
Econometrica Supplementary Material

SUPPLEMENT TO “A PARSIMONIOUS MACROECONOMIC MODEL
FOR ASSET PRICING”: TECHNICAL APPENDIX AND EXTENSIONS

(Econometrica, Vol. 77, No. 6, November, 2009, 1711–1750)

BY FATIH GUVENEN

This appendix has four parts. Part A presents the details of the computational algo-
rithm and discusses issues about the accuracy of the solution method. Part B describes
the discretization procedure for the AR(1) process used for the technology shocks in
the model and discusses its accuracy. Part C presents the details of two experiments
discussed in the text: (i) the effect of different stock market participation rates on the
asset pricing results and (ii) generating heterogeneity in the EIS endogenously through
benchmark consumption levels. Finally, Part D presents additional statistics from dif-
ferent versions of the model that are omitted from the main text to save space.
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A. COMPUTATIONAL ALGORITHM

THIS APPENDIX DESCRIBES the numerical methods used to solve the limited
participation model described in Section 3 of Guvenen (2009). Some of the
material here has been summarized in that section. Here, I provide a more
detailed description, which repeats some of the discussion for completeness.

In addition to the typical difficulties associated with solving incomplete mar-
kets asset pricing models (such as Krusell and Smith (1997) and Storesletten,
Telmer, and Yaron (2007)), the present model is further complicated by three
factors: (i) the existence of adjustment costs, (ii) Epstein–Zin preferences, and
(iii) leverage. With adjustment costs, the firm’s problem is dynamic, and the
return on equity cannot be computed simply as the marginal return on capi-
tal from a Cobb–Douglas production function. With Epstein–Zin preferences
(especially for the stockholders) the Intertemporal Marginal Rate of Substitu-
tion of stockholders—which is also the discount factor in the firm’s dynamic
problem—is potentially quite nonlinear, making deviations from the true so-
lution (i.e., due to poor initial guess or aggressive updating) less forgiving.
Finally, with leverage, the bond pricing function also enters the firm’s objec-
tive, creating further feedback between the two pricing functions (in addition
to those from market clearing). For an accurate solution, which is necessary
for reliable asset pricing results, I use an algorithm that values precision over
speed. I first describe the algorithm for solving the CONS model. Dealing with
endogenous labor supply is straightforward conceptually but time-consuming
in practice, because it not only adds one more choice variable to individuals’
problems (which can be solved from the static first order condition), but it also
introduces one more equilibrium function that needs to be updated until con-
vergence.

Solving the CONS model amounts to finding the following functions which
are part of the recursive equilibrium.
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(i) Value functions (V i(ω;Υ )) and decision rules ci(ω;Υ ), bi′(ω;Υ ) for
each agent i = h�n and s′(ω;Υ )�

(ii) Optimal investment rule for the firm, I(Υ )�
(iii) The equilibrium stock and bond pricing functions, Ps(Υ ) and Pf (Υ )�
(iv) The equilibrium laws of motion ΓK(Υ ) and ΓB(Υ ) for the wealth distri-

bution.
Before describing the algorithm, two points need to be discussed. First, the

investment decision of the firm is dynamic and is obtained as the solution to
equations (1) and (2) in the text. Although this dynamic program has a single
(dynamic) choice variable and is conceptually straightforward to solve, there
are some practical issues that complicate the solution. First, with Epstein–Zin
preferences, future dividends, Dt+1� in the firm’s objective are discounted by

Λt+1

Λt

= β(1−α)/(1−ρ)

(
ct+1

ct

)−ρ

⎡
⎢⎢⎢⎣

Vt+1
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ct
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⎤
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ρ−α

�

which depends on the consumption decision rule, value function, and future
values of individual and aggregate state variables.1 The problem is that even if
the initial guesses for these different functions are modestly different from the
actual solutions, the values of state variables in the distant future—obtained
by iterating on these initial guesses—may be quite far off their true values,
which then distorts the objective function by changing the weights assigned to
the dividend stream in different states. This problem becomes worse when β
is close to 1 (as is here, β = 0�9966) so that future dividends have a greater
impact on the objective function. This requires starting with a good initial
guess—which is the challenge—and updating equilibrium functions very grad-
ually.

