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This supplementary material contains some of the more technical details omitted
from the main paper. First, the asymptotic theory of the proposed sieve maximum like-
lihood estimator is fully developed, providing suitable regularity conditions, a nonpara-
metric consistency result, and a semiparametric asymptotic normality and root n con-
sistency result. Second, we provide an example that shows the necessity, for identifica-
tion purposes, of our location constraint assumption regarding the measurement error.
Third, a detailed example that illustrates the implementation of this location constraint
with linear sieves is given. Finally, additional simulation results are reported.

S1. ASYMPTOTICS

LET US FIRST RECALL the assumptions needed for identification.

ASSUMPTION 1: The joint density of y and x�x∗� z admits a bounded density
with respect to the product measure of some dominating measure µ (defined on
Y) and the Lebesgue measure on X × X ∗ × Z . All marginal and conditional
densities are also bounded.

ASSUMPTION 2: (i) fy|xx∗z(y|x�x∗� z) = fy|x∗(y|x∗) for all (y�x�x∗� z) ∈ Y ×
X ×X ∗ ×Z and (ii) fx|x∗z(x|x∗� z)= fx|x∗(x|x∗) for all (x�x∗� z) ∈X ×X ∗ ×Z .

ASSUMPTION 3: The operators Lx|x∗ and Lz|x are injective (for either G =L1 or
G =L1

bnd).

ASSUMPTION 4: For all x∗
1�x

∗
2 ∈ X ∗, the set {y : fy|x∗(y|x∗

1) �= fy|x∗(y|x∗
2)} has

positive probability (under the marginal of y) whenever x∗
1 �= x∗

2.

ASSUMPTION 5: There exists a known functional M such that M[fx|x∗(·|x∗)] =
x∗ for all x∗ ∈X ∗.

Our sieve estimator is based on the following expression for the observed
density (following Theorem 1 in the main text):

fyx|z(y�x|z;α0) =
∫
X ∗

fy|x∗(y|x∗;θ0)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗�(S1)

1Susanne M. Schennach acknowledges support from the National Science Foundation via
grant SES-0452089. The authors would like to thank Lars Hansen, James Heckman, Marine Car-
rasco, Maxwell Stinchcombe, and Xiaohong Chen, as well as seminar audiences at various univer-
sities, at the Cemmap/ESRC Econometric Study Group Workshop on Semiparametric Methods,
and at the Econometric Society 2006 Winter Meetings for helpful comments.
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2 Y. HU AND S. M. SCHENNACH

The unknown α0 in the density function fyx|z includes θ0 and density func-
tions fx|x∗ and fx∗|z , that is, α0 = (θ0� fx|x∗� fx∗|z)T . The estimation procedure
basically consists of replacing fx|x∗ and fx∗|z (and fy|x∗ if it contains an infinite-
dimensional nuisance parameter η) by truncated series approximations and
optimizing all parameters within a semiparametric maximum likelihood frame-
work. The number of terms kept in the series approximations is allowed to
grow with sample size at a controlled rate.

Our asymptotic analysis relies on standard smoothness restrictions (e.g., Ai
and Chen (2003)) on the unknown functions η, fx|x∗ , and fx∗|z . To describe
them, let ξ ∈ V ⊂ R

d , a= (a1� � � � � ad)
T � and

∇ag(ξ)≡ ∂a1+···+adg(ξ)

∂ξ
a1
1 · · · ∂ξad

d

denote the (a1 + · · · + ad)th derivative. Let ‖ · ‖E denote the Euclidean norm.
Let γ denote the largest integer satisfying γ > γ. The Hölder space Λγ(V) of
order γ > 0 is a space of functions g :V �→ R such that the first γ derivative
is bounded, and the γth derivative are Hölder continuous with the exponent
γ − γ ∈ (0�1], that is,

max
a1+···+ad=γ

|∇ag(ξ)− ∇ag(ξ′)| ≤ c(‖ξ − ξ′‖E)
γ−γ

for all ξ, ξ′ ∈ V and some constant c� The Hölder space becomes a Banach
space with the Hölder norm as follows:

‖g‖Λγ = sup
ξ∈V

|g(ξ)| + max
a1+···+ad=γ

sup
ξ �=ξ′∈V

|∇ag(ξ)− ∇ag(ξ′)|
(‖ξ − ξ′‖E)

γ−γ
�

To facilitate the treatment of functions defined on noncompact domains, we
follow the technique suggested in Chen, Hong, and Tamer (2005), introduc-
ing a weighting function of the form ω(ξ) = (1 + ‖ξ‖2

E)
−ς/2, ς > γ > 0, and

defining a weighted Hölder norm as ‖g‖Λγ�ω ≡ ‖g̃‖Λγ for g̃(ξ)≡ g(ξ)ω(ξ). The
corresponding weighted Hölder space is denoted by Λγ�ω(V), while a weighted
Hölder ball can be defined as Λγ�ω

c (V) ≡ {g ∈Λγ�ω(V) :‖g‖Λγ�ω ≤ c <∞}.
We assume the functions η, fx|x∗� and fx∗|z belong to the sets M, F1, and F2,

respectively, defined below.

ASSUMPTION 6: η ∈ Λγ1�ω
c (U) with γ1 > 1.2

ASSUMPTION 7: f1 ∈ Λγ1�ω
c (X × X ∗) with γ1 > 1 and

∫
X f1(x|x∗)dx = 1 for

all x∗ ∈X ∗.

2If η is a density function, certain restrictions should be added to Assumption 6 analogous to
those in Assumptions 8 and 7.
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ASSUMPTION 8: f2 ∈ Λγ1�ω
c (X ∗ ×Z) with γ1 > 1 and

∫
X ∗ f2(x

∗|z)dx∗ = 1 for
all z ∈Z .

M= {η(·� ·) : Assumption 6 holds}�
F1 = {f1(·|·) : Assumptions 3, 5, and 7 hold}�
F2 = {f2(·|·) : Assumptions 3 and 8 hold}�

The condition ‖f‖Λγ1 �ω ≤ c <∞ is necessary for the method of sieves, which
we will use in the next step. In principle, one can solve for the true value α0 =
(θ0� fx|x∗� fx∗|z)T as

α0 = arg max
α=(θ�f1�f2)

T ∈A
E

(
ln

∫
X ∗

fy|x∗(y|x∗;θ)f1(x|x∗)f2(x
∗|z)dx∗

)
�

where A = Θ×F1 ×F2 with Θ = B ×M. Let pkn
j (·) be a sequence of known

univariate basis functions, such as power series, splines, Fourier series, and
so forth. To approximate functions of two variables, we use a tensor–product
linear sieve basis, denoted by pkn(·� ·) = (pkn

1 (·� ·), pkn
2 (·� ·), � � � , pkn

kn
(·� ·))T . In

the sieve approximation, we consider η, f1, and f2 in finite-dimensional spaces
Mn, F1n, and F2n, where3

Mn = {η(ξ1� ξ2)= pkn(ξ1� ξ2)
Tδ for all δ

s.t. Assumption 6 holds}�
F1n = {f (x|x∗)= pkn(x�x∗)Tβ for all β

s.t. Assumptions 3, 5, and 7 hold}�
F2n = {f (x∗|z)= pkn(x∗� z)Tγ for all γ

s.t. Assumptions 3 and 8 hold}�
Therefore, we replace M×F 1 ×F2 with Mn ×F1n ×F2n in the optimization
problem and then estimate α0 by α̂n as

α̂n = (θ̂n� f̂1n� f̂2n)
T

= arg max
α=(θ�f1�f2)

T ∈An

1
n

n∑
i=1

ln
∫
X ∗

fy|x∗(yi|x∗;θ)f1(xi|x∗)f2(x
∗|zi)dx∗�

where An = Θn ×F1n ×F2n with Θn = B ×Mn. In practice, the above integral
can be conveniently carried out through either one of a number of numerical

3For simplicity, the notation pkn(·� ·) implicitly assumes that the sieves for η, f (x|x∗), and
f (x∗|z) are the same, although this can be easily relaxed.
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techniques, including Gaussian quadrature, Simpson’s rules, importance sam-
pling, or Markov chain Monte Carlo. In the sequel, we simply assume that this
integral can be evaluated, for a given sample and a given truncated sieve, with
a numerical accuracy that is far better than the statistical noise associated with
the estimation procedure.

This setup is the same as in Shen (1997). We also use techniques described
in Ai and Chen (2003) to state more primitive regularity conditions. In their
paper, there are two sieve approximations: One is used to directly estimate the
conditional mean as a function of the unknown parameter; the other is the
sieve approximation of the infinite-dimensional parameter estimated through
the maximization procedure. Our setup is, in some ways, simpler than in Ai and
Chen (2003), because all the unknown parameters in α are estimated through a
single-step semiparametric sieve MLE (maximum likelihood estimator). Since
our estimator takes the form of a semiparametric sieve estimator, the very gen-
eral treatment of Shen (1997) and Chen and Shen (1998) can be used to estab-
lish asymptotic normality and root n consistency under a very wide variety of
conditions, including dependent and nonidentically distributed data. However,
for the purposes of simplicity and conciseness, this section provides specific
sufficient regularity conditions for the independent and identically distributed
(i.i.d.) case.

