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1. INTRODUCTION

IN THIS SUPPLEMENT we provide some details on the implementation of the
methods developed in the paper. In addition, we apply the different difference-
in-differences (DID) approaches using the data analyzed by Meyer, Viscusi,
and Durbin (1995). These authors used DID methods to analyze the effects of
an increase in disability benefits in the state of Kentucky, where the increase
applied to high-earning but not low-earning workers. Next we do a small sim-
ulation study. Finally, we provide some additional proofs.

2. DETAILS FOR IMPLEMENTATION OF ESTIMATORS

In this section we discuss the implementation of the estimators in more de-
tail. This is useful in particular in cases where the support conditions are not
satisfied in the sample. Even if these support conditions (e.g., Y10 ⊂ Y00) are
satisfied in the population, in finite samples it may well be that there are values
y such that Y10�i = y even though there are no observations with Y00�j = y . This
implies that some of the representations that are equivalent in the population
may differ in the finite sample. Here we describe the precise implementation
we use in the application and simulations, and in the software that is available
on our website.

In all cases (continuous or discrete methods), let Ŷgt denote the full set of
values observed in the subsample with (Gi�Ti)= (g� t) and let Ŷ = ⋃

g�t Ŷgt be
the union of these. In a finite sample, these are all finite sets. For each (g� t),
let y

gt
and �ygt denote the minimum and maximum of the corresponding Ŷgt ;

similarly, let y and �y denote the minimum and maximum of Ŷ. Let L be the
cardinality of the set Ŷ and let λ1� � � � � λL be the ordered points of support.
The data can then be coded as four L vectors πgt , where πgt�l = ∑N

i=1 1{Ygt�i =
λl}/Ngt is the proportion of the sample at support point λl. As an estimator of
the inverse distribution function, we now use

F̂−1
Y�gt(q) = min{y ∈ Ŷgt : F̂Y�gt(y)≥ q}�

so that F̂−1
Y�gt(0)= min(Ŷgt).

In addition, let Ŷ
∗ = Ŷ ∪ {−∞} and let

F̂ (−1)
Y�gt (q) = max{y ∈ Ŷ

∗ : F̂Y�gt(y)≤ q}�
with FY�gt(−∞)= 0.

1
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2.1. The Continuous Model

For the continuous changes-in-changes (CIC) model, we estimate the cumu-
lative distribution function for YN

11 as

F̂YN
11
(y)=




0� if y < y
01

,

F̂Y�10

(
F̂−1
Y�00(F̂Y�01(y))

)
� if y

01
≤ y <�y01,

1� if �y01 ≤ y,

using the representation from Theorem 3.1. This is a proper cumulative distrib-
ution function for a discrete random variable with points of support contained
in Ŷ01. We use this distribution function to construct estimates of the mean
of YN

11 . Finally, these are subtracted from the mean of Y11 to get an estimate of
the average effect of the intervention.

To calculate the standard errors, we do the following. First we estimate
fY�01(y) using kernel estimation with an Epanechnikov kernel k(a) = 1{|a| <√

5 } · (1 − a2/5) · 3/(4 · √5 ), so that

f̂Y�01(y)= 1
h ·N01

N01∑
i=1

k

(
Y01�i − y

h

)
�

The bandwith is choosen using Silverman’s rule of thumb h = 1�06 ·SY01 ·N−1/5
01 ,

where SY01 =
√∑N01

i=1(Y01�i − Ȳ01)
2 is the sample standard deviation of Y01.

Next we estimate P(y� z), p(y), Q(y� z), q(y), r(y), and s(y) using (37)–(40):

P̂(y� z)= 1

f̂Y�01(F̂
−1
Y�01(F̂Y�00(z)))

· (1{y ≤ z} − F̂Y�00(z)
)
�

p̂(y)= 1
N10

N10∑
i=1

P̂(y�Y10�i)�

Q̂(y� z)= − 1

f̂Y�01(F̂
−1
Y�01(F̂Y�00(z)))

× (
1{F̂Y�01(y)≤ F̂Y�00(z)} − F̂Y�00(z)

)
�

q̂(y)= 1
N10

N10∑
i=1

Q̂(y�Y10�i)�

r̂(y)= F̂−1
Y�01(F̂Y�00(y))− 1

N10

N10∑
i=1

F̂−1
Y�01(F̂Y�00(Y10�i))�
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ŝ(y)= y − 1
N11

N11∑
i=1

Y11�i�

Finally, we estimate the asymptotic variance of
√
N(τ̂CIC − τCIC) as

1
N00

N00∑
i=1

p̂(Y00�i)
2

α̂00
+ 1

N01

N01∑
i=1

q̂(Y01�i)
2

α̂01

+ 1
N10

N10∑
i=1

r̂(Y10�i)
2

α̂10
+ 1

N11

N11∑
i=1

ŝ(Y11�i)
2

α̂11
�

where α̂gt =Ngt/N .
For the bootstrap standard errors, we bootstrap the sample conditional on

Ngt for g� t = 0�1. In the simulations and the application, we use B = 1�000
bootstrap draws. Given the B bootstrap draws, we calculate the difference be-
tween the 0.975 and 0.025 quantiles, and divided that by 2×1�96 to get standard
error estimates.

2.2. Bounds for the Discrete Model

For the discrete case, we estimate the lower and upper bound on the cumu-
lative distribution function using the representation in Theorem 4.1:

F̂LB
YN

11
(y)=




0� if y < y
01

,

F̂Y�10

(
F̂ (−1)
Y�00 (F̂Y�01(y))

)
� if y

01
≤ y <�y01,

1� if �y01 ≤ y,

F̂UB
YN

11
(y)=




0� if y < y
01

,

F̂Y�10

(
F̂−1
Y�00(F̂Y�01(y))

)
� if y

01
≤ y <�y01,

1� if �y01 ≤ y.

