SUPPLEMENT TO "AMBIGUITY IN THE SMALL AND IN THE LARGE"
 (Econometrica, Vol. 80, No. 6, November 2012, 2827-2847)

By Paolo Ghirardato and Marciano Siniscalchi

APPENDIX S.A: Locally Lipschitz Preferences

WE CONSIDER A PREFERENCE \succcurlyeq that admits a monotonic, continuous, normalized, Bernoullian representation (I, u), and introduce a novel axiom that is equivalent to the assertion that I is locally Lipschitz. ${ }^{1}$ Recall that $x_{h} \in X$ denotes the certainty equivalent of act $h \in \mathcal{F}$.

Axiom 1—Locally Bounded Improvements: For every $h \in \mathcal{F}^{\text {int }}$, there are $y \in$ X and $g \in \mathcal{F}$ with $g(s) \succ h(s)$ for all s such that, for all $\left(h^{n}\right) \subset \mathcal{F}$ and $\left(\lambda^{n}\right) \subset$ $[0,1]$ with $h^{n} \rightarrow h$ and $\lambda^{n} \downarrow 0$,

$$
\lambda^{n} g+\left(1-\lambda^{n}\right) h^{n} \prec \lambda^{n} y+\left(1-\lambda^{n}\right) x_{h^{n}} \quad \text { eventually. }
$$

To gain intuition, focus on the constant sequence with $h^{n}=h$. Since preferences are Bernoullian, the individual's evaluation of $\lambda y+(1-\lambda) x_{h}$ changes linearly with λ. On the other hand, her evaluation of $\lambda g+(1-\lambda) h$ may improve in arbitrary nonlinear (though continuous) ways as λ increases from 0 to 1 (recall that g is pointwise preferred to h). The axiom states that when λ is close to 0 , this improvement is comparable to the linear change in preference that applies to $\lambda y+(1-\lambda) x_{h}$ (which may still be very rapid, if y is much preferred to x_{h}). Hence, it imposes a bound on the instantaneous rate of change in preferences as a function of λ. Furthermore, this bound is required to be uniform in a neighborhood of h.

PROPOSITION S1: Let \succcurlyeq be a preference that admits a monotonic, continuous, Bernoullian, normalized representation (I, u). Then \succcurlyeq satisfies Axiom 1 if and only if I is locally Lipschitz in the interior of its domain.

Proof: If. Functionally, the displayed equation in Axiom 1 is equivalent to

$$
\begin{align*}
& I\left(\lambda^{n}\left[u \circ g-u \circ h^{n}\right]+u \circ h^{n}\right) \tag{S1}\\
& \quad=I\left(\lambda^{n} u \circ g+\left(1-\lambda^{n}\right) u \circ h^{n}\right)<I\left(\lambda^{n} u(y)+\left(1-\lambda^{n}\right) u\left(x^{n}\right)\right) \\
& \quad=\lambda^{n} u(y)+\left(1-\lambda^{n}\right) u\left(x^{n}\right)=\lambda^{n}\left[u(y)-I\left(u \circ h^{n}\right)\right]+I\left(u \circ h^{n}\right) .
\end{align*}
$$

[^0]Notice that the second equality uses the assumption that I is normalized. Since $u \circ h^{n} \rightarrow u \circ h$ in the sup norm, for every $\varepsilon \in\left(0, \min _{s}[u(g(s))-u(h(s))]\right)$ and for n large enough, $\max _{s}\left|u(h(s))-u\left(h^{n}(s)\right)\right|<\min _{s}[u(g(s))-u(h(s))]-\varepsilon$, so that, for every $s, u\left(h^{n}(s)\right)=u(h(s))+\left[u\left(h^{n}(s)\right)-u(h(s))\right]<u(h(s))+$ $\min _{s^{\prime}}\left[u\left(g\left(s^{\prime}\right)\right)-u\left(h\left(s^{\prime}\right)\right)\right]-\varepsilon \leq u(h(s))+u(g(s))-u(h(s))-\varepsilon=u(g(s))-$ ε. In other words, $u(g(s))-u\left(h^{n}(s)\right)>\varepsilon$ for all s and all n large enough. Moreover, for n large enough, $\lambda^{n} \varepsilon+h^{n} \in B_{0}(\Sigma, u(X))$. Since I is monotonic, rearranging terms yields

$$
\frac{I\left(\lambda^{n} \varepsilon+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I\left(u \circ h^{n}\right) \quad \text { eventually. }
$$

Again because $u \circ h^{n} \rightarrow u \circ h$, eventually $I\left(u \circ h^{n}\right) \geq I(u \circ h)-\varepsilon$, so finally

$$
\frac{I\left(\lambda^{n} \varepsilon+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I(u \circ h)+\varepsilon \quad \text { eventually. }
$$

