SUPPLEMENT TO "MONOPOLISTIC COMPETITION:

 BEYOND THE CONSTANT ELASTICITY OF SUBSTITUTION"(Econometrica, Vol. 80, No. 6, November 2012, 2765-2784)

By Evgeny Zhelobodko, Sergey Kokovin, Mathieu Parenti, and Jacques-François Thisse

In THIS APPENDIX, we prove the various statements made in our paper. In Appendix A, we study the impact of market size on the FEE. Appendix B is devoted to the multisector economy, while Appendix C shows that equilibrium under the translog behaves like equilibrium under the CARA.

APPENDIX A: The Impact of Market Size on the FEE

It is readily verified that (6) is equivalent to

$$
\begin{equation*}
r_{u}^{\prime} x+\left(r_{u}-r_{C}\right)\left(1-r_{u}\right)>0 \tag{A.1}
\end{equation*}
$$

This expression will be used below.
Output. Differentiating (10) leads to

$$
\frac{\left[q V^{\prime \prime}(\bar{q})+V^{\prime}(\bar{q})\right] C(\bar{q})-q\left[V^{\prime}(\bar{q})\right]^{2}}{[C(\bar{q})]^{2}} \frac{d \bar{q}}{d L}=-r_{u}^{\prime}\left(\frac{1}{L} \frac{d \bar{q}}{d L}-\frac{\bar{q}}{L^{2}}\right) .
$$

Using

$$
V^{\prime}(\bar{q}) \bar{q}=\left(1-r_{u}\right) C(\bar{q}),
$$

we obtain

$$
\left(r_{u}-r_{C}\right)\left(1-r_{u}\right) \frac{L}{\bar{q}} \cdot \frac{d \bar{q}}{d L}=-r_{u}^{\prime}\left(\frac{d \bar{q}}{d L}-\frac{\bar{q}}{L}\right)
$$

which amounts to

$$
\left(r_{u}-r_{C}\right)\left(1-r_{u}\right) \mathcal{E}_{\bar{q} / L}=-r_{u}^{\prime} \frac{\bar{q}}{L}\left(\mathcal{E}_{\bar{q} / L}-1\right) .
$$

Thus, the elasticity of \bar{q} with respect to (w.r.t.) to L is equal to

$$
\mathcal{E}_{\bar{q} / L}=\frac{r_{u}^{\prime} \bar{x}}{r_{u}^{\prime} \bar{x}+\left(r_{u}-r_{C}\right)\left(1-r_{u}\right)} .
$$

It follows from (6) that the denominator is positive. Consequently, a firm's output increases (decreases) when the RLV is increasing (decreasing). Furthermore, the weak convexity of V implies that
(A.2) $\quad \mathcal{E}_{\bar{q} / L}<1$.

Consumption per capita. It is readily verified that the elasticity of \bar{x} w.r.t. L can be derived from $\mathcal{E}_{\bar{q} / L}$ as

$$
\mathcal{E}_{\bar{x} / L}=\mathcal{E}_{\bar{q} / L}-1=-\frac{\left(r_{u}-r_{C}\right)\left(1-r_{u}\right)}{r_{u}^{\prime} \bar{x}+\left(r_{u}-r_{C}\right)\left(1-r_{u}\right)} .
$$

Thus, \bar{x} decreases with L when $r_{u}-r_{V}>0$. Observe that this inequality holds when V is convex or not too concave.

Markup. From the comparative statics above, it is straightforward that markups decrease (increase) with L if and only if the RLV is increasing (decreasing).

Price. It follows from (9) that

$$
\begin{equation*}
\frac{d \bar{p}}{d L}=\frac{V^{\prime}(\bar{q}) \bar{q}-C(\bar{q})}{\bar{q}^{2}} \cdot \frac{d \bar{q}}{d L} \tag{A.3}
\end{equation*}
$$

Then, firms' output and market price move in opposite directions with L :

$$
\frac{d \bar{p}}{d L}=-r_{u} \frac{C(\bar{q})}{\bar{q}^{2}} \cdot \frac{d \bar{q}}{d L}
$$