For the analytic standard errors, we use the representation in (43) and (44),
leading to the estimators for the normalized variance of

√
N(τ̂LB − τLB) and√

N(τ̂UB − τUB),

1
N10

N10∑
i=1

(�̂k(Y10�i)−�̂�k(Y10)
)2 + 1

N11

N11∑
i=1

ŝ(Y11�i)
2

α̂11

and

1
N10

N10∑
i=1

(
k̂(Y10�i)−�̂

k(Y10)
)2 + 1

N11

N11∑
i=1

ŝ(Y11�i)
2

α̂11
�
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respectively, where

�̂�k(Y10) = 1
N10

N10∑
i=1

�̂k(Y10�i) and �̂
k(Y10)= 1

N10

N10∑
i=1

k̂(Y10�i)�

The bootstrap variances are calculated similarly to the description for the con-
tinuous CIC estimator.

2.3. The Discrete Model with Conditional Independence

For the discrete case with conditional independence, we estimate the lower
and upper bound on the cumulative distribution function using the represen-
tation in Theorem 4.2,

F̂DCIC
YN�11(y) = F̂LB

YN
11
(y)+ (

F̂UB
YN

11
(y)− F̂LB

YN
11
(y)

)

× F̂Y�01(y)− F̂Y�00(F̂
(−1)
Y�00 (F̂Y�01(y)))

F̂Y�00(F̂
−1
Y�00(F̂Y�01(y)))− F̂Y�00(F̂

(−1)
Y�00 (F̂Y�01(y)))

�

if F̂Y�00(F̂
−1
Y�00(F̂Y�01(y))) − F̂Y�00(F̂

(−1)
Y�00 (F̂Y�01(y))) > 0; otherwise, F̂DCIC

YN�11(y) =
F̂LB
YN

11
(y).

In this case, the estimator is a continuous function of the π̂gt , which we can
write as τ̂DCIC = g(π̂). However, although the function is continuous, it is not
continuously differentiable everywhere. In such cases, both the derivative from
the left and the derivative from the right exist. To calculate standard errors,
we first estimate the variance–covariance matrix of the 4(L − 1) vector π̂ =
(π̂ ′

00� π̂
′
01� π̂

′
10� π̂

′
11)

′ (dropping the last element of each vector πgt because it is
a linear combination of the others). We denote this covariance matrix by Σπ ,
with estimated value Σ̂π . This covariance matrix is block diagonal with four
nonzero (L− 1)× (L− 1) blocks on the diagonal, one corresponding to each
π̂gt . The (L− 1)× (L− 1) block that corresponds to π̂gt has (j�k)th element
equal to (−π̂gt�j · π̂gt�k + 1{j = k} · π̂gt�j)/Ngt . Second, so as to apply the delta
method, we numerically calculate the right-derivative of the estimated average
effect with respect to the nonzero elements of π. We stack these derivatives,
combined with zeros for the derivatives with respect to the elements of π that
are equal to zero, into a 4(L−1) vector τ̂π . Then we estimate the variance of π̂
as

V̂ (τ̂DCI)= τ̂′
πΣ̂πτ̂π�(S.1)

The bootstrap standard errors are calculated as before.
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3. AN APPLICATION TO THE MEYER–VISCUSI–DURBIN
INJURY-DURATION DATA

In this section, we apply the different DID approaches using the data ana-
lyzed by Meyer, Viscusi, and Durbin (1995). These authors used DID methods
to analyze the effects of an increase in disability benefits in the state of Ken-
tucky, where the increase applied to high-earning but not low-earning workers.
The outcome variable is the number of weeks a worker spent on disability. This
variable is measured in whole weeks, with the exception of values of 0 weeks,
which are recoded to 0.25 weeks. The distribution of injury durations is highly
skewed, with a mean of 8.9, a median of 3, a minimum of 0.25, and a maxi-
mum of 182 weeks. In Table S.I we present summary statistics. Meyer, Viscusi,
and Durbin (1995) noted that their results were quite sensitive to the choice of
specification; they found that the treatment led to a significant reduction in the
length of spells when the outcome was the natural logarithm of the number of
weeks, but not when the outcome was the number of weeks.

To interpret the assumptions required for the CIC model, first we normalize
h(u�0) = u. Then we interpret u as the number of weeks an individual would
desire to stay on disability if the individual faced the period 0 regulatory en-
vironment, taking into account the individual’s wages, severity of injury, and
opportunity cost of time. The distribution of U |G = g should differ across the
different earnings groups. The CIC model then requires two substantive as-
sumptions. First, the distribution of U should stay the same over time within
a group, which is plausible unless changes in disability programs lead to rapid
adjustments in employment decisions. Second, the untreated “outcome func-
tion” h(u�1) is monotone in u and is the same for both groups, ruling out, e.g.,
changes over time in the relationship between wages and the severity of injury
in determining the desire for disability benefits.

In Tables S.II and S.III we present the results for the effect of the change
in benefits on injury durations. The results for the effect on the treated are in
Table S.II; the results for the effect on the control group are in Table S.III. We
present the results for five estimators: (i) the DID-level model, (ii) the DID-log

TABLE S.I

SUMMARY STATISTICS

Weeks
Mean (s.d.)

Log(Weeks)
Mean (s.d.)

Percentile

Group 25th 50th 75th 90th

Control
first period (N = 1,703) 6�27 (12�43) 1.13 (1.22) 1.00 3.00 7.00 12.00
second period (N = 1,527) 7�04 (16�12) 1.13 (1.27) 1.00 3.00 7.00 14.00

Treatment
first period (N = 1,233) 11�18 (28�99) 1.38 (1.30) 2.00 4.00 8.00 17.00
second period (N = 1,161) 12�89 (28�25) 1.58 (1.30) 2.00 5.00 10.00 23.00
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model, (iii) the discrete CIC model with conditional independence (ci), (iv) the
discrete CIC model lower bound, and (v) the discrete CIC model upper bound.
We present six statistics for each estimator and their standard errors based on
1�000 bootstrap replications. The first two statistics are (i) the average effect
on weeks and (ii) the average effect on log weeks.1 The next four statistics
are the difference in quantiles of the distribution of outcomes for the second-
period treatment group and the counterfactual distribution at the four quan-
tiles (iii) 0.25, (iv) 0.50, (v) 0.75, and (vi) 0.90.