This implies that for a suitable $\varepsilon>0, I^{\circ}(u \circ h ; \varepsilon) \leq u(y)-I(u \circ h)+\varepsilon<\infty$.
To sum up, for every h such that $u \circ h \in \operatorname{int} B_{0}(\Sigma, u(X))$, there are $\varepsilon>0$ and $y \in X$ such that $I^{\circ}(u \circ h ; \varepsilon) \leq u(y)-I(u \circ h)+\varepsilon<\infty$. Since I is monotonic, by Proposition 4 in Rockafellar (1980), I is directionally Lipschitzian; by Theorem 3 therein, the Clarke-Rockafeller derivative of I in the direction a at $u \circ h$, denoted $I^{\uparrow}(u \circ h ; a)$, equals $\liminf _{b \rightarrow a} I^{\circ}(u \circ h ; b)$. Since $I^{\circ}(u \circ h ; \cdot)$ is monotonic because I is, this implies that, for all a such that $a(s)<\varepsilon$, $I^{\uparrow}(u \circ h ; a) \leq I^{\circ}(u \circ h ; \varepsilon)<\infty$. Therefore, the constant function 0 is in the interior of $\left\{a: I^{\uparrow}(u \circ h ; a)<\infty\right\}$. Again by Theorem 3 in Rockafellar (1980), this implies that I is directionally Lipschitz with respect to the vector 0 ; as noted on page 267 therein, it is "an easy fact to verify" that this is equivalent to the assertion that I is locally Lipschitz at $u \circ h$.

Only if. Conversely, suppose I is Lipschitz near $u \circ h$. Since h is interior, I is monotonic and normalized, and $I^{\circ}(u \circ h ; \cdot)$ is continuous, there is $\varepsilon>0$ such that $I^{\circ}(u \circ h ; \varepsilon)<u(y)-I(u \circ h)-\varepsilon$ for some $y \in X$. Then, for all $\left(h^{n}\right) \rightarrow h$ and $\left(\lambda^{n}\right) \downarrow 0$, eventually

$$
\begin{aligned}
& \frac{I\left(\lambda^{n}\left[\varepsilon+u \circ h^{n}\right]+\left(1-\lambda^{n}\right) u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}} \\
& \quad=\frac{I\left(\lambda^{n} \varepsilon+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I(u \circ h)-\varepsilon .
\end{aligned}
$$

Now choose n large enough so that $\max _{s}\left|u(h(s))-u\left(h^{n}(s)\right)\right|<\frac{\varepsilon}{2}$. Then a fortiori, for every $s, u(h(s))-u\left(h^{n}(s)\right)<\frac{\varepsilon}{2}$, that is, $u(h(s))<u\left(h^{n}(s)\right)+\frac{\varepsilon}{2}$ and, therefore, $u(h(s))+\frac{\varepsilon}{2}<u\left(h^{n}(s)\right)+\varepsilon$. Because h is interior, there is $\delta \in\left(0, \frac{\varepsilon}{2}\right]$ such that $u \circ h+\delta=u \circ g$ for some $g \in \mathcal{F}$; for such g, the above argument
implies that $u(g(s))<u\left(h^{n}(s)\right)+\varepsilon$ for all s, and of course $g(s) \succ h(s)$ for all s. By monotonicity, conclude that, for all n sufficiently large,

$$
\frac{I\left(\lambda^{n} u \circ g+\left(1-\lambda^{n}\right) u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I(u \circ h)-\varepsilon .
$$

Finally, by choosing n large enough, we can ensure that $I\left(u \circ h^{n}\right)<I(u \circ h)+\varepsilon$ and, therefore,

$$
\frac{I\left(\lambda^{n} u \circ g+\left(1-\lambda^{n}\right) u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I\left(u \circ h^{n}\right)
$$

Rearranging terms yields Eq. (S1), so the axiom holds.
Q.E.D.

APPENDIX S.B: Nice MBL Preferences

PROPOSITION S2: A monotonic, isotone, and concave function $I: B_{0}(\Sigma, \Gamma) \rightarrow$ $\mathbb{R}($ for some interval $\Gamma)$ is nice everywhere in the interior of its domain.

