
Econometrica Supplementary Material

SUPPLEMENT TO “EFFICIENT SEMIPARAMETRIC ESTIMATION
OF QUANTILE TREATMENT EFFECTS”

(Econometrica, Vol. 75, No. 1, January, 2007, 259–276)

BY SERGIO FIRPO1
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of a Monte Carlo exercise, (iii) details of the variance estimation, and (iv) proofs of the
theoretical results.
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1. APPLICATION TO A JOB TRAINING PROGRAM

IN THIS SECTION we present the details of an empirical application for the
quantile treatment effect (QTE) estimators proposed in the main paper. This
application uses a job training program data set that was first analyzed by
LaLonde (1986) and later by many others, including Heckman and Hotz
(1989), Dehejia and Wahba (1999), Smith and Todd (2001, 2005), and Imbens
(2003).

1.1. Data Set

The original data set from the National Supported Work Program (NSW)
is well described in LaLonde (1986). The program was designed as an ex-
periment where applicants were randomly assigned into treatment. The treat-
ment was work experience in a wide range of possible activities, like learning
to operating a restaurant or a child care center, for a period not exceeding
12 months. Eligible participants were targeted from recipients of Aid to Fam-
ilies With Dependent Children, former addicts, former offenders, and young
school dropouts. The NSW data set consists of information on earnings and
employment (outcome variables), whether treated or not, and background
characteristics, such as education, ethnicity, age, and employment variables
before treatment. LaLonde used this experimental data set as a benchmark
for comparisons with the case in which comparison samples come from non-
experimental data sets, as for example, comparison groups based on Panel
Study of Income Dynamics (PSID) and on Westat’s Matched Current Popula-
tion Survey–Social Security Administration file. We use only a subsample from
the PSID, which corresponds to the subsample termed PSID-1 by Dehejia and
Wahba (1999). Summary statistics for the two data sets are presented in Table I.

1I am indebted to Guido Imbens and Jim Powell for their advice, support, and many sugges-
tions. Thanks go to Rafael Cayres, who provided excellent research assistance with Matlab pro-
gramming of Monte Carlo routines. Financial support from CAPES—Brazil is acknowledged. All
errors are mine.
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As this table reveals, the nonexperimental comparison group is essentially dif-
ferent from the treated group, which leads us to turn attention to the para-
meters of the treatment effect on the treated. In what follows, the outcome
variable is earnings in 1978.2 As in Dehejia and Wahba (1999), we consider
male workers only.

LaLonde found that nonexperimental comparison samples are poor substi-
tutes for experimental data. Some reasons for this finding are described in the
survey paper by Heckman, LaLonde, and Smith (1999) and are explored sub-
sequently by Smith and Todd (2001, 2005). The key aspects are related to the
comparability between the information coming from the surveys. First, the sur-
veys have different questions and questionnaires; second, they cover different
labor markets; and third, they do not bring many compelling controlling vari-
ables. A fourth reason why nonexperimental and experimental data sets pro-
vide different answers was offered by Dehejia and Wahba (1999), who argued
that some important preprogram variables should be included as control vari-
ables and that a more flexible methodology that did not rely on parametric
wage regressions should be employed.3

1.2. Using the QTE Estimation Method

With the data set just described, we used treatment and observational com-
parison groups to provide estimates of the quantile treatment effect on the
treated (QTT) and to compare them with experimental QTT estimates, which
are just differences between quantiles of the treated and the experimental con-
trols, without any reweighting. Our results are presented in Table II and Fig-
ures 1–5.

We estimated the propensity score by approximating its log-odds ratio by
a polynomial. The order of such a polynomial was guided by a leave-one-out
cross-validation method based on Hall (1987), in which the optimal number of
terms minimizes a Kullback–Leibler distance. The order in which the polyno-
mial terms were added was given, however, by the following method. Starting
with a full linear model, we included terms according to their degree: those
with lower degree entered first. Then, within the same degree, we sequen-
tially added terms with fewer variables; thus interactions entered only after
we considered all pure terms (e.g., x2

1 and x2
2 are added before x1 ·x2). This is a

nonparametric extension to the propensity-score model selection discussed ex-
tensively in Dehejia and Wahba (1999) and in Rosenbaum and Rubin (1984),

2Earnings are measured in 1982 U.S. dollars.
3Dehejia and Wahba included information on the previous two years earnings, which reduced

the treated sample by about 40%. See Dehejia and Wahba (1999) and Smith and Todd (2001).
A possible weakness of Dehejia and Wahba’s method is explored in Smith and Todd (2005),
who argue that such results may not be robust to other ways of constructing the observational
comparison samples.
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TABLE II

QUANTILES AND QUANTILE TREATMENT EFFECTS

Quantiles

Mean 0.25 0.50 0.75

Observational data (a) Y(1)|T = 1 6�349�1 485�2 4�232�3 9�643�0
(576�9) (329�7) (668�3) (951�6)

(b) Y(0)|T = 1 5�185�8 0�0 2�305�2 3�694�3
(1�662�7) (3�9) (633�9) (940�0)

(c) Y(0)|T = 0 21�554�0 11�526�0 20�688�0 29�554�0
(311�67) (397�2) (344�2) (380�9)

Experimental data (d) Y(1)|T = 1 6�349�1 485�2 4�232�3 9�643�0
(576�9) (329�7) (668�3) (951�6)

(e) Y(0)|T = 0 4�554�8 0�0 3�116�5 7�293�9
(339�4) (0�1) (539�7) (633�1)

Observational (a), (b) 1�163�4 485�2 1�927�1 5�948�7
treatment effects (1�735�9) (330�5) (1�018�3) (1�387�3)

Experimental (d), (e) 1�794�3 485�2 1�115�8 2�349�1
treatment effects (669�3) (332�1) (859�0) (1�142�9)

Difference in (b)–(e) 630�9 0�0 −811�3 −3�599�6
treatment effects (1�860�5) (468�5) (1�332�2) (1�797�4)

FIGURE 1.—Experimental and nonexperimental c.d.f.’s of potential outcomes.
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FIGURE 2.—Nonexperimental quantile treatment effects on the treated.

FIGURE 3.—Experimental and nonexperimental QTT.
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FIGURE 4.—Differences between experimental and nonexperimental QTT.

which instead emphasize selecting propensity-score models that are able to
balance each covariate average given propensity-score groups between treated
and comparison units.

The chosen model using this nonparametric method includes—in addition
to the constant and all linear terms—squared age, squared education, and

FIGURE 5.—Histograms of estimated propensity score by treatment status.
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squared earnings in 1974.4 Note that despite the difference with the Dehejia
and Wahba method to estimate the propensity score, our estimates for average
treatment effect on the treated (ATT) and QTT do not vary much if we use
their specification instead. For example, using the Dehejia and Wahba (1999)
specification for the propensity score, ATT = 1,120 and QTT(0�5) = 1,927,
whereas with our specification, ATT = 1,163, but still QTT(0�5)= 1,927.

Estimation of the asymptotic standard errors was performed and, to simplify
the estimation procedure, we did not use a cross-validation method in this step,
but used the same polynomial selected from the propensity-score estimation.
Also, as discussed earlier, density estimation of potential outcomes is necessary
for proper standard errors calculations. For the logarithm of positive earnings,
we used a Gaussian kernel with the optimal bandwidth (optimal for the normal
random variable case).

In Figure 1 we could observe that the counterfactual distribution presents
some discrete jumps in the cumulative distribution function (c.d.f.), as if some
points had probability mass. A closer look at the data reveals that these points
are affected by nonexperimental comparison observations that have the largest
values of the estimated propensity score and, therefore, the largest weights. For
example, in Figure 1, the percentiles 39–63 of the counterfactual distribution
are exactly $2,305, that is, that point concentrates more than 20% of the total
counterfactual distribution. There are, however, only two individuals in the
nonexperimental comparison group who reported earnings of $2,305. One of
those two individuals had an estimated propensity score larger than 0.98, which
leads to a weight (0.36) that is much larger than the median weight (10−6) of
that comparison group.

It is, therefore, no surprise that, with limited overlap, the QTT estimates
that are largely influenced by only a few observations have very high stan-
dard errors. This can be seen directly in the formula of the asymptotic vari-
ance in Equation (10), in particular its second term, which is multiplied by
p(X)/(1 −p(X)) inside the unconditional expectation bracket. Note that this
leads to a very interesting and nonintuitive case: estimators of middle quantiles
may have larger standard errors than those of some extreme quantiles because
it is possible that, in some cases, the reweighting method will act less inten-
sively in the extreme part of the distribution, offsetting the fact that we have to
divide the variance by a very small number, which is the square of the density
evaluated at the extreme quantile.

2. A MONTE CARLO STUDY

In this section we report the results of Monte Carlo exercises. The goal is
to learn how the estimators of the overall quantile treatment effect (QTE)

4Note that this is different from the Dehejia and Wahba (1999) logit specification for the same
data set. The difference is that they also include squared 1975 earnings, and an interaction term
between the dummy for Hispanic and the dummy for unemployed in 1974.