Second, unlike in models without adjustment costs (such as Krusell and
Smith (1997)), here the return on capital is not equal to the marginal prod-
uct of capital and depends on the stock price in the next period as well. Thus,
one must solve jointly for Pf (Υ ) and Ps(Υ )� It turns out to be simpler (and
more stable) to obtain the stock price using the present value condition of the
firm rather than searching jointly for the market clearing stock and bond prices.
The details of the algorithm are as follows:

Step 0—Initialization:
(a) First choose a grid for the state space. I use 25 points2 each for ωh

and ωn; 5 and 20 points in K and B directions, respectively (using 60—10 and

1Notice that when α = ρ� this IMRS reduces to the standard one under expected utility:
β(Ch

t+1/C
h
t )

−α�
2Notice that I am using very few points in the ω direction. This is because the Epstein–Zin

formulation of the utility function yields a linear value function in ω when markets are complete.
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30 points in each of these directions, respectively—had no noticeable impact);
and a 15-state Markov approximation to Z. In the rest, let i and j index grid
points and iteration number, respectively. All the steps below are performed
for each point in the state space, Υ � and off-grid values are obtained by cubic
spline interpolation.

(b) As explained above, the initial choices for the laws of motion and pric-
ing functions are critical because they affect future values of state variables
(for a given fixed state today) and thus the objective function of the firm. Initial
guesses for Γ 0

K(Υ )� Γ 0
B (Υ )� PB�0(Υ )� and ch�0(ω;Υ ) are obtained by solving a

simpler model where adjustment costs and leverage are eliminated and α = ρ.
This model is much simpler to solve, and the solution algorithm is described
in an earlier paper (Guvenen (2006)) and is therefore omitted here. To obtain
Ps�0(Υ ) I proceed as follows:

(i) First, solve the firm’s investment problem using the initial guesses above
to construct the discount factor and future values of aggregate state variables.
Note, however, that stockholders’ wealth, 
h′ = ((Ps′ +D′)−B′)/μ� needed to
construct the discount factor, itself depends on (Ps +D)� which I do not have
yet. Thus, I replace it with (1 + R(K�Z))K� where R is simply the marginal
return on capital using the Cobb–Douglas production function. The two values
become closer as adjustment costs are relaxed.

(ii) Using I0(Υ ), obtain D0(Υ ) using the definition of dividends. Define and
initialize the auxiliary variable P

0
(K�B�Z)=K� where the superscript indexes

the iteration number in the miniloop below (indexed by m). Now iterate on the
mapping until m = 50,

P
m+1

(Υ )= E

[
β
Λ(Υ ′)
Λ(Υ )

(D0(Υ ′)+ P
m
(Υ ′))|Υ

]
�(S1)

and set Ps�0(Υ )= P
50
(Υ )�

Taking the initial conditions above and setting j = 1� start the iteration:
Step 1—Solve Each Agent’s Dynamic Problem: This is a standard dynamic

programming problem, so I omit a detailed description. Having said that,
I should also note that this problem has one distinguishing feature: Epstein–
Zin preferences. This feature actually makes the solution faster than with
CRRA preferences. To see why, note that with CRRA utility and com-
plete markets,3 the value function has the same isoelastic form—and the
same curvature—as the period utility function (cf. Samuelson (1969)). Con-
sequently, when risk aversion is high the value function inherits the same high
curvature, which then necessitates a large number of grid points in the financial

In this framework, markets are incomplete but deviations from linearity are not substantial except
all lower wealth levels, so a small number of points together with a spline interpolation provides
an accurate approximation.