PROOF: Recall that a monotone concave I is locally Lipschitz; furthermore, ∂I coincides with the superdifferential of I (e.g., Rockafellar (1980, p. 278)) and it is monotone in the sense that

$$
\begin{equation*}
\forall c, c^{\prime} \in \operatorname{int} B_{0}(\Sigma, \Gamma), Q \in \partial I(c), Q^{\prime} \in \partial I\left(c^{\prime}\right), \quad Q\left(c-c^{\prime}\right) \leq Q^{\prime}\left(c-c^{\prime}\right) .^{2} \tag{S2}
\end{equation*}
$$

Fix $c^{\prime} \in \operatorname{int} B_{0}(\Sigma, \Gamma)$ and suppose that $Q_{0} \in \partial I\left(c^{\prime}\right)$. Then, for every $c \in$ int $B_{0}(\Sigma, \Gamma)$ and every $Q \in \partial I(c), Q\left(c-c^{\prime}\right) \leq 0$. Since c^{\prime} is interior, the set $\hat{\Gamma}=\Gamma \cap\left\{\gamma \in \mathbb{R}: \gamma>c^{\prime}(s) \forall s\right\}$ is nonempty. Moreover, for any $\gamma \in \hat{\Gamma}$ and for all $Q \in \partial I\left(1_{S} \gamma\right), Q\left(1_{S} \gamma-c^{\prime}\right) \leq 0$. But since $\gamma-c^{\prime}(s)>0$ for all s and since I is monotonic, this requires that $\partial I\left(1_{S} \gamma\right)=\left\{Q_{0}\right\}$ for all $\gamma \in \hat{\Gamma}$.

In particular, pick $\alpha, \beta \in \hat{\Gamma}$ with $\alpha>\beta$. Since I is isotone, $I\left(1_{S} \alpha\right)>I\left(1_{S} \beta\right)$. By the mean-value theorem (Lebourg (1979)), there must be $\mu \in(0,1)$ and $Q \in \partial I\left(\mu 1_{S} \alpha+(1-\mu) 1_{S} \beta\right)=\partial I\left([\mu \alpha+(1-\mu) \beta] 1_{S}\right)$ such that $I\left(1_{S} \alpha\right)-$ $I\left(1_{S} \beta\right)=Q\left(1_{S} \alpha-1_{S} \beta\right)=Q\left(1_{S}\right)(\alpha-\beta)$. But $\mu \alpha+(1-\mu) \beta \in \hat{\Gamma}$, so $Q=Q_{0}$, and, therefore, $I\left(1_{S} \alpha\right)=I\left(1_{S} \beta\right)$-a contradiction. Therefore, I must be nice at c.
Q.E.D.

We now provide an axiom for MBL preferences that ensures niceness. There are obvious similarities with Axiom 1.

[^1]AXIOM 2-Nonnegligible Worsenings at h : There are $y \in X$ with $y \prec h$ and $g \in \mathcal{F}$ with $g(s) \prec h(s)$ for all s such that, for all $\left(h^{n}\right) \subset \mathcal{F}$ and $\left(\lambda^{n}\right) \subset[0,1]$ with $h^{n} \rightarrow h$ and $\lambda^{n} \downarrow 0$,

$$
\lambda^{n} g+\left(1-\lambda^{n}\right) h^{n} \prec \lambda^{n} y+\left(1-\lambda^{n}\right) x_{h^{n}} \quad \text { eventually. }
$$

This axiom rules out the possibility that preferences may be "flat" when moving from h toward pointwise less desirable acts g. We argue as for Axiom 1: the individual's evaluation of $\lambda y+(1-\lambda) x_{h}$ changes linearly with λ, whereas her evaluation of $\lambda g+(1-\lambda) h$ may worsen in arbitrary nonlinear ways as λ increases from 0 to 1 . Axiom 2 states that when λ is close to 0 , this worsening is comparable to the linear decrease in preference that applies to $\lambda y+(1-\lambda) x_{h}$ (which may still be very slow, if y is almost as good as x_{h}).

Mas-Colell (1977) characterized preferences over consumption bundles (i.e., on \mathbb{R}_{+}^{n}) represented by a (locally) Lipschitz and regular utility function; his notion of regularity is related to niceness (cf. Mas-Colell (1977, p. 1411)); for instance, if utility is continuously differentiable, the requirement is that its gradient be nonvanishing on \mathbb{R}_{++}^{n}. Mas-Colell's axiom is not directly related to ours.

Proposition S3: Let \succcurlyeq be an MBL preference with representation (I, u), and assume that I is normalized. Then \succcurlyeq satisfies Axiom 2 at $h \in \mathcal{F}^{\text {int }}$ if and only if I is nice at $u \circ h$.

