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BY NING SUN AND ZAIFU YANG

PROOF OF LEMMA 1: Suppose that p∗ is an equilibrium price vector. Then
we know from Gul and Stacchetti (1999, Lemma 6) that for any efficient allo-
cation π∗, (p∗�π∗) constitutes an equilibrium. Clearly,

∑
i∈I u

i(π∗(i))= R(N)
the market value of the objects. Furthermore, we have L(p∗)= ∑

i∈I V
i(p∗)+∑

βh∈N p∗
h = ∑

i∈I(u
i(π∗(i))− ∑

βh∈π∗(i) p
∗
h)+ ∑

βh∈N p∗
h =R(N). Note that for

any p ∈ R
n and i ∈ I, V i(p) ≥ ui(π∗(i)) − ∑

βh∈π∗(i) ph. Thus for any p ∈ R
n,

we have

L(p)=
∑
i∈I

V i(p)+
∑
βh∈N

ph ≥
∑
i∈I

ui(π∗(i))= R(N) = L(p∗)�

Hence, L(p∗)= minp∈Rn L(p), that is, p∗ is a minimizer of the function L with
L(p∗)=R(N).

Suppose that p̂ is a minimizer of L with its value L(p̂) = R(N). Let ρ be
any efficient allocation of the model. We will show that (p̂�ρ) is an equilib-
rium. Clearly, we have V i(p̂) ≥ ui(ρ(i))− ∑

βh∈ρ(i) p̂h for every i ∈ I. We need
to show that V i(p̂) = ui(ρ(i)) − ∑

βh∈ρ(i) p̂h for every i ∈ I. Suppose to the
contrary that V j(p̂) > uj(ρ(j)) − ∑

βh∈ρ(j) p̂h for some bidder j. Adding the
previous inequalities over all bidders leads to L(p̂) > R(N). This contradicts
the hypothesis that p̂ is a minimizer of L with L(p̂)=R(N). Thus (p̂�ρ) must
be an equilibrium. Q.E.D.

PROOF OF LEMMA 3: Let p = p(t) ∈ Z
n. Observe that by Theorem 3(i),

L(p+δ) as a function of δ is continuous, generalized submodular, and convex
on the set �. So minimum is attained and its minimizers form a nonempty
generalized lattice. Analogous to the proof of Theorem 3(ii), one can further
show that the set of minimizers is integrally convex and, consequently, both its
smallest and largest elements are integer vectors. Q.E.D.

PROOF OF LEMMA 5: Sufficiency is obvious. Let us prove necessity. First,
recall that Lemma 1 of Sun and Yang (2006) says a value function ui : 2N → R

satisfies the gross substitutes and complements (GSC) condition if and only if
for any p ∈ R

n, any βk ∈ Sj for j = 1 or 2, any δ ≥ 0, and any A ∈ Di(p), there
exists B ∈Di(p− δe(k)) such that [Ac ∩ Sj] \ {βk} ⊆ Bc and [A∩ Sc

j ] ⊆ B.
For any p ∈ R

n and any A ∈ Di(p), we consider the following three basic
cases; the other cases can be proved in an analogously recursive way.
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Case (i), p̃ = p+ δke(k)+ δk′e(k′), where the two different objects βk and
βk′ are both in Sj and δk > 0� δk′ > 0. By the definition of the GSC condition,
there exists B′ ∈ Di(p+ δke(k)) such that [A∩ Sj] \ {βk} ⊆ B′ and [Ac ∩ Sc

j ] ⊆
B′c . Since p̃ = (p + δke(k)) + δk′e(k′), for B′ ∈ Di(p + δke(k)), there is B ∈
Di(p̃) such that [B′ ∩ Sj] \ {βk′ } ⊆ B and [B′c ∩ Sc

j ] ⊆ Bc . Thus we have [A ∩
Sj] \ {βk�βk′ } ⊆ B and [Ac ∩ Sc

j ] ⊆ Bc , namely,

{βx | βx ∈ A∩ Sj and p̃x = px} ⊆ B and

{βy | βy ∈Ac ∩ Sc
j and p̃y = py} ⊆ Bc�

Case (ii), p̃ = p − δle(l) − δl′e(l
′), where the two different objects βl and

βl′ are both in Sc
j and δl > 0� δl′ > 0. It follows from the above equivalent for-