3Complete markets are necessary to make human wealth tradeable.
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wealth direction to obtain an accurate approximation during the value func-
tion iteration. In contrast, with the formulation of recursive preferences used
in equation (S1), the value function becomes linear in financial wealth (cf. Ep-
stein (1988)), which makes it extremely convenient to interpolate with far fewer
grid points.4 For example, using CRRA preferences with a risk aversion of 10,
about 200 grid points were required for a sufficiently accurate approximation,
whereas about 30 points were sufficient with the recursive preferences formu-
lation.

Step 2—Update Equilibrium Functions:
(a) Solve the firm’s investment problem as in (i) and (ii) in Step 0, using

ch�j(ω;Υ ) and V h�j(ω;Υ ) obtained in Step 1 to construct the discount factor.
Note also that 
h′ = ((Ps′ +D′)−B′)/μ.

(b) Obtain Dj(Υ ) using Ij(Υ )�

(c) Obtain Γ
j
K(Υ ) using Ij(Υ ): K′ = (1 − δ)K +Φ(Ij/K)K�

(d) Obtain Ps�j(Υ ) using the updated consumption and dividend decision
rules via the recursion (S1). Note that I set the initial condition P

0
(Υ ) =

Ps�j−1(Υ ) in Step 0(b)(ii).
Step 3—Update the Bond Pricing Function: The method amounts to finding

a bond price (at a given grid point Υ i in iteration j), which clears the bond
market when both agents take Pf�j−1(Υ )� and (the newly updated) Ps�j(Υ ) to
apply in all future periods (this approach follows Krusell and Smith (1997)).

Specifically, in iteration j� at each grid point for current state Υ i� we want
to find the new bond price qj(Υ i) which clears the bond market today, when
agents take Pf�j−1(Υ ) to apply to all future dates. More specifically, first solve
the following maximization problem for the stockholder and with s′ ≡ 0 for the
non-stockholder:

max
b′�s′

(
(1 −β)c1−ρ +β

(
E[V (ω′;Υ ′)1−α|Υ ])(1−ρ)/(1−α))1/(1−ρ)

s.t.

c + q̂b′ + s′ ≤ω+W (K�Z)�

ω′ = b′ + s′(Ps(Υ ′)+D(Υ ′))�

K′ = ΓK(Υ )�

B′ = ΓB(Υ )�

b
′ ≥ B�

4Of course, markets are incomplete in our environment, so the value function is not exactly
linear. However, deviations from linearity are concentrated at the lower end of the wealth grid
and, in any case, are far less severe than with CRRA utility, making recursive preferences still
much more convenient to use.
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Note that this is not a standard Bellman equation: agents treat the current
period bond price as a parameter, q̂� but take future bond pricing function to
be Pf�j−1(Υ ). This problem will give rise to bond holding rules b̃h(ω;Υ � q̂) and
b̃n(ω;Υ � q̂) as a function of the current bond price q̂� Then, at each grid point
Υ i, search over the bond price q̂ to find q∗

i such that the bond market clears:

|μb̃h(ω;Υ � q∗
i )+ (1 −μ)b̃n(ω;Υ � q∗

i )−χK/q∗
i | < 10−8�

Then set qj(Υ i) = q∗(Υ i)�
Trying to simultaneously clear both markets and update the stock price as

well in this step creates instability in the algorithm and often fails to converge.
Instead, the iterative method described here (updating Ps�j from (S1) and Pf�j

from market clearing) works quite well in practice. At the end, I will also verify
that the stock market clears: μs′ = 1�

Step 4—Obtain Γ
j
B(Υ ): B′ = (1−μ)bn(
n�Υ ), where bn is the non-stockhol-

ders’ bond choice at the market clearing bond price in Step 3 (and not the one
obtained in Step 1).