Proof: If. As in the proof of Proposition S1, for $g, y,\left(h^{n}\right),\left(\lambda^{n}\right)$ as in the axiom,

$$
\begin{aligned}
& I\left(\lambda^{n}\left[u \circ g-u \circ h^{n}\right]+u \circ h^{n}\right) \\
& \quad<\lambda^{n}\left[u(y)-I\left(u \circ h^{n}\right)\right]+I\left(u \circ h^{n}\right) \quad \text { eventually. }
\end{aligned}
$$

For n large, $\left\|u \circ h^{n}-u \circ h\right\|<1$ and, therefore, $u\left(h^{n}(s)\right)-u(g(s))=$ $\left[u\left(h^{n}(s)\right)-u(h(s))\right]+u(h(s))-u(g(s))<1+\max _{s}[u(h(s))-u(g(s))] \equiv$ δ. Since $h(s) \succ g(s)$ for all $s, \delta>0$. Furthermore, as $n \rightarrow \infty$, eventually $\lambda^{n}(-\delta)+u \circ h^{n} \in B_{0}(\Sigma, u(X))$ and so, by monotonicity of I,

$$
I\left(\lambda^{n}(-\delta)+u \circ h^{n}\right)<\lambda^{n}\left[u(y)-I\left(u \circ h^{n}\right)\right]+I\left(u \circ h^{n}\right) \quad \text { eventually. }
$$

Rearranging gives

$$
\frac{I\left(\lambda^{n}(-\delta)+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I\left(u \circ h^{n}\right) \quad \text { eventually. }
$$

Since $h^{n} \rightarrow h$ and I is continuous, for every $\varepsilon>0$, eventually $I\left(u \circ h^{n}\right) \geq I(u \circ$ $h)-\varepsilon$ and so

$$
\frac{I\left(\lambda^{n}(-\delta)+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I(u \circ h)+\varepsilon \quad \text { eventually. }
$$

Therefore, $I^{0}(u \circ h ;-\delta) \leq u(y)-I(u \circ h)+\varepsilon$. Since this is true for all $\varepsilon>0$, then $I^{0}(u \circ h ;-\delta) \leq u(y)-I(u \circ h)<0$ as $y<h$. But since $I^{0}(u \circ h ;-\delta)=$ $\max _{Q \in \partial I(u \circ h)}(-\delta) Q(S)=-\delta \min _{Q \in \partial I(u \circ h)} Q(S)$ and every $Q \in \partial I(u \circ h)$ is a positive measure because I is monotonic, the zero measure Q_{0} cannot belong to $\partial I(u \circ h)$.

Only if. Conversely, suppose I is nice at $u \circ h$. Since h is interior, there is $\delta>0$ such that $u \circ h-\delta=u \circ g$ for some $g \in \mathcal{F}^{\text {int }}$. Since $Q_{0} \notin \partial I(u \circ h)$ and I is monotonic, $I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right)<0$. Hence, for all sequences $\lambda^{n} \rightarrow 0$ and $h^{n} \rightarrow h$ (acts), and for all $\varepsilon \in\left(0,-I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right)\right)$, eventually

$$
\frac{I\left(\lambda^{n}\left(-\frac{1}{2} \delta\right)+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<-\varepsilon
$$

In particular, find $y \in X$ such that $y<h$ and $I(u \circ h)-u(y)<-\frac{1}{2} I^{0}(u \circ$ $\left.h ;-\frac{1}{2} \delta\right)$, which is possible because h is interior. Add $-\frac{1}{2} I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right)$ on both sides of this inequality to conclude that $I(u \circ h)-u(y)-\frac{1}{2} I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right)<$ $-I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right)$ and so eventually

$$
\begin{aligned}
& \frac{I\left(\lambda^{n}\left(-\frac{1}{2} \delta\right)+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}} \\
& \quad<u(y)-I(u \circ h)+\frac{1}{2} I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right) .
\end{aligned}
$$

Also, for n large, $I\left(u\left(h^{n}\right)\right) \leq I(u(h))-\frac{1}{2} I^{0}\left(u \circ h ;-\frac{1}{2} \delta\right)$; conclude that, eventually,

$$
\frac{I\left(\lambda^{n}\left(-\frac{1}{2} \delta\right)+u \circ h^{n}\right)-I\left(u \circ h^{n}\right)}{\lambda^{n}}<u(y)-I\left(u \circ h^{n}\right)
$$

Rewriting yields

$$
\begin{aligned}
& I\left(\lambda^{n}\left[-\frac{1}{2} \delta+u \circ h^{n}\right]+\left(1-\lambda^{n}\right) u \circ h^{n}\right) \\
& \quad<\lambda^{n}\left[u(y)-I\left(u \circ h^{n}\right)\right]+I\left(u \circ h^{n}\right) \quad \text { eventually. }
\end{aligned}
$$

Finally, if n is large enough, $\left\|u \circ h^{n}-u \circ h\right\|<\frac{1}{2} \delta$, so for all $s,-\frac{1}{2} \delta+u\left(h^{n}(s)\right)=$ $-\frac{1}{2} \delta+u(h(s))+\left[u\left(h^{n}(s)\right)-u(h(s))\right]>-\delta+u(h(s))=u(g(s))$. Hence, finally, monotonicity implies

$$
\begin{aligned}
& I\left(\lambda^{n} u \circ g+\left(1-\lambda^{n}\right) u \circ h^{n}\right) \\
& \quad<\lambda^{n} u(y)-\left(1-\lambda^{n}\right) I\left(u \circ h^{n}\right) \quad \text { eventually }
\end{aligned}
$$

as required.
Q.E.D.