8 SERGIO FIRPO

and the estimator of their asymptotic variance behave in finite samples. The
generated data follow a very simple specification. Starting with X = [X1�X2]ᵀ,
we set

X1 ∼ Unif
[
µX1 −

√
12
2
�µX1 +

√
12
2

]
and

X2 ∼ Unif
[
µX2 −

√
12
2
�µX2 +

√
12
2

]
�

which will be independent random variables with the following means and vari-
ances: E[X1] = µX1 , E[X2] = µX2 , and V [X1] = V [X2] = 1. The treatment in-
dicator is set to be T = 1{δ0 + δ1X1 + δ2X2 + δ3X

2
1 + η > 0}, where η has a

standard logistic c.d.f. Fη(n)= (1+exp(−πn/√3 ))−1. The potential outcomes
are Y(0)= γ1X1 + γ2X2 + ε0 and Y(1)= Y(0)+ ε1 − ε0, where ε0 and ε1 are,
respectively, distributed as N(0�σ2

ε0
) and N(β�σ2

ε1
). The variables X , η, ε0,

and ε1 are mutually independent. Under this specification, Y(1) and Y(0) will
be distributed as the sum of two uniforms and a normal. Their exact distribu-
tions for Y(0) and Y(1) are, respectively,
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and

Pr[Y(1)≤ y]
= σε1

(z1 − z1) · (z2 − z2)

×
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where z1 = γ1 · (µX1 +
√

12
2 ), z1 = γ1 · (µX1 −

√
12
2 ), z2 = γ2 · (µX2 +

√
12
2 ), and z2 =

γ2 · (µX2 −
√

12
2 ); �(·) and φ(·) are, respectively, the c.d.f. and the probability

density function of the standard normal.
The parameters were chosen to be µX1 = 1, µX2 = 5, δ0 = −1, δ1 = 5,

δ2 = −5, δ3 = −0�05, γ1 = −5, γ2 = 1, β = 5, σε0 = 5, and σε1 = 2�5. Under
that specification for the parameters, Y(1) and Y(0) will have, respectively,
means and variances equal to E[Y(1)] = 5, E[Y(0)] = 0, V [Y(1)] = 56�25,
and V [Y(0)] = 75. Also, the population overall quantile treatment effect at,
for example, percentiles 0.10, 0.25, 0.50, 0.75, and 0.90 will be, respectively
∆0�10 = −2�53−(−9�29)= 6�76, ∆0�25 = 0�61−(−5�04)= 5�65, ∆0�50 = 5−0 = 5,
∆0�75 = 9�39 − 5�04 = 4�35, and ∆0�90 = 12�53 − 9�29 = 3�24.

One thousand replications of this experiment with sample sizes of 500 and
5,000 were considered. Whereas Y(1) and Y(0) are known for each obser-
vation i, we could also compute “unfeasible” estimators of parameters of the
marginal distributions of Y(1) and Y(0). Because the specification leads to
selection on observables, estimation of treatment effects that do not take the
selection into account will inevitably produce inconsistent estimates. Those es-
timates are reported under the label “naive” estimators.

We have calculated average treatment effects and quantile treatment effects.
Results can be found in Tables III–VI. Analytical standard errors are also com-
puted.
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TABLE V

ANALYTICAL STANDARD ERRORS FROM MONTE CARLO EXERCISE
(SAMPLE SIZE 500; REPLICATIONS 1,000)

Treatment Lower 5th Upper 5th
Effects Estimates Average Median Percentile Percentile

Mean Unfeasible 0.2 0.2 0.2 0.3
Feasible 0.4 0.4 0.3 0.5

Naive 0.6 0.6 0.6 0.7

10th percentile Unfeasible 0.5 0.5 0.4 0.6
Feasible 0.9 0.9 0.7 1.0

Naive 0.9 0.9 0.8 1.1

25th percentile Unfeasible 0.5 0.5 0.4 0.5
Feasible 0.8 0.8 0.7 0.9

Naive 0.9 0.9 0.8 1.0

Median Unfeasible 0.4 0.4 0.4 0.5
Feasible 0.8 0.8 0.7 0.9

Naive 0.9 0.9 0.8 1.0

75th percentile Unfeasible 0.5 0.5 0.4 0.5
Feasible 0.9 0.8 0.7 1.0

Naive 1.0 0.9 0.8 1.1

90th percentile Unfeasible 0.5 0.5 0.4 0.6
Feasible 1.0 1.0 0.8 1.3

Naive 1.0 1.0 0.9 1.2

The polynomial order for the propensity-score estimation was determined by
cross-validation. To simplify our computations, we used the same specification
for the variance estimation. Density estimation used a Gaussian kernel with
optimal bandwidth.5

The results indicate that the reweighting estimator performs well according
to both RMSE (root mean squared error) and MAE (median absolute error)
criteria. Also, looking separately at bias and variance terms, it is clear that
the bias vanishes relatively fast as the sample increases for all of the parame-
ters being estimated by the reweighting method, whereas the same result does
not occur with the “naive” estimator, which is an estimator of simple differ-
ences between treated and control groups. Analytical standard errors tend to
be (either looking at the average or at the median) close to the bootstrapped
standard errors for all sample sizes and all parameters. This indicates that,
bootstrapping may be a good alternative to analytical standard errors estima-
tion.

5See the discussion in Section 3.
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TABLE VI

ANALYTICAL STANDARD ERRORS FROM MONTE CARLO EXERCISE
(SAMPLE SIZE 5,000; REPLICATIONS 1,000)

Treatment Lower 5th Upper 5th
Effects Estimates Average Median Percentile Percentile

Mean Unfeasible 0.1 0.1 0.1 0.1
Feasible 0.1 0.1 0.1 0.1

Naive 0.2 0.2 0.2 0.2

10th percentile Unfeasible 0.2 0.2 0.2 0.2
Feasible 0.3 0.3 0.3 0.3

Naive 0.3 0.3 0.3 0.3

25th percentile Unfeasible 0.1 0.1 0.1 0.1
Feasible 0.2 0.2 0.2 0.3

Naive 0.3 0.3 0.3 0.3

Median Unfeasible 0.1 0.1 0.1 0.1
Feasible 0.2 0.2 0.2 0.3

Naive 0.3 0.3 0.3 0.3

75th percentile Unfeasible 0.1 0.1 0.1 0.1
Feasible 0.3 0.3 0.2 0.3

Naive 0.3 0.3 0.3 0.3

90th percentile Unfeasible 0.2 0.2 0.2 0.2
Feasible 0.3 0.3 0.3 0.3

Naive 0.3 0.3 0.3 0.3

The results constitute strong evidence that, even for relatively small sample
sizes (e.g., 500), the estimator would have good precision and that inference
based on a first-order asymptotic approximation would be appropriate.

3. DETAILS OF VARIANCE ESTIMATION PROCEDURE

The proposed estimator for Vτ is V̂τ = 1
N

∑N

i=1(ϕ̂τ�i + α̂τ�i)2, where

ϕ̂τ�i = Ti

p̂(Xi)
· ĝ1�τ(Yi)− 1 − Ti

1 − p̂(Xi)
· ĝ0�τ(Yi)�

α̂τ�i = −Ê
[
T · ĝ1�τ(Y)

(p̂(X))2
+ (1 − T) · ĝ0�τ(Y)

(1 − p̂(X))2

∣∣∣X =Xi

]
· (Ti − p̂(Xi))�

ĝj�τ(Y)= −1{Y ≤ q̂j�τ} − τ
f̂j(q̂j�τ)

� (j = 0�1)�

There are several parts of this estimation process that need to be specified.
Consider first f̂j(·), which is an estimator of the density of the potential out-
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come Y(j),

f̂j(y)=
N∑
i=1

ω̂j�i ·Khj�j(Yi − y)�

where Khj�j(·) = h−1
j Kj(·/hj), and where Kj(·) is a kernel function and hj is

a bandwidth.6 This is the reweighted kernel estimator method, proposed in
DiNardo, Fortin, and Lemieux (1996), that is used because simple kernel esti-
mators are unable to address the missing data problem present in the estima-
tion of the marginal density of the potential outcomes.

Next, consider α̂τ�i, which is an estimator of an unknown conditional ex-
pectation times (p̂(Xi) − Ti). Following Hirano, Imbens, and Ridder (2003,
henceforth HIR), we propose estimating that conditional expectation by a
polynomial approximation, which is exactly the same estimation procedure
used for the log-odds ratio of the propensity score, but possibly using a dif-
ferent vector HKτ of polynomials of x for τ ∈ (0�1).7,8 Basically:

Ê

[
T · ĝ1�τ(Y)

(p̂(X))2
+ (1 − T) · ĝ0�τ(Y)

(1 − p̂(X))2

∣∣∣X =Xi

]
=HKτ(Xi)

′ · λ̂τ�

where

λ̂τ =
(

N∑
l=1

HKτ(Xl) ·HKτ(Xl)
′
)−1

×
(

N∑
i=1

HKτ(Xi) ·
(
Ti · ĝ1�τ(Yi)

(p̂(Xi))2
+ (1 − Ti) · ĝ0�τ(Yi)

(1 − p̂(Xi))2

))
�

4. PROOFS

PROOF OF LEMMA 1: Starting from the definition of the τ quantile of Y(1),
we show how to express q1�τ in terms of the observed data (Y�T�X):

6In the Monte Carlo exercise as well as in the empirical application, we have used the standard
normal kernel with optimal bandwidth for that distribution.

