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APPENDIX S.A: LOCALLY LIPSCHITZ PREFERENCES

WE CONSIDER A PREFERENCE � that admits a monotonic, continuous, nor-
malized, Bernoullian representation (I�u), and introduce a novel axiom that
is equivalent to the assertion that I is locally Lipschitz.1 Recall that xh ∈ X
denotes the certainty equivalent of act h ∈ F .

AXIOM 1—Locally Bounded Improvements: For every h ∈ F int, there are y ∈
X and g ∈ F with g(s) � h(s) for all s such that, for all (hn) ⊂ F and (λn) ⊂
[0�1] with hn → h and λn ↓ 0,

λng + (
1 − λn

)
hn ≺ λny + (

1 − λn
)
xhn eventually.

To gain intuition, focus on the constant sequence with hn = h. Since prefer-
ences are Bernoullian, the individual’s evaluation of λy + (1 − λ)xh changes
linearly with λ. On the other hand, her evaluation of λg + (1 − λ)h may im-
prove in arbitrary nonlinear (though continuous) ways as λ increases from 0 to
1 (recall that g is pointwise preferred to h). The axiom states that when λ is
close to 0, this improvement is comparable to the linear change in preference
that applies to λy + (1 − λ)xh (which may still be very rapid, if y is much pre-
ferred to xh). Hence, it imposes a bound on the instantaneous rate of change
in preferences as a function of λ. Furthermore, this bound is required to be
uniform in a neighborhood of h.

PROPOSITION S1: Let � be a preference that admits a monotonic, continuous,
Bernoullian, normalized representation (I�u). Then � satisfies Axiom 1 if and
only if I is locally Lipschitz in the interior of its domain.

PROOF: If. Functionally, the displayed equation in Axiom 1 is equivalent to

I
(
λn

[
u ◦ g − u ◦ hn

] + u ◦ hn
)

(S1)

= I
(
λnu ◦ g + (

1 − λn
)
u ◦ hn

)
< I

(
λnu(y)+ (

1 − λn
)
u
(
xn

))
= λnu(y)+ (

1 − λn
)
u
(
xn

) = λn
[
u(y)− I

(
u ◦ hn

)] + I
(
u ◦ hn

)
�

1That is, for every a ∈ intB0(Σ�u(X)), there are ε > 0 and L > 0 such that |I(b) − I(c)| ≤
L‖b− c‖ for all b� c ∈ B0(Σ�u(X)) with ‖b− a‖ < ε and ‖c − a‖ < ε.
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Notice that the second equality uses the assumption that I is normalized. Since
u ◦ hn → u ◦ h in the sup norm, for every ε ∈ (0�mins[u(g(s))− u(h(s))]) and
for n large enough, maxs |u(h(s)) − u(hn(s))| < mins[u(g(s)) − u(h(s))] − ε,
so that, for every s, u(hn(s)) = u(h(s)) + [u(hn(s)) − u(h(s))] < u(h(s)) +
mins′ [u(g(s′))− u(h(s′))] − ε ≤ u(h(s))+ u(g(s))− u(h(s))− ε = u(g(s))−
ε. In other words, u(g(s)) − u(hn(s)) > ε for all s and all n large enough.
Moreover, for n large enough, λnε + hn ∈ B0(Σ�u(X)). Since I is monotonic,
rearranging terms yields

I(λnε+ u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I

(
u ◦ hn

)
eventually.

Again because u ◦ hn → u ◦ h, eventually I(u ◦ hn)≥ I(u ◦ h)− ε, so finally

I(λnε+ u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I(u ◦ h)+ ε eventually.

This implies that for a suitable ε > 0, I◦(u ◦ h;ε)≤ u(y)− I(u ◦ h)+ ε < ∞.
To sum up, for every h such that u ◦ h ∈ intB0(Σ�u(X)), there are ε > 0

and y ∈ X such that I◦(u ◦ h;ε) ≤ u(y) − I(u ◦ h) + ε < ∞. Since I is mono-
tonic, by Proposition 4 in Rockafellar (1980), I is directionally Lipschitzian; by
Theorem 3 therein, the Clarke–Rockafeller derivative of I in the direction a
at u ◦ h, denoted I↑(u ◦ h;a), equals lim infb→a I

◦(u ◦ h;b). Since I◦(u ◦ h; ·)
is monotonic because I is, this implies that, for all a such that a(s) < ε,
I↑(u ◦ h;a) ≤ I◦(u ◦ h;ε) < ∞. Therefore, the constant function 0 is in the
interior of {a : I↑(u ◦ h;a) < ∞}. Again by Theorem 3 in Rockafellar (1980),
this implies that I is directionally Lipschitz with respect to the vector 0; as
noted on page 267 therein, it is “an easy fact to verify” that this is equivalent to
the assertion that I is locally Lipschitz at u ◦ h.