APPENDIX S.C: CALCULATIONS FOR EXAMPLE 4

Since I is continuously differentiable, it is strictly differentiable; see Clarke (1983, Corollary to Proposition 2.2.1). In particular, for all $e \in B_{0}(\Sigma), h^{n} \rightarrow h$ and $\lambda^{n} \downarrow 0,\left(\lambda^{n}\right)^{-1}\left[I\left(\lambda^{n} e+\left(1-\lambda^{n}\right) h^{n}\right)-I\left(\left(1-\lambda^{n}\right) h^{n}\right)\right] \rightarrow \nabla I(h) \cdot e$. Hence, if $\nabla I(h) \cdot f>\nabla I(h) \cdot g$, then for all sequences $\lambda^{n} \downarrow 0$ and $h^{n} \downarrow 0$, eventually $\left(\lambda^{n}\right)^{-1}\left[I\left(\lambda^{n} f+\left(1-\lambda^{n}\right) h^{n}\right)-I\left(\left(1-\lambda^{n}\right) h^{n}\right)\right]>\left(\lambda^{n}\right)^{-1}\left[I\left(\lambda^{n} g+\left(1-\lambda^{n}\right) h^{n}\right)-\right.$ $\left.I\left(\left(1-\lambda^{n}\right) h^{n}\right)\right]$, so Eq. (7) will hold for n large: hence, in this case $f \succcurlyeq_{h}^{*} g$. This is, in particular, the case if $h_{1}>h_{2} \geq 0$.

To analyze Cases 2 and 3 of the example, note first that, for any pair $f, g \in \mathcal{F}$, using the formula for the difference of two cubes, $f \succcurlyeq g$ iff

$$
\begin{equation*}
\sum_{i=1,2}\left[P^{i} \cdot(f-g)\right]\left[\left(P^{i} \cdot f\right)^{2}+\left(P^{i} \cdot g\right)^{2}+\left(P^{i} \cdot f\right)\left(P^{i} \cdot g\right)\right] \geq 0 \tag{S3}
\end{equation*}
$$

Now consider $\varepsilon, f, g, f_{\varepsilon}$, and g_{ε} as in the main text. The rankings $\lambda^{n} f_{\varepsilon}+(1-$ $\left.\lambda^{n}\right) h^{n} \succcurlyeq \lambda^{n} g_{\varepsilon}+\left(1-\lambda^{n}\right) h^{n}$ and $\lambda^{n} f_{\varepsilon}+\left(1-\lambda^{n}\right) k^{n} \succcurlyeq \lambda^{n} g_{\varepsilon}+\left(1-\lambda^{n}\right) k^{n}$ are then equivalent to

$$
\begin{align*}
& \sum_{i=1,2} P^{i} \cdot \lambda^{n}[1+2 \varepsilon,-1+2 \varepsilon] \tag{S4}\\
& \times\left\{\left[P^{i} \cdot \lambda^{n}[3+\varepsilon, 1+\varepsilon]+\gamma\right]^{2}+\left[P^{i} \cdot \lambda^{n}[2-\varepsilon, 2-\varepsilon]+\gamma\right]^{2}\right. \\
& \left.+\left[P^{i} \cdot \lambda^{n}[3+\varepsilon, 1+\varepsilon]+\gamma\right]\left[P^{i} \cdot \lambda^{n}[2-\varepsilon, 2-\varepsilon]+\gamma\right]\right\} \geq 0, \\
& \sum_{i=1,2} P^{i} \cdot \lambda^{n}[1+2 \varepsilon,-1+2 \varepsilon] \tag{S5}\\
& \times\left\{\left[P^{i} \cdot \lambda^{n}[2+\varepsilon, 2+\varepsilon]+\gamma\right]^{2}+\left[P^{i} \cdot \lambda^{n}[1-\varepsilon, 3-\varepsilon]+\gamma\right]^{2}\right. \\
& \left.+\left[P^{i} \cdot \lambda^{n}[2+\varepsilon, 2+\varepsilon]+\gamma\right]\left[P^{i} \cdot \lambda^{n}[1-\varepsilon, 3-\varepsilon]+\gamma\right]\right\} \geq 0 .
\end{align*}
$$