7We propose using vectors of polynomials with the same properties as those used for the
propensity-score estimation. That is, for τ ∈ (0�1), let HKτ(x) = [HKτ�l(x)], l = 1� � � � �Kτ , be a
vector of length Kτ of polynomial functions of x ∈ X that satisfy the properties (i)HKτ :X → R

Kτ

and (ii) HKτ�1(x)= 1. Also, Kτ =Kτ(N)→ ∞ as N → ∞ and (iii) if Kτ > (n+ 1)r , then HKτ(x)
includes all polynomials up to order n.

8For computational simplicity in the Monte Carlo exercise as well as in the empirical applica-
tion, we have fixed the vectors of polynomial functions HKτ to be the same as in the propensity-
score estimation.
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τ = Pr[Y(1) ≤ q1�τ] = E[Pr[Y(1) ≤ q1�τ|X]] = E[Pr[Y(1) ≤ q1�τ|X�T = 1]] =
E[Pr[Y ≤ q1�τ|X�T = 1]] = E[E[T1{Y ≤ q1�τ}|X�T = 1]] = E[ 1

p(X)
E[T1{Y ≤

q1�τ}|X]] = E[ T
p(X)

1{Y ≤ q1�τ}].
The first equality follows from the definition of q1�τ and from Assumption 2.

The second equality is an application of the law of iterated expectations. The
third equality follows from the ignorability assumption (Assumption 1). The
fourth equality results from the definition of Y = TY(1) + (1 − T)Y(0).
The fifth equality comes from E[1{A}] = Pr[A] (where A is some event) and
from the fact that the expectation is conditional on T = 1. The sixth equality
is a consequence from E[Z|X] = p(X)E[Z|X�T = 1] + (1 − p(X))E[Z|X�
T = 0], where Z is some random variable. Finally, the last equality is a back-
ward application of the law of iterated expectations. Analogous results for q0�τ,
q1�τ|T=1, and q0�τ|T=1 could have been derived following essentially the same
steps. Q.E.D.

PROOF OF COROLLARY 1: Note that, from Lemma 1, the four parame-
ters q1�τ, q0�τ, q1�τ|T=1, and q0�τ|T=1 are functionals of the joint distribution of
(Y�T�X). Whereas ∆τ equals the difference between q1�τ and q0�τ, and ∆τ|T=1

equals the difference between q1�τ|T=1 and q0�τ|T=1, ∆τ and ∆τ|T=1 are also func-
tionals of the joint distribution of (Y�T�X). Therefore,∆τ and∆τ|T=1, are iden-
tified from data on (Y�T�X). Q.E.D.

PROOF OF THEOREM 1: The proof is divided into five parts:

Part 1: Asymptotic Properties of the First Step. The approach described in the
main article to estimating the propensity score guarantees, under certain regu-
larity conditions, that p̂(x), the estimator of the propensity score, is uniformly
consistent for the true p(x). To assure that this holds, we make the following
assumptions:

ASSUMPTION A.1—First Step:
(i) The parameter X is a compact subset of R

r .
(ii) The density of X , f (x), satisfies 0< infx∈X f (x)≤ supx∈X f (x) <∞.
(iii) The polynomial p(x) is s-times continuously differentiable, where s ≥ 7r

and r is the dimension of X .
(iv) The order of HK(x), K, is of the form K = C ·Nc , where C is a constant

and c ∈ ( 1
4(s/r−1) �

1
9).

Newey (1995, 1997) established that, for orthogonal polynomialsHK(x) and
compact X ,

Γ (K)= sup
x∈X

‖HK(x)‖ ≤ C ·K�(A-1)
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where C is a generic constant. Note then that because of part (iv) of Assump-
tion A.1, Γ will be a function of N because K is assumed to be a function
of N .

With part (ii) of Assumption 1 (Common Support) and Assumption A.1 in
hand, we can invoke some of the results derived by HIR in the format of a
lemma:

LEMMA A.1—First Step: Under Assumptions 1 and A.1, the following results
hold:

(I) There exists supx∈X |p(x) − pK(x)| ≤ C · Γ (K) · K−s/2r ≤ C · K1−s/2r ≤
C · N(1−s/2r)c = o(1), where pK(x) = L(HK(x)

′πK) and πK =
arg maxπ∈RK E{p(X) · log(L(HK(X)

′π)) + (1 − p(X)) · log(1 −
L(HK(X)

′π))}.
(II) There exists ‖π̂K − πK‖ = Op(

√
K(N)/N ) ≤ C · Op(

√
Nc/N ) ≤ C ·

Op(N
(c−1)/2)= op(1).

(III) There exists supx∈X |p(x) − p̂(x)| ≤ C1 · N(1−s/2r)c + Op(Γ (K) ·√
K(N)/N )≤ C1 ·N(1−s/2r)c +C2 ·N(3c−1)/2 ·Op(1)= op(1).

(IV) There exists ε > 0, limN→∞ Pr[ε < infX∈X p̂(X) ≤ supX∈X p̂(X) <
1 − ε] = 1.

See Hirano, Imbens, and Ridder (2003) for the proof.

Part 2: Change of Variables—u and QN . Recalling from the minimization
problem described by Equation (4) that

q̂1�τ = arg min
q
Gτ�N(q� p̂)

= arg min
q

1
N

N∑
i=1

Ti

p̂(Xi)
(Yi − q)(τ− 1{Yi ≤ q})�

we have then

q̂1�τ = arg min
q
N · (Gτ�N(q� p̂)−Gτ�N(q1�τ� p̂)

)
= arg min

q

N∑
i=1

Ti

p̂(Xi)

[
(Yi − q)(τ− 1{Yi ≤ q})

− (Yi − q1�τ)(τ− 1{Yi ≤ q1�τ})
]

= arg min
q

N∑
i=1

Ti

p̂(Xi)

[
(1{Yi ≤ q1�τ} − τ)(q− q1�τ)

+ (Yi − q)(1{Yi ≤ q1�τ} − 1{Yi ≤ q})
]
�
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Now, we define: u≡ √
N(q− q1�τ), ûτ ≡ √

N(q̂1�τ − q1�τ),

Dτ(Yi)≡ 1{Yi ≤ q1�τ} − τ�(A-2)

Rτ(Yi�u)≡ (
Yi − (q1�τ + u/√N ))

× (
1{Yi ≤ q1�τ} − 1{Yi ≤ q1�τ + u/√N })�

Qτ�N(u� p̂)≡
N∑
i=1

Ti

p̂(Xi)
·
(
Dτ(Yi) · u√

N
+Rτ(Yi�u)

)
=N · (Gτ�N(q� p̂)−Gτ�N(q1�τ� p̂)

)
�

A comment about some of the preceding quantities: The variable Dτ(Yi)
is the approximate first derivative of the check function ρτ(Yi − q) with re-
spect to q. It is approximate in the sense that ρτ(Yi − q) is not differentiable
for all q, because it involves indicator functions of whether q is less than or
equal to some values in the data. The variable Rτ(Yi�u) can be interpreted as
the remainder term from a linear expansion about q1�τ that uses Dτ(Yi) as an
approximated derivative.

Next, note that whereas ûτ = √
N(q̂1�τ − q1�τ), then, by Equation (4), ûτ =

arg minu Qτ�N(u� p̂).

Part 3: A Quadratic Approximation to the Objective Function. We now show
that ξτ�N(u� p̂) = Qτ�N(u� p̂) − Q̃τ�N(u) is op(1) for fixed u, where Q̃τ�N(u) is
a quadratic random function in u that does not depend on p̂, the estimated
p-score.

We begin by defining the function

Q̃τ�N(u)= u · 1√
N

·
N∑
i=1

(
Ti

p(Xi)
· (Dτ(Yi)−E[Dτ(Y)|Xi�T = 1])(A-3)

+E[Dτ(Y)|Xi�T = 1]
)

+ u2 · f1(q1�τ)

2

and by writing the absolute value of the difference as

|Qτ�N(u� p̂)− Q̃τ�N(u� p̂)|

=
∣∣∣∣∣ u

N1/2

N∑
i=1

Ti

p̂(Xi)
·Dτ(Yi)
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−
(

Ti

p(Xi)
· (Dτ(Yi)−E[Dτ(Y)|Xi�T = 1])

+E[Dτ(Y)|Xi�T = 1]
)

+
N∑
i=1

Ti

p̂(Xi)
·Rτ(Yi�u)− u2 · f1(q1�τ)

2

∣∣∣∣∣
≤ |ξ1�τ�N(u� p̂)| + |ξ2�τ�N(u� p̂)|�

where

ξ1�τ�N(u� p̂)= u

N1/2

N∑
i=1

Ti

p̂(Xi)
·Dτ(Yi)

−
(

Ti

p(Xi)
· (Dτ(Yi)−E[Dτ(Y)|Xi�T = 1])

+E[Dτ(Y)|Xi�T = 1]
)
�

ξ2�τ�N(u� p̂)=
N∑
i=1

Ti

p̂(Xi)
·Rτ(Yi�u)− u2 · f1(q1�τ)

2
�

The next lemma shows that ξτ�N(u� p̂) goes to zero in probability for each u,
which means that the objective function can be approximated by a quadratic
(in u) random function. Before stating the lemma, let us first assume that the
next regularity condition holds:

ASSUMPTION A.2—Continuity: For j = 0�1, E[Dτ(Y(j))|X = x] is continu-
ously differentiable with respect to x for every x in X .