Because of the extreme skewness of the distribution of outcomes, we fo-
cus on the results for the mean of the logarithm of the number of weeks
and on quantiles. First, for the DID-log model, the prediction of the effect
of the treatment on the treated is E[ln(Y I

11)] − E[ln(YN
11)] = 0�191. Note that

the CIC-discrete and DID-log estimates are comparable, including their preci-
sion.2 For the 25th percentile, the DID-level model yields an estimate of −0�77,
while the CIC-discrete model yields a lower bound of 0. Despite the fact that
the DID-level parameter is not precisely estimated, the large and negative
point estimate highlights the fact that the choice of model can matter for pre-
dictions.

Second, let us compare the effects for the treated and the controls. Under
the DID-level model, the effect on levels is restricted to be the same for the
treated and the controls. For the DID-log model, the effect on the average
logarithm is restricted to be the same. For both groups it is equal to 0.191.
The CIC models allow for an unrestricted difference between the effect of
the treatment on the treated and the control groups; using the CIC-discrete
model with the conditional independence assumption, the difference is 0�183−
0�211 = −0�0273 with a standard error of 0.0114, so that the difference (while
small) is significant at the 95% level.

Finally, consider the bounds on the CIC-discrete estimates. Imbens and
Manski (2004) show how to construct confidence intervals for the average
treatment effect in cases where only bounds are identified. Their approach
leads to a 95% confidence interval for the average treatment effect on the

1There is one exception. The average on log weeks is not reported for the standard DID model
in levels. The reason is that for the estimator to be well defined, one would have to restrict the
effect on levels to be greater than −0�25. If it is less than or equal to 0.25, the predicted outcome
for individuals in the first-period treatment group who currently have a duration of 0.25 would be
negative and we could not take logarithms. Recall that for the DID-level model, we estimate the
counterfactual distribution as YN

11 ∼ k̂DID(Y10), where k̂DID(y) = y + �Y01 − �Y00. Rather than use
an ad hoc modification, we do not report estimates for the effect on log durations under the DID
model in levels.

2Recall that all standard errors are computed using bootstrapping, so they are comparable.
However, note that the asymptotic distributions of the quantile estimates from discrete distribu-
tions are not normal, and bootstrapping is not necessarily formally justified.
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treated group of [−0�06�0�83].3,4 Observe that the upper bound of the estimate
for the treatment effect is positive and significantly different from zero, with an
estimate of 0.584 and a standard error of 0.15. This is the estimate that would
be obtained if we ignored the fact that the outcome is discrete and estimated
the average treatment effect directly from (9). On the other hand, if we con-
tinued to ignore discreteness and instead estimate the average treatment effect
using (36) (an approach that is equivalent if the data are continuous), we would
obtain the lower bound, which is not significantly different from zero. Thus,
dealing directly with discreteness of the data can be important, even when the
outcome takes on a substantial number of values.

4. A SMALL SIMULATION STUDY

In this section we investigate the finite sample properties of the various es-
timators and methods for inference by simulation. Our conclusions from these
simulation experiments are that (i) with continuous data and when the relevant
assumptions are satisfied, the asymptotic distributions can approximate the fi-
nite sample distributions well, (ii) with discrete data, even if the assumption of
no ties in the distribution is formally satisfied, analytic standard errors can be
misleading and bootstrap standard errors are more likely to lead to confidence
intervals with good coverage rates, and (iii) with discrete data, the continuous
estimator as given in (9) can be severely downward biased. More simulations
would be useful for further understanding of the finite sample properties of
these procedures.

We create three sets of artificial data. In the first (the “continuous” data),
the outcome is continuous on the interval [0�1]. The four densities are
(i) fY�00(y) = 1�75 − 1�50 × y , (ii) fY�01(y) = 0�75 + 0�50 × y , (iii) fY�10(y) =
0�80 + 0�40 × y , and (iv) fY�11(y) = 0�50 + 1�00 × y . The four subsample
sizes N00, N01, N10, and N11 are all equal to 100 (so the total sample size
is 400). For the second set of artificial data (the “discrete” data), we round
the continuous outcomes up to the next 0.1, leading to a range of values
{0�1�0�2�0�3�0�4�0�5�0�6�0�7�0�8�0�9�1�0}. For the third set of artificial data
(the “binary” data), we round up the continuous outcomes to the next mul-
tiple of 0.5. In each case we simulate 10,000 data sets, apply the four estima-
tors (continuous CIC discrete CIC with conditional independence (ci), discrete

3This is essentially calculated as the lower bound minus 1.645 times its standard error and the
upper bound plus 1.645 times its standard error. Note the use of 1.645 rather than 1.96 for a 95%
confidence interval. See Imbens and Manski (2004) for more details and Chernozhukov, Hong,
and Tamer (2004) for alternative approaches for confidence intervals in the presence of partially
identified parameters.

4We could potentially narrow the bounds substantially by incorporating covariates, following
the approach suggested in Section 4.3, although the corresponding independence assumption
might be difficult to justify for many observed covariates about workers. For this reason, we leave
this exercise for future work.
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TABLE S.IV

SUMMARY STATISTICS

Coverage Rate
Bias 95% Confidence Interval

Data Mean Median RMSE MAE Analytic Bootstrap

Continuous
Continuous model 0.002 0.001 0.052 0.035 0.957 0.946
Discrete model with ci 0.003 0.001 0.052 0.035 0.852 0.946
Discrete model lower bound 0.003 0.001 0.052 0.035 0.852 0.946
Discrete model upper bound 0.002 0.001 0.052 0.035 0.853 0.946

Discrete (10 values)
Continuous model 0.048 0.048 0.072 0.051 0.864 0.856
Discrete model with ci 0.007 0.006 0.051 0.034 0.944 0.943
Discrete model lower bound 0.009 0.008 0.050 0.033 0.845 0.944
Discrete model upper bound 0.009 0.009 0.054 0.036 0.853 0.944

Binary
Continuous model 0.147 0.148 0.151 0.148 0.005 0.046
Discrete model with ci 0.066 0.066 0.075 0.066 0.527 0.531
Discrete model lower bound 0.000 0.001 0.024 0.017 0.948 0.950
Discrete model upper bound 0.001 0.001 0.035 0.024 0.947 0.951

CIC lower bound, and discrete CIC upper bound) for the average effect on the
treated, and calculate analytic and bootstrap standard errors (with the boot-
strap standard errors again based on 1,000 bootstrap replications). The ana-
lytic standard errors are based on Theorem 5.4 for the discrete models and on
Theorem 5.1 for the continuous models.