In Case $3(\gamma=0)$, divide Eqs. (S4) and (S5) by $\left(\lambda^{n}\right)^{3}$, and set $\varepsilon=0$ to obtain the conditions

$$
\begin{aligned}
& (2 p-1)\left[(1+2 p)^{2}+4+2(1+2 p)\right] \\
& \quad+(1-2 p)\left[(1+2(1-p))^{2}+4+2(1+2(1-p))\right] \geq 0 \\
& (2 p-1)\left[4+(1+2(1-p))^{2}+2(1+2(1-p))\right] \\
& \quad+(1-2 p)\left[4+(1+2 p)^{2}+2(1+2 p)\right] \geq 0
\end{aligned}
$$

by inspection, the left-hand side (l.h.s.) of the second inequality is the negative of the l.h.s. of the first. Furthermore, the l.h.s. of the first condition equals
$(2 p-1)\left[(1+2 p)^{2}-(1+2(1-p))^{2}+4(2 p-1)\right]>0$, because $p>\frac{1}{2}$. Therefore, for any n, when $\varepsilon=0$, Eq. (S4) holds as a strict inequality, whereas the inequality in Eq. (S5) fails. Hence, the same is true for any n when ε is positive but small. Thus. $f_{\varepsilon} \nsucc h_{h}^{*} g_{\varepsilon}$ for any $\varepsilon \geq 0$ if $h=[0,0]$.

In Case $2(\gamma>0)$, first take $\varepsilon=0$. We claim that Eqs. (S4) and (S5) can both hold only if they are, in fact, equalities. To see this, note that $P^{1} \cdot[\alpha, \beta]=$ $P^{2} \cdot[\beta, \alpha]$ for any $\alpha, \beta \in \mathbb{R}$; hence, when $\varepsilon=0$ and $h=[\gamma, \gamma]$, the l.h.s. of Eq. (S5) can be rewritten as

$$
\begin{aligned}
& \sum_{i=1,2} P^{3-i} \cdot \lambda^{n}[-1,1]\left\{\left[P^{3-i} \cdot \lambda^{n}[2,2]+\gamma\right]^{2}+\left[P^{3-i} \cdot \lambda^{n}[3,1]+\gamma\right]^{2}\right. \\
& \left.\quad+\left[P^{3-i} \cdot \lambda^{n}[2,2]+\gamma\right]\left[P^{3-i} \cdot \lambda^{n}[3,1]+\gamma\right]\right\}
\end{aligned}
$$

It is apparent that this is the negative of the l.h.s. of Eq. (S4) when $\varepsilon=0$ and $h=[\gamma, \gamma]$, except that we first use P^{2} and then P^{1}, rather than the opposite as in Eq. (S4). This proves the claim.

Next, we claim that Eq. (S4) holds as a strict inequality, which proves the assertion in the text that $f \not_{h}^{*} g$. Since $p>\frac{1}{2}$ and $\gamma>0$, the first and third terms in braces are strictly greater for $i=1$ than for $i=2$. Since $P^{2} \cdot[1,-1]=-P^{1}$. [1, 1], the l.h.s. of Eq. (S4) is the difference of these terms that is multiplied by $P^{1} \cdot \lambda^{n}[1,-1]>0$ and, hence, it is strictly positive.

Finally, if $\varepsilon>0$ and since $h=[\gamma, \gamma]$, we have $\nabla I(h) \cdot(f+\varepsilon)=\nabla I(h) \cdot f+$ $\nabla I(h) \cdot \varepsilon=\nabla I(h) \cdot g+\nabla I(h) \cdot \varepsilon>\nabla I(h) \cdot g-\nabla I(h) \cdot \varepsilon=\nabla I(h) \cdot(g-\varepsilon)$, which, as noted above, implies that $f_{\varepsilon} \succcurlyeq_{h}^{*} g_{\varepsilon}$.

As noted in footnote 11 in the main paper, here $\partial I(0)$ contains only the zero vector. However, consider the monotonic, locally Lipschitz functional $J: \mathbb{R}^{2} \rightarrow$ \mathbb{R} given by $J(h)=\min \left(I(h), h_{1}+I(h)\right)$. Then $J(h)=I(h)$ for $h \in \mathbb{R}^{2}$ with $h_{1} \geq 0$, and $\partial J(0)=\{[\gamma, 0]: \gamma \in[0,1]\}$ (Clarke (1983, Theorem 2.5.1)). Since all mixtures in Eq. (8) are nonnegative when $h \in \mathbb{R}_{+}^{2}$ and $\varepsilon<1$, even if g is replaced with $g-\varepsilon$ (cf. the definition of k^{n}), the analysis in Example 4 applies verbatim to J. In particular, for all $\varepsilon \in[0,1)$, now $f+\varepsilon \succ_{C(0)} g-\varepsilon$, but $f+\varepsilon \not \mathscr{\not}_{0}^{*}$ $g-\varepsilon$ (the argument in the second paragraph of Example 4 does not apply because J is not (continuously) differentiable at 0).