Number of varieties. The number of varieties \bar{N} is determined by labor market clearing:

$$
\bar{N} C(\bar{q})=L .
$$

Thus, the elasticity of \bar{N} w.r.t. L is

$$
\mathcal{E}_{\bar{N} / L}+\mathcal{E}_{C} \cdot \mathcal{E}_{\bar{q} / L}=1,
$$

which amounts to

$$
\mathcal{E}_{\bar{N} / L}=1-\mathcal{E}_{C} \cdot \frac{r_{u}^{\prime} \bar{x}}{r_{u}^{\prime} \bar{x}+\left(r_{u}-r_{C}\right)\left(1-r_{u}\right)} .
$$

Again, the denominator of the second term is strictly positive by (A.1). Furthermore, at the equilibrium, it must be that $0<\mathcal{E}_{C}(L \bar{x})=1-r_{u}(\bar{x})<1$ and, thus, the sign of $\mathcal{E}_{\bar{N} / L}-1$ is determined by r_{u}^{\prime}. Consequently, the elasticity of \bar{N} w.r.t. L is smaller (larger) than 1 if the RLV is increasing (decreasing).

APPENDIX B: The Multisector Economy

Properties of the Expenditure Function in the Two-Sector Economy

The following two lemmas provide a rationale for the following assumptions made in Section 4.1:
(B.1) $\quad 0 \leq \frac{p}{E} \cdot \frac{\partial E}{\partial p}<1, \quad \frac{N}{E} \cdot \frac{\partial E}{\partial N}<1$.

Set

$$
D \equiv U_{11}^{\prime \prime} \cdot\left(v_{E}^{\prime}\right)^{2}-2 U_{12}^{\prime \prime} v_{E}^{\prime}+U_{22}^{\prime \prime}+U_{1}^{\prime} v_{E E}^{\prime \prime}
$$

LEMMA 1: If $U_{21}^{\prime \prime} \geq 0$, then the elasticity of E w.r.t. N is such that

$$
\frac{\partial E}{\partial N} \cdot \frac{N}{E}-1=\frac{-U_{11}^{\prime \prime} v_{E}^{\prime} v+U_{21}^{\prime \prime}\left(v+v_{E}^{\prime} E\right)-U_{22}^{\prime \prime} E}{D E} \leq 0
$$

LEMMA 2: If $U_{21}^{\prime \prime} \geq 0$ and the inequality

$$
\begin{equation*}
\frac{1-r_{u}(x)}{\mathcal{E}_{u}(x)} \leq \frac{U_{21}^{\prime \prime}(X, Y) X}{U_{2}^{\prime}(X, Y)}-\frac{U_{11}^{\prime \prime}(X, Y) X}{U_{1}^{\prime}(X, Y)} \tag{B.2}
\end{equation*}
$$

hold at a symmetric outcome, then the elasticity of E w.r.t. p is such that
(B.3) $-1 \leq \frac{\partial E}{\partial p} \cdot \frac{p}{E}-1=\frac{U_{1}^{\prime} v_{E}^{\prime}+U_{21}^{\prime \prime} E v_{E}^{\prime}-E U_{22}^{\prime \prime}}{D E} \leq 0$.

REMARK: Under $u(0)=0$, the indirect utility function

$$
v(p, E, N)=N u\left(\frac{E}{p N}\right)
$$

is homogeneous of degree 0 w.r.t. (p, E) and of degree 1 w.r.t. (E, N). Therefore, v_{E}^{\prime} and v_{p}^{\prime} are homogeneous of degree -1 w.r.t. (p, E) and of degree 0 w.r.t. (E, N). Finally, we have $v_{E E}^{\prime \prime}<0$.

Let $E(p, N)$ be the unique solution to the first-order condition for the upper-tier utility maximization,

$$
\begin{equation*}
U_{1}^{\prime}(v(p, E, N), 1-E) v_{E}^{\prime}(p, E, N)-U_{2}^{\prime}(v(p, E, N), 1-E)=0 \tag{B.4}
\end{equation*}
$$

where the second-order condition is given by

$$
D<0
$$

Note that $U(v(p, E, N), 1-E)$ is concave w.r.t. E because U is concave, while the concavity of u implies that of v.