The restrictions in the definitions of F1n and F2n are easy to impose on a
sieve estimator. We have the sieve expressions of f1 and f2 as

f1(x|x∗)=
in∑
i=0

jn∑
j=0

βijpi(x− x∗)pj(x
∗)�

f2(x
∗|z)=

in∑
i=0

jn∑
j=0

γijpi(x
∗ − z)pj(z)�

where pi(·) are user-specified basis functions. Define kn = (in + 1)(jn + 1) and
assume that in/jn is bounded and bounded away from zero for all n. We also
define the projection of the true value α0 onto the space An associated with kn,

Πnα ≡ αn

≡ arg max
αn=(θ�f1�f2)

T ∈An

E

(
ln

∫
X ∗

fy|x∗(y|x∗;θ)f1(x|x∗)f2(x
∗|z)dx∗

)
�

and we let the smoothing parameter kn → ∞ as the sample size n → ∞. The
restriction

∫
X f1(x|x∗)dx = 1 in the definition of F1n implies

∑jn
j=0(

∑in
i=0 βij ×∫

E pi(ε)dε)pj(x
∗) = 1 for all x∗, where ε = x − x∗. Suppose p0(·) is the

only constant in pj(·)� That equation implies that
∑in

i=0 βi0

∫
E pi(ε)dε = 1 and∑in

i=0 βij

∫
E pi(ε)dε = 0 for j = 1�2� � � � � jn� Similar restrictions can be found
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for
∫
X ∗ f2(x

∗|z)dx∗ = 1. Moreover, the identification assumption, Assump-
tion 5, also implies restrictions on the sieve coefficients. For example, con-
sider the zero mode case. If the mode is unique and not at a boundary, we then
have ∂

∂x
fx|x∗(x|x∗)= 0 if and only if x = x∗� The restriction ∂

∂x
fx|x∗(x|x∗)|x=x∗ = 0

in the definition of F1n implies
∑jn

j=0(
∑in

i=0 βij(∂pi(0))/∂x)qj(x
∗) = 0� Since it

must hold for all x∗, we have additional jn constraints
∑in

i=0 βij
∂pi(0)
∂x

= 0 for
j = 1�2� � � � � jn� Similar restrictions can be found for the zero mean and the
zero median cases. In all three cases, Assumption 5 can be expressed as linear
restrictions on β, which are easy to implement. See Section S4 for an explicit
expression for the restrictions in the case where Fourier series are used in the
sieve approximation.

S1.1. Consistency

We use the results in Newey and Powell (2003) to show consistency of the
sieve estimator. Define D≡ (y�x� z) for y ∈Y , x ∈X , and z ∈Z . The random
variables x, y , and z can have unbounded support R. Following Ai and Chen
(2003), we first show consistency under a strong norm ‖ · ‖s as a stepping stone
to establishing a convergence rate under a suitably constructed weaker norm.
Let

‖α‖s = ‖b‖E + ‖η‖∞�ω + ‖f1‖∞�ω + ‖f2‖∞�ω�

where ‖g‖∞�ω ≡ supξ |g(ξ)ω(ξ)| with ω(ξ) = (1 + ‖ξ‖2
E)

−ς/2, ς > γ1 > 0. We
make the following assumptions:

ASSUMPTION 9: (i) The data {(Yi�Xi�Zi)
n
i=1} are i.i.d. (ii) The density of D ≡

(y�x� z)� fD, satisfies
∫
ω(D)−2fD(D)dD<∞.

ASSUMPTION 10: (i) b0 ∈ B, a compact subset of R
b. (ii) Assumptions 6–8 hold

for (b�η� f1� f2) in a neighborhood of α0 (in the norm ‖ · ‖s).

ASSUMPTION 11: (i) E[(ln fyx|z(D))2] is bounded. (ii) There exists a mea-
surable function h1(D) with E{(h1(D))2} < ∞ such that, for any α = (θ� f 1�

f 2)
T ∈A,∣∣∣∣f |1|

yx|z(D�α� ω̄)

fyx|z(D�α)

∣∣∣∣ ≤ h1(D)�

where f |1|
yx|z(D�α� ω̄) is defined as d

dt
fyx|z(D;α + tω̄)|t=0 with each linear term,

that is, d
dθ
fy|x∗� f 1, and f 2, replaced by its absolute value, and ω(ξ�x�x∗� z)= [1�

ω−1(ξ)� ω−1((x�x∗)T )� ω−1((x∗� z)T )]T with ξ ∈ U . (The explicit expression of
f |1|
yx|z(D�α� ω̄) can be found in Equation (S6) in the proof of Lemma 2.)
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ASSUMPTION 12: ‖Πnα0 − α0‖s = o(1) (as kn → ∞) and kn/n → 0.

Assumption 9 is commonly used in cross-sectional analyses. Assump-
tion 9(ii) is a typical condition on the tail behavior on the density, analogous to
Assumption 3.2 in Chen, Hong, and Tamer (2005). Assumption 10 imposes re-
strictions on the parameter space. Detailed discussions on this assumption can
be found in Gallant and Nychka (1987). Assumption 11 imposes an envelope
condition on the first derivative of the log likelihood function and guarantees
a Hölder continuity property for the log likelihood. Assumption 12 states that
the sieve can approximate the true α0 arbitrarily well, to control the bias, while
ensuring that the number of terms in the sieve grows slower than the sample
size, to control the variance. We show consistency in the following lemma.

LEMMA 2: Under Assumptions 1–5 and 9–12, we have ‖α̂n − α0‖s = op(1)�

See Section S2 for the proof.
Consistency under the norm ‖·‖s is the first step needed to obtain the asymp-

totic properties of the estimator. To proceed toward our main semiparametric
asymptotic normality and root n consistency result, we then need to establish
convergence at the rate op(n

−1/4) in a suitable norm. To achieve this conver-
gence rate under relatively weak assumptions, we employ a device introduced
by Ai and Chen (2003) and employ a weaker norm ‖ · ‖, under which op(n

−1/4)
convergence is easier to establish.

We now recall the concept of pathwise derivative, which is central to the
asymptotics of sieve estimators. Consider α1�α2 ∈A, and assume the existence
of a continuous path {α(τ) :τ ∈ [0�1]} in A such that α(0)= α1 and α(1)= α2.
If ln fyx|z(D� (1 − τ)α0 + τα) is continuously differentiable at τ = 0 for almost
all D and any α ∈ A, the pathwise derivative of ln fyx|z(D�α0) at α0 evaluated
at α− α0 can be defined as

d ln fyx|z(D�α0)

dα
[α− α0] ≡ d ln fyx|z(D� (1 − τ)α0 + τα)

dτ

∣∣∣∣
τ=0

almost everywhere (under the probability measure of D). The pathwise deriva-
tive is a linear functional that approximates ln fyx|z(D�α0) in the neighborhood
of α0, that is, for small values of α − α0. Note that this functional can also be
evaluated for other values of the argument. For instance, by linearity,

d ln fyx|z(D�α0)

dα
[α1 − α2]

≡ d ln fyx|z(D�α0)

dα
[α1 − α0] − d ln fyx|z(D�α0)

dα
[α2 − α0]�
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In our setting, the pathwise derivative at α0 is (from Equation (S1))

d ln fyx|z(D�α0)

dα
[α− α0]

= 1
fyx|z(D�α0)

{∫
X ∗

d

dθ
fy|x∗(y|x∗;θ0)

× [θ− θ0]fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗

+
∫
X ∗

fy|x∗(y|x∗;θ0)[f1(x|x∗)− fx|x∗(x|x∗)]fx∗|z(x∗|z)dx∗

+
∫
X ∗

fy|x∗(y|x∗;θ0)fx|x∗(x|x∗)[f2(x
∗|z)− fx∗|z(x∗|z)]dx∗

}
�

Note that the denominator fyx|z(D�α0) is nonzero with probability 1. We use
the Fisher norm ‖ · ‖ defined as

‖α1 − α2‖ ≡
√
E

{(
d ln fyx|z(D�α0)

dα
[α1 − α2]

)2}
(S2)

for any α1, α2 ∈ A. To establish the asymptotic normality of b̂n, one typically
needs α̂n to converge to α0 at a rate faster than n−1/4. We need the following
assumptions to obtain this rate of convergence:

ASSUMPTION 13: ‖Πnα0 − α0‖ = O(k−γ1/d1
n ) = o(n−1/4) with d1 = 2 and

γ1 > d1, for γ1 as in Assumptions 6–8.4

ASSUMPTION 14: (i) There exists a measurable function c(D) with E{c(D)4}<
∞ such that | ln fyx|z(D;α)| ≤ c(D) for all D and α ∈ An. (ii) ln fyx|z(D;α) ∈
Λγ�ω

c (Y ×X ×Z) for some constant c > 0 with γ > dD/2� for all α ∈ An� where
dD is the dimension of D.

ASSUMPTION 15: A is convex in α0 and fy|x∗(y|x∗;θ) is pathwise differentiable
at θ0.

ASSUMPTION 16: For some c1� c2 > 0,

c1E

(
ln

fyx|z(D;α0)

fyx|z(D;α)
)

≤ ‖α− α0‖2 ≤ c2E

(
ln

fyx|z(D;α0)

fyx|z(D;α)
)

holds for all α ∈An with ‖α− α0‖s = o(1)�

4In general, d1 = max{dim(U)�dim(X ×X ∗)�dim(X ∗ ×Z)}�
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ASSUMPTION 17: (knn
−1/2 lnn) sup(ξ1�ξ2)∈(U∪(X×X ∗)∪(X ∗×Z)) ‖pkn(ξ1� ξ2)‖2

E =
o(1).