In Table S.IV we report results for six summary statistics: (i) the average bias
(τ̂CIC − τCIC, τ̂DCIC − τDCIC, τ̂LB − τLB, or τ̂UB − τUB as appropriate), (ii) the
median bias, (iii) root-mean-squared error (RMSE), (iv) median absolute er-
ror (MAE), (v) 95% coverage rates based on analytic standard errors, and
(vi) 95% confidence intervals based on bootstrap standard errors.5 First con-
sider the results for the continuous data. The four point estimates are all very
similar, irrespective of whether we use the continuous model, the discrete
model with conditional independence, or the lower or upper bound. All four
have very little bias. The coverage rates for the continuous models are close to
the nominal values, both based on analytic and based on bootstrap standard

5For the continuous data, all four estimators estimate the same object, the true average treat-
ment effect that corresponds to the continuous data generating process used. This is equal
to −0�1093. For the discrete and binary data, we compare the continuous and discrete estimator
under conditional independence to this true value as well. In these two cases (discrete and binary
data), we compare the bounds to their population values. For the discrete data, the bounds are
−0�1593 and −0�0705; for the binary data, the bounds are −0�1875 and 0�0375. The coverage
rates reported in the tables refer to the rate at which the corresponding intervals cover these
values.
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errors. For the other three models, the bootstrap standard errors are still very
accurate, but the analytic standard errors lead to confidence intervals with con-
siderable undercoverage. This undercoverage is to be expected, because the
analytic standard errors for the discrete estimator rely on having many obser-
vations for each realization of the outcome, an assumption that does not hold
when the data are continuous.

Next, consider the case with discrete data. The continuous estimator is
severely biased in this case, as expected given that (36) yields the lower bound
of the average treatment effect. Although the conditional independence as-
sumption is not formally satisfied, it is close enough to being satisfied for the
discrete CIC estimator with conditional independence to perform very well.
This is true both in terms of bias and in terms of the coverage rate of confi-
dence intervals based on analytic standard errors. The lower and upper bound
estimators also do well in terms of bias, but not as well in terms of coverage
rates for analytic confidence intervals. Although the assumption concerning
no ties in the distribution functions (Assumption 5.2) is formally satisfied, the
sample sizes are sufficiently small that the data cannot rule out such ties, as
demonstrated by the lack of coverage for the confidence intervals based on the
analytic standard errors for the bounds estimators. The bootstrap confidence
intervals perform much better.

Finally, consider the binary data. Here neither the continuous CIC model
nor the discrete CIC model with conditional independence performs very well.
Assumption 5.3 is now satisfied both formally and in terms of the data being
able to reject ties, and the estimators for the bounds perform well in terms of
bias and in terms of coverage rates for confidence intervals based on analytic
standard errors.

5. CONCLUSION

The application presented in the paper show that the approach used to es-
timate the effects of a policy change can lead to results that differ from one
another in magnitude, significance, and even in sign. Thus, the restrictive as-
sumptions required for standard DID methods can have significant policy im-
plications. Even when one applies the more general classes of models proposed
in this paper, however, it will be important to justify such assumptions carefully.

The simulations demonstrate that it can be important to take into account
the discrete nature of the data, even when there are a substantial number of
values that the outcomes can take on. They also show that the methods for
dealing with discrete data can be effective in obtaining credible inferences.

6. ADDITIONAL PROOFS

Recall the abbreviations TI for triangle inequality and MVT for mean value
theorem.
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PROOF OF LEMMA A.1: First consider (i). Define Y(u) = {y ∈ Y |g(y) ≥
u}. Because g(y) is continuous from the right, Y(u) is a closed set. Hence
g−1(u) = inf{y ∈ Y(u)} ∈ Y(u) and thus g(g−1(u)) ≥ u.

Second, consider (ii). By the definition in the proof for (i), Y(g(y)) = {y ′ ∈
Y |g(y ′) ≥ g(y)}. By this definition, y ∈ Y(g(y)). Hence g−1(g(y)) = inf{y ∈
Y(g(y))} ≤ y .

Next, consider (iii). By (ii), g−1(g(y)) ≤ y . Because g(·) is nondecreasing, it
follows that g(g−1(g(y))) ≤ g(y). Also, g(g−1(u)) ≥ u so g(g−1(g(y))) ≥ g(y).
Hence it must be that g(g−1(g(y)))= g(y).

Next, consider (iv). First, g−1(g(y))≤ y for all y , and thus g−1(g(g−1(u))))≤
g(g−1(u)). Second, g(g−1(u)) ≥ u and thus g−1(g(g−1(u))) ≥ g−1(u). Hence it
follows that g−1(g(g−1(u)))= g−1(u).

Finally, consider (v). First we show that u≤ g(y) implies g−1(u) ≤ y:

u≤ g(y) ⇒ g−1(u) ≤ g−1(g(y))

⇒ g(g−1(u))≤ g
(
g−1(g(y))

) = g(y)�

Because u≤ g(y), it follows that y ∈ Y(u) and thus g−1(u) ≤ y .
Next we show that g−1(u) ≤ y implies u≤ g(y):

g−1(u) ≤ y ⇒ g(g−1(u)) ≤ g(y)�

By (i), u≤ g(g−1(u)) so that

u≤ g(g−1(u))≤ g(y)�

which finishes the proof. Q.E.D.