Proof of Lemma 1: Differentiating (B.4) w.r.t. N and solving for $\partial E / \partial N$, we get

$$
\frac{\partial E}{\partial N}=-\frac{U_{11}^{\prime \prime} v_{E}^{\prime} v_{N}^{\prime}+U_{1}^{\prime} v_{E N}^{\prime \prime}-U_{21}^{\prime \prime} v_{N}^{\prime}}{D}=-\frac{\left(U_{11}^{\prime \prime} v_{E}^{\prime}-U_{21}^{\prime \prime}\right) v_{N}^{\prime}+U_{1}^{\prime} v_{E N}^{\prime \prime}}{D}
$$

Consequently,

$$
\begin{aligned}
\frac{\partial E}{\partial N} \cdot \frac{N}{E}-1= & -N \frac{\left(U_{11}^{\prime \prime} v_{E}^{\prime}-U_{21}^{\prime \prime}\right) v_{N}^{\prime}+U_{1}^{\prime} v_{E N}^{\prime \prime}}{D E}-1 \\
= & \left(-U_{11}^{\prime \prime}\left[v_{E}^{\prime} N v_{N}^{\prime}+E\left(v_{E}^{\prime}\right)^{2}\right]+U_{21}^{\prime \prime}\left(N v_{N}^{\prime}+2 v_{E}^{\prime} E\right)\right. \\
& \left.-U_{1}^{\prime}\left(N v_{E N}^{\prime \prime}+E v_{E E}^{\prime \prime}\right)-E U_{22}^{\prime \prime}\right) \\
& /(D E)
\end{aligned}
$$

Applying the Euler theorem to v and v^{\prime}, we obtain the equalities

$$
\begin{aligned}
& -U_{11}^{\prime \prime}\left[v_{E}^{\prime} N v_{N}^{\prime}+E\left(v_{E}^{\prime}\right)^{2}\right]=-U_{11}^{\prime \prime} v_{E}^{\prime}\left(N v_{N}^{\prime}+E v_{E}^{\prime}\right)=-U_{11}^{\prime \prime} v_{E}^{\prime} v, \\
& U_{21}^{\prime \prime}\left(N v_{N}^{\prime}+2 E v_{E}^{\prime}\right)=U_{21}^{\prime \prime}\left(v+E v_{E}^{\prime}\right) \\
& -U_{1}^{\prime}\left(N v_{E N}^{\prime \prime}+E v_{E E}^{\prime \prime}\right)=0
\end{aligned}
$$

As a result, we have

$$
\frac{\partial E}{\partial N} \cdot \frac{N}{E}-1=\frac{-U_{11}^{\prime \prime} v_{E}^{\prime} v+U_{21}^{\prime \prime}\left(v+E v_{E}^{\prime}\right)-E U_{22}^{\prime \prime}}{D E}
$$

Since $U_{21}^{\prime \prime} \geq 0$, the numerator of this expression is positive. Since $D<0$, we have

$$
\frac{\partial E}{\partial N} \cdot \frac{N}{E}-1 \leq 0
$$

Proof of Lemma 2: Differentiating (B.4) w.r.t. p and solving for $\partial E / \partial p$, we get
(B.5) $\frac{\partial E}{\partial p}=\frac{-U_{11}^{\prime \prime} v_{p}^{\prime} v_{E}^{\prime}-U_{1}^{\prime} v_{E p}^{\prime \prime}+U_{21}^{\prime \prime} v_{p}^{\prime}}{D}$,
which implies

$$
\begin{aligned}
\frac{\partial E}{\partial p} \cdot \frac{p}{E}-1= & p \frac{-U_{11}^{\prime \prime} v_{p}^{\prime} v_{E}^{\prime}-U_{1}^{\prime} v_{E p}^{\prime \prime}+U_{21}^{\prime \prime} v_{p}^{\prime}}{D E}-1 \\
= & \left(-U_{11}^{\prime \prime}\left[p v_{p}^{\prime} v_{E}^{\prime}+E\left(v_{E}^{\prime}\right)^{2}\right]-U_{1}^{\prime}\left(p v_{E p}^{\prime \prime}+E v_{E E}^{\prime \prime}\right)\right. \\
& \left.+U_{21}^{\prime \prime}\left(p v_{p}^{\prime}+2 E v_{E}^{\prime}\right)-E U_{22}^{\prime \prime}\right) \\
& /(D E) .
\end{aligned}
$$