ASSUMPTION 18: lnN(ε�An) = O(kn ln(kn/ε)), where N(ε�An) is the mini-
mum number of balls (in the ‖ · ‖s norm) needed to cover the set An.

Assumption 13 controls the approximation error of Πnα0 to α0 and the se-
lection of kn. It is usually satisfied by using sieve functions such as power se-
ries, Fourier series, and so forth (see Newey (1995, 1997) for more discussion).
Assumption 14 imposes an envelope condition and a smoothness condition
on the log likelihood function. Assumption 15 implies that the norm ‖ · ‖ is
well defined. Define K(α�α0)= E(ln (fyx|z(D;α0))/(fyx|z(D;α))), which is the
Kullback–Leibler discrepancy. Assumption 16 implies that ‖·‖ is a norm equiv-
alent to the (K(·� ·))1/2 discrepancy on An. Under the norm ‖ · ‖, the sieve es-
timator can be shown to converge at the requisite rate op(n

−1/4)�

THEOREM 2: Under Assumptions 1–5 and 9–18, we have ‖α̂n − α0‖ =
op(n

−1/4).

The proof is given in Section S2.
It may appear surprising at first that such a fast convergence rate could be

obtained in a nonparametric estimation problem that includes, as a special
case, models traditionally handled through deconvolution approaches and that
are known to be prone to slow convergence issues (e.g., Fan (1991)). These is-
sues can be circumvented, thanks to the fact that the Fisher norm downweighs
each dimension of the estimation error α̂ − α0 according to its own standard
error. In other words, more error is tolerated along the dimensions that are
more difficult to estimate. Assumption 16 does impose a limit on how weak the
Fisher norm can be, however. In the limit where the Fisher norm becomes sin-
gular (i.e., completely insensitive to some dimensions of α), the local quadratic
behavior of the objective function is lost and Assumption 16 no longer holds.

Thanks to the Fisher norm’s downweighting property, as the number of
terms in the sieve increases, each new degree of freedom that gets included
in the estimation problem does not appear increasingly difficult to estimate.
A relatively fast convergence in the Fisher norm is therefore possible and
does not conflict with slower convergence obtained in some other norm. Natu-
rally, for the same reason, convergence in the Fisher norm is not a very useful
concept for the sole purpose of establishing a nonparametric convergence re-
sult. In nonparametric settings, convergence in some well-understood Lp norm
would be a more useful result. However, our ultimate goal is to establish the
asymptotics for some parametric component of our semiparametric model. In
that context, the Fisher norm is a very useful device that was employed in Ai
and Chen (2003) and that guarantees the important intermediate results of
op(n

−1/4) convergence under rather weak conditions.
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S1.2. Asymptotic Normality

We follow the semiparametric MLE framework of Shen (1997) to show the
asymptotic normality of the estimator b̂n. We define the inner product

〈v1� v2〉 = E

{(
d ln fyx|z(D�α0)

dα
[v1]

)(
d ln fyx|z(D�α0)

dα
[v2]

)}
�(S3)

Obviously, the weak norm ‖ · ‖ defined in Equation (S2) can be induced by this
inner product. Let V denote the closure of the linear span of A−{α0} under
the norm ‖ · ‖ (i.e., V = R

db ×W with W ≡M×F1 ×F2 − {(η0� fx|x∗� fx∗|z)T })
and define the Hilbert space (V� 〈·� ·〉) with its inner product defined in Equa-
tion (S3).

As shown above, we have

d ln fyx|z(D�α0)

dα
[α− α0]

= d ln fyx|z(D�α0)

db
[b− b0] + d ln fyx|z(D�α0)

dη
[η−η0]

+ d ln fyx|z(D�α0)

df1
[f1 − fx|x∗ ] + d ln fyx|z(D�α0)

df2
[f2 − fx∗|z]�

For each component bj of b, j = 1�2� � � � � db, we define w∗
j ∈W as

w∗
j ≡ (η∗

j � f
∗
1j� f

∗
2j)

T

= arg min
(η�f1�f2)

T ∈W
E

{(
d ln fyx|z(D�α0)

dbj

− d ln fyx|z(D�α0)

dη
[η]

− d ln fyx|z(D�α0)

df1
[f1] − d ln fyx|z(D�α0)

df2
[f2]

)2}
�

Define w∗ = (w∗
1�w

∗
2� � � � �w

∗
db
),

d ln fyx|z(D�α0)

df
[w∗

j ] = d ln fyx|z(D�α0)

dη
[η∗

j ] + d ln fyx|z(D�α0)

df1
[f ∗

1j]

+ d ln fyx|z(D�α0)

df2
[f ∗

2j]�

d ln fyx|z(D�α0)

df
[w∗] =

(
d ln fyx|z(D�α0)

df
[w∗

1]� � � � �

d ln fyx|z(D�α0)

df
[w∗

db
]
)
�
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and the row vector

Gw∗(D) = d ln fyx|z(D�α0)

dbT
− d ln fyx|z(D�α0)

df
[w∗]�(S4)

We want to show that b̂n has a multivariate normal distribution asymptoti-
cally. It is well known that if λTb has a normal distribution for all λ, then b has
a multivariate normal distribution. Therefore, we consider λTb as a functional
of α. Define s(α) ≡ λTb for λ ∈ R

db and λ �= 0. If E[Gw∗(D)TGw∗(D)] is finite
positive definite, then the function s(α) is bounded, and the Riesz representa-
tion theorem implies that there exists a representor v∗ such that

s(α)− s(α0)≡ λT(b− b0)= 〈v∗�α− α0〉(S5)

for all α ∈A. Here v∗ ≡ (v∗
b

v∗
f

)
, v∗

b = J−1λ, and v∗
f = −w∗v∗

b with J =E[Gw∗(D)T ×
Gw∗(D)]� Under suitable assumptions made below, the Riesz representor v∗

exists and is bounded.
As mentioned in Begun, Hall, Huang, and Wellner (1983), v∗

f corresponds
to a worst possible direction of approach to (η0� fx|x∗� fx∗|z) for the problem
of estimating b0. In the language of Stein (1956), v∗

f yields the most difficult
one-dimensional subproblem. Equation (S5) implies that it is sufficient to find
the asymptotic distribution of 〈v∗� α̂n − α0〉 to obtain that of λT(b̂n − b0) under
suitable conditions. We denote

d ln fyx|z(D�α)

dα
[v] ≡ d ln fyx|z(D�α+ τv)

dτ

∣∣∣∣
τ=0

a.s. D for any v ∈ V�

For a sieve MLE, we have that

〈v∗� α̂n − α0〉 = 1
n

n∑
i=1

d ln fyx|z(Di�α0)

dα
[v∗] + op(n

−1/2)�

Note that ((d ln fyx|z(D�α))/dα[v∗])=Gw∗(D)J−1λ� Thus, by the classical cen-
tral limit theorem, the asymptotic distribution of

√
n(b̂n − b0) is N(0� J−1). In

fact, the matrix J is the efficient information matrix in this semiparametric es-
timation, under suitable regularity conditions given in Shen (1997).

We now present the sufficient conditions for the
√
n-normality of b̂n. Define

N0n ≡ {α ∈An :‖α− α0‖s ≤ υn�‖α− α0‖ ≤ υnn
−1/4}

with υn = o(1) and define N0 the same way with An replaced by A. Note that
N0 still depends on n. For α ∈ N0n we define a local alternative α∗(α�εn) =
(1 − εn)α + εn(v

∗ + α0) with εn = o(n−1/2). Let Πnα
∗(α�εn) be the projection

of α∗(α�εn) onto An.

ASSUMPTION 19: (i) E[Gw∗(D)TGw∗(D)] exists, is bounded, and is positive-
definite. (ii) b0 ∈ int(B)�
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ASSUMPTION 20: There exists a measurable function h2(D) with
E{(h2(D))2}< ∞ such that for any α= (θ� f 1� f 2)

T ∈N0,∣∣∣∣f |1|
yx|z(D�α� ω̄)

fyx|z(D�α)

∣∣∣∣2

+
∣∣∣∣f |2|

yx|z(D�α� ω̄)

fyx|z(D�α)

∣∣∣∣ <h2(D)�

where f |2|
yx|z(D�α� ω̄) is defined as (d2/dt2)fyx|z(D;α + tω̄)|t=0 with each linear

term, that is, d
dθ
fy|x∗� d2

dθ2 fy|x∗� f 1, and f 2, replaced by its absolute value. (The
explicit expression of f |2|

yx|z(D�α� ω̄) can be found in Equation (S17) in the proof
of Theorem 3.)