PROOF OF LEMMA A.5: The ω(aN) in Lemma A.4 is op(a
−1/2
N ). Hence if we

take aN =N−δ, it follows that for uniform U ,

sup
0≤u�u+v≤1�0≤v≤N−δ

N1/2 · ∣∣F̂U(u+ v)− F̂U(u)− (FU(u+ v)− FU(u))
∣∣

= op(N
−δ/2)�

Now let Yi = F−1
Y (Ui) and F̂Y (y) = ∑

i 1{Yi ≤ y}/N . Then F̂Y (y) = F̂U(FY (y))

and F̂Y (y + x)= F̂U(FY (y + x)). Hence,

sup
y�x+y∈Y�0≤x≤N−δ

N1/2 · ∣∣F̂Y (y + x)− F̂Y (y)− (FY(y + x)− FY(y))
∣∣

= sup
y�x+y∈Y�0≤x≤N−δ

N1/2 · ∣∣F̂U(FY (y + x))− F̂U(FY (y))

− (
FU(FY(y + x))− FU(FY(y))

)∣∣�
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Transforming (y�x) to (u� v), where u = FY(y) and v = FY(y + x)− FY(y), so
that 0 ≤ x≤N−δ implies 0 ≤ v ≤N−δ �fY , this can be bounded from above by

sup
u�u+v∈[0�1]�0≤v≤N−δ �fY

N1/2 · ∣∣F̂U(u+ v)− F̂U(u)− (FU(u+ v)− FU(u))
∣∣

= op(N
−δ/2)�

Thus,

sup
y�y+x∈Y�x≤N−δ

Nη
∣∣F̂Y (y + x)− F̂Y (y)− (FY(y + x)− FY(y))

∣∣
= op(N

η−1/2−δ/2)= op(1)�

because δ > 2η− 1. Q.E.D.

PROOF OF LEMMA A.6: By the TI,

sup
q

Nη ·
∣∣∣∣F̂−1

Y (q)− F−1
Y (q)+ 1

fY (F
−1
Y (q))

(
F̂Y (F

−1
Y (q))− q

)∣∣∣∣(S.2)

≤ sup
q

Nη ·
∣∣∣∣F̂−1

Y (q)− F−1
Y

(
F̂Y (F̂

−1
Y (q))

)
(S.3)

+ 1

fY (F̂
−1
Y (q))

(
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣∣∣
+ sup

q

Nη ·
∣∣∣∣ 1
fY (F

−1
Y (q))

(
F̂Y (F

−1
Y (q))− q

)
(S.4)

− 1

fY (F̂
−1
Y (q))

(
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣∣∣
+ sup

q

Nη · ∣∣F−1
Y

(
F̂Y (F̂

−1
Y (q))

) − F−1
Y (q)

∣∣�(S.5)

First, consider (S.3). Whereas F̂−1
Y (q) ∈ Y ,

sup
q

Nη ·
∣∣∣∣F̂−1

Y (q)− F−1
Y

(
F̂Y (F̂

−1
Y (q))

)

+ 1

fY (F̂
−1
Y (q))

(
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣∣∣
≤ sup

y

Nη ·
∣∣∣∣y − F−1

Y (F̂Y (y))+ 1
fY (y)

(F̂Y (y)− FY(y))

∣∣∣∣�
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Expanding F−1
Y (F̂Y (y)) around FY(y) we have, for some ỹ in the support of Y ,

F−1
Y (F̂Y (y)) = y + 1

fY (F
−1
Y (FY(y)))

(F̂Y (y)− FY(y))

− 1
2fY (ỹ)3

∂fY

∂y
(ỹ)(F̂Y (y)− FY(y))

2�

By Lemma A.2, we have that, for all δ < 1/2, Nδ · supy |F̂Y (y)−FY(y)| −→p 0.
Hence for η< 1, we have Nη · supy |F̂Y (y)−FY(y)|2 −→p 0. This, in combina-
tion with the fact that both the derivative of density is bounded and the density
is bounded away from zero, gives us

sup
y

Nη ·
∣∣∣∣F−1

Y (F̂Y (y))− y − 1
fY (y)

(F̂Y (y)− FY(y))

∣∣∣∣
≤ sup

y�ỹ

Nη ·
∣∣∣∣ 1
fY (ỹ)3

∂fY

∂y
(ỹ)(F̂Y (y)− Fy(y))

2

∣∣∣∣ p−→ 0�

which proves that (S.3) converges to zero in probability.
Second, consider (S.4). By the TI,

sup
q

Nη ·
∣∣∣∣ 1
fY (F

−1
Y (q))

(
F̂Y (F

−1
Y (q))− q

)

− 1

fY (F̂
−1
Y (q))

(
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣∣∣
≤ sup

q

Nη ·
∣∣∣∣ 1
fY (F

−1
Y (q))

(
F̂Y (F

−1
Y (q))− q

)

− 1

fY (F̂
−1
Y (q))

(
F̂Y (F

−1
Y (q))− q

)∣∣∣∣
+ sup

q

Nη ·
∣∣∣∣ 1

fY (F̂
−1
Y (q))

(
F̂Y (F

−1
Y (q))− q

)

− 1

fY (F̂
−1
Y (q))

(
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣∣∣
≤ sup

q

Nη/2 ·
∣∣∣∣ 1
fY (F

−1
Y (q))

− 1

fY (F̂
−1
Y (q))

∣∣∣∣(S.6)

× sup
q

Nη/2 · ∣∣(F̂Y (F
−1
Y (q))− q

)∣∣
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+ 1
f

sup
q

Nη · ∣∣(F̂Y (F
−1
Y (q))− q

) − (
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣�(S.7)

Because supy N
η/2|F̂−1

Y (q) − F−1
Y (q)| converges to zero by Lemma A.3 and

because fY (y) is continuously differentiable and bounded away from zero,
it follows that supy N

η/2|1/fY (F̂−1
Y (q)) − 1/fY (F−1

Y (q))| converges to zero.
Also, supq∈[0�1] N

η/2|F̂Y (F
−1
Y (q)) − q| = supy∈Y

Nη/2|F̂Y (y) − FY(y)| and, by
Lemma A.2, this converges to zero. Hence (S.6) converges to zero.