LEMMA A.2—Bounding the Differences in the Objective Function: Under
Assumptions 1, 2, A.1, and A.2, for each u, ξτ�N(u� p̂)= op(1).

PROOF: To prove Lemma A.2, we use the previous decomposition of
ξτ�N(u� p̂) into the sum of two terms. The first term, ξ1�τ�N(u� p̂), will be
u · op(1). This is a direct consequence of Theorem 1 from HIR, applied not
to Y as in that paper, but to a bounded function of Y : Dτ(Y). The require-
ments for the HIR theorem to hold are verified for our case: (i) Assumptions
1 and A.1 cover Assumptions 1, 2, 4, and 5 of HIR, and (ii) V [Dτ(Y(1))] =
τ(1 − τ) <+∞ plus Assumption A.2 cover their Assumption 3.
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The next part of the sum is ξ2�τ�N(u� p̂), which can be bounded as

|ξ2�τ�N(u� p̂)| =
∣∣∣∣∣
N∑
i=1

Ti

p̂(Xi)
·Rτ(Yi�u)− u2 · f1(q1�τ)

2

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

Ti ·Rτ(Yi�u) · p̂(Xi)−p(Xi)

p̂(Xi) ·p(Xi)

∣∣∣∣∣(A-4)

+
∣∣∣∣∣
N∑
i=1

Ti

p(Xi)
·Rτ(Yi�u)−E

[
Ti

p(Xi)
·Rτ(Yi�u)

]∣∣∣∣∣(A-5)

+
∣∣∣∣N ·E

[
T

p(X)
·Rτ(Y�u)

]
− u2 · f1(q1�τ)

2

∣∣∣∣�(A-6)

The first term of the latter sum (A-4), converges to zero in probability for
fixed u, because∣∣∣∣∣

N∑
i=1

Ti ·Rτ(Yi�u)
p(Xi)

· p̂(Xi)−p(Xi)

p̂(Xi)

∣∣∣∣∣
≤

N∑
i=1

∣∣∣∣Ti ·Rτ(Yi�u)p(Xi)

∣∣∣∣ ·
(

inf
x∈X

p̂(x)
)−1 · sup

x∈X
(p̂(x)−p(x))

=Op
(√
N ·E[

(Rτ(Y(1)�u))2
] ) ·Op(1) · op(1)

=Op
(
N1/2 ·O

( |u|3/2

N3/4

))
· op(1)

=Op(N−1/4 · |u|3/2) · op(1)= |u|3/2 · op(1)�
This result holds because the first and second moments Rτ(Y(1)�u) are given
by

E
[
Rτ(Y(1)�u)

]
=

∫ q1�τ

q1�τ+u/
√
N

(
y −

(
q1�τ + u√

N

))
f1(y)dy

=
(
y −

(
q1�τ + u√

N

))
F1(y)

∣∣∣∣q1�τ

q1�τ+u/
√
N

+
∫ q1�τ+u/

√
N

q1�τ

F1(y)dy

= −F1(q1�τ)
u√
N

+ F1(q1�τ)
u√
N

+ u2

2N
f1

(
q1�τ + u∗

√
N

)
= u2

2N
· f1

(
q1�τ + u∗

√
N

)
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for some u∗ between 0 and u, where F1(y)= Pr[Y(1)≤ y], and

E
[
R2
τ(Y(1)�u)

]
=

∫ q1�τ

q1�τ+u/
√
N

(
y −

(
q1�τ + u√

N

))2

1{y ≤ q1�τ}f1(y)dy

−
∫ q1�τ

q1�τ+u/
√
N

(
y −

(
q1�τ + u√

N

))2

1

{
y ≤ q1�τ + u√

N

}
f1(y)dy�

Consider the case in which u > 0:9

E
[
R2
τ(Y(1)�u)

]
=

∫ q1�τ+u/
√
N

q1�τ

(
y −

(
q1�τ + u√

N

))2

f1(y)dy

=
(
y −

(
q1�τ + u√

N

))2

F1(y)

∣∣∣∣q1�τ+u/
√
N

q1�τ

− 2
∫ q1�τ+u/

√
N

q1�τ

(
y −

(
q1�τ + u√

N

))
F1(y)dy

= −F1(q1�τ)
u2

N
+ 2

(
u2

2N
F1(q1�τ)+ u3

6N3/2
f1

(
q1�τ + u∗∗

√
N

))
= u3

3N3/2
f1

(
q1�τ + u∗∗

√
N

)
�

where u∗∗ is some real number between 0 and u.
Now, we use similar arguments to find the probability order of the second

term (A-5),∣∣∣∣∣
N∑
i=1

Ti

p(Xi)
·Rτ(Yi�u)−E

[
Ti

p(Xi)
·Rτ(Yi�u)

]∣∣∣∣∣
=Op

(√
N · V [

Rτ(Y(1)�u)
] )

=Op
(
N1/2 ·O

( |u|3/2

N3/4

))
=Op(N−1/4 · |u|3/2)

= op(|u|3/2)�

9The u < 0 case yields the same result times (−1).
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and finally, the last term (A-6), is∣∣∣∣N ·E
[

T

p(X)
·Rτ(Y�u)

]
− u2 · f1(q1�τ)

2

∣∣∣∣
=N ·

∣∣∣∣E[
Rτ(Y(1)�u)

] − u2

2N
· f1(q1�τ)

∣∣∣∣
=N · o

(
u2

N

)
�

Therefore, ξ2�τ�N(u� p̂)= |u|3/2 · op(1)� So, for fixed u, ξτ�N(u� p̂)= op(1).
Q.E.D.

Part 4: Asymptotic Properties of ũτ . We show that ũτ , the argument that min-
imizes the random quadratic Q̃τ�N(u), (i) is Op(1) and (ii) ũτ

D→N(0� V1�τ).
Under Assumption 2, the argument that minimizes Q̃τ�N(u) is unique. Also,

using Equation (A-3), it is equal to

ũτ = arg min
u
Q̃τ�N(u)(A-7)

= − 1√
Nf1(q1�τ)

N∑
i=1

(
Ti

p(Xi)
·Dτ(Yi)

− Ti −p(Xi)

p(Xi)
·E[Dτ(Y)|Xi�T = 1]

)

= 1√
N

N∑
i=1

ψ1�τ(Yi�Ti�Xi)�

where ψ1�τ is the influence function of q1�τ, which was defined by Equation (6).
Let us now write the main result of this subsection as a lemma:

LEMMA A.3—Asymptotic Properties of ũτ: Let ũτ = arg minu Q̃τ�N(u). Then,
under Assumptions 1, 2, and A.1, ũτ

D→N(0�E[ψ2
1�τ(Y�T�X)]).

PROOF: The result follows by noting that E[ψ1�τ(Y�T�X)] = 0 and by an
application of the central limit theorem. Q.E.D.

Part 5: Nearness of arg mins. We show that the term ûτ is just op(1) from
ũτ or, written in terms of q, that q̂1�τ is asymptotically equivalent to q̃1�τ =
ũτ/

√
N + q1�τ.