We introduce the following notations for the next assumption: for f̃ = η, f1,
or f2,

d ln fyx|z(D�α0)

df̃
[pkn]

=
(
d ln fyx|z(D�α0)

df̃
[pkn

1 ]� d ln fyx|z(D�α0)

df̃
[pkn

2 ]�

� � � �
d ln fyx|z(D�α0)

df̃
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

db

=
(
d ln fyx|z(D�α0)

db1
�
d ln fyx|z(D�α0)

db2
� � � � �

d ln fyx|z(D�α0)

dbdb

)T

�

d ln fyx|z(D�α0)

dα
[pkn]

=
((

d ln fyx|z(D�α0)

db

)T

�

(
d ln fyx|z(D�α0)

dη
[pkn]

)T

�(
d ln fyx|z(D�α0)

df1
[pkn]

)T

�

(
d ln fyx|z(D�α0)

df2
[pkn]

)T)T

�

and

Ωkn =E

{(
d ln fyx|z(D�α0)

dα
[pkn]

)(
d ln fyx|z(D�α0)

dα
[pkn]

)T}
�

ASSUMPTION 21: The smallest eigenvalue of the matrix Ωkn is bounded away
from zero, and ‖pkn

j ‖∞�ω <∞ for j = 1�2� � � � �kn uniformly in kn.
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ASSUMPTION 22: There is a v∗
n = (

v∗
b

−(Πnw∗)v∗
b

) ∈ An−{Πnα0} such that ‖v∗
n −

v∗‖ = o(n−1/4)�

ASSUMPTION 23: For all α ∈ N0n, there exists a measurable function h4(D)
with E|h4(D)| <∞ such that∣∣∣∣ d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

≤ h4(D)‖α− α0‖4
s �

Assumption 19 is essential to obtain root n consistency since it ensures that
the asymptotic variance exists and that b0 is an “interior” solution. Assump-
tion 20 imposes an envelope condition on the second derivative of the log
likelihood function. This condition is related to the stochastic equicontinuity
condition, Condition A, in Shen (1997). The condition guarantees the linear
approximation of the likelihood function by its derivative near α0. That condi-
tion can be replaced by a stronger condition that fyx|z(D�α) is differentiable in
quadratic mean. Assumption 21 is similar to Assumption 2 in Newey (1997).
Intuitively, Assumptions 21 and 23 are used to characterizes the local quadratic
behavior of the criterion difference, that is, Condition B in Shen (1997), and
can be simplified to: for all α ∈N0n,

E

(
ln

fyx|z(D�α0)

fyx|z(D�α)

)
= 1

2
‖α− α0‖2(1 + o(1))�

Assumption 22 states that the representor can be approximated by the sieve
with an asymptotically negligible error, which is an important necessary con-
dition for the asymptotic bias of the sieve estimator itself to be asymptotically
negligible. A detailed discussion of these assumptions can be found in Shen
(1997) and Chen and Shen (1998). By Theorem 1 in Shen (1997), we show that
the estimator for the parametric component b0 is

√
n consistent and asymptot-

ically normally distributed.

THEOREM 3: Under Assumptions 1–5, 9–16, and 19–23,
√
n(b̂n − b0)

d→
N(0� J−1), where J =E[Gw∗(D)TGw∗(D)] for Gw∗(D) given in Equation (S4).

See Section S2 for the proof.
Achieving the level of generality provided by Theorem 3 forces us to state

some of our regularity conditions is a relatively high-level form, as is often done
in the sieve estimation literature (e.g., Ai and Chen (2003), Shen (1997), Chen
and Shen (1998)). However, once the type of sieve and the particular form
of fy|x∗(y|x∗;θ) are specified, more primitive assumptions can be formulated,
using some of the techniques found in Blundell, Chen, and Kristensen (2007),
for instance.
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It is known that obtaining a root n consistency and asymptotic normality
result for a semiparametric estimator in the context of classical errors-in-
variables models demands a balance between the smoothness of the mea-
surement error and of the densities (or regression functions) of interest (e.g.,
Taupin (1998), Schennach (2004)). Our treatment, when specialized to classi-
cal measurement errors, does not evade this requirement. When the measure-
ment error densities are “too smooth” and the functions of interest are “not
smooth enough” to guarantee root n consistency and asymptotic normality,
this will manifests itself as a violation of one of our assumptions. If the fail-
ure is first order, that is, it is due to the inexistence of an influence function
with bounded variance, then a bounded Riesz representor v∗ will fail to exist
and Assumptions 19 and 22 will not hold. If the failure is of a “higher-order”
nature, that is, when nonlinear remainder terms in the estimator’s stochastic
expansion are not negligible, then any one of Assumption 20, 21, or 23 will not
hold. Intuitively, this represents a case where the local quadratic behavior of
the objective function is lost.

S2. PROOFS

PROOF OF LEMMA 2: First note that Assumptions 1–5 imply that the model
is identified so that α0 is uniquely defined. We prove the results by checking the
conditions in Theorem 4.1 in Newey and Powell (2003). Their Assumption 1
on identification of the unknown parameter is assumed directly. We assume
kn → ∞ and kn/n → 0 in Assumption 12 so that the relevant part of their As-
sumption 2 is satisfied. Note that we do not have any “plug-in” nonparametric
part in the likelihood function. The first part of their Condition 3 is assumed in
our Assumption 11(i). For the rest of their Condition 3, we consider pathwise
derivative

ln fyx|z(D;α1)− ln fyx|z(D;α2)

= d ln fyx|z(D�α0)

dα
[α1 − α2]

= d

dt
ln fyx|z(D;α0 + t(α1 − α2))

∣∣∣∣
t=0

�

where α0 = (θ� f 1� f 2)
T is a mean value between α1 and α2. Letting α1 =

(θ1� f11� f21)
T and α2 = (θ2� f12� f22)

T � we have

d

dt
ln fyx|z(D;α0 + t(α1 − α2))

∣∣∣∣
t=0

= 1
fyx|z(D�α0)

{∫
d

dθ
fy|x∗(y|x∗;θ)(θ1 − θ2)f 1(x|x∗)f 2(x

∗|z)dx∗
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+
∫

fy|x∗(y|x∗;θ)[f11 − f12]f 2(x
∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)f 1(x|x∗)[f21 − f22]dx∗
}
�

The bounds can be found as∣∣∣∣ ddt ln fyx|z(D;α0 + t(α1 − α2))

∣∣∣∣
t=0

(S6)

≤ 1
|fyx|z(D�α0)|

{∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖θ1 − θ2‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)f 2(x
∗|z)|dx∗ ‖f11 − f12‖s

+
∫

|fy|x∗(y|x∗;θ)f 1(x|x∗)ω−1(x∗� z)|dx∗ ‖f21 − f22‖s

}
≤ 1

|fyx|z(D�α0)|
{∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)f 2(x

∗|z)
∣∣∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)f 2(x
∗|z)∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)f 1(x|x∗)ω−1(x∗� z)|dx∗
}
‖α− α0‖s

≡
∣∣∣∣f |1|

yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣‖α− α0‖s�

where f |1|
yx|z(D�α0� ω̄) is defined as d

dt
fyx|z(D;α0 + tω̄)|t=0 with each linear term,

that is, d
dθ
fy|x∗� f 1, and f 2, replaced by its absolute value. The function ω̄ is

defined as

ω(ξ�x�x∗� z)= [
1�ω−1(ξ)�ω−1((x�x∗)T )�ω−1((x∗� z)T )

]T
with ξ ∈ U � Therefore, our Assumption 11(ii), that is, E((f |1|

yx|z(D�α0� ω̄))/

(fyx|z(D�α0)))
2 ≤ E(h1(D))2 < ∞� implies that ln fyx|z(D�α) is Hölder contin-

uous in α. Therefore, their Condition 3 holds. Assumption 10 guarantees that
A is compact under the norm ‖ · ‖s, which is their Condition 4. From Chen,
Hansen, and Scheinkman (1997), for any α ∈A

‖α−Πnα‖s ≤ ‖η−Πnη‖s + ‖f1 −Πnf1‖s + ‖f2 −Πnf2‖s(S7)

= O(k−γ1/d1
n )
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with d1 = 2� Therefore, their Condition 5 is satisfied with our Assumption 12�
A similar proof can also be found in that of Lemma 3.1 and Proposition 3.1 in
Ai and Chen (2003). Q.E.D.

PROOF OF THEOREM 2: First note that Assumptions 2–5 imply that the
model is identified so that α0 is uniquely defined. We prove the results by
checking the conditions in Theorem 3.1 in Ai and Chen (2003). Note that there
are two different estimated criterion functions, that is, Ln(α) and L̂n(α) in
their Appendix B (Ai and Chen (2003, p. 1825)). In our setup, we do not have
that distinction and their proof still applies with Ln(α)= 1

n

∑n

i=1 ln fyx|z(Di�α)�
From the proof of Lemma 2, Assumptions 11 and 13 imply their Condi-
tion 3.5(iii), that is, ‖α − Πnα‖ = o(n−1/4). Assumptions 3.6(iii), 3.7, and 3.8
in Chen and Shen (1998) are assumed directly in our Assumptions 14, 17,
and 18, respectively. According to its expression, fyx|z(D;α) is pathwise dif-
ferentiable at α0 if fy|x∗(y|x∗;θ) is pathwise differentiable at θ0. Therefore, As-
sumption 15 implies their Condition 3.9(i). Condition 3.9(ii) in Ai and Chen
(2003) is assumed directly in Assumption 16. Thus, the results of consistency
follow. Q.E.D.