Only if. Conversely, suppose I is Lipschitz near u ◦ h. Since h is interior, I is
monotonic and normalized, and I◦(u ◦ h; ·) is continuous, there is ε > 0 such
that I◦(u ◦ h;ε) < u(y)− I(u ◦ h)− ε for some y ∈ X . Then, for all (hn) → h
and (λn) ↓ 0, eventually

I(λn[ε+ u ◦ hn] + (1 − λn)u ◦ hn)− I(u ◦ hn)

λn

= I(λnε+ u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I(u ◦ h)− ε�

Now choose n large enough so that maxs |u(h(s))− u(hn(s))|< ε
2 . Then a for-

tiori, for every s, u(h(s)) − u(hn(s)) < ε
2 , that is, u(h(s)) < u(hn(s)) + ε

2 and,
therefore, u(h(s))+ ε

2 < u(hn(s))+ ε. Because h is interior, there is δ ∈ (0� ε
2 ]

such that u ◦ h + δ = u ◦ g for some g ∈ F ; for such g, the above argument
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implies that u(g(s)) < u(hn(s)) + ε for all s, and of course g(s) � h(s) for all
s. By monotonicity, conclude that, for all n sufficiently large,

I(λnu ◦ g + (1 − λn)u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I(u ◦ h)− ε�

Finally, by choosing n large enough, we can ensure that I(u◦hn) < I(u◦h)+ε
and, therefore,

I(λnu ◦ g + (1 − λn)u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I

(
u ◦ hn

)
�

Rearranging terms yields Eq. (S1), so the axiom holds. Q.E.D.

APPENDIX S.B: NICE MBL PREFERENCES

PROPOSITION S2: A monotonic, isotone, and concave function I :B0(Σ�Γ ) →
R (for some interval Γ ) is nice everywhere in the interior of its domain.

PROOF: Recall that a monotone concave I is locally Lipschitz; furthermore,
∂I coincides with the superdifferential of I (e.g., Rockafellar (1980, p. 278))
and it is monotone in the sense that

∀c� c′ ∈ intB0(Σ�Γ )�Q ∈ ∂I(c)�Q′ ∈ ∂I
(
c′)� Q

(
c−c′) ≤ Q′(c−c′)�2(S2)

Fix c′ ∈ intB0(Σ�Γ ) and suppose that Q0 ∈ ∂I(c′). Then, for every c ∈
intB0(Σ�Γ ) and every Q ∈ ∂I(c), Q(c − c′) ≤ 0. Since c′ is interior, the set
Γ̂ = Γ ∩ {γ ∈ R :γ > c′(s) ∀s} is nonempty. Moreover, for any γ ∈ Γ̂ and for
all Q ∈ ∂I(1Sγ), Q(1Sγ − c′)≤ 0. But since γ − c′(s) > 0 for all s and since I is
monotonic, this requires that ∂I(1Sγ)= {Q0} for all γ ∈ Γ̂ .

In particular, pick α�β ∈ Γ̂ with α > β. Since I is isotone, I(1Sα) > I(1Sβ).
By the mean-value theorem (Lebourg (1979)), there must be μ ∈ (0�1) and
Q ∈ ∂I(μ1Sα + (1 − μ)1Sβ) = ∂I([μα + (1 − μ)β]1S) such that I(1Sα) −
I(1Sβ) = Q(1Sα − 1Sβ) = Q(1S)(α − β). But μα + (1 − μ)β ∈ Γ̂ , so Q = Q0,
and, therefore, I(1Sα) = I(1Sβ)—a contradiction. Therefore, I must be nice
at c. Q.E.D.

We now provide an axiom for MBL preferences that ensures niceness. There
are obvious similarities with Axiom 1.