Step 5—Iterate on Steps 1–4 until convergence. I require maximum percent-
age deviation in consecutive updates to be less than 10−6 for Pf � 10−4 for Ps,
and 10−5 for aggregate laws of motion and market clearing conditions. Tighten-
ing these convergence criteria did not have any noticeable effect on the results.
(That is, the statistics of interest reported in the paper stabilize once these dis-
crepancies are below the stated tolerances and further iteration on Steps 1–4
does not change these results.) Finally, I also check μs′ = 1 even though this
condition was not explicitly imposed in updating the stock price. It holds very
precisely (deviation less than 10−5) at the solution.

Another point that should be kept in mind is that the convergence of the
algorithm also depends on the particular choice of parameters. As a rough
guideline, parameter choices that imply higher curvature in various functions
(e.g., higher adjustment costs (lower ξ), higher risk aversion of stockholders,
lower EIS of non-stockholders, large amounts of leverage, etc.) make it harder
for the algorithm to converge successfully. In such cases, it is useful to start
from an easier case (say, a lower risk aversion) and use the solution to this
problem as the initial guess for the subsequent case which gradually increases
the risk aversion toward the ultimate parametrization of interest.

The results reported in the paper are obtained by compiling these codes
using the Absoft V10.1 compiler for Mac OSX with relatively aggressive opti-
mization (-m64 -O3 -speed_math=8, autoparallel). On a MacPro Workstation
with 8-core 3.2 GHz Xeon processors, it takes about 9 hours 15 minutes for the
CONS model and 13 hours and 35 minutes for the GHH model without lever-
age to converge to the bounds specified above. With leverage, the required
times are about 55 hours for the CONS model and about 65 hours for the
GHH model.
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TABLE SI

AUTOCORRELATION STRUCTURE OF THE MARKOV CHAIN APPROXIMATION

Autocorrelation at Lag

1 2 3 4 5

AR(1) 0.976 0.953 0.929 0.907 0.885
Markov

approximation 0.974 0.951 0.926 0.902 0.878

B. DISCRETIZING THE AR(1) PROCESS FOR Z

The discretization method understates the true persistence of the AR(1)
process. Therefore, to get a first order autocorrelation of 0.976 at monthly fre-
quency, we first simulate an AR(1) process with ρ = 0�984 for 100,000 periods.
By applying Tauchen’s (1986) method as described by Aiyagari (1993) using
15-state points, we obtain the desired transition matrix. Table SI shows that
the generated Markov process provides a fairly accurate approximation.

C. EXTENSIONS AND DISCUSSIONS

C.1. Rising Participation in the Stock Market

Given the various implications of limited participation for asset prices pre-
sented in the paper, a natural question to ask is, “What are the implications of
the rising participation in the stock market observed since the 1990s?” A com-
plete answer to this question would require solving for the transition path dur-
ing this period, which will add substantially to the already high computational
demands of the model. However, some insights can be gained by comparing
outcomes across stationary equilibria with different participation rates, keep-
ing in mind the well-known caveats associated with drawing inference from
such a comparison for transitions.

I solve the GHH model with μ set equal to 30%, corresponding to the high-
participation economy.5 In this case, the equity premium is lower—3�8% com-
pared to 4�2% before—since aggregate risk is now shared among a larger
group of households. It is also less volatile, which mitigates the fall in the
Sharpe ratio: 0�22 versus 0�24 before. It is important to note that the 3�8%
figure is the ex ante equity premium, that is, what investors expect to receive
looking forward. Therefore, this lower ex ante premium in the new steady state

5Although the fraction of households who own any positive amount of equity has been around
50% in the United States since 2000, many of the new participants hold very small amounts of
equity. The 30% figure is chosen to roughly correspond to the set of households who own 99%
of all equity outstanding (including indirect holdings through defined contribution plans; see, for
example, Poterba (2000)).
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does not necessarily imply that the realized premium during the transition is
low. To the contrary, because equity becomes a less risky asset with higher
participation, its price rises (27�8 compared to 24�7 in the first steady state),
which is likely to generate a higher realized equity premium along the transi-
tion due to capital gains. This would be consistent with the experience of the
U.S. economy after the 1990s (with a booming stock market and high realized
premium).6 However, these results should be viewed as suggestive about the
potential impact of rising participation on asset prices, because it is not clear
how long such a transition would take given that the new participants are en-
tering the stock market with a substantially lower wealth level than existing
stockholders.