mulation of the GSC condition that there exists B′ ∈ Di(p − δle(l)) such that
[Ac ∩ Sc

j ] \ {βl} ⊆ B′c and [A ∩ Sj] ⊆ B′. Since p̃ = (p − δle(l)) − δl′e(l
′), for

B′ ∈ Di(p − δle(l)) there is B ∈ Di(p̃) such that [B′c ∩ Sc
j ] \ {βl′ } ⊆ Bc and

[B′ ∩ Sj] ⊆ B. Thus we obtain that [Ac ∩ Sc
j ] \ {βl�βl′ } ⊆ Bc and [A ∩ Sj] ⊆ B,

namely,

{βx | βx ∈ A∩ Sj and p̃x = px} ⊆ B and

{βy | βy ∈Ac ∩ Sc
j and p̃y = py} ⊆ Bc�

Case (iii), p̃ = p + δke(k) − δle(l), where βk ∈ Sj , βl ∈ Sc
j , and δk > 0,

δl > 0. By the definition of the GSC condition, there exists B′ ∈ Di(p+δke(k))
such that [A ∩ Sj] \ {βk} ⊆ B′ and [Ac ∩ Sc

j ] ⊆ B′c . Note that p̃ = (p +
δke(k)) − δle(l). Then it follows from the above equivalent formulation of
the GSC condition that for B′ ∈ Di(p + δke(k)) there is B ∈ Di(p̃) such that
[B′c ∩ Sc

j ] \ {βl} ⊆ Bc and [B′ ∩ Sj] ⊆ B. So we have [Ac ∩ Sc
j ] \ {βl} ⊆ Bc and

[A∩ Sj] \ {βk} ⊆ B, namely,

{βx | βx ∈ A∩ Sj and p̃x = px} ⊆ B and

{βy | βy ∈Ac ∩ Sc
j and p̃y = py} ⊆ Bc� Q.E.D.

PROOF OF LEMMA 6: Necessity is obvious. Let us prove sufficiency. Pick up
any p ∈ R

n and fix any A /∈ Di(p), that is, any A for which V i(p) > vi(A�p).
By continuity of V i(·) and vi(A� ·), there exists ε > 0 such that V i(q) >
vi(A�q), where q = p+ εe(Ac)− εe(A). Then there exists B ( 	=A) such that
it satisfies (i) or (ii) of Definition 3 and vi(B�q)≥ vi(A�q), which implies

vi(B�p)− vi(A�p) = vi(B�q)− vi(A�q)+ [	(A \B)+ 	(B \A)]ε
> vi(B�q)− vi(A�q)≥ 0� Q.E.D.

To prove Theorem 2, we need to introduce an equivalent characterization
of the generalized submodular function. This characterization can be easily
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used to verify whether a function is a generalized submodular function or not.
Property (i) is new but (ii) is a familiar property of the submodular function.

LEMMA 7: A function f is a generalized submodular function if and only if the
following statements hold:

(i) For any x ∈ R
n, any βk ∈ Sj , any βl ∈ Sc

j , any δk > 0, and δl > 0,

f (x+ δke(k)− δle(l))− f (x− δle(l)) ≤ f (x+ δke(k))− f (x)�

(ii) For any x ∈ R
n, any distinct βk�βl ∈ Sj , any δk > 0, and δl > 0,

f (x+ δke(k)+ δle(l))− f (x+ δle(l)) ≤ f (x+ δke(k))− f (x)�

PROOF: Suppose that f is a generalized submodular function. In the case
of (i), let p = x + δke(k) and q = x − δle(l). Then p ∧g q = x and p ∨g q =
x+δke(k)−δle(l). Clearly the part (i) conclusion holds. It is also easy to check
the case of (ii).