2Since ∂I is the superdifferential of I, Q(c′ − c) ≥ I(c′) − I(c) and Q′(c − c′) ≥ I(c) − I(c′).
Summing these inequalities yields the inequality in the text.
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AXIOM 2—Nonnegligible Worsenings at h: There are y ∈ X with y ≺ h and
g ∈ F with g(s) ≺ h(s) for all s such that, for all (hn)⊂ F and (λn)⊂ [0�1] with
hn → h and λn ↓ 0,

λng + (
1 − λn

)
hn ≺ λny + (

1 − λn
)
xhn eventually.

This axiom rules out the possibility that preferences may be “flat” when mov-
ing from h toward pointwise less desirable acts g. We argue as for Axiom 1: the
individual’s evaluation of λy + (1 − λ)xh changes linearly with λ, whereas her
evaluation of λg + (1 − λ)h may worsen in arbitrary nonlinear ways as λ in-
creases from 0 to 1. Axiom 2 states that when λ is close to 0, this worsening is
comparable to the linear decrease in preference that applies to λy + (1 − λ)xh

(which may still be very slow, if y is almost as good as xh).
Mas-Colell (1977) characterized preferences over consumption bundles (i.e.,

on R
n
+) represented by a (locally) Lipschitz and regular utility function; his no-

tion of regularity is related to niceness (cf. Mas-Colell (1977, p. 1411)); for
instance, if utility is continuously differentiable, the requirement is that its gra-
dient be nonvanishing on R

n
++. Mas-Colell’s axiom is not directly related to

ours.

PROPOSITION S3: Let � be an MBL preference with representation (I�u), and
assume that I is normalized. Then � satisfies Axiom 2 at h ∈ F int if and only if I
is nice at u ◦ h.

PROOF: If. As in the proof of Proposition S1, for g� y� (hn)� (λn) as in the
axiom,

I
(
λn

[
u ◦ g − u ◦ hn

] + u ◦ hn
)

< λn
[
u(y)− I

(
u ◦ hn

)] + I
(
u ◦ hn

)
eventually�

For n large, ‖u ◦ hn − u ◦ h‖ < 1 and, therefore, u(hn(s)) − u(g(s)) =
[u(hn(s)) − u(h(s))] + u(h(s)) − u(g(s)) < 1 + maxs[u(h(s)) − u(g(s))] ≡
δ. Since h(s) � g(s) for all s, δ > 0. Furthermore, as n → ∞, eventually
λn(−δ)+ u ◦ hn ∈ B0(Σ�u(X)) and so, by monotonicity of I,

I
(
λn(−δ)+ u ◦ hn

)
< λn

[
u(y)− I

(
u ◦ hn

)] + I
(
u ◦ hn

)
eventually�

Rearranging gives

I(λn(−δ)+ u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I

(
u ◦ hn

)
eventually�

Since hn → h and I is continuous, for every ε > 0, eventually I(u ◦hn)≥ I(u ◦
h)− ε and so

I(λn(−δ)+ u ◦ hn)− I(u ◦ hn)

λn
< u(y)− I(u ◦ h)+ ε eventually�
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Therefore, I0(u ◦ h;−δ) ≤ u(y)− I(u ◦ h)+ ε. Since this is true for all ε > 0,
then I0(u ◦ h;−δ) ≤ u(y) − I(u ◦ h) < 0 as y ≺ h. But since I0(u ◦ h;−δ) =
maxQ∈∂I(u◦h)(−δ)Q(S)= −δminQ∈∂I(u◦h) Q(S) and every Q ∈ ∂I(u ◦ h) is a pos-
itive measure because I is monotonic, the zero measure Q0 cannot belong to
∂I(u ◦ h).