To get results about ûτ and consequently about q̂1�τ, we will use a result
in Hjört and Pollard (1993) on the nearness of minimizers of convex random
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functions. In particular, we apply Hjört and Pollard’s Lemma 2 directly to our
case:

LEMMA A.4—Nearness of arg mins (Hjört and Pollard (1993)): Under As-
sumptions 1, 2, A.1, and A.2, we have the following probabilistic bound on how
far ûτ can be from ũτ: For each ε > 0,

Pr[|̂uτ − ũτ| ≥ ε] ≤ Pr
[

sup
|u−ũτ |≤ε

|ξτ�N(u� p̂)| ≥ 1
4
f1(q1�τ)ε

2

]
and, moreover,

Pr
[

sup
|u−ũτ |≤ε

|ξτN(u� p̂)| ≥ 1
4
f1(q1�τ)ε

2

]
= o(1)�

PROOF: First notice that Gτ�N(q� p̂) = (1/N)
∑N

i=1 Ti/(p̂(Xi))ρτ(Yi − q) is
convex in q with probability approaching 1, because it is a sum of zeros and con-
vex functions in q. As a result, the transformed objective function Qτ�N(u� p̂)
will be convex in u and the following random function must be convex in u:

Bτ�N(u� p̂)=Qτ�N(u� p̂)(A-8)

−
N∑
i=1

u√
N

(
TiDτ(Yi)

p(Xi)
−E[Dτ|Xi�T = 1] · Ti −p(Xi)

p(Xi)

)

= 1
2
f1(q1�τ)u

2 + ξτ�N(u� p̂)�

Let us call Bτ(u) the quadratic 1
2f1(q1�τ) · u2. Now, by convexity of Bτ�N(u� p̂)

for any u such that |u− ũτ| = a > ε,(
1 − ε

a

)
·Bτ�N(ũτ� p̂)+ ε

a
·Bτ�N(u� p̂)≥ Bτ�N(ũτ + ε� p̂)�

By Equation (A-8), this can be rewritten as

ε

a

(
Bτ�N(u� p̂)−BτN(ũτ� p̂)

)
≥ Bτ(ũτ + ε)+ ξτ�N(ũτ + ε� p̂)− (Bτ(ũτ)+ ξτ�N(ũτ� p̂))
≥ −2 sup

|u−ũτ |≤ε
|ξτ�N(u� p̂)| + inf

|u−ũτ |=ε
|Bτ(u)−Bτ(ũ)|�

Now note that inf|u−ũτ |=ε |Bτ(u)−Bτ(ũτ)| = 1
2f1(q1�τ)ε

2. Thus, for all u outside
the ε interval around ũτ, if

−2 sup
|u−ũτ |≤ε

|ξτ�N(u� p̂)| + 1
2
f1(q1�τ)ε

2 > 0�(A-9)
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then ûτ, the minimizer of Qτ�N(u� p̂), will be inside the ε interval around ũτ.
Hence, we need to show that, with probability approaching 1, Equation (A-9)
holds.

By the Hjört and Pollard’s (1993) version of the convexity lemma,
supu∈C |ξτ�N(u� p̂)| = op(1) for each compact subset C of R. Define Cτ�ε =
{u ∈ R; |u − ũτ| ≤ ε}. Because Cτ�ε is a bounded and closed subset of R, it
is compact. Therefore, supu∈Cτ�ε |ξτ�N(u� p̂)| = op(1). Thus, for each ε > 0,
Pr[supu∈Cτ�ε |ξτ�N(u� p̂)| ≥ 1

4f1(q1�τ)ε
2] = o(1).

Hence, with probability approaching 1, for each ε > 0, Equation (A-9) holds,
which means that ûτ, the minimizer of Qτ�N(u� p̂), will be inside the ε interval
around ũτ with probability approaching 1, that is, |̂uτ − ũτ| = op(1). Q.E.D.

Let us state the final result:

LEMMA A.5—Asymptotic Properties of q̂1�τ: Under Assumptions 1, 2, A.1,
and A.2,

√
N(q̂1�τ − q1�τ)= 1√

N

N∑
i=1

ψ1�τ(Yi�Ti�Xi)+ op(1)

with 1√
N

∑N

i=1ψ1�τ(Yi�Ti�Xi)
D→N(0� V1�τ) and where

V1 = E[ψ2
1�τ(Y�T�X)]

= E

[
V [g1�τ(Y)|X�T = 1]

p(X)
+E2[g1�τ(Y)|X�T = 1]

]
�

PROOF: Defining q̃1�τ = ũτ/
√
N + q1�τ, by Lemma A.4 we have

√
N |̂q1�τ − q̃1�τ| = |√N(q̂1�τ − q1�τ)− √

N(q̃1�τ − q1�τ)|
≤ |̂uτ − ũτ| = op(1)�

that is, q̂1�τ is asymptotically equivalent to q̃1�τ and Lemma A.5 follows imme-
diately by Lemma A.3. Q.E.D.

The same result obtained for q1�τ can be obtained analogously for q0�τ. In
particular, with the same set of assumptions used in Lemma A.5, it is possible
to derive an asymptotic linear influence function for q̂0�τ, ψ0�τ, which is analo-
gous to ψ1�τ and whose expression appears in Equation (7).

A consequence of Lemma A.5 is that ∆̂τ, which is equal to the difference
between q̂1�τ and q̂0�τ, will have an asymptotically linear influence function and
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will be asymptotically normal. In other words, Theorem 1 will hold:
√
N(∆̂τ −

∆τ)= 1√
N

∑N

i=1ψτ(Yi�Ti�Xi)+op(1); with 1√
N

∑N

i=1ψτ(Yi�Ti�Xi)
D→N(0� Vτ),

where ψτ =ψ1�τ −ψ0�τ and

Vτ = E
[
(ψ1�τ(Y�T�X)−ψ0�τ(Y�T�X))

2
]

= E

[
V [g1�τ(Y)|X�T = 1]

p(X)
+ V [g0�τ(Y)|X�T = 0]

1 −p(X)
]

+E[(
E[g1�τ(Y)|X�T = 1] −E[g0�τ(Y)|X�T = 0])2]

� Q.E.D.

PROOF OF THEOREM 2: Here we state additional conditions and prove that
V̂τ is consistent for Vτ, the asymptotic variance of

√
N · ∆̂τ. Note that the same

argument found in the following text could be extended easily to the estima-
tion of V∆τ |T=1, which is the asymptotic variance of

√
N · ∆̂τ|T=1, the quantile

treatment effect on the treated.

ASSUMPTION A.3—Consistent Variance Estimation: For j = 0�1, the follow-
ing conditions hold.

Conditional Variance: (i) probability Pr(Y(j)≤ qj�τ|X = x) is bounded away
from 0 and 1, and is sj�τ-times continuously differentiable, where sj�τ ≥ 7r and r is
the dimension ofX; (ii)Kτ, the order ofHKτ(x), is of the formKτ = CNcτ , where
C is a constant and cτ ∈ ( 1

4(sj�τ/r−1) �
1

10)�

Density:10 (i) The function fj(·) is such that its second derivative, f ′′
j (·),

is continuous, square integrable, and ultimately monotone; (ii) hj is of the
form hj = CN−1/5, where C is a constant and, therefore, limN→+∞ hj = 0 and
limN→+∞N · hj = +∞; (iii) Kj(·) is a bounded probability density function that
has finite fourth moment and symmetry about zero.

We start by bounding

|V̂τ − Vτ|

=
∣∣∣∣∣ 1
N

N∑
i=1

(ϕ̂τ�i + α̂τ�i)2 −E[
(ϕτ(Y�T�X)+ ατ(Y�T�X))2

]∣∣∣∣∣
≤

∣∣∣∣∣ 1
N

N∑
i=1

(ϕ̂τ�i + α̂τ�i)2 − (ϕ̃τ�i + α̃τ�i)2

∣∣∣∣∣(A-10)

+
∣∣∣∣∣ 1
N

N∑
i=1

(ϕ̃τ�i + α̃τ�i)2 −E[
(ϕτ(Y�T�X)+ ατ(Y�T�X))2

]∣∣∣∣∣�(A-11)

10These are standard textbook assumptions on kernel density estimation. See, for example,
Wand and Jones (1995, Section 2.5).
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where

ϕ̃τ�i = Ti

p̂(Xi)
· g1�τ(Yi)− 1 − Ti

1 − p̂(Xi)
· g0�τ(Yi)�

α̃τ�i = −(Ti − p̂(Xi)) ·HKτ(Xi)
′ · λ̃τ�

and

λ̃τ =
(

N∑
l=1

HKτ(Xl) ·HKτ(Xl)
′
)−1

×
(

N∑
i=1

HKτ(Xi) ·
(
Ti · g1�τ(Yi)

(p̂(Xi))2
+ (1 − Ti) · g0�τ(Yi)

(1 − p̂(Xi))2

))
;

that is, unlike ϕ̂τ�i and α̂τ�i, the terms ϕ̃τ�i and α̃τ�i use the true quantiles and the
true density of potential outcomes. Subsequently, we show that such a bound
converges to zero in probability.

Under Assumptions 1, 2, A.1, and A.2, expression (A-11) will be bounded
by an op(1) term. This is a consequence of a direct application of Theorem 2
of HIR, using g1�τ(Y) and g0�τ(Y), which are bounded functions of Y , instead
of Y itself as in their case. We have then only to restrict attention to expres-
sion (A-10),∣∣∣∣∣ 1

N

N∑
i=1

(ϕ̂τ�i + α̂τ�i)2 − (ϕ̃τ�i + α̃τ�i)2

∣∣∣∣∣ ≤ VA + VB + VC�

where VA = | 1
N

∑N

i=1 ϕ̂
2
τ�i − ϕ̃2

τ�i|, VB = | 1
N

∑N

i=1 α̂
2
τ�i − α̃2

τ�i|, and VC = | 2
N

∑N

i=1 ϕ̂τ�i ·
α̂τ�i − ϕ̃τ�i · α̃τ�i|.