Next, consider (S.7). By the TI,

sup
q

Nη · ∣∣(F̂Y (F
−1
Y (q))− q

) − (
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣
≤ sup

q

Nη · ∣∣F̂Y (F
−1
Y (q))− F̂Y

(
F−1
Y

(
F̂Y (F̂

−1
Y (q))

))∣∣(S.8)

+ sup
q

Nη · ∣∣F̂Y (F̂
−1
Y (q))− q

∣∣(S.9)

+ sup
q

Nη · ∣∣(F̂Y

(
F−1
Y

(
F̂Y (F̂

−1
Y (q))

)) − F̂Y (F̂
−1
Y (q))

)
(S.10)

− (
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣�
For (S.8),

sup
q

Nη · ∣∣F̂Y (F
−1
Y (q))− F̂Y

(
F−1
Y

(
F̂Y (F̂

−1
Y (q))

))∣∣
≤ sup

q

Nη · ∣∣F̂Y (F
−1
Y (q))− F̂Y (F

−1
Y (q+ 1/N))

∣∣
≤ sup

q

Nη · ∣∣F̂Y (F
−1
Y (q))− F̂Y (F

−1
Y (q)+ 1/(fN))

∣∣
≤ sup

q

Nη · ∣∣F̂Y (F
−1
Y (q))− F̂Y (F

−1
Y (q)+ 1/(fN))

− (
FY(F

−1
Y (q))− FY(F

−1
Y (q)+ 1/(fN))

)∣∣
+ sup

q

Nη · ∣∣FY(F
−1
Y (q))− FY(F

−1
Y (q)+ 1/(fN))

∣∣
≤ sup

y

Nη · ∣∣F̂Y (y)− F̂Y (y + 1/(fN))(S.11)

− (
FY(y)− FY(y + 1/(fN))

)∣∣
+ sup

q

Nη · ∣∣FY(y)− FY(y + 1/(fN))
∣∣�(S.12)
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Inequality (S.11) converges to zero by Lemma A.5. Inequality (S.12) converges
to zero because |FY(y) − FY(y + 1/(fN))| ≤ f̄ /(fN). Hence (S.8) converges
to zero. The second term, (S.9), converges to zero because of (S.2).

For (S.10), note that

sup
q

Nη · ∣∣(F̂Y

(
F−1
Y

(
F̂Y (F̂

−1
Y (q))

)) − F̂Y (F̂
−1
Y (q))

)
(S.13)

− (
F̂Y (F̂

−1
Y (q))− FY(F̂

−1
Y (q))

)∣∣
≤ sup

y

Nη · ∣∣F̂Y

(
F−1
Y (F̂Y (y))

) − F̂Y (y)− (F̂Y (y)− FY(y))
∣∣�

= sup
y

Nη · ∣∣F̂Y

(
y + F−1

Y (F̂Y (y))− y
) − F̂Y (y)

− (
FY

(
y + F−1

Y (F̂Y (y))− y
) − FY(y)

)∣∣�
Using the inequality Pr(A)≤ Pr(A|B)+ Pr(not B), we can write

Pr
(

sup
y

Nη · ∣∣F̂Y

(
y + F−1

Y (F̂Y (y))− y
) − F̂Y (y)(S.14)

− (
FY

(
y + F−1

Y (F̂Y (y))− y
) − FY(y)

)∣∣ ≥ ε
)

≤ Pr
(

sup
y

Nη · ∣∣F̂Y

(
y + F−1

Y (F̂Y (y))− y
) − F̂Y (y)

− (
FY

(
y + F−1

Y (F̂Y (y))− y
) − FY(y)

)∣∣ ≥ ε∣∣∣ sup
y

Nδ|F̂Y (y)− FY(y)| ≤ 1/f
)

+ Pr
(

sup
y

Nδ|F̂Y (y)− FY(y)| ≤ 1/f
)
�(S.15)

Whereas Nδ|F̂Y (y)−FY(y)| ≤ 1/f implies that |F−1
Y (F̂Y (y))−y| ≤N−δ, (S.14)

converges to zero by Lemma A.5 if we choose δ = (2/3)η. Whereas δ = (2/3)η
and η < 5/7 implies that δ < 1/2, Lemma A.2 implies that (S.15) converges
to zero. Thus (S.10) converges to zero. Combined with the convergence of
(S.8) and (S.9), this implies that (S.7) converges to zero. This in turn combined
with the convergence of (S.6) implies that (S.4) converges to zero.

Third, consider (S.5). Because |F̂Y (F̂
−1
Y (q)) − q| < 1/N for all q by (S.2),

this term converges to zero uniformly in q. Hence all three terms (S.3)–(S.5)
converge to zero and, therefore, (S.2) converges to zero. Q.E.D.
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PROOF OF LEMMA A.10: By the TI,

sup
y1∈Y1�y2∈Y2

|ĥ1(y1)ĥ2(y2)− h1(y1)h2(y2)|

= sup
y1∈Y1�y2∈Y2

∣∣h2(y2)(ĥ1(y1)− h1(y1))

+ (h2(y2)− h2(y1))(ĥ1(y1)− h1(y1))

+ h1(y1)(ĥ2(y2)− h2(y2))
∣∣

≤ ∣∣h2(y2)(ĥ1(y1)− h1(y1))
∣∣ + ∣∣(h2(y2)− h2(y1))(ĥ1(y1)− h1(y1))

∣∣
+ ∣∣h1(y1)(ĥ2(y2)− h2(y2))

∣∣
≤ �h2 sup

y1∈Y1

|ĥ1(y1)− h1(y1)|

+ sup
y2∈Y2

|h2(y2)− h2(y1)| sup
y1∈Y1

|ĥ1(y1)− h1(y1)|

+�h1 sup
y2∈Y2

sup
y2∈Y2

|ĥ2(y2)− h2(y2)|�

All terms are op(1). Q.E.D.