C.2. Endogenizing the Heterogeneity in the EIS

In the paper, heterogeneity in the EIS is assumed as an exogenously given
characteristic of stockholders and non-stockholders. Here, I show how this
heterogeneity can be generated endogenously. To this end, assume that both
agents have identical expected utility functions that feature “benchmark con-
sumption levels”: ui = (ci−aC)1−ρ/(1−ρ)� where C is the aggregate consump-
tion in a given period, which is taken to be exogenous by individuals. Because
these preferences are nonhomothetic, the EIS of an individual endogenously
rises with his consumption and, therefore, with his wealth level. But note that
wealth inequality in this framework is mainly due to limited participation and
is quite robust to changes in the curvature of the utility of both agents (see Gu-
venen (2006) for a detailed analysis of this point). Therefore, with these new
preferences, stockholders continue to be much wealthier and, consequently,
to consume more than non-stockholders, endogenously generating the same
kind of heterogeneity in the EIS assumed exogenously in the main framework
above.

I solve the model with these preferences, and set ρ = 3 and a = 0�6. When
aggregate consumption is normalized to 1, the per capita consumption in this
model is 1.55 for stockholders and 0.89 for non-stockholders, which gener-
ates eish ≈ ρch/(ch − aC) = 0�21 and eisn ≈ 0�11 (and stockholders are much
wealthier than non-stockholders—holding 91% of aggregate wealth in the
economy—as conjectured above). We set the stockholders’ EIS to a lower
value than in the baseline calibration so as not to generate a risk aversion that
is too low: with this utility function, it is approximately equal to 1/eish ≈ 4�77�
The resulting equity premium is 5�1% and the Sharpe ratio is 0.23. The volatil-
ity of the interest rate is 7�1%� One notable difference from before is seen in
the dynamics of asset prices where the countercyclicality of the Sharpe ratio
and equity premium become stronger (correlation with output is −0�82 and

6In addition, E(Rf ) = 1�65%, σ(Rf ) = 6�41%, σ(log(Ps/D)) = 23�5%, and σ(� log(D)) =
13�1%.
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TABLE SII

COUNTERPART OF FIGURE 2: CYCLICAL BEHAVIOR OF
CONDITIONAL MOMENTS OF EQUITY PREMIUM

Cross-Correlation With Output

Case: Et(R
s
t+1 −R

f
t ) σt (R

s
t+1 −R

f
t )

Et (R
s
t+1−R

f
t )

σt (R
s
t+1−R

f
t )

1 −0�36 −0�20 −0�32
2 −0�62 −0�51 −0�55
3 −0�21 −0�26 −0�19
4 −0�51 −0�58 −0�40
5 −0�47 −0�52 −0�36
6 −0�82 −0�40 −0�91

−0�90� respectively), which is due to the fact that now the risk aversion of both
agents changes over the business cycle in a countercyclical fashion.7

D. TABLES FOR THE EXTENSIONS DISCUSSED IN THE MAIN TEXT

Tables SIII–SV report the full set of statistics regarding asset price dynam-
ics and business cycle behavior for six different parametrizations introduced
as extensions in the main text. Each of the cases referred to in the tables is
explained below. The paper contains more detailed descriptions of the cali-
bration for each of these cases. The main text reports the results on asset price
dynamics for the GHH model. The counterparts for the CONS and CD models
are reported as Cases 1 and 2.