Now, term-by-term,

VA ≤
∣∣∣∣∣ 1
N

N∑
i=1

p(Xi)

p̂2(Xi)
· Ti

p(Xi)
· (ĝ2

1�τ(Yi)− g2
1�τ(Yi))

∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N∑
i=1

1 −p(Xi)

(1 − p̂(Xi))2
· 1 − Ti

1 −p(Xi)
· (ĝ2

0�τ(Yi)− g2
0�τ(Yi))

∣∣∣∣∣
because the cross-product term will be zero because it will involve Ti ·(1−Ti)=
0 for all i. The first term of the foregoing sum will be∣∣∣∣∣ 1

N

N∑
i=1

p(Xi)

p̂2(Xi)
· Ti

p(Xi)
· (ĝ2

1�τ(Yi)− g2
1�τ(Yi))

∣∣∣∣∣(A-12)
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≤ supx∈X (p(x))
infx∈X (p̂2(x))

· 1
N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· (ĝ2

1�τ(Yi)− g2
1�τ(Yi))

∣∣∣∣
= C

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· (ĝ2

1�τ(Yi)− g2
1�τ(Yi))

∣∣∣∣�
where C is a generic constant. By definition, expression (A-12) is equal to

C

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
·
(
(1{Yi ≤ q1�τ} − τ)2

f 2
1 (q1�τ)

− (1{Yi ≤ q̂1�τ} − τ)2

f̂ 2
1 (q̂1�τ)

)∣∣∣∣
≤ (f1(q1�τ) · f̂1(q̂1�τ))

−2 · |f̂ 2
1 (q̂1�τ)− f 2

1 (q1�τ)|

× C

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· 1{Yi ≤ q1�τ}

∣∣∣∣
+ (f1(q1�τ) · f̂1(q̂1�τ))

−2 · f 2
1 (q1�τ)

× C

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· (1{Yi ≤ q1�τ} − 1{Yi ≤ q̂1�τ})

∣∣∣∣�
where C is a generic constant. Now we show that f̂1(y)− f1(y)= op(1) as the
sample size N → ∞ and the bandwidth for density estimation h1 → 0. Define
the auxiliary quantity based on true propensity score:

f̃1(y)= 1
N

N∑
i=1

Ti

p(Xi)

K1

(
Yi−y
h1

)
h1

�

Then

|f̂1(y)− f1(y)|

=
∣∣∣∣∣ 1
N

N∑
i=1

Ti

p̂(Xi)

K1

(
Yi−y
h1

)
h1

− f1(y)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
N

N∑
i=1

(
Ti

p̂(Xi)
− Ti

p(Xi)

)
· K1

(
Yi−y
h1

)
h1

∣∣∣∣∣
+ ∣∣f̃1(y)−E[f̃1(y)]

∣∣ + ∣∣E[f̃1(y)] − f1(y)
∣∣�

The last two terms of the sum are typically encountered in kernel density
estimation, the key difference being that f̃1(y) is a weighted kernel density es-
timator. Given the standard assumptions embedded in Assumption A.3(II),
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and the ignorability and common support assumptions,11 we can invoke known
results for the order of the last two terms of the preceding sum (as in, for
example, Wand and Jones (1995)): |f̃1(y) − E[f̃1(y)]| = Op((Nh1)

−1) and
|E[f̃1(y)] − f1(y)| =O(h2

1).
Now consider∣∣∣∣∣ 1

N

N∑
i=1

(
Ti

p̂(Xi)
− Ti

p(Xi)

)
· K1

(
Yi−y
h1

)
h1

∣∣∣∣∣
≤ supx∈X (|p(x)− p̂(x)|)

infx∈X (p̂(x))
·
∣∣∣∣∣ 1
N

N∑
i=1

Ti

p(Xi)
· K1

(
Yi−y
h1

)
h1

∣∣∣∣∣
≤ (
C1 ·N(1−s/2r)c +C2 ·N(3c−1)/2 ·Op(1)

) · (Op((Nh1)
−1)+O(h2

1)
)

= op(1) · op(1)= op(1)�

It is thus clear that the weighted kernel density estimator f̂1(y), which uses non-
parametric weights (given by Ti · (N · p̂(Xi))

−1), will be consistent for f1(y).
More formally, for a bandwidth sequence h1(N) such that as N → ∞,
h1(N) → 0 and N · h1(N) → ∞, |f̂1(y) − f1(y)| = Op((Nh1)

−1) + O(h2
1) +

op(1)= op(1). That result guarantees that

C

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· (ĝ2

1�τ(Yi)− g2
1�τ(Yi))

∣∣∣∣
≤ (f1(q1�τ) · f̂1(q̂1�τ))

−2 · |f̂ 2
1 (q̂1�τ)− f 2

1 (q1�τ)|

× C1

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· 1{Y i ≤ q1�τ}

∣∣∣∣
+ (f1(q1�τ) · f̂1(q̂1�τ))

−2 · f 2
1 (q1�τ)

× C2

N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· (1{Y i ≤ q1�τ}−1{Y i ≤ q̂1�τ}

)∣∣∣∣
≤ C1 · |f̂1(q̂1�τ)− f1(q1�τ)| · |f̂1(q̂1�τ)+ f1(q1�τ)|

×Op
(√
E

[(
1{Y(1)≤ q1�τ}

)2] )
11The ignorability and common support assumptions guarantee that E[ T

p(X)
· K1(

Y−y
h1
)] =

E[K1(
Y(1)−y
h1

)] for a fixed h1.



28 SERGIO FIRPO

+C2 · |̂q1�τ−q1�τ| ·Op
(√

E

[(
T

p(X)

)2])
≤ C1 · (|f̂1(q̂1�τ)− f1(q̂1�τ)| + |f1(q̂1�τ)− f1(q1�τ)|

)
× (|f̂1(q̂1�τ)− f1(q̂1�τ)| + |f1(q̂1�τ)+ f1(q1�τ)|

) ·Op(1)
+C2 ·Op(N−1/2) ·Op(1)

= (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
× (op(1)+Op(1)) ·Op(1)+Op(N−1/2)

=Op((Nh1)
−1)+O(h2

1)+ op(1)+Op(N−1/2)= op(1)�
A simple analogy allows us to conclude that∣∣∣∣∣ 1

N

N∑
i=1

1 −p(Xi)

(1 − p̂(Xi))2
· 1 − Ti

1 −p(Xi)
· (ĝ2

0�τ(Yi)− g2
0�τ(Yi))

∣∣∣∣∣
=Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)= op(1)�

which allows us to write

VA =Op((Nh1)
−1)+O(h2

1)+ op(1)+Op(N−1/2)= op(1)�
The second term of the original sum, VB, will also be bounded. To see this,

note that

VB =
∣∣∣∣∣ 1
N

N∑
i=1

(Ti − p̂(Xi))
2

× (
λ̂′
τ ·HKτ(Xi) ·HKτ(Xi)

′ · λ̂τ − λ̃′
τ ·HKτ(Xi) ·HKτ(Xi)

′ · λ̃τ
)∣∣∣∣∣

≤
∣∣∣∣∣(̂λτ − λ̃τ)′ · 1

N

N∑
i=1

(Ti − p̂(Xi))
2 ·HKτ(Xi) ·HKτ(Xi)

′ · λ̂τ
∣∣∣∣∣

+
∣∣∣∣∣̃λ′

τ · 1
N

N∑
i=1

(Ti − p̂(Xi))
2 ·HKτ(Xi) ·HKτ(Xi)

′ · (̂λτ − λ̃τ)
∣∣∣∣∣

≤ ‖(̂λτ − λ̃τ)‖ · (‖̂λτ‖ + ‖̃λτ‖) · sup
x∈X

‖HKτ(x) ·HKτ(x)
′‖

×
∣∣∣∣∣ 1
N

N∑
i=1

(Ti −p(Xi)+p(Xi)− p̂(Xi))
2

∣∣∣∣∣
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≤ ‖(̂λτ − λ̃τ)‖ · (‖̂λτ‖ + ‖̃λτ‖) · sup
x∈X

‖HKτ(x)‖2

×
(∣∣∣∣∣ 1
N

N∑
i=1

(Ti −p(Xi))
2

∣∣∣∣∣ + sup
x∈X
(p(x)− p̂(x))2

+C · sup
x∈X

(|p(x)− p̂(x)|) ·
∣∣∣∣∣ 1
N

N∑
i=1

Ti −p(Xi)

∣∣∣∣∣
)

≤ C1 · ‖(̂λτ − λ̃τ)‖ · (‖̂λτ‖ + ‖̃λτ‖) · sup
x∈X

‖HKτ(x)‖2

× (
Op

(√
E

[
(T −p(X))4

] )
+ op(1) · (Op(1)+Op

(√
E

[
(T −p(X))2

] )))
≤ C · ‖(̂λτ − λ̃τ)‖ · (‖̂λτ‖ + ‖̃λτ‖) · sup

x∈X
‖HKτ(x)‖2 ·Op(1)�

Now, let us concentrate on

‖(̂λτ − λ̃τ)‖
≤ inf

x∈X
‖HKτ(x)‖−2

×
∥∥∥∥∥
(

1
N

N∑
i=1

HKτ(Xi) ·
(
Ti · (ĝ1�τ(Yi)− g1�τ(Yi))