Only if. Conversely, suppose I is nice at u ◦ h. Since h is interior, there is
δ > 0 such that u ◦ h− δ = u ◦ g for some g ∈ F int. Since Q0 /∈ ∂I(u ◦ h) and I
is monotonic, I0(u ◦h;− 1

2δ) < 0. Hence, for all sequences λn → 0 and hn → h

(acts), and for all ε ∈ (0�−I0(u ◦ h;− 1
2δ)), eventually

I

(
λn

(
−1

2
δ

)
+ u ◦ hn

)
− I(u ◦ hn)

λn
<−ε�

In particular, find y ∈ X such that y ≺ h and I(u ◦ h) − u(y) < − 1
2I

0(u ◦
h;− 1

2δ), which is possible because h is interior. Add − 1
2I

0(u ◦h;− 1
2δ) on both

sides of this inequality to conclude that I(u ◦ h) − u(y) − 1
2I

0(u ◦ h;− 1
2δ) <

−I0(u ◦ h;− 1
2δ) and so eventually

I

(
λn

(
−1

2
δ

)
+ u ◦ hn

)
− I(u ◦ hn)

λn

< u(y)− I(u ◦ h)+ 1
2
I0

(
u ◦ h;−1

2
δ

)
�

Also, for n large, I(u(hn)) ≤ I(u(h)) − 1
2I

0(u ◦ h;− 1
2δ); conclude that, even-

tually,

I

(
λn

(
−1

2
δ

)
+ u ◦ hn

)
− I(u ◦ hn)

λn
< u(y)− I

(
u ◦ hn

)
�

Rewriting yields

I

(
λn

[
−1

2
δ+ u ◦ hn

]
+ (

1 − λn
)
u ◦ hn

)

< λn
[
u(y)− I

(
u ◦ hn

)] + I
(
u ◦ hn

)
eventually�

Finally, if n is large enough, ‖u◦hn −u◦h‖< 1
2δ, so for all s, − 1

2δ+u(hn(s))=
− 1

2δ + u(h(s)) + [u(hn(s)) − u(h(s))] > −δ + u(h(s)) = u(g(s)). Hence, fi-
nally, monotonicity implies

I
(
λnu ◦ g + (

1 − λn
)
u ◦ hn

)
< λnu(y)− (

1 − λn
)
I
(
u ◦ hn

)
eventually�
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as required. Q.E.D.

APPENDIX S.C: CALCULATIONS FOR EXAMPLE 4

Since I is continuously differentiable, it is strictly differentiable; see Clarke
(1983, Corollary to Proposition 2.2.1). In particular, for all e ∈ B0(Σ), hn → h
and λn ↓ 0, (λn)−1[I(λne + (1 − λn)hn) − I((1 − λn)hn)] → ∇I(h) · e. Hence,
if ∇I(h) · f > ∇I(h) · g, then for all sequences λn ↓ 0 and hn ↓ 0, eventually
(λn)−1[I(λnf + (1 − λn)hn) − I((1 − λn)hn)] > (λn)−1[I(λng + (1 − λn)hn) −
I((1 − λn)hn)], so Eq. (7) will hold for n large: hence, in this case f �∗

h g. This
is, in particular, the case if h1 >h2 ≥ 0.

To analyze Cases 2 and 3 of the example, note first that, for any pair f�g ∈ F ,
using the formula for the difference of two cubes, f � g iff

∑
i=1�2

[
Pi · (f − g)

][(
Pi · f )2 + (

Pi · g)2 + (
Pi · f )(

Pi · g)] ≥ 0�(S3)

Now consider ε� f�g� fε, and gε as in the main text. The rankings λnfε + (1 −
λn)hn � λngε + (1 − λn)hn and λnfε + (1 −λn)kn � λngε + (1 − λn)kn are then
equivalent to

∑
i=1�2

Pi · λn[1 + 2ε�−1 + 2ε](S4)

× {[
Pi · λn[3 + ε�1 + ε] + γ

]2 + [
Pi · λn[2 − ε�2 − ε] + γ

]2

+ [
Pi · λn[3 + ε�1 + ε] + γ

][
Pi · λn[2 − ε�2 − ε] + γ

]} ≥ 0�∑
i=1�2

Pi · λn[1 + 2ε�−1 + 2ε](S5)

× {[
Pi · λn[2 + ε�2 + ε] + γ

]2 + [
Pi · λn[1 − ε�3 − ε] + γ

]2

+ [
Pi · λn[2 + ε�2 + ε] + γ

][
Pi · λn[1 − ε�3 − ε] + γ

]} ≥ 0�

In Case 3 (γ = 0), divide Eqs. (S4) and (S5) by (λn)3, and set ε = 0 to obtain
the conditions

(2p− 1)
[
(1 + 2p)2 + 4 + 2(1 + 2p)