CASE 1: Baseline CONS model (referenced in text footnote 14).
CASE 2: Baseline CD model (referenced in text footnote 14).
CASE 3: CONS model with tight borrowing constraints (referenced in text

footnote 6; no leverage; both agents’ borrowing limit is set to 1 month’s labor
income).

CASE 4: CONS model with high risk aversion for non-stockholders
(RRAh = 12; Table II, fifth column; referenced in text footnote 12).

CASE 5: GHH model with high participation rate: μ = 0�30 (Section C.1
above)�

CASE 6: Endogenous heterogeneity in the EIS (introduced in text footnote 7
and Section C.2 above).

7Other statistics are E(Rf ) = 1�45%, E(log(Ps/D)) = 26�8, σ(log(Ps/D)) = 24�8, and
σ(log(Ps/D)) = 27�5. The results on asset price dynamics for the parametrizations in this sec-
tion are reported in Section D below.
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TABLE SIII

COUNTERPART OF TABLE IV: AUTOCORRELATION STRUCTURE OF KEY
FINANCIAL VARIABLES

Lag (Years)

1 2 3 5 7

Autocorrelation
rs − rf

Case 1 −0�02 −0�01 −0�01 −0�02 −0�02
Case 2 −0�02 −0�01 −0�01 −0�02 −0�02
Case 3 −0�02 −0�00 −0�01 −0�01 −0�02
Case 4 −0�03 −0�03 −0�02 −0�02 −0�01
Case 5 −0�02 −0�00 −0�01 −0�01 −0�02
Case 6 −0�03 −0�03 −0�02 −0�02 −0�01∑j
i=1 ρ[(rs − rf )t � (r

s − rf )t−i]
Case 1 −0�02 −0�03 −0�04 −0�07 −0�10
Case 2 −0�02 −0�03 −0�04 −0�07 −0�09
Case 3 −0�02 −0�02 −0�03 −0�05 −0�08
Case 4 −0�03 −0�06 −0�08 −0�12 −0�14
Case 5 −0�02 −0�02 −0�03 −0�05 −0�08
Case 6 −0�03 −0�06 −0�08 −0�14 −0�17

TABLE SIV

COUNTERPART OF TABLE V: LONG-HORIZON REGRESSIONS
ON PRICE–DIVIDEND RATIO

R2 Values

Horizon (k) Case: 1 2 3 4 5 6

A. Stock Returns
1 0�13 0�09 0�10 0�09 0�10 0�07
3 0�23 0�22 0�18 0�21 0�22 0�18
5 0�31 0�26 0�25 0�28 0�30 0�23
7 0�35 0�32 0�30 0�34 0�35 0�27

B. Excess Returns
1 0�03 0�01 0�03 0�02 0�03 0�01
3 0�06 0�04 0�05 0�06 0�06 0�05
5 0�10 0�08 0�09 0�10 0�11 0�08
7 0�12 0�11 0�10 0�12 0�13 0�11
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TABLE SV

COUNTERPART OF TABLE VII: BUSINESS CYCLE
STATISTICS

Case

1 2a 3 4 5 6

Volatilities
σ(Y) 1.92 1.97 1.94 1.94 1.93 1.90
σ(C)/σ(Y) 0.80 0.92 0.89 0.79 0.82 0.78
σ(I)/σ(Y) 1.96 1.38 1.55 1.98 1.65 1.98
σ(L)/σ(Y) 0.0 0.07 0.0 0.0 0.48 0.0

Cross-Correlation With Output
ρ(Y�C) 0.99 0.99 0.99 0.99 0.99 0.98
ρ(Y� I) 0.99 0.99 0.99 0.99 0.95 0.99
ρ(Y�L) 0.0 0.96 0.0 0.0 0.99 0.0

aThe business cycle statistics for Case 2 have already been reported
in the paper (Table VII, third column) and are simply repeated here
for completeness. The model statistics are computed after simulated
data have been aggregated to quarterly frequency, logged, and then HP
filtered.
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