(p̂(Xi))2

+ (1 − Ti) · (ĝ0�τ(Yi)− g0�τ(Yi))

(1 − p̂(Xi))2

))∥∥∥∥∥
≤ C · sup

x∈X
‖HKτ(x)‖ ·

(∣∣∣∣∣ 1
N

N∑
i=1

Ti · (ĝ1�τ(Yi)− g1�τ(Yi))

(p̂(Xi))2

∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N∑
i=1

(1 − Ti) · (ĝ0�τ(Yi)− g0�τ(Yi))

(1 − p̂(Xi))2

∣∣∣∣∣
)

≤ C1 · sup
x∈X

‖HKτ(x)‖ · supx∈X (p(x))
infx∈X (p̂2(x))

×
∣∣∣∣∣ 1
N

N∑
i=1

Ti

p(Xi)
· (ĝ1�τ(Yi)− g1�τ(Yi))

∣∣∣∣∣
+C2 · sup

x∈X
‖HKτ(x)‖ · 1 − infx∈X (p(x))

1 − supx∈X (p̂2(x))
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×
∣∣∣∣∣ 1
N

N∑
i=1

(1 − Ti)
1 −p(Xi)

· (ĝ0�τ(Yi)− g0�τ(Yi))

∣∣∣∣∣
and, following the arguments to bound expression (A-12), we have that∣∣∣∣∣ 1

N

N∑
i=1

Ti

p(Xi)
· (ĝ1�τ(Yi)− g1�τ(Yi))

∣∣∣∣∣
≤ 1
N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
·
(

1{Yi ≤ q1�τ} − τ
f1(q1�τ)

− 1{Yi ≤ q̂1�τ} − τ
f̂1(q̂1�τ)

)∣∣∣∣
≤ C · (f1(q1�τ) · f̂1(q̂1�τ))

−1 · |f̂1(q̂1�τ)− f1(q1�τ)|

×
(

1
N

N∑
i=1

∣∣∣∣ Ti

p(Xi)
· (1{Y i ≤ q1�τ} − τ)

∣∣∣∣
+ f1(q1�τ) · 1

N

N∑
i=1

|1{Yi ≤ q̂1�τ} − 1{Yi ≤ q1�τ}|
)

≤ C · (Op((Nh1)
−1)+O(h2

1)+ op(1)+Op(N−1/2)
)

× (Op(1)+Op(N−1/2))

=Op((Nh1)
−1)+O(h2

1)+ op(1)+Op(N−1/2)= op(1)�
Therefore,

C · sup
x∈X

‖HKτ(x)‖ · supx∈X (p(x))
infx∈X (p̂2(x))

×
∣∣∣∣∣ 1
N

N∑
i=1

Ti

p(Xi)
· (ĝ1�τ(Yi)− g1�τ(Yi))

∣∣∣∣∣
= C · sup

x∈X
‖HKτ(x)‖ · (Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
= sup

x∈X
‖HKτ(x)‖ · op(1)

and by analogy,

C · sup
x∈X

‖HKτ(x)‖ · 1 − infx∈X (p(x))
1 − supx∈X (p̂2(x))

×
∣∣∣∣∣ 1
N

N∑
i=1

(1 − Ti)
1 −p(Xi)

· (ĝ0�τ(Yi)− g0�τ(Yi))

∣∣∣∣∣
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= C · sup
x∈X

‖HKτ(x)‖ · (Op((Nh1)
−1)+O(h2

1)+ op(1)+Op(N−1/2)
)

= sup
x∈X

‖HKτ(x)‖ · op(1)�

so

‖(̂λτ − λ̃τ)‖
= C · sup

x∈X
‖HKτ(x)‖ · (Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
= sup

x∈X
‖HKτ(x)‖ · op(1)

and

C · ‖(̂λτ − λ̃τ)‖ · (‖̂λτ‖ + ‖̃λτ‖) · sup
x∈X

‖HKτ(x)‖2 ·Op(1)

= C · (‖̂λτ‖ + ‖̃λτ‖) · sup
x∈X

‖HKτ(x)‖3

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
≤ C · (‖(̂λτ − λ̃τ)‖ + 2‖̃λτ‖

) · sup
x∈X

‖HKτ(x)‖3

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
≤ C1 · ‖̃λτ‖ · sup

x∈X
‖HKτ(x)‖3

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
+C2 · sup

x∈X
‖HKτ(x)‖4

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)2
�

However,

‖̃λτ‖ =
∥∥∥∥∥
(

1
N

N∑
l=1

HKτ(Xl) ·HKτ(Xl)
′
)−1

×
(

1
N

N∑
i=1

HKτ(Xi) ·
(
Ti · g1�τ(Yi)

(p̂(Xi))2
+ (1 − Ti) · g0�τ(Yi)

(1 − p̂(Xi))2

))∥∥∥∥∥
≤ C1 · sup

x∈X
‖HKτ(x)‖ · supx∈X (p(x))

infx∈X (p̂2(x))
·
∣∣∣∣∣ 1
N

N∑
i=1

Ti

p(Xi)
· g1�τ(Yi)

∣∣∣∣∣
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+C2 · sup
x∈X

‖HKτ(x)‖ · 1 − infx∈X (p(x))
1 − supx∈X (p̂2(x))

×
∣∣∣∣∣ 1
N

N∑
i=1

(1 − Ti)
1 −p(Xi)

· g0�τ(Yi)

∣∣∣∣∣
≤ sup

x∈X
‖HKτ(x)‖

× (
C1 ·Op

(√
E

[
g2

1�τ(Y(1))
] ) +C2 ·Op

(√
E

[
g2

0�τ(Y(0))
] ))

≤ C · sup
x∈X

‖HKτ(x)‖ ·Op(1)

and then

VB ≤ C1 · sup
x∈X

‖HKτ(x)‖4

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
+C2 · sup

x∈X
‖HKτ(x)‖4

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)2

≤ C · sup
x∈X

‖HKτ(x)‖4

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
≤ C ·O(N4cτ ) · (Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
= O(N4cτ ) · (Op(N−4/5)+O(N−2/5)+ op(1)+Op(N−1/2)

)
= Op(N

4cτ−2/5)= op(1)

because cτ ∈ ( 1
4(sj�τ/r−1) �

1
10) and sj�τ ≥ 7r.

The last term to bound is

VC =
∣∣∣∣∣ 2
N

N∑
i=1

ϕ̂τ�i · α̂τ�i − ϕ̃τ�i · α̃τ�i
∣∣∣∣∣

≤ C1

∣∣∣∣∣ 1
N

N∑
i=1

ϕ̃τ�i · (̂ατ�i − α̃τ�i)
∣∣∣∣∣ +C2

∣∣∣∣∣ 1
N

N∑
i=1

(ϕ̂τ�i − ϕ̃τ�i) · α̂τ�i
∣∣∣∣∣�
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Focusing on the first part of that sum,∣∣∣∣∣ 1
N

N∑
i=1

ϕ̃τ�i · (̂ατ�i − α̃τ�i)
∣∣∣∣∣

=
∣∣∣∣∣ 1
N

N∑
i=1

(
Ti

p̂(Xi)
· g1�τ(Yi)− 1 − Ti

1 − p̂(Xi)
· g0�τ(Yi)

)

× (Ti − p̂(Xi)) ·HKτ(Xi)
′ · (̃λτ − λ̂τ)

∣∣∣∣∣
≤ sup

x∈X
‖HKτ(x)‖ · ‖̂λτ − λ̃τ‖ · 1 − infx∈X (p(x)) · supx∈X (p(x))

infx∈X (p̂(x))

×
∣∣∣∣∣ 1
N

N∑
i=1

Ti

p(Xi)
· g1�τ(Yi)

∣∣∣∣∣
+ sup

x∈X
‖HKτ(x)‖ · ‖̂λτ − λ̃τ‖ · 1 − infx∈X (p(x)) · supx∈X (p̂(x))

1 − supx∈X (p̂(x))

×
∣∣∣∣∣ 1
N

N∑
i=1

1 − Ti
1 −p(Xi)

· g0�τ(Yi)

∣∣∣∣∣
≤ C1 · sup

x∈X
‖HKτ(x)‖2

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

) ·Op(1)
+C2 · sup

x∈X
‖HKτ(x)‖2

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

) ·Op(1)
≤ C ·O(N2cτ ) · (Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
=O(N2cτ ) · (Op(N−4/5)+O(N−2/5)+ op(1)+Op(N−1/2)

)
=Op(N2cτ−2/5)= op(1)�

The second part is,∣∣∣∣∣ 1
N

N∑
i=1

(ϕ̂τ�i − ϕ̃τ�i) · α̂τ�i
∣∣∣∣∣

=
∣∣∣∣∣ 1
N

N∑
i=1

(
Ti

p̂(Xi)
· (ĝ1�τ(Yi)− g1�τ(Yi))
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− 1 − Ti
1 − p̂(Xi)

· (ĝ0�τ(Yi)− g0�τ(Yi))

)

× (Ti − p̂(Xi)) ·HKτ(Xi)
′ · λ̂τ

∣∣∣∣∣
≤ C1 · ‖̂λτ‖ · sup

x∈X
‖HKτ(x)‖ ·

∣∣∣∣∣ 1
N

N∑
i=1

Ti

p(Xi)
· (ĝ1�τ(Yi)− g1�τ(Yi))

∣∣∣∣∣
+C2 · ‖̂λτ‖ · sup

x∈X
‖HKτ(x)‖

×
∣∣∣∣∣ 1
N

N∑
i=1

1 − Ti
1 −p(Xi)

· (ĝ0�τ(Yi)− g0�τ(Yi))

∣∣∣∣∣
≤ C · (‖(̂λτ − λ̃τ)‖ + ‖̃λ‖)

× sup
x∈X

‖HKτ(x)‖ · (Op((Nh1)
−1)+O(h2

1)+ op(1)+Op(N−1/2)
)

≤ C · (op(1)+Op(1)) · sup
x∈X

‖HKτ(x)‖2

× (
Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

)
≤O(N2cτ ) · (Op((Nh1)

−1)+O(h2
1)+ op(1)+Op(N−1/2)

) = op(1)�

so, VC = op(1). This concludes the proof because

|V̂τ − Vτ| ≤ VA + VB + VC + op(1)= op(1)� Q.E.D.