PROOF OF THEOREM 3: First note that Assumptions 1–5 imply that the
model is identified so that α0 is uniquely defined. We prove the results by
checking the conditions in Theorem 1 in Shen (1997). We define the remainder
term as

r[α− α0�D] ≡ ln fyx|z(D�α)− ln fyx|z(D�α0)

− d ln fyx|z(D�α0)

dα
[α− α0]�

We also define µn(g) = 1
n

∑n

i=1[g(D�α) − Eg(D�α)] as the empirical process
induced by g. We have the sieve estimator α̂n for α0 and a local alternative
α∗(̂αn� εn) = (1 − εn)̂αn + εn(v

∗ + α0) with εn = o(n−1/2). Let Πnα
∗(α�εn) be

the projection of α∗(α�εn) to An.
First of all, the Riesz representor v∗ is finite because the matrix J is invertible

and w∗ is bounded. Second, Equation (4.2) in Shen (1997), that is,∣∣∣∣s(α)− s(α0)− ds(α)

dα
[α− α0]

∣∣∣∣ ≤ c‖α− α0‖ω

as ‖α− α0‖ → 0, is required by Theorem 1 in that paper and holds trivially in
our paper with ω = ∞ because we have s(α)≡ λTb.
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Third, Condition A in Shen (1997) requires

sup
α∈N0n

µn

(
r[α− α0�D] − r[Πnα

∗(α�εn)− α0�D]) =Op(ε
2
n)�

By the definition of r[α− α0�D], we have

µn

(
r[α− α0�D] − r[Πnα

∗(α�εn)− α0�D])
= µn

{(
ln fyx|z(D�α)− ln fyx|z(D�α0)− d ln fyx|z(D�α0)

dα
[α− α0]

)
−

(
ln fyx|z(D�Πnα

∗(α�εn))− ln fyx|z(D�α0)

− d ln fyx|z(D�α0)

dα
[Πnα

∗(α�εn)− α0]
)}

= µn

(
ln fyx|z(D�α)− ln fyx|z(D�Πnα

∗(α�εn))

− d ln fyx|z(D�α0)

dα
[α−Πnα

∗(α�εn)]
)
�

The Taylor expansion gives

ln fyx|z(D�α)− ln fyx|z(D�Πnα
∗(α�εn))

= d ln fyx|z(D�Πnα
∗(α�εn))

dα
[α−Πnα

∗(α�εn)]

+ 1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[α−Πnα

∗(α�εn)�α−Πnα
∗(α�εn)]�

where α̃1 is a mean value between α and Πnα
∗(α�εn). Therefore, we have

µn

(
r[α− α0�D] − r[Πnα

∗(α�εn)− α0�D])(S8)

= µn

(
d ln fyx|z(D�Πnα

∗(α�εn))

dα
[α−Πnα

∗(α�εn)]

− d ln fyx|z(D�α0)

dα
[α−Πnα

∗(α�εn)]
)

+µn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[α−Πnα

∗(α�εn)�α−Πnα
∗(α�εn)]

)
�

Since

α−Πnα
∗(α�εn)= εnΠn(α− α0 − v∗)�
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the right-hand side of Equation (S8) equals

= µn

(
d2 ln fyx|z(D�α1)

dαdαT
[α−Πnα

∗(α�εn)�Πnα
∗(α�εn)− α0]

)
(S9)

+µn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[εnΠn(α− α0 − v∗)� εnΠn(α− α0 − v∗)]

)
= µn

(
d2 ln fyx|z(D�α1)

dαdαT
[εnΠn(α− α0 − v∗)�Πnα

∗(α�εn)− α0]
)

+µn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[εnΠn(α− α0 − v∗)� εnΠn(α− α0 − v∗)]

)
= εnµn

(
d2 ln fyx|z(D�α1)

dαdαT

× [Πn(α− α0 − v∗)� εnΠn(v
∗ + α0 − α)+ (α− α0)]

)
+ ε2

nµn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]

)
= εnµn

(
d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)�α− α0]

)
− ε2

nµn

(
1
2
d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]

)
+ ε2

nµn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]

)
=A1 +A2 +A3�

where α1 is a mean value between α0 and Πnα
∗(α�εn). We consider the term

A1 as

sup
α∈N0n

A1 = εn sup
α∈N0n

µn

(
d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)�α− α0]

)
�(S10)

Let α1 = (θ� f 1� f 2) and vn = Πn(α − α0 − v∗) = ([vn]θ� [vn]f1� [vn]f2). We con-
sider the term∣∣∣∣ sup

α∈N0n

d2 ln fyx|z(D�α1)

dαdαT
[vn�α− α0]

∣∣∣∣(S11)

≤ sup
α∈N0n

∣∣∣∣ 1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)]
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− d ln fyx|z(D�α1)

dα
[vn]d ln fyx|z(D�α1)

dα
[α− α0]

∣∣∣∣
≤ sup

α∈N0n

(∣∣∣∣ 1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)]

∣∣∣∣
+

∣∣∣∣d ln fyx|z(D�α1)

dα
[vn]

∣∣∣∣∣∣∣∣d ln fyx|z(D�α1)

dα
[α− α0]

∣∣∣∣)�
We need to find the bounds on three terms in the absolute value. We have

d ln fyx|z(D�α1)

dα
[α− α0](S12)

= 1
fyx|z(D�α1)

{∫
d

dθ
fy|x∗(y|x∗;θ)(θ− θ0)f 1(x|x∗)f 2(x

∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)[f1 − fx|x∗ ]f 2(x
∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)f 1(x|x∗)[f2 − fx∗|z]dx∗
}
�

Therefore, the term |(d ln fyx|z(D�α1))/dα[α− α0]| can be bounded through∣∣∣∣d ln fyx|z(D�α1)

dα
[α− α0]

∣∣∣∣(S13)

≤ 1
|fyx|z(D�α1)|

{∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖θ− θ0‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)f 2(x
∗|z)|dx∗ ‖f1 − fx|x∗‖s

+
∫

|fy|x∗(y|x∗;θ)f 1(x|x∗)ω−1(x∗� z)|dx∗ ‖f2 − fx∗|z‖s

}

≤
∣∣∣∣f |1|

yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣‖α− α0‖s�

where f |1|
yx|z(D�α1� ω̄) is defined in Assumption 11 and Equation (S6). Similarly,

we also have∣∣∣∣d ln fyx|z(D�α1)

dα
[vn]

∣∣∣∣ ≤
∣∣∣∣f |1|

yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣‖vn‖s(S14)
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with

‖vn‖s = ‖Πn(α− α0 − v∗)‖s ≤ ‖v∗
n‖s + ‖Πn(α− α0)‖s < ∞�(S15)

We then consider the term 1/(fyx|z(D�α1))(d
2fyx|z(D�α1))/(dαdαT)[vn� (α −

α0)] as

1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)](S16)

= 1
fyx|z(D�α1)

{∫
d2

dθ2
fy|x∗(y|x∗;θ)[vn]θ(θ− θ0)

× f 1(x|x∗)f 2(x
∗|z)dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)[vn]θ[f1 − fx|x∗ ]f 2(x

∗|z)dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)[vn]θf 1(x|x∗)[f2 − fx∗|z]dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)(θ− θ0)[vn]f1f 2(x

∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)[vn]f1[f2 − fx∗|z]dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)(θ− θ0)f 1(x|x∗)[vn]f2 dx

∗

+
∫

fy|x∗(y|x∗;θ)[f1 − fx|x∗ ][vn]f2 dx
∗
}
�

Therefore, the term |1/(fyx|z(D�α1))(d
2fyx|z(D�α1))/(dαdαT)[vn� (α − α0)]|

can be bounded through∣∣∣∣ 1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)]

∣∣∣∣(S17)

≤ 1
|fyx|z(D�α1)|

{∫ ∣∣∣∣ d2

dθ2
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(ξ)

× f 1(x|x∗)f 2(x
∗|z)

∣∣∣∣dx∗ ‖[vn]θ‖s‖θ− θ0‖s

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖[vn]θ‖s‖f1 − fx|x∗‖s
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+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

× ‖[vn]θ‖s‖f2 − fx∗|z‖s

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖θ− θ0‖s‖[vn]f1‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗‖[vn]f1‖s‖f2 − fx∗|z‖s

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

× ‖θ− θ0‖s‖[vn]f2‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗

× ‖f1 − fx|x∗‖s‖[vn]f2‖s

}
≤ 1

|fyx|z(D�α1)|
{∫ ∣∣∣∣ d2

dθ2
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(ξ)

× f 1(x|x∗)f 2(x
∗|z)

∣∣∣∣dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗
}
‖α− α0‖s‖vn‖s

≡
∣∣∣∣f |2|

yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣‖α− α0‖s‖vn‖s�
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where f |2|
yx|z(D�α1� ω̄) is defined in Assumption 20. Plugging the bounds in

Equations (S13), (S14), and (S17) back in to Equation (S11), we have∣∣∣∣ sup
α∈N0n

d2 ln fyx|z(D�α1)

dαdαT
[vn� (α− α0)]

∣∣∣∣
≤ sup

α1∈N0n

[∣∣∣∣f |1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣2

+
∣∣∣∣f |2|

yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣]‖α− α0‖s‖vn‖s

≤ h2(D)‖α− α0‖s‖vn‖s�

By the envelope condition in Assumption 20, Equation (S10) becomes

sup
α∈N0n

A1

= εnOp(n
−1/2)