PROOF OF LEMMA A.11: By the TI,

sup
y∈Y

∣∣ĥ2(ĥ1(y))− h2(h1(y))
∣∣(S.16)

≤ sup
y∈Y

∣∣ĥ2(ĥ1(y))− h2(ĥ1(y))
∣∣ + sup

y∈Y

∣∣h2(ĥ1(y))− h2(h1(y))
∣∣�

The first term in (S.16) is bounded from above by supy∈Y
|ĥ2(y)−h2(y)|, which

is op(1). Using a MVT in the second term in (S.16) is, for some λ ∈ [0�1], equal
to

sup
y∈Y

∣∣∣∣∂h2

∂y

(
h1(y)+ λ(ĥ1(y)− h1(y))

)
(ĥ1(y)− h1(y))

∣∣∣∣
≤ �h′

2 sup
y∈Y

|ĥ1(y)− h1(y)| = op(1)�

Hence (S.16) is op(1). Q.E.D.
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PROOF OF THEOREM 5.3: We will prove that

τ̂CIC
q = τCIC

q + 1
N00

N00∑
i=1

pq(Y00�i)+ 1
N01

N01∑
i=1

qq(Y01�i)

+ 1
N10

N10∑
i=1

rq(Y10�i)+ 1
N11

N11∑
i=1

sq(Y11�i)+ op(N
−1/2)

and thus has an asymptotically linear representation. Then the result fol-
lows directly from the fact that (1/N00)

∑N00
i=1 pq(Y00�i), (1/N01)

∑N01
i=1 qq(Y01�i),

(1/N10)
∑N10

i=1 rq(Y10�i), and (1/N11)
∑N11

i=1 sq(Y11�i) all have expectation zero,
variances equal to V p

q , V q
q , V r

q , and V s
q , respectively, and zero covariances. To

prove this assertion it is sufficient to show that

F̂−1
Y�01

(
F̂Y�00(F̂

−1
Y�10(q))

)
(S.17)

= F−1
Y�01

(
FY�00(F

−1
Y�10(q))

)
+ 1

N00

N00∑
i=1

pq(Y00�i)+ 1
N01

N01∑
i=1

qq(Y01�i)+ 1
N10

N10∑
i=1

rq(Y10�i)

+ op(N
−1/2)�

By the TI,∣∣∣∣∣F̂−1
Y�01

(
F̂Y�00(F̂

−1
Y�10(q))

) − F−1
Y�01

(
FY�00(F

−1
Y�10(q))

)

− 1
N00

N00∑
i=1

pq(Y00�i)− 1
N01

N01∑
i=1

qq(Y01�i)− 1
N10

N10∑
i=1

rq(Y10�i)

∣∣∣∣∣
≤

∣∣∣∣∣F̂−1
Y�01

(
F̂Y�00(F̂

−1
Y�10(q))

) − F−1
Y�01

(
F̂Y�00(F̂

−1
Y�10(q))

)
(S.18)

− 1
N01

N01∑
i=1

qq(Y01�i)

∣∣∣∣∣
+

∣∣∣∣∣F−1
Y�01

(
F̂Y�00(F̂

−1
Y�10(q))

) − F−1
Y�01

(
FY�00(F̂

−1
Y�10(q))

)
(S.19)

− 1
N00

N00∑
i=1

pq(Y00�i)

∣∣∣∣∣
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+
∣∣∣∣∣F−1

Y�01

(
FY�00(F̂

−1
Y�10(q))

) − F−1
Y�01

(
FY�00(F

−1
Y�10(q))

)
(S.20)

− 1
N10

N10∑
i=1

rq(Y10�i)

∣∣∣∣∣�
We will prove that (S.18), (S.19), and (S.20) are all op(1), which will finish the
proof.

Finally, consider (S.20). Using a MVT, we can write

F−1
Y�01

(
FY�00(F̂Y�10(q))

)
= F−1

Y�01

(
FY�00(FY�10(q))

)
− fY�00(F

−1
Y�10(q)+ λ(F̂−1

Y�10(q)− F−1
Y�10(q)))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q)+ λ(F̂−1

Y�10(q)− F−1
Y�10(q))))

× (F̂−1
Y�10(q)− F−1

Y�10(q))

for some λ ∈ [0�1]. Therefore,∣∣∣∣∣F−1
Y�01

(
FY�00(F̂

−1
Y�10(q))

) − F−1
Y�01

(
FY�00(F

−1
Y�10(q))

) − 1
N10

N10∑
i=1

rq(Y10�i)

∣∣∣∣∣
=

∣∣∣∣∣ − fY�00(F
−1
Y�10(q)+ λ(F̂−1

Y�10(q)− F−1
Y�10(q)))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q)+ λ(F̂−1

Y�10(q)− F−1
Y�10(q)))))

× (F̂−1
Y�10(q)− F−1

Y�10(q))− 1
N10

N10∑
i=1

rq(Y10�i)

∣∣∣∣∣
≤

∣∣∣∣
(

fY�00(F
−1
Y�10(q))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q))))

(S.21)

− fY�00(F
−1
Y�10(q)+ λ(F̂−1

Y�10(q)− F−1
Y�10(q)))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q)+ λ(F̂−1

Y�10(q)− F−1
Y�10(q)))))

)

× (F̂−1
Y�10(q)− F−1

Y�10(q))

∣∣∣∣
+

∣∣∣∣∣ − fY�00(F
−1
Y�10(q))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q))))

(F̂−1
Y�10(q)− F−1

Y�10(q))(S.22)

− 1
N10

N10∑
i=1

rq(Y10�i)

∣∣∣∣∣�
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The second term, (S.22) is equal to∣∣∣∣∣ − fY�00(F
−1
Y�10(q))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q))))

(F̂−1
Y�10(q)− F−1

Y�10(q))

+ 1
N10

N10∑
i=1

fY�00(F
−1
Y�10(q))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q))fY�10(F

−1
Y�10(q))

× (
1{F10(Y10�i)≤ q} − q

)∣∣∣∣∣
≤ sup

q

∣∣∣∣ fY�00(F
−1
Y�10(q))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q))))

∣∣∣∣
× sup

q

∣∣∣∣∣(F̂−1
Y�10(q)− F−1

Y�10(q))

− 1
N10

N10∑
i=1

1
fY�10(F

−1
Y�10(q))

· (1{F10(Y10�i)≤ q} − q
)∣∣∣∣∣

= sup
q

∣∣∣∣ fY�00(F
−1
Y�10(q))

fY�01(F
−1
Y�01(FY�00(F

−1
Y�10(q))))

∣∣∣∣
× sup

q

∣∣∣∣(F̂−1
Y�10(q)− F−1

Y�10(q))

− 1
fY�10(F

−1
Y�10(q))

(
F̂Y�10(F

−1
Y�10(q))− q

)∣∣∣∣�
which is op(N

−1/2) by Lemma A.6. Q.E.D.