PROOF OF THEOREM 3: This proof is an extension to the quantile case
of the proofs by Hahn (1998) and by HIR for the mean case. Both refer-
ences use the machinery presented by Bickel, Klaassen, Ritov, and Wellner
(1993) and Newey (1990, 1994). We start by defining the densities, with re-
spect to some σ-finite measure, of (Y(1)�Y(0)�T�X) and of the observed
data (Y�T�X). Under Assumption 1 both densities represent the same sta-
tistical model and are, therefore, equivalent. These densities can be written
as f (y(1)� y(0)� t� x)= f (y(1)� y(0)|x)p(x)t(1−p(x))1−tf (x) and f (y� t�x)=
[f1(y|x)p(x)]t[f0(y|x)(1 − p(x))]1−tf (x), where f1(y|x) = ∫

f (y� z|x)dz and
f0(y|x) = ∫

f (z� y|x)dz. Working with the density of observed data, consider
the regular parametric submodel indexed by θ, a finite dimensional vector:

f (y� t�x|θ)= [f1(y|x;θ)p(x|θ)]t
[
f0(y|x;θ)(1 −p(x|θ))]1−t

f (x|θ)�
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By a normalization argument, let f (y� t�x)= f (y� t�x|θ0). The score of a para-
metric submodel indexed by θ is given by

s(y� t� x|θ)= ts1(y|x;θ)+ (1 − t)s0(y|x;θ)
+ t −p(x|θ)
p(x|θ)(1 −p(x|θ))p

′(x|θ)+ sx(x|θ)�

where, for j = 0�1, sj(y|x;θ) = ∂
∂θ

log fj(y|x;θ); p′(x|θ) = ∂
∂θ
p(x|θ), and

sx(x|θ) = ∂
∂θ

log f (x|θ). Again we normalize: s(y� t� x) = s(y� t�x|θ0). To find
the efficient influence functions of the parameters of interest, ∆τ(θ) and
∆τ|T=1(θ), we need first to define the tangent space of this statistical model.
This will be the set S of all possible score functions and it is defined as

S = {
S : R × {0�1} ×X → R|
S(y� t�x)= ts1(y|x)+ (1 − t)s0(y|x)+ a(x)(t −p(x))+ sx(x);
and E[sj(Y |X)|X = x�T = j] =E[sx(X)] = 0�

∀x and j = 0�1
}
�

where a(x) is some square-integrable measurable function of x. Next we show
that both ∆τ(θ) and ∆τ|T=1(θ) are pathwise differentiable, that is, we show that
for each one the derivative with respect to θ evaluated at θ0 is equal to the
expectation of the product of the score s(Y�T�X) and the respective efficient
influence functions ψτ(Y�T�X) and ψτ|T=1(Y�T�X), to be defined. After we
show pathwise differentiability, we find the projection of the influence function
on the set of scores. That projection is often called the efficient influence func-
tion. If an influence function belongs to the set S , then its projection onto S is
the original influence function itself. Therefore, the goal is to find an influence
function that already belongs to the set of scores. A function that is in the set
of scores must be written as

ψ= Tc1(Y�X)+ (1 − T)c0(Y�X)+ a(X)(T −p(X))+ cx(X)�
where E[cj(Y�X)|X = x�T = j] = E[cx(X)] = 0 ∀x and j = 0�1. Starting with
q1�τ, the first part of the parameter is ∆τ. For the parametric submodel indexed
by θ, we have, for all θ, 0 = ∫∫

(1{y ≤ q1�τ(θ)}−τ)f1(y|x;θ)f (x|θ)dy dx. Thus,
using the normalization q1�τ = q1�τ(θ0) and by an application of Leibnitz’s rule,
we have

∂q1�τ(θ0)

∂θ
=

∫ ∫
g1�τ(y)s1(y|x)f1(y|x)f (x)dy dx

+
∫ ∫

g1�τ(y)sx(x)f1(y|x)f (x)dy dx�
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where the function gj�τ, j = 0�1� was defined in Equation (8). After similar
calculations for q0�τ, we can express the derivative of ∆τ(θ) evaluated at θ0 as

∂∆τ(θ0)

∂θ
=

∫ ∫
g1�τ(y)s1(y|x)f1(y|x)f (x)dy dx(A-13)

−
∫ ∫

g0�τ(y)s0(y|x)f0(y|x)f (x)dy dx

+
∫ ∫

g1�τ(y)sx(x)f1(y|x)f (x)dy dx

−
∫ ∫

g0�τ(y)sx(x)f0(y|x)f (x)dy dx�

The next goal is to find a function of (Y�T�X) such that the expectation of the
product of that function times the score is equal to Equation (A-13). A solution
to this problem is

ψτ(Y�T�X)= T(g1�τ(Y)−E[g1�τ(Y)|X�T = 1])
p(X)

− (1 − T)(g0�τ(Y)−E[g0�τ(Y)|X�T = 0])
1 −p(X)

+E[g1�τ(Y)|X�T = 1] −E[g0�τ(Y)|X�T = 0]�
Note, however, that by inspection this influence function belongs to the set
of scores. Hence, ψτ is the efficient influence function and because of that
its variance is equal to E[ψ2

τ(Y�T�X)], which is the semiparametric efficiency
bound for ∆τ, Vτ.

Now we do the same for ∆τ|T=1. For a parametric submodel indexed by θ, we
have

0 =
∫ ∫

p(x|θ)∫
p(x|θ)f (x|θ)dx

× (
1{y ≤ q1�τ|T=1(θ)} − τ)f1(y|x;θ)f (x|θ)dy dx�

Again we normalize: q1�τ|T=1 = q1�τ|T=1(θ0). The derivative evaluated at θ0 is
equal to

∂q1�τ|T=1(θ0)

∂θ
=

∫ ∫
g1�τ|T=1(y)p(x)s1(y|x)f1(y|x)f (x)dy dx

+
∫
E[g1�τ|T=1(Y)|X = x]p′(x)f (x)dx

+
∫
E[g1�τ|T=1(Y)|X = x]p(x)sx(x)f (x)dx�
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where the function g1�τ|T=1(j), j = 0�1, was defined by Equation (10). Whereas
the same sorts of calculations are true for q0�τ|T=1, we can express the derivative
of ∆τ|T=1(θ) evaluated at θ0 as

∂∆τ|T=1(θ0)

∂θ
=

∫ ∫
g1�τ|T=1(y)p(x)s1(y|x)f1(y|x)f (x)dy dx

−
∫ ∫

g0�τ|T=1(y)p(x)s0(y|x)f0(y|x)f (x)dy dx

+
∫
E[g1�τ|T=1(Y)|X = x]p′(x)f (x)dx

−
∫
E[g0�τ|T=1(Y)|X = x]p′(x)f (x)dx

+
∫
E[g1�τ|T=1(Y)|X = x]p(x)sx(x)f (x)dx

−
∫
E[g0�τ|T=1(Y)|X = x]p(x)sx(x)f (x)dx�

The efficient influence function for this case is equal to

ψτ|T=1(Y�T�X)

= T(g1�τ|T=1(Y)−E[g1�τ|T=1(Y)|X�T = 1])
p

− (1 − T)p(X)(g0�τ|T=1(Y)−E[g0�τ|T=1(Y)|X�T = 0])
p(1 −p(X))

+ T −p(X)
p

× (
E[g1�τ|T=1(Y)|X�T = 1] −E[g0�τ|T=1(Y)|X�T = 0])

+ p(X)

p

(
E[g1�τ|T=1(Y)|X�T = 1] −E[g0�τ|T=1(Y)|X�T = 0])�

Whereas this influence function is in the set of scores, its expected value is zero
and its variance is equal to E[ψ2

τ|T=1
(Y�T�X)], which is the semiparametric

efficiency bound for ∆τ|T=1, Vτ|T=1 . Q.E.D.
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