Suppose that both (i) and (ii) hold. Take any p�q ∈ R
n. With respect to S1

and S2, let

JS1 = {j | pj > qj and βj ∈ S1}�
KS1 = {k | pk < qk and βk ∈ S1}�
JS2 = {j | pj > qj and βj ∈ S2}�
KS2 = {k | pk < qk and βk ∈ S2}�

We consider the most general case, namely, all the above four sets are non-
empty. So there exists a nonnegative vector δ = (δ1� � � � � δn) 
 0, such that
pj = qj + δj for all j ∈ JS1 ∪ JS2 and pj = qj − δj for all j ∈ KS1 ∪ KS2 . Let
JS1 = {h1� � � � �hs}, KS1 = {i1� � � � � it}, JS2 = {j1� � � � � ju}, and KS2 = {k1� � � � �kv}.
Then we have

f (p)− f (p∧g q)

= f (p)− f

(
p−

s∑
l=1

δhle(hl)+
v∑

l=1

δkle(kl)

)

=
s∑

l=1

[
f

(
p−

l−1∑
r=1

δhr e(hr)

)
− f

(
p−

l∑
r=1

δhr e(hr)

)]

+
v∑

l=1

[
f

(
p−

s∑
r=1

δhr e(hr)+
l−1∑
r=1

δkr e(kr)

)

− f

(
p−

s∑
r=1

δhr e(hr)+
l∑

r=1

δkr e(kr)

)]



4 N. SUN AND Z. YANG

≥
s∑

l=1

[
f

(
p−

l−1∑
r=1

δhr e(hr)+ δi1e(i1)

)

− f

(
p−

l∑
r=1

δhr e(hr)+ δi1e(i1)

)]

+
v∑

l=1

[
f

(
p−

s∑
r=1

δhr e(hr)+
l−1∑
r=1

δkr e(kr)+ δi1e(i1)

)

− f

(
p−

s∑
r=1

δhr e(hr)+
l∑

r=1

δkr e(kr)+ δi1e(i1)

)]

���

≥
s∑

l=1

[
f

(
p−

l−1∑
r=1

δhr e(hr)+
t∑

r=1

δir e(ir)

)

− f

(
p−

l∑
r=1

δhr e(hr)+
t∑

r=1

δir e(ir)

)]

+
v∑

l=1

[
f

(
p−

s∑
r=1

δhr e(hr)+
l−1∑
r=1

δkr e(kr)+
t∑

r=1

δir e(ir)

)

− f

(
p−

s∑
r=1

δhr e(hr)+
l∑

r=1

δkr e(kr)+
t∑

r=1

δir e(ir)

)]

≥
s∑

l=1

[
f

(
p−

l−1∑
r=1

δhr e(hr)+
t∑

r=1

δir e(ir)− δj1e(j1)

)

− f

(
p−

l∑
r=1

δhr e(hr)+
t∑

r=1

δir e(ir)− δj1e(j1)

)]

+
v∑

l=1

[
f

(
p−

s∑
r=1

δhr e(hr)+
l−1∑
r=1

δkr e(kr)

+
t∑

r=1

δir e(ir)− δj1e(j1)

)

− f

(
p−

s∑
r=1

δhr e(hr)+
l∑

r=1

δkr e(kr)
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+
t∑

r=1

δir e(ir)− δj1e(j1)

)]

���

≥
s∑

l=1

[
f

(
p−

l−1∑
r=1

δhr e(hr)+
t∑

r=1

δir e(ir)−
u∑

r=1

δjr e(jr)

)

− f

(
p−

l∑
r=1

δhr e(hr)+
t∑

r=1

δir e(ir)−
u∑

r=1

δjr e(jr)

)]

+
v∑

l=1

[
f

(
p−

s∑
r=1

δhr e(hr)+
l−1∑
r=1

δkr e(kr)

+
t∑

r=1

δir e(ir)−
u∑

r=1

δjr e(jr)

)

− f

(
p−

s∑
r=1

δhr e(hr)+
l∑

r=1

δkr e(kr)

+
t∑

r=1

δir e(ir)−
u∑

r=1

δjr e(jr)

)]

=
s∑

l=1

[
f

(
p∨g q−

l−1∑
r=1

δhr e(hr)