×
√
E

(
sup
α∈N0n

d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)� (α− α0)]

)2

≤ εnOp(n
−1/2)

√
E(h2(D))2‖α− α0‖s‖vn‖s

=Op(ε
2
n)

with ‖α − α0‖s = o(1). The last two terms, A2 and A3 in Equation (S9), are
bounded as∣∣∣ sup

α∈N0n

A2

∣∣∣ = ε2
n

∣∣∣∣ sup
α∈N0n

µn

(
1
2
d2 ln fyx|z(D�α1)

dαdαT

× [Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]
)∣∣∣∣

≤ ε2
n

1
2
µn

(∣∣∣∣f |1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣2

+
∣∣∣∣f |2|

yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣)
× ‖Πn(α− α0 − v∗)‖2

s

≤ ε2
n

1
2
Op

(
E|h2(D)|)‖Πn(α− α0 − v∗)‖2

s

= Op(ε
2
n)�

The same result holds for | supα∈N0n
A3| and, therefore, Condition A in Shen

(1997) holds.
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Fourth, Condition B requires

sup
α∈N0n

[
E

(
ln

fyx|z(D�α0)

fyx|z(D�Πnα∗(α�εn))

)
−E

(
ln

fyx|z(D�α0)

fyx|z(D�α)

)
− 1

2
(‖α∗(α�εn)− α0‖2 − ‖α− α0‖2

)] =O(ε2
n)�

As Corollary 2 in Shen (1997) points out, Condition B can be replaced by Con-
dition B′ as

E

(
ln

fyx|z(D�α0)

fyx|z(D�α)

)
= 1

2
‖α− α0‖2(1 + o(hn))

with some positive sequence {hn} → 0 as n → ∞. We consider the Taylor ex-
pansion

E[ln fyx|z(D�α)− ln fyx|z(D�α0)](S18)

=E

(
d ln fyx|z(D�α0)

dα
[α− α0]

)
+ 1

2
E

(
d2 ln fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

)
+ 1

6
E

d3

dt3
ln fyx|z(D;α0 + t(α− α0))

∣∣∣∣
t=0

+ 1
24

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

�

where α is a mean value between α and α0.
As for the leading terms on the right-hand side, we have η satisfying∫

Y(∂/∂η)fy|x∗(y|x∗;θ)dy = 0,
∫
Y(∂

2/∂η2)fy|x∗(y|x∗;θ)dy = 0� and∫
Y(∂

3/∂η3)fy|x∗(y|x∗;θ)dy = 0 for all θ ∈ Θ, and we have f1 and f2 satisfying∫
X f1(x|x∗)dx = 1 and

∫
X ∗ f2(x

∗|z)dx = 1. It is then tedious but straightfor-
ward to show 5

E

(
d ln fyx|z(D�α0)

dα
[α− α0]

)
= 0�

E

(
1

fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

)
= 0�

5We abuse the notation (d3 ln fyx|z)/dα3 to stand for the third order derivative with respect to
a vector α�
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E

[
1

fyx|z(D�α0)

d3fyx|z(D�α0)

dα3
[α− α0�α− α0�α− α0]

]
= 0�

Therefore,

E

(
d2 ln fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

)
=E

[
1

fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α�α] −

(
d ln fyx|z(D�α0)

dα
[α− α0]

)
×

(
d ln fyx|z(D�α0)

dα
[α− α0]

)]
= −E

[(
d ln fyx|z(D�α0)

dα
[α− α0]

)(
d ln fyx|z(D�α0)

dα
[α− α0]

)]
= −‖α− α0‖2�

Therefore, Equation (S18) becomes

E[ln fyx|z(D�α)− ln fyx|z(D�α0)](S19)

= −1
2
‖α− α0‖2 + 1

6
E

d3

dt3
ln fyx|z(D;α0 + t(α− α0))

∣∣∣∣
t=0

+ 1
24

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

�

For the second term on the right-hand side, we have

d3

dt3
ln fyx|z(D;α0 + t(α− α0))

∣∣∣∣
t=0

=E

[
1

fyx|z(D�α0)

d3fyx|z(D�α0)

dα3
[α− α0�α− α0�α− α0]

]
− 3E

[
d ln fyx|z(D�α0)

dα
[α− α0] 1

fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT

× [α− α0�α− α0]
]

+ 2E
(
d ln fyx|z(D�α0)

dα
[α− α0]

)3

= B1 +B2 +B3�
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Again, it is straightforward to show B1 = 0. The term B2 is bounded as

E

[
d ln fyx|z(D�α0)

dα
[α− α0]

× 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

]
≤E

[∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
×

∣∣∣∣ 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

∣∣∣∣]

≤
[
E

∣∣∣∣ 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

∣∣∣∣2]1/2

×
[
E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣2]1/2

=
[
E

∣∣∣∣ 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

∣∣∣∣2]1/2

‖α− α0‖

≤
[
E

∣∣∣∣f |2|
yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣2]1/2

‖α− α0‖2
s‖α− α0‖

≤ [
E|h2(D)|2

]1/2‖α− α0‖2
s‖α− α0‖�

For the term B3, we have

B3 ≤ E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣3

≤
[
E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣4]1/2

×
[
E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣2]1/2

=
[
E

(
d ln fyx|z(D�α0)

dα
[α− α0]

)4]1/2

‖α− α0‖

≤
[
E

∣∣∣∣f |1|
yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣4]1/2

‖α− α0‖2
s‖α− α0‖

≤ [
E|h1(D)|4

]1/2‖α− α0‖2
s‖α− α0‖�
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Note that E|h2(D)|2 < ∞ implies E|h1(D)|4 < ∞. Therefore, Equation (S19)
becomes

E[ln fyx|z(D�α)− ln fyx|z(D�α0)]

= −1
2
‖α− α0‖2 +O(‖α− α0‖2

s‖α− α0‖)

+ 1
24

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

�

By Assumption 23, we have

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

≤E

∣∣∣∣ d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

∣∣∣∣
≤E|h4(D)|‖α− α0‖4

s

=O(‖α− α0‖4
s )

and, therefore,

E[ln fyx|z(D�α0)− ln fyx|z(D�α)] = 1
2
‖α− α0‖2(1 +O(hn))(S20)

with

hn = ‖α− α0‖2
s

‖α− α0‖ + ‖α− α0‖4
s

‖α− α0‖2
�

Next, we show that ‖α− α0‖2
s /‖α− α0‖ → 0 as n → ∞. We will need the

convergence rate of the sieve coefficients. Therefore, we define for α ∈N0n,

α = (bT �Πnη�Πnf1�Πnf2)
T

= (bT �pkn(ξ1� ξ2)
Tδ�pkn(x�x∗)Tβ�pkn(x∗� z)Tγ)T �

Πnα0 = (bT
0 �Πnη0�Πnfx|x∗�Πnfx∗|z)T

= (bT
0 �p

kn(ξ1� ξ2)
Tδ0�p

kn(x�x∗)Tβ0�p
kn(x∗� z)Tγ0)

T �

where pkn ’s are kn-by-1 vectors, that is, pkn(·� ·) = (pkn
1 (·� ·)�pkn

2 (·� ·)� � � � �
pkn

kn
(·� ·))T . Note that all the vectors are column vectors. We also define the

vector of the sieve coefficients as

αc = (bT �δT �βT �γT )T �

αc
0 = (bT

0 � δ
T
0 �β

T
0 �γ

T
0 )

T �
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We then have

α− α0 = α−Πnα0 +Πnα0 − α0

= ((bT − bT
0 )�p

kn(ξ1� ξ2)
T (δ− δ0)�

pkn(x�x∗)T (β−β0)�p
kn(x∗� z)T (γ − γ0))

+Πnα0 − α0�

Suppose that

‖α− α0‖ = O(n−1/4−ς0)

with some small ς0 > 0. By Assumption 13 and Equation (S7), we let

‖Πnα0 − α0‖s = O(k−γ1/d1
n )= O(n−1/4−ς)

for some small ς > ς0.
We then show ‖αc −αc

0‖E =O(n−1/4−ς0) from ‖α−α0‖ = O(n−1/4−ς0). For any
α ∈N0n, we have∣∣‖α− α0‖ − ‖Πnα0 − α0‖

∣∣
≤ ‖α−Πnα0‖ ≤ ‖α− α0‖ + ‖Πnα0 − α0‖�

We have shown that Assumption 11 implies E|(f |1|
yx|z(D�α1� ω̄))/(fyx|z(D�

α1))|2 ≤ E|h1(D)|2 < ∞� We then have

‖Πnα0 − α0‖ ≤
√
E

(
f |1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

)2

‖Πnα0 − α0‖s

= O(‖Πnα0 − α0‖s)

≤ O(k−γ1/d1
n )

= O(n−1/4−ς)

and, therefore, for some constants 0 <C1�C2 < ∞,

C1‖α− α0‖ ≤ ‖α−Πnα0‖ ≤ C2‖α− α0‖�(S21)

Moreover, we define

d ln fyx|z(D�α0)

db

=
(
d ln fyx|z(D�α0)

db1
�
d ln fyx|z(D�α0)

db2
� � � � �

d ln fyx|z(D�α0)

dbdb

)T

�
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d ln fyx|z(D�α0)

dη
[pkn]