]
+ (1 − 2p)

[(
1 + 2(1 −p)

)2 + 4 + 2
(
1 + 2(1 −p)

)] ≥ 0�

(2p− 1)
[
4 + (

1 + 2(1 −p)
)2 + 2

(
1 + 2(1 −p)

)]
+ (1 − 2p)

[
4 + (1 + 2p)2 + 2(1 + 2p)

] ≥ 0;
by inspection, the left-hand side (l.h.s.) of the second inequality is the nega-
tive of the l.h.s. of the first. Furthermore, the l.h.s. of the first condition equals
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(2p− 1)[(1 + 2p)2 − (1 + 2(1 −p))2 + 4(2p− 1)] > 0, because p> 1
2 . There-

fore, for any n, when ε = 0, Eq. (S4) holds as a strict inequality, whereas the
inequality in Eq. (S5) fails. Hence, the same is true for any n when ε is positive
but small. Thus. fε ��∗

h gε for any ε ≥ 0 if h= [0�0].
In Case 2 (γ > 0), first take ε = 0. We claim that Eqs. (S4) and (S5) can

both hold only if they are, in fact, equalities. To see this, note that P1 · [α�β] =
P2 · [β�α] for any α�β ∈ R; hence, when ε = 0 and h = [γ�γ], the l.h.s. of
Eq. (S5) can be rewritten as

∑
i=1�2

P3−i · λn[−1�1]{[P3−i · λn[2�2] + γ
]2 + [

P3−i · λn[3�1] + γ
]2

+ [
P3−i · λn[2�2] + γ

][
P3−i · λn[3�1] + γ

]}
�

It is apparent that this is the negative of the l.h.s. of Eq. (S4) when ε = 0 and
h = [γ�γ], except that we first use P2 and then P1, rather than the opposite as
in Eq. (S4). This proves the claim.

Next, we claim that Eq. (S4) holds as a strict inequality, which proves the
assertion in the text that f ��∗

h g. Since p> 1
2 and γ > 0, the first and third terms

in braces are strictly greater for i = 1 than for i = 2. Since P2 · [1�−1] = −P1 ·
[1�1], the l.h.s. of Eq. (S4) is the difference of these terms that is multiplied by
P1 · λn[1�−1]> 0 and, hence, it is strictly positive.

Finally, if ε > 0 and since h = [γ�γ], we have ∇I(h) · (f + ε) = ∇I(h) · f +
∇I(h) · ε = ∇I(h) · g + ∇I(h) · ε > ∇I(h) · g − ∇I(h) · ε = ∇I(h) · (g − ε),
which, as noted above, implies that fε �∗

h gε.
As noted in footnote 11 in the main paper, here ∂I(0) contains only the zero

vector. However, consider the monotonic, locally Lipschitz functional J : R2 →
R given by J(h) = min(I(h)�h1 + I(h)). Then J(h) = I(h) for h ∈ R

2 with
h1 ≥ 0, and ∂J(0) = {[γ�0] :γ ∈ [0�1]} (Clarke (1983, Theorem 2.5.1)). Since
all mixtures in Eq. (8) are nonnegative when h ∈ R

2
+ and ε < 1, even if g is

replaced with g− ε (cf. the definition of kn), the analysis in Example 4 applies
verbatim to J. In particular, for all ε ∈ [0�1), now f +ε �C(0) g−ε, but f +ε ��∗

0
g − ε (the argument in the second paragraph of Example 4 does not apply
because J is not (continuously) differentiable at 0).

APPENDIX S.D: RELEVANT PRIORS: A BEHAVIORAL TEST

We conclude by showing that, given an interior act h, whether a probability
P ∈ ba1(Σ) belongs to the set C(h) can be ascertained without invoking Theo-
rems 6 or 7; indeed, using only the DM’s preferences. For the result, we need
a notion of lower certainty equivalent of an act f for the incomplete, discon-
tinuous preference �∗

h (cf. the definition of C∗(f ) in GMM, p. 158).