)

− f

(
p∨g q−

l∑
r=1

δhr e(hr)

)]

+
v∑

l=1

[
f

(
p∨g q−

s∑
r=1

δhr e(hr)+
l−1∑
r=1

δkr e(kr)

)

− f

(
p∨g q−

s∑
r=1

δhr e(hr)+
l∑

r=1

δkr e(kr)

)]

= f (p∨g q)− f (q)�

Therefore we have f (p∧g q)+ f (p∨g q) ≤ f (p)+ f (q). In the above deriva-
tion, the first two inequalities follow from case (ii) and the last two follow from
case (i). Q.E.D.
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PROOF OF THEOREM 2—Necessity: Choose any two distinct items βk,
βl ∈N , any p ∈ R

n, any δk > 0, and any δl > 0. If V i(p)− V i(p+ δke(k)) = 0,
the monotonicity of V i(·) implies that V i(p + δle(l) + δke(k)) − V i(p +
δle(l)) ≤ 0 = V i(p + δke(k)) − V i(p) and V i(p − δle(l) + δke(k)) − V i(p −
δle(l)) ≤ 0 = V i(p + δke(k)) − V i(p). We can now assume that V i(p) −
V i(p + δke(k)) = εk > 0. Then it follows that 0 < εk ≤ δk, V i(p + εke(k)) =
V i(p + δke(k)) = V i(p) − εk, and there is a bundle A ∈ Di(p) and a bun-
dle B ∈ Di(p + εke(k)) (for example, B = A) with βk ∈ A ∩ B. We need to
consider the following two situations.

Case (i)—βl and βk are in the same set Sj : With regard to A ∈ Di(p) and
B ∈ Di(p + εke(k)), it follows from the GSC condition and βk ∈ A ∩ B that
there are two bundles C ∈Di(p+δle(l)) with βk ∈C and D ∈ Di(p+δle(l)+
εke(k)) with βk ∈D. As a result, we have

V i(p+ δle(l)+ δke(k))− V i(p+ δle(l))

≤ V i(p+ δle(l)+ εke(k))− V i(p+ δle(l))

= vi(D�p+ δle(l)+ εke(k))− V i(p+ δle(l))

= vi(D�p+ δle(l))− εk − V i(p+ δle(l))

≤ −εk = V i(p+ δke(k))− V i(p)�

Case (ii)—βl and βk are not in the same set Sj : With regard to A ∈ Di(p)
and B ∈ Di(p + εke(k)), it follows from the GSC condition, Lemma 5, and
βk ∈ A ∩ B that there are two bundles C ∈ Di(p − δle(l)) with βk ∈ C and
D ∈ Di(p− δle(l)+ εke(k)) with βk ∈D, which leads to

V i(p− δle(l)+ δke(k))− V i(p− δle(l))

≤ V i(p− δle(l)+ εke(k))− V i(p− δle(l))

= vi(D�p− δle(l)+ εke(k))− V i(p− δle(l))

= vi(D�p− δle(l))− εk − V i(p− δle(l))

≤ −εk = V i(p+ δke(k))− V i(p)�

In summary, we see through Lemma 7 that V i is a generalized submodular
function.

Sufficiency: Suppose to the contrary that there are some p ∈ R
n, βk ∈ Sj ,

δk > 0, and A ∈ Di(p) such that for every B ∈ Di(p + δke(k)) we have
[A∩ Sj] \ {βk} 	⊆ B or Ac ∩ Sc

j 	⊆ Bc . Let εk = V i(p)−V i(p+ δke(k)). Clearly,
0 ≤ εk ≤ δk, V i(p+εke(k)) = V i(p+δke(k)), and A ∈ Di(p+εke(k)). Since
A /∈ Di(p+ δke(k)), it holds that Di(p+ εke(k)) 	= Di(p+ δke(k)) and εk <
δk. Let q = p + εke(k) and θk = δk − εk > 0. Then V i(q) = V i(q + θke(k)).
Observe that A ∈ Di(q) and B /∈ Di(q + θke(k)) for every bundle B satisfy-
ing [A ∩ Sj] \ {βk} ⊆ B and Ac ∩ Sc

j ⊆ Bc . This means that V i(q + θke(k)) >
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vi(B�q+θke(k)) for every bundle B satisfying [A∩Sj]\{βk} ⊆ B and Ac ∩Sc
j ⊆