=
(
d ln fyx|z(D�α0)

dη
[pkn

1 ]�

d ln fyx|z(D�α0)

dη
[pkn

2 ]� � � � � d ln fyx|z(D�α0)

dη
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

df1
[pkn]

=
(
d ln fyx|z(D�α0)

df1
[pkn

1 ]�

d ln fyx|z(D�α0)

df1
[pkn

2 ]� � � � � d ln fyx|z(D�α0)

df1
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

df2
[pkn]

=
(
d ln fyx|z(D�α0)

df2
[pkn

1 ]�

d ln fyx|z(D�α0)

df2
[pkn

2 ]� � � � � d ln fyx|z(D�α0)

df2
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

dα
[pkn]

=
[(

d ln fyx|z(D�α0)

db

)T

�

(
d ln fyx|z(D�α0)

dη
[pkn]

)T

�(
d ln fyx|z(D�α0)

df1
[pkn]

)T

�

(
d ln fyx|z(D�α0)

df2
[pkn]

)T]T

�

With the notations above, we have

d ln fyx|z(D�α0)

dα
[α−Πnα0]

=
(
d ln fyx|z(D�α0)

db

)T

(b− b0)+
(
d ln fyx|z(D�α0)

dη
[pkn]

)T

(δ− δ0)

+
(
d ln fyx|z(D�α0)

df1
[pkn]

)T

(β−β0)
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+
(
d ln fyx|z(D�α0)

df2
[pkn]

)T

(γ − γ0)

=
(
d ln fyx|z(D�α0)

dα
[pkn]

)T

(αc − αc
0)

and

‖α−Πnα0‖2

=E

{(
d ln fyx|z(D�α0)

dα
[α−Πnα0]

)2}

= (αc − αc
0)

TE

{(
d ln fyx|z(D�α0)

dα
[pkn]

)(
d ln fyx|z(D�α0)

dα
[pkn]

)T}
× (αc − αc

0)

≡ (αc − αc
0)

TΩkn(α
c − αc

0)�

The matrix Ωkn is positive definite with its smallest eigenvalue bounded away
from zero uniformly in kn according to Assumption 21. Since ‖α − Πnα0‖ is
always finite, the largest eigenvalue of Ωkn is finite. Thus, we have for some
constants 0 <C1�C2 < ∞,

C1‖αc − αc
0‖E ≤ ‖α−Πnα0‖ ≤ C2‖αc − αc

0‖E�(S22)

Note that C1 and C2 are general constants that may take different values at
each appearance.

We then consider the ratio ‖α− α0‖2
s /‖α− α0‖. From Equations (S21) and

(S22), we have

‖α− α0‖ ≥ C1‖αc − αc
0‖E(S23)

and ‖αc − αc
0‖E = O(n−1/4−ς0). Assumption 21 implies ‖α − Πnα0‖2

s ≤ C2‖αc −
αc

0‖2
1, where ‖ · ‖1 is the L1 vector norm. Thus, we have

‖α− α0‖2
s ≤ ‖α−Πnα0‖2

s + ‖Πnα0 − α0‖2
s

≤ C2‖αc − αc
0‖2

1 +O(k−2γ1/d1
n )

≤ C2kn‖αc − αc
0‖2

E +O(n2(−1/4−ς))�

Since ‖αc − αc
0‖E =O(n−1/4−ς0) and ς > ς0, we have

‖α− α0‖2
s ≤ C2kn‖αc − αc

0‖2
E�(S24)

By Equations (S23) and (S24), we have

‖α− α0‖2
s

‖α− α0‖ ≤ C2kn‖αc − αc
0‖2

E

C1‖αc − αc
0‖E

≤ O(kn‖αc − αc
0‖E)�
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Assumption 13 requires k−γ1/d1
n = O(n−1/4−ς), that is, kn = n(1/4+ς)1/(γ1/d1). We

then have

kn‖αc − αc
0‖E =O

(
n−1/4(1−1/(γ1/d1))+ς(1/(γ1/d1))−ς0

) = o(1)

for ς < 1
4(γ1/d1 − 1)+ (γ1/d1)ς0 with γ1/d1 > 1 in Assumption 13. Therefore,

Equation (S20) holds with the positive sequence {hn} → 0 as n → ∞. That
means that Condition B′ in Shen (1997) holds.

Fifth, Condition C in Shen (1997) requires

sup
α∈N0n

‖α∗(α�εn)−Πnα
∗(α�εn)‖ = O(n−1/4εn)�

By definition, we have α∗(α�εn)= (1−εn)α+εn(v
∗ +α0) with α ∈N0n. There-

fore,

‖α∗(α�εn)−Πnα
∗(α�εn)‖

= εn‖v∗ + α0 −Πn(v
∗ + α0)‖

≤ εn‖v∗ −Πnv
∗‖ + εn‖α0 −Πnα0‖

=O(n−1/4εn)�

The last step is due to Assumption 22. Condition C also requires

sup
α∈N0n

µn

(
d ln fyx|z(D�α0)

dα
[α∗(α�εn)−Πnα

∗(α�εn)]
)

=Op(ε
2
n)�(S25)

The left-hand side equals

εnµn

(
d ln fyx|z(D�α0)

dα
[v∗ − v∗

n]
)

+ εnµn

(
d ln fyx|z(D�α0)

dα
[α0 −Πnα0]

)
�

By the envelope condition in Assumption 11, the first term (corresponding to
v∗) is ∣∣∣∣µn

(
d ln fyx|z(D�α0)

dα
[v∗ − v∗

n]
)∣∣∣∣

=
√
E

(
d ln fyx|z(D�α0)

dα
[v∗ − v∗

n]
)2

Op(n
−1/2)

= ‖v∗ − v∗
n‖Op(n

−1/2)

= op(n
−1/2)�
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and the second term (corresponding to α0) is

∣∣∣∣µn

(
d ln fyx|z(D�α0)

dα
[α0 −Πnα0]

)∣∣∣∣
=

√
E

(
d ln fyx|z(D�α0)

dα
[α0 −Πnα0]

)2

Op(n
−1/2)

= ‖α0 −Πnα0‖Op(n
−1/2)

= op(n
−1/2)�

The last step is due to ‖α0 −Πnα0‖ = o(n−1/4). Therefore, Condition C in The-
orem 1 in Shen (1997) holds. Note that Condition C′ in Corollary 2 is also
satisfied, that is, ‖v∗

n − v∗‖ = o(n−1/4) and o(hn)‖α0 −Πnα0‖2 = op(n
−1/2).

Finally, Condition D in Shen (1997), that is,

sup
α∈N0n

µn

(
d ln fyx|z(D�α0)

dα
[α− α0]

)
= op(n

−1/2)�

can be verified as follows: We first have

sup
α∈N0n

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
≤

∣∣∣∣ 1
fyx|z(D�α0)

∫
d

dθ
fy|x∗(y|x∗;θ0)ω

−1(ξ)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗
∣∣∣∣

× ‖θ− θ0‖s

+
∣∣∣∣ 1
fyx|z(D�α0)

∫
fy|x∗(y|x∗;θ0)ω

−1(x�x∗)fx∗|z(x∗|z)dx∗
∣∣∣∣

× ‖f1 − fx|x∗‖s

+
∣∣∣∣ 1
fyx|z(D�α0)

∫
fy|x∗(y|x∗;θ0)fx|x∗(x|x∗)ω−1(x∗� z)dx∗

∣∣∣∣
× ‖f2 − fx∗|z‖s

≤
∣∣∣∣f |1|

yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣‖α− α0‖s

≤ |h1(D)|‖α− α0‖s
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with E|h1(D)|2 < ∞ by the envelope condition in Assumption 11. We then
have

sup
α∈N0n

µn

(
d ln fyx|z(D�α0)

dα
[α− α0]

)

=
√
E

(
sup
α∈N0n

d ln fyx|z(D�α0)

dα
[α− α0]

)2

Op(n
−1/2)

≤
√
E|h1(D)|2‖α− α0‖sOp(n

−1/2)

= op(n
−1/2)�

Thus, Condition D in Theorem 1 in Shen (1997) holds. Since all the condi-
tions in Theorem 1 in Shen (1997) hold, the results of asymptotic normality
follow. Q.E.D.