Applying the Euler theorem to v and v^{\prime} yields

$$
-U_{11}^{\prime \prime}\left[p v_{p}^{\prime} v_{E}^{\prime}+E\left(v_{E}^{\prime}\right)^{2}\right]=-U_{11}^{\prime \prime} v_{E}^{\prime}\left(p v_{p}^{\prime}+E v_{E}^{\prime}\right)=0
$$

and

$$
-U_{1}^{\prime}\left(p v_{E p}^{\prime \prime}+E v_{E E}^{\prime \prime}\right)=U_{1}^{\prime} v_{E}^{\prime}>0
$$

Therefore,

$$
\frac{\partial E}{\partial p} \cdot \frac{p}{E}-1=\frac{U_{1}^{\prime} v_{E}^{\prime}+U_{21}^{\prime \prime} E v_{E}^{\prime}-E U_{22}^{\prime \prime}}{D E} \leq 0
$$

since $U_{21}^{\prime \prime} \geq 0$. Consequently, the right inequality of (B.3) is proven.
To show that $\partial E / \partial p>0$, we rewrite (B.4) as

$$
\frac{\partial E}{\partial p}=\frac{v_{p}^{\prime}}{D}\left(-U_{11}^{\prime \prime} v_{E}^{\prime}-U_{1}^{\prime} \frac{v_{E p}^{\prime \prime}}{v_{p}^{\prime}}+U_{21}^{\prime \prime}\right)
$$

By definition of v, we have

$$
v_{p}^{\prime}=-\frac{E u^{\prime}}{p^{2}}<0, \quad v_{E}^{\prime}=\frac{u^{\prime}}{p}, \quad v_{E p}^{\prime \prime}=-\frac{u^{\prime}}{p^{2}}-\frac{E u^{\prime \prime}}{N p^{3}} .
$$

Since $v_{p}^{\prime} / D>0$, the sign of $\partial E / \partial p$ is the same as that of the bracketed term of (B.5). Substituting these three expressions into (B.5) leads to

$$
\begin{aligned}
& -U_{11}^{\prime \prime} v_{E}^{\prime}-U_{1}^{\prime} \frac{v_{E p}^{\prime \prime}}{v_{p}^{\prime}}+U_{21}^{\prime \prime} \\
& \quad=-U_{11}^{\prime \prime} \frac{u^{\prime}}{p}-U_{1}^{\prime} \frac{-\frac{u^{\prime}}{p^{2}}-\frac{E u^{\prime \prime}}{N p^{3}}}{-\frac{E u^{\prime}}{p^{2}}}+U_{21}^{\prime \prime} \\
& \quad=-\frac{U_{1}^{\prime}}{E}\left[\left(\frac{U_{11}^{\prime \prime} N u}{U_{1}^{\prime}}-\frac{U_{21}^{\prime \prime} N u}{U_{2}^{\prime}}\right) \frac{E u^{\prime}}{N p u}+1+\frac{E u^{\prime \prime}}{N p u^{\prime}}\right]
\end{aligned}
$$

Using $-U_{1}^{\prime} / E<0$ and $U_{1}^{\prime} v_{E}^{\prime}(p, E, N)=p U_{2}^{\prime} / u^{\prime}$, it follows from (B.2) that

$$
\left(\frac{U_{11}^{\prime \prime} N u}{U_{1}^{\prime}}-\frac{U_{21}^{\prime \prime} N u}{U_{2}^{\prime}}\right) \frac{E u^{\prime}}{N p u}+1+\frac{E u^{\prime \prime}}{N p u^{\prime}}<0 \quad \Longrightarrow \quad \frac{\partial E}{\partial p}>0
$$

which implies the left inequality of (B.3).
Q.E.D.

The Impact of Market Size on the Mass of Firms in the Two-Sector Economy
We now show that the equilibrium mass of firms decreases with market size. Using the budget constraint and the zero-profit condition yields

$$
N[F+V(\bar{q}(L))]=L E(\bar{p}(L), N) .
$$

Rewriting this expression in elasticity terms w.r.t. L, we get

$$
\mathcal{E}_{N}+\frac{\bar{q} V^{\prime}(\bar{q})}{F+V(\bar{q})} \mathcal{E}_{q}=1+\frac{\partial E}{\partial p} \frac{\bar{p}}{E} \cdot \mathcal{E}_{p}+\frac{\partial E}{\partial N} \frac{N}{E} \cdot \mathcal{E}_{N}
$$

which can be rewritten as
(B.6) $\quad \mathcal{E}_{N}\left(1-\frac{\partial E}{\partial N} \frac{N}{E}\right)=1+\frac{\partial E}{\partial p} \frac{\bar{p}}{E} \cdot \mathcal{E}_{p}-\frac{\bar{q} V^{\prime}(\bar{q})}{F+V(\bar{q})} \mathcal{E}_{q}$.