PROOF OF THEOREM 5.5: Define µ̂p, µ̂q, µ̂r , and µ̂s as before. Then by the
same argument as in Lemma A.8, we have

√
N(τ̂CIC − µ̂p − µ̂q − µ̂r − µ̂s) =

op(1). It is also still true that
√
N0 · µ̂p d→ N(0� V p),

√
N0 · µ̂q d→ N(0� V q),√

N1 · (µ̂r)
d→ N(0� V r), and

√
N1 · µ̂s d→ N(0� V s). Hence

√
N · (τ̂CIC − τCIC) is

asymptotically normal with mean zero, and all that is left is to sort out the part
of the variance that comes from the correlations between the four terms

√
N0 ·

µ̂p,
√
N0 · µ̂q,

√
N1 · µ̂r , and

√
N1 · µ̂s, which are no longer all uncorrelated.

Even in the panel case it still holds that E[p(Y00�j�Y10�i)|Y10�i] = 0, im-
plying that

√
N0 · µ̂p is uncorrelated with

√
N10 · µ̂10 and

√
N11 · µ̂s. Simi-

larly, E[q(Y01�j�Y10�i)|Y10�i] = 0, implying that
√
N01 · µ̂q is uncorrelated with
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√
N10 · µ̂10 and

√
N11 · µ̂s. The only two remaining correlations are those be-

tween
√
N10 · µ̂r and

√
N11 · µ̂s , and between

√
N00 · µ̂p and

√
N01 · µ̂q. The first

correlation is

E[√N1 · µ̂r · √N1 · µ̂s] = E

[
1
N1

N1∑
i=1

N1∑
j=1

r(Y10�i) · s(Y11�j)

]

= E

[
1
N1

N1∑
i=1

r(Y10�i) · (Y11�i − E[Y11])
]

= E[r(Y10) · s(Y11)] = Crs�

The second correlation is

E[√N00 · µ̂p · √N01 · µ̂q]

= E

[
1

N0N
2
1

N0∑
i=1

N0∑
j=1

N1∑
k=1

N1∑
l=1

p(Y00�i�Y10�k) · q(Y01�j�Y10�l)

]
�

Terms with i �= j are equal to zero because E[p(Y00�j�Y10�i)|Y10�i] = 0. Thus the
correlation reduces to

E

[
1

N0N
2
1

·
N0∑
i=1

N1∑
k=1

N1∑
l=1

p(Y00�i�Y10�k) · q(Y01�i�Y10�l)

]

= E

[
1

N0N
2
1

·
N0∑
i=1

N1∑
k=1

N1∑
l=1�l �=k

p(Y00�i�Y10�k) · q(Y01�i�Y10�l)

]

+ E

[
1

N0N
2
1

·
N0∑
i=1

N1∑
k=1

p(Y00�i�Y10�k) · q(Y01�i�Y10�k)

]

= N1 − 1
N1

· E
[
E[p(Y00�Y10)|Y00] · E[q(Y01�Y10)|Y01]

] + op(1)

= Cpq + op(1)� Q.E.D.

PROOF OF THEOREM 5.6: Convergence of Ĉrs to Crs follows directly from
the law of large numbers, because Ĉrs is a simple sample average. Next, con-
sider Ĉpq. By the TI, we have

|Ĉpq −Cpq|(S.23)

≤
∣∣∣∣∣ 1
N00

N00∑
i=1

{[
1
N10

N10∑
j=1

p̂(Y00�i�Y10�j)

]
·
[

1
N10

N10∑
j=1

q̂(Y01�i�Y10�j)

]}
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− 1
N00

N00∑
i=1

{[
1
N10

N10∑
j=1

p(Y00�i�Y10�j)

]

×
[

1
N10

N10∑
j=1

q(Y01�i�Y10�j)

]}∣∣∣∣∣
+

∣∣∣∣∣ 1
N00

N00∑
i=1

{[
1
N10

N10∑
j=1

p(Y00�i�Y10�j)

]
·
[

1
N10

N10∑
j=1

q(Y01�i�Y10�j)

]}
(S.24)

− 1
N00

N00∑
i=1

{
E[p(Y00�i�Y10)|Y00�i] · E[q(Y01�i�Y10)|Y01�i]

}∣∣∣∣∣
+

∣∣∣∣∣ 1
N00

N00∑
i=1

{
E[p(Y00�i�Y10)|Y00�i] · E[q(Y01�i�Y10)|Y01�i]

} −C0

∣∣∣∣∣�(S.25)

Expression (S.23) is op(1) by the fact that supy�z |p̂(y� z) − p(y� z)| and
supy�z |q̂(y� z)− q(y� z)| converge to zero. Expression (S.24) converges to zero
by boundedness of p(y� z) and q(y� z). As a sample average, expression (S.25)
converges to zero by the law of large numbers. Thus, Ĉpq − Cpq = op(1).

Q.E.D.

PROOF OF THEOREM 5.7: The proof goes along the same line as the proof
for Theorem 5.4. The estimation error in the control sample does not affect
the asymptotic distribution, and the distributions of the bounds are, to first
order, equal to the distribution of (1/N1)

∑
i Y11�i − (1/N1)

∑
i k(Y10�i) and

(1/N1)
∑

i Y11�i − (1/N1)
∑

i
�k(Y10�i), respectively. Both components are still

normally distributed in large samples; hence, their difference is normally dis-
tributed. The only difference is that the two components, (1/N1)

∑
i Y11�i and

either (1/N1)
∑

i k̂(Y10�i) or (1/N1)
∑

i
�̂k(Y10�i), are now correlated. Q.E.D.
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