DEFINITION S1: For any act f ∈ F , a local lower certainty equivalent of f at
h ∈ F int is a prize xf�h ∈ X such that, for all y ∈ X , y ≺ xf�h implies f �∗

h y and
y � xf�h implies f ��∗

h y .
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Furthermore, fix P ∈ ba1(Σ) and f ∈ F , and suppose that f = ∑n

i=1 xi1Ei
for

a collection of distinct prizes x1� � � � � xn and a measurable partition E1� � � � �En

of S. Then define

xP�f ≡ P(E1)x1 + · · · + P(En)xn�

That is, xP�f ∈ X is a mixture of the prizes x1� � � � � xn delivered by f , with
weights given by the probabilities that P assigns to each event E1� � � � �En. We
then have the following corollary.

COROLLARY S4: For any P ∈ ba1(Σ) and h ∈ F int such that I is nice at u ◦ h,
P ∈ C(h) if and only if, for all f ∈ F int, xf�h � xP�f .

PROOF: We show that u(xf�h)= minP∈C(h) P(u◦f ); thus, the condition in the
corollary states that P satisfies P(u ◦ f )≥ minP ′∈C(h) P

′(u ◦ f ) for all interior f ,
so P(a) ≥ minP ′∈C(h) P(a) by linearity for all a ∈ B0(Σ), and P ∈ C(h) then
follows from standard arguments.

If xf�h is as in Definition S1, then minP∈C(h) P(u ◦ f )≥ u(y) for all y ≺ xf�h by
(i) in Theorem 6, and so minP∈C(h) P(u ◦ f ) ≥ u(xf�h). Conversely, for every y
with u(y) < minP∈C(h) P(u◦ f ), there are ε > 0, y ′ ∈X , and f ′ ∈ F with u(y ′)=
u(y) + ε, u ◦ f ′ = u ◦ f − ε, and u(y ′) ≤ minP∈C(h) P(u ◦ f ′); then, by (ii) in
Theorem 7, since (f� y) is a spread of (f ′� y ′), f �∗

h y . This implies that y � xf�h.
Hence, minP∈C(h) P(u ◦ f )≤ u(xf�h) as well. Q.E.D.

APPENDIX S.E: ADDITIONAL PROPERTIES OF �∗
h

In addition to agreeing with � on X , provided ∂I(u ◦ h) �= {Q0}, �∗
h satisfies

the following additional properties.

LEMMA S5: The preference �∗
h is a monotonic, independent preorder.

PROOF: Monotonicity and reflexivity are immediate from monotonicity of
�. Transitivity is immediate from the definition of �∗

h and transitivity of �. It
remains to be shown that �∗

h is independent; that is, for all k ∈ F and μ ∈ (0�1],
f �∗

h g iff μf + (1 −μ)k �∗
h μg + (1 −μ)k. Note that

λn
[
μf + (1 −μ)k

] + (
1 − λn

)
hn

= (
λnμ

)
f + [

1 − (
λnμ

)]{λn(1 −μ)

1 − (λnμ)
k+ 1 − λn

1 − (λnμ)
hn

}

≡ λ̄nf + (
1 − λ̄n

)
h̄n

with (λ̄n) ↓ 0 and (h̄n) → h, and similarly for g. Hence, if f �∗
h g, then

eventually λ̄nf + (1 − λ̄n)h̄n � λ̄ng + (1 − λ̄n)h̄n; repeating the argument for
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all (λn)� (hn) implies that μf + (1 − μ)k �∗
h μg + (1 − μ)k. Conversely, if

μf + (1 −μ)k�∗
h μg + (1 −μ)k, define λ̃n and h̃n so that

λ̃n
[
μf + (1 −μ)k

] + (
1 − λ̃n

)
h̃n = λnf + (

1 − λn
)
hn:

this requires λ̃n = λn

μ
, which is in [0�1] for n large and converges to zero as

n → ∞, and

u ◦ h̃n = (1 − λn)u ◦ hn − λ̃n(1 −μ)u ◦ k
1 − λ̃n

�

which is in B0(Σ�u(X)) for n large (recall that h is interior) and indeed such
that h̃n → h. Note that λ̃n and h̃n do not depend on f . Again, for n large,
λ̃n[μf +(1−μ)k]+(1− λ̃n)h̃n � λ̃n[μg+(1−μ)k]+(1− λ̃n)h̃n and, therefore,
by construction, λnf + (1 − λn)hn � λng + (1 − λn)hn and so, repeating for all
sequences, f �∗

h g. Q.E.D.
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