The expression (A.3) is equivalent to
(B.7) $\mathcal{E}_{p}=-r_{u} \mathcal{E}_{q}$.

Using (10) and (B.7), (B.6) implies

$$
\begin{aligned}
\mathcal{E}_{N}\left(1-\frac{\partial E}{\partial N} \frac{N}{E}\right) & =1+\frac{\partial E}{\partial p} \frac{\bar{p}}{E} \cdot \mathcal{E}_{p}-\left(1-r_{u}\right) \mathcal{E}_{q} \\
& =1+\frac{\partial E}{\partial p} \frac{\bar{p}}{E} \cdot \mathcal{E}_{p}+\frac{1-r_{u}}{r_{u}} \mathcal{E}_{p} \\
& >1-\left(\frac{\partial E}{\partial p} \frac{\bar{p}}{E}+\frac{1-r_{u}}{r_{u}}\right) r_{u}=\left(1-\frac{\partial E}{\partial p} \frac{\bar{p}}{E}\right) r_{u}
\end{aligned}
$$

where we have used (A.2) for the inequality. Since the elasticity of E w.r.t. p is smaller than 1 by assumption, the last term in the above expression is positive. Since the elasticity of E w.r.t. N in the first term is also smaller than 1 , it must be that

$$
\mathcal{E}_{N}=\frac{d N}{d L} \cdot \frac{L}{N}>0 .
$$

APPENDIX C: Relationship Between the Translog and CARA Models

Under the translog, the profit is given by
(C.1) $\pi\left(p_{i} ; \Lambda_{\text {trans }}, L\right)-F=\left(p_{i}-c\right) \frac{L}{p_{i}}\left(\Lambda_{\text {trans }}-\beta \ln p_{i}\right)-F$.

Differentiating this expression w.r.t. p_{i} yields

$$
\frac{c}{p_{i}^{2}}\left(\Lambda_{\text {trans }}-\beta \ln p_{i}\right)-\beta \frac{p_{i}-c}{p_{i}^{2}}=0
$$

Solving for

$$
\Lambda_{\mathrm{trans}}-\beta \ln p_{i}=\beta \frac{p_{i}-c}{c}
$$

plugging this expression into (C.1), and rearranging terms leads to the equilibrium condition

$$
\beta(p-c)^{2} /(c p)=F / L
$$

Applying the same argument to the CARA model yields the desired expression:

$$
\beta(p-c)^{2} / p=F / L
$$

Novosibirsk State University, 630090, Novosibirsk, Pirogova 2, Russia, and National Research University Higher School of Economics, 190008, Saint-Petersburg, Ulitsa Soyuza Pechatnikov 16, Russia; ezhelobodko@gmail.com,

Novosibirsk State University and Sobolev Institute of Mathematics, 630090, Novosibirsk, Pirogova 2 and 4, Russia, and National Research University Higher School of Economics, 190008, Saint-Petersburg, Ulitsa Soyuza Pechatnikov 16, Russia; skokov7@gmail.com,

CORE-UCLouvain, 34 Voie du Roman Pays, 1348 Louvain la Neuve, Belgium, Paris School of Economics (Paris 1), 106-112 Bd de l'Hôpital, 75013 Paris, France, and National Research University Higher School of Economics, 190008, Saint-Petersburg, Ulitsa Soyuza Pechatnikov 16, Russia; parenti.mathieu@gmail. com,

> and

CORE-UCLouvain, 34 Voie du Roman Pays, 1348 Louvain la Neuve, Belgium, National Research University Higher School of Economics, 190008, SaintPetersburg, Ulitsa Soyuza Pechatnikov 16, Russia, and CEPR; jacques.thisse@ ucloubain.be.