APPENDIX S.D: Relevant Priors: A Behavioral Test

We conclude by showing that, given an interior act h, whether a probability $P \in \mathrm{ba}_{1}(\Sigma)$ belongs to the set $C(h)$ can be ascertained without invoking Theorems 6 or 7 ; indeed, using only the DM's preferences. For the result, we need a notion of lower certainty equivalent of an act f for the incomplete, discontinuous preference \succcurlyeq_{h}^{*} (cf. the definition of $C^{*}(f)$ in GMM, p. 158).

Definition S1: For any act $f \in \mathcal{F}$, a local lower certainty equivalent of f at $h \in \mathcal{F}^{\text {int }}$ is a prize $\underline{x}_{f, h} \in X$ such that, for all $y \in X, y \prec \underline{x}_{f, h}$ implies $f \succcurlyeq_{h}^{*} y$ and $y \succ \underline{x}_{f, h}$ implies $f \nvdash_{h}^{*} y$.

Furthermore, fix $P \in \operatorname{ba}_{1}(\Sigma)$ and $f \in \mathcal{F}$, and suppose that $f=\sum_{i=1}^{n} x_{i} 1_{E_{i}}$ for a collection of distinct prizes x_{1}, \ldots, x_{n} and a measurable partition E_{1}, \ldots, E_{n} of S. Then define

$$
x_{P, f} \equiv P\left(E_{1}\right) x_{1}+\cdots+P\left(E_{n}\right) x_{n} .
$$

That is, $x_{P, f} \in X$ is a mixture of the prizes x_{1}, \ldots, x_{n} delivered by f, with weights given by the probabilities that P assigns to each event E_{1}, \ldots, E_{n}. We then have the following corollary.

Corollary S4: For any $P \in \mathrm{ba}_{1}(\Sigma)$ and $h \in \mathcal{F}^{\text {int }}$ such that I is nice at $u \circ h$, $P \in C(h)$ if and only if, for all $f \in \mathcal{F}^{\text {int }}, \underline{x}_{f, h} \preccurlyeq x_{P, f}$.

Proof: We show that $u\left(\underline{x}_{f, h}\right)=\min _{P \in C(h)} P(u \circ f)$; thus, the condition in the corollary states that P satisfies $P(u \circ f) \geq \min _{P^{\prime} \in C(h)} P^{\prime}(u \circ f)$ for all interior f, so $P(a) \geq \min _{P^{\prime} \in C(h)} P(a)$ by linearity for all $a \in B_{0}(\Sigma)$, and $P \in C(h)$ then follows from standard arguments.

If $\underline{x}_{f, h}$ is as in Definition S1, then $\min _{P \in C(h)} P(u \circ f) \geq u(y)$ for all $y<\underline{x}_{f, h}$ by (i) in Theorem 6, and so $\min _{P \in C(h)} P(u \circ f) \geq u\left(\underline{x}_{f, h}\right)$. Conversely, for every y with $u(y)<\min _{P \in C(h)} P(u \circ f)$, there are $\varepsilon>0, y^{\prime} \in X$, and $f^{\prime} \in \mathcal{F}$ with $u\left(y^{\prime}\right)=$ $u(y)+\varepsilon, u \circ f^{\prime}=u \circ f-\varepsilon$, and $u\left(y^{\prime}\right) \leq \min _{P \in C(h)} P\left(u \circ f^{\prime}\right)$; then, by (ii) in Theorem 7, since (f, y) is a spread of $\left(f^{\prime}, y^{\prime}\right), f \succcurlyeq_{h}^{*} y$. This implies that $y \preccurlyeq \underline{x}_{f, h}$. Hence, $\min _{P \in C(h)} P(u \circ f) \leq u\left(\underline{x}_{f, h}\right)$ as well.

APPENDIX S.E: ADDITIONAL PROPERTIES OF \succcurlyeq_{h}^{*}

In addition to agreeing with \succcurlyeq on X, provided $\partial I(u \circ h) \neq\left\{Q_{0}\right\}, \succcurlyeq_{h}^{*}$ satisfies the following additional properties.

LEMMA S5: The preference \succcurlyeq_{h}^{*} is a monotonic, independent preorder.
Proof: Monotonicity and reflexivity are immediate from monotonicity of \succcurlyeq. Transitivity is immediate from the definition of \succcurlyeq_{h}^{*} and transitivity of \succcurlyeq. It remains to be shown that \succcurlyeq_{h}^{*} is independent; that is, for all $k \in \mathcal{F}$ and $\mu \in(0,1]$, $f \succcurlyeq_{h}^{*} g$ iff $\mu f+(1-\mu) k \succcurlyeq_{h}^{*} \mu g+(1-\mu) k$. Note that