Bc . Furthermore, the continuity of V i(·) and vi(B� ·) implies that there exists a
sufficiently small positive number θ so that

V i
(
q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

> vi
(
B�q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

for every bundle B satisfying [A∩ Sj] \ {βk} ⊆ B and Ac ∩ Sc
j ⊆ Bc . This means

that if B ∈ Di(q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc
j )), then [A∩ Sj] \

{βk} 	⊆ B or Ac ∩Sc
j 	⊆ Bc . Then choosing a bundle B ∈ Di(q+θke(k)−θe([A∩

Sj] \ {βk})+ θe(Ac ∩ Sc
j )) yields

V i
(
q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

= vi
(
B�q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

= vi(B�q+ θke(k)+ p̄)

= vi(B�q+ θke(k))−
∑
βk∈B

p̄k

= vi(B�q+ θke(k))+ 	
(
B ∩ ([A∩ Sj] \ {βk})

)
θ

− 	(B ∩ (Ac ∩ Sc
j ))θ

< vi(B�q+ θke(k))+ 	([A∩ Sj] \ {βk})θ
≤ V i(q+ θke(k))+ 	([A∩ Sj] \ {βk})θ�

where p̄= −θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc
j ). Therefore we have

V i
(
q− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

≥ vi
(
A�q− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

= vi(A�q)+ 	([A∩ Sj] \ {βk})θ
= V i(q)+ 	([A∩ Sj] \ {βk})θ
= V i(q+ θke(k))+ 	([A∩ Sj] \ {βk})θ
> V i

(
q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)
�

Let x = q and y = q + θke(k) − θe([A ∩ Sj] \ {βk}) + θe(Ac ∩ Sc
j ). Then the

above inequality leads to

V i(x∧g y)+ V i(x∨g y)

= V i
(
q− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
) + V i(q+ θke(k))
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> V i(q)+ V i
(
q+ θke(k)− θe([A∩ Sj] \ {βk})+ θe(Ac ∩ Sc

j )
)

= V i(x)+ V i(y)�

contradicting the hypothesis that V i is a generalized submodular function.
Q.E.D.

To expedite reading, we also give a proof for the following statement in the
third paragraph of the proof of Theorem 5 in the Appendix of the paper. The
argument here is the same as in the second paragraph of the proof for the
Step 2 case of the global dynamic double-track (GDDT) procedure.

STATEMENT: By the symmetry between Step 2 and Step 3, similarly we can also
show that L(p∧g p(t

∗))≥ L(p(t∗)) for all p ∈ R
n.

PROOF: To prove the statement, we first show that L(p) ≥ L(p(t∗)) for
all p ≤g p(t∗). Suppose to the contrary that there exists some p ≤g p(t∗)
such that L(p) < L(p(t∗)). By the convexity of L(·) via Theorem 3(i), there
is a strict convex combination p′ of p and p(t∗) such that p′ ∈ {p(t∗)} − �
and L(p′) < L(p(t∗)). Because of the symmetry between Step 2 and Step 3,
Lemma 3 (where � is replaced by �∗ = −�) and Step 3 of the GDDT proce-
dure imply that L(p(t∗) + δ(t∗)) = minδ∈�∗ L(p(t∗) + δ) = minδ∈Δ∗ L(p(t∗) +
δ)≤ L(p′) < L(p(t∗)) and so δ(t∗) 	= 0, contradicting the fact that the GDDT
procedure stops in Step 3 with δ(t∗) = 0. So we have L(p) ≥ L(p(t∗)) for
all p ≤g p(t∗). Because p ∧g p(t

∗) ≤g p(t∗) for all p ∈ R
n, it follows that

L(p∧g p(t
∗))≥ L(p(t∗)) for all p ∈ R

n. Q.E.D.
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