quarters Quarters

FIGURE S.14.—Impulse responses estimated from a BVAR model. Solid lines represent the
estimated responses and dotted-dashed lines represent the 68% probability bands.
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demand shock, the land price rises much faster than does the value of capital.
Thus, the land-price dynamics play a key role in the amplification mechanism
in our model.

Stock-price dynamics are likely to be driven by other economic shocks that
differ from a housing demand shock. As we discuss in the Conclusion section, a
challenging task for future research is to build a model to explain the empirical
facts revealed by the BVAR impulse responses. Our current model is not de-
signed to meet this challenge, partly because our focus is on the link between
land-price dynamics and macroeconomic fluctuations, which, in our view, is
of substantive interest by itself; and partly because such a task is beyond the
scope of this paper. In a related but very different setup, however, Christiano,
Motto, and Rostagno (2008) fitted a DSGE model to stock prices along with
other macroeconomic variables. A more ambitious project in future research
should fit a DSGE model to both land prices and stock prices, and we hope
that our model is a step toward that direction.
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