$$
\begin{aligned}
\lambda^{n} & {[\mu f+(1-\mu) k]+\left(1-\lambda^{n}\right) h^{n} } \\
& =\left(\lambda^{n} \mu\right) f+\left[1-\left(\lambda^{n} \mu\right)\right]\left\{\frac{\lambda^{n}(1-\mu)}{1-\left(\lambda^{n} \mu\right)} k+\frac{1-\lambda^{n}}{1-\left(\lambda^{n} \mu\right)} h^{n}\right\} \\
& \equiv \bar{\lambda}^{n} f+\left(1-\bar{\lambda}^{n}\right) \bar{h}^{n}
\end{aligned}
$$

with $\left(\bar{\lambda}^{n}\right) \downarrow 0$ and $\left(\bar{h}^{n}\right) \rightarrow h$, and similarly for g. Hence, if $f \succcurlyeq_{h}^{*} g$, then eventually $\bar{\lambda}^{n} f+\left(1-\bar{\lambda}^{n}\right) \bar{h}^{n} \succcurlyeq \bar{\lambda}^{n} g+\left(1-\bar{\lambda}^{n}\right) \bar{h}^{n}$; repeating the argument for
all $\left(\lambda^{n}\right),\left(h^{n}\right)$ implies that $\mu f+(1-\mu) k \succcurlyeq_{h}^{*} \mu g+(1-\mu) k$. Conversely, if $\mu f+(1-\mu) k \succcurlyeq_{h}^{*} \mu g+(1-\mu) k$, define $\tilde{\lambda}^{n}$ and \tilde{h}^{n} so that

$$
\tilde{\lambda}^{n}[\mu f+(1-\mu) k]+\left(1-\tilde{\lambda}^{n}\right) \tilde{h}^{n}=\lambda^{n} f+\left(1-\lambda^{n}\right) h^{n}
$$

this requires $\tilde{\lambda}^{n}=\frac{\lambda^{n}}{\mu}$, which is in $[0,1]$ for n large and converges to zero as $n \rightarrow \infty$, and

$$
u \circ \tilde{h}^{n}=\frac{\left(1-\lambda^{n}\right) u \circ h^{n}-\tilde{\lambda}^{n}(1-\mu) u \circ k}{1-\tilde{\lambda}^{n}},
$$

which is in $B_{0}(\Sigma, u(X))$ for n large (recall that h is interior) and indeed such that $\tilde{h}^{n} \rightarrow h$. Note that $\tilde{\lambda}^{n}$ and \tilde{h}^{n} do not depend on f. Again, for n large, $\tilde{\lambda}^{n}[\mu f+(1-\mu) k]+\left(1-\tilde{\lambda}^{n}\right) \tilde{h}^{n} \succcurlyeq \tilde{\lambda}^{n}[\mu g+(1-\mu) k]+\left(1-\tilde{\lambda}^{n}\right) \tilde{h}^{n}$ and, therefore, by construction, $\lambda^{n} f+\left(1-\lambda^{n}\right) h^{n} \succcurlyeq \lambda^{n} g+\left(1-\lambda^{n}\right) h^{n}$ and so, repeating for all sequences, $f \succcurlyeq_{h}^{*} g$.

REFERENCES

Clarke, F. H. (1983): Optimization and Nonsmooth Analysis. New York: Wiley. [6,7]
Lebourg, G. (1979): "Generic Differentiability of Lipschitzian Functions," Transactions of the American Mathematical Society, 256, 125-144. [3]
Mas-Colell, A. (1977): "The Recoverability of Consumers' Preferences From Market Demand Behavior," Econometrica, 45 (6), 1409-1430. [4]
Rockafellar, R. T. (1980): "Generalized Directional Derivatives and Subgradients of Nonconvex Functions," Canadian Journal of Mathematics, 32, 257-280. [2,3]

Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri (TO), Italy; paolo.ghirardato@carloalberto.org and
Economics Dept., Northwestern University, 2001 Sheridan Rd., Evanston, IL 60208, U.S.A.; marciano@northwestern.edu.

Manuscript received June, 2010; final revision received March, 2012.

[^0]: ${ }^{1}$ That is, for every $a \in \operatorname{int} B_{0}(\Sigma, u(X))$, there are $\varepsilon>0$ and $L>0$ such that $|I(b)-I(c)| \leq$ $L\|b-c\|$ for all $b, c \in B_{0}(\Sigma, u(X))$ with $\|b-a\|<\varepsilon$ and $\|c-a\|<\varepsilon$.

[^1]: ${ }^{2}$ Since ∂I is the superdifferential of $I, Q\left(c^{\prime}-c\right) \geq I\left(c^{\prime}\right)-I(c)$ and $Q^{\prime}\left(c-c^{\prime}\right) \geq I(c)-I\left(c^{\prime}\right)$. Summing these inequalities yields the inequality in the text.