S3. NONUNIQUENESS OF THE INDEXING OF THE EIGENVALUES

Let x∗ and x̃∗ be related through x∗ = R(x̃∗), where R(x̃∗) is a given piece-
wise differentiable function. We now show that, without Assumption 5, models
in which x∗ or x̃∗ is the unobserved true regressor are observationally equiva-
lent, because

Lx|x̃∗�y;x̃∗L−1
x|x̃∗ =Lx|x∗�y;x∗L−1

x|x∗�

where the operators �y;x̃∗ and Lx|x̃∗ are defined as

[�y;x̃∗g](x̃∗)= fy|x̃∗(y|x̃∗)g(x̃∗)�

[Lx|x̃∗g](x)=
∫

fx|x̃∗(x|x̃∗)g(x̃∗)dx̃∗�

We first note that the operators �y;x̃∗ and Lx|x̃∗ can also be written in terms of
fy|x∗ and fx|x∗ as

[�y;x̃∗g](x̃∗)= fy|x∗(y|R(x̃∗))g(x̃∗)�

[Lx|x̃∗g](x)=
∫

fx|x∗(x|R(x̃∗))g(x̃∗)dx̃∗�

It can be verified (by calculating Lx|x̃∗L−1
x|x̃∗g) that L−1

x|x̃∗ is given by

[L−1
x|x̃∗g](x̃∗) = r(x̃∗)[L−1

x|x∗g](R(x̃∗))�



32 Y. HU AND S. M. SCHENNACH

where r(x̃∗) = dR(x̃∗)/dx̃∗ whenever this differential exists and r(x̃∗) = 0 oth-
erwise.6 We can then calculate

[Lx|x̃∗�y;x̃∗L−1
x|x̃∗g](x)

=
∫

fx|x∗(x|R(x̃∗))fy|x∗(y|R(x̃∗))r(x̃∗)[L−1
x|x∗g](R(x̃∗))dx̃∗

=
∫

fx|x∗(x|R(x̃∗))fy|x∗(y|R(x̃∗))[L−1
x|x∗g](R(x̃∗))dR(x̃∗)

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)[L−1
x|x∗g](x∗)dx∗

(substituting x∗ = R(x̃∗))

= [Lx|x∗�y;x∗L−1
x|x∗g](x)�

It follows that indexing the eigenfunctions by x̃∗ or x∗ produces observationally
equivalent models, but implies different joint densities of x and of the true
regressor (x∗ or x̃∗).

S4. RESTRICTIONS WITH FOURIER SERIES

As shown above, the sieve estimators are

f1(x|x∗)=
in∑
i=0

jn∑
j=0

βijpi(x− x∗)qj(x
∗)�

f2(x
∗|z)=

in∑
i=0

jn∑
j=0

γijpi(x
∗ − z)qj(z)�

Let z�x∗ ∈ [0� lx] and (x− x∗) ∈ [−le� le]. We use the Fourier series

pk(x− x∗) = cos
kπ

le
(x− x∗) or sin

kπ

le
(x− x∗)�

pk(x
∗ − z)= cos

kπ

lx
(x∗ − z) or sin

kπ

lx
(x∗ − z)�

and qk(x) = cos(kπ/lx)x� For simplicity, we consider the case where in = 3
and jn = 2. Longer series can be handled similarly. We have

f1(x|x∗) =
(
a00 + a01 cos

π

lx
x∗ + a02 cos

2π
lx

x∗
)

6Since R(x̃∗) is piecewise differentiable, dR(x̃∗)/dx̃∗ exists almost everywhere and the points
where it does not will not affect the value of the integral.
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+
3∑

k=1

(
ak0 + ak1 cos

π

lx
x∗ + ak2 cos

2π
lx

x∗
)

cos
kπ

le
(x− x∗)

+
3∑

k=1

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)

sin
kπ

le
(x− x∗)�

Consider the restriction
∫
X f1(x|x∗)dx= 1. We can show that∫

X
f1(x|x∗)dx= 2le

(
a00 + a01 cos

π

lx
x∗ + a02 cos

2π
lx

x∗
)

for all x∗. Therefore, a00 = 1/2le and a01 = a02 = 0. We can similarly find the
sieve expression of the function f2(x

∗|z) that satisfies
∫
X ∗ f2(x

∗|z)dx∗ = 1.
Next, we consider the identification restrictions on f1(x|x∗). First, in the zero

mode case, we have ∂
∂x
f1(x|x∗)|x=x∗ = 0 for all x∗ with

∂

∂x
f1(x|x∗)

∣∣∣∣
x=x∗

=
3∑

k=1

kπ

le

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)
�

Thus, the restrictions on the coefficients are

3∑
k=1

kbk0 =
3∑

k=1

kbk1 =
3∑

k=1

kbk2 = 0�

Second, if we make the zero mean assumption instead of the zero mode one,
we have

∫
X (x− x∗)f1(x|x∗)dx= 0 for all x∗ with∫
X
(x− x∗)f1(x|x∗)dx

=
3∑

k=1

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)(

− 2l2
e

kπ
(−1)k

)
�

We have

3∑
k=1

(−1)k

k
bk0 =

3∑
k=1

(−1)k

k
bk1 =

3∑
k=1

(−1)k

k
bk2 = 0�

Third, if we make the zero median assumption, we have∫
X∩{x<x∗} fx|x∗(x|x∗)dx= 1

2 for all x∗ with∫
X∩{x<x∗}

f1(x|x∗)dx
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= 1
2

+
3∑

k=1

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)
le
(−1)k − 1

kπ
�

Therefore,

3∑
k=1

(−1)k − 1
k

bk0 =
3∑

k=1

(−1)k − 1
k

bk1 =
3∑

k=1

(−1)k − 1
k

bk2 = 0�

Fourth, if x∗ is the 100th percentile of fx|x∗� we assume (x − x∗) ∈ [−le�0].
The sieve estimator of f1(x|x∗) is

f1(x|x∗) =
(
a00 + a01 cos

π

lx
x∗ + a02 cos

2π
lx

x∗
)

+
3∑

k=1

(
ak0 + ak1 cos

π

lx
x∗ + ak2 cos

2π
lx

x∗
)

cos
kπ

le

× (x− x∗)�

The restriction
∫
X∩{x<x∗} fx|x∗(x|x∗)dx= 1 for all x∗ is equivalent to the restric-

tions a00 = 1/le and a01 = a02 = 0�

S5. ADDITIONAL SIMULATIONS

EXAMPLE IV—Heteroskedastic Error with Zero Mean: Consider a mea-
surement error

x= x∗ + σ(x∗)ν(S26)

with x∗ ⊥ ν, E(ν) = 0, and σ(·) > 0 being an unknown nonstochastic func-
tion. These assumptions can also be written as E(x − x∗|x∗) = 0, that is, the
measurement error is the conditional mean independent of the true value.
The identification condition is also satisfied because it can be verified that
x∗ = ∫

xfx|x∗(x|x∗)dx. The error structure in the simulation is Fν(ν) = �(ν)
with σ(x∗)= 0�5 exp(−x∗)� The simulation results are in Table SI.

EXAMPLE V—Nonadditive Error with Zero Mode: An error equation like
(S26) is usually set up for convenience. The additive structure of (S26) with
x∗ ⊥ ν may not always be appropriate in applications. Therefore, we now con-
sider a nonseparable example, where it is more natural to specify fx|x∗(x|x∗)
directly for the purpose of generating the simulated data. Let

fx|x∗(x|x∗)= g(x�x∗)∫ ∞
−∞ g(x�x∗)dx

�
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TABLE SI

SIMULATION RESULTS

a= −1 b = 1

Mean Std. Dev. RMSE Mean Std. Dev. RMSE

Example I
Ignoring meas. error −0�7601 0.0759 0.2516 0.7601 0.0686 0.2495
Accurate data −0�9974 0.0823 0.0824 0.9989 0.0766 0.0766
Sieve MLE −0�9556 0.1831 0.1884 0.9087 0.1315 0.1601
Smoothing parameters: in = 6� jn = 6 in f1; in = 3� jn = 2 in f2

Example II
Ignoring meas. error −0�5167 0.0611 0.4871 0.5834 0.0590 0.4208
Accurate data −1�0010 0.0813 0.0813 1.0030 0.0761 0.0761
Sieve MLE −0�9232 0.2010 0.2152 0.9430 0.1440 0.1549
Smoothing parameters: in = 7� jn = 3 in f1; in = 3� jn = 2 in f2

Example III
Ignoring meas. error −0�6351 0.0734 0.3722 0.6219 0.0647 0.3836
Accurate data −1�0010 0.0802 0.0802 1.0020 0.0752 0.0753
Sieve MLE −0�9741 0.2803 0.2815 0.9342 0.2567 0.2650
Smoothing parameters: in = 8� jn = 8 in f1; in = 3� jn = 2 in f2

g(x�x∗)= exp
{
h(x∗)

[(
x− x∗

σ(x∗)

)
− exp

(
x− x∗

σ(x∗)

)]}
�

It is easy to show that fx|x∗ has the unique mode at x∗ for any h(x∗) > 0. Thus
the model is identified with this error structure. When h(x∗) = 1, this density
becomes the density generated by Equation (S26) with ν having an extreme
value distribution� Furthermore, the fact that identification holds for a general
h(x∗) means the independence assumption x∗ ⊥ ν in (S26) is not necessary. We
can deal with more general measurement error using the estimator in this pa-
per. In the simulation, we use σ(x∗)= 0�5 exp(−x∗) and h(x∗)= exp(−0�1x∗)�
The simulation results are in Table SI.

EXAMPLE VI—Nonadditive Error with Zero Median: We let the cumulative
distribution function that corresponds to fx|x∗ be

Fx|x∗(x|x∗)

= 1
π

arctan
{
h(x∗)

[
1
2

+ 1
2

exp
(
x− x∗

σ(x∗)

)
− exp

(
−x− x∗

σ(x∗)

)]}
+ 1

2

with h(x∗) > 0. Note that Fx|x∗(x∗|x∗) = 1
2 for any h(x∗). Moreover, this dis-

tribution is not symmetric around x∗, and x∗ is not the mode either. When
h(x∗) = 1, the error structure is the same as in (S26). In the simulation, we use
σ(x∗) = 0�5 exp(−x∗) and h(x∗) = exp(−0�1x∗). The simulation results are in
Table SI.
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