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THIS APPENDIX provides additional results that supplement those published
in Barelli, Govindan, and Wilson (2014). Here we add the suffix “-BGW” to
references to assumptions and results in that article.

S.1. SIMPLE-MAJORITY GAMES

For the case of simple-majority games, we specify a slightly different tie-
breaking rule that implies the same result as Theorem 3.11-BGW even if the
number of voters is even. We use the notation from Section 3.5-BGW except
that the weight of each voter k is wk = 1/K.

Obviously, Assumption 3.3-BGW cannot hold when the number of voters
is even, so it is dropped. Assumption 3.4-BGW on diversity of preferences re-
mains the same. Assumption 3.5-BGW relating strategy sets has to be changed.

ASSUMPTION S.1.1—Relationship Between Candidates’ Strategy Sets—The
Simple-Majority Version: Fix x= (xi� xj) ∈ D.

(1) If Li(x) is nonempty, then |L0(x)| ≥ 2.
(2) If L∗

i (x) is nonempty and |L0(x)| ≥ 2, then:
(a) If πi(y

k
i � xj) = 0 for some k ∈ L∗

i (x), then, for all k ∈ K∗(xj), πj(y
k
j � xi) ∈

{0�1} and, in fact, equals +1 if |L0(x)| ≥ 3.
(b) If πi(y

k
i � xj) = −1 for some k ∈ L∗

i (x), then, for all k ∈ K∗(xj), πj(y
k
j �

xi)= +1.1

EXAMPLE S.1.2:
1. In the setting of Example 3.6-BGW, set the weights to wk = 1/4 for ev-

ery k. Condition (1) of Assumption S.1.1 holds because Li(x) is nonempty
iff xi = xj and then |L0(x)| = K ≥ 3. Condition (2)(a) is illustrated by the
policy pair (xi� xj) described in Example 3.6-BGW: in fact, πi(y

k
i � xj) = 0 for

k = 1�3, as y1
i (resp. y3

i ) wins voter 3 (resp. 1) and loses voter 1 (resp. 3), so

1Observe that if πi(y
k
i � xj) = 0 (resp. πi(y

k
i � xj)= −1) for some k ∈L∗

i (x), then πi(y
k
i � xj)= 0

(resp. πi(y
k
i � xj) = −1) for all k ∈L∗

i (x).
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each such policy gets 2/4 votes against xj . So we must show that πj(y
k
j � xi)≥ 0

for k = 1�3�4. And this is true, as it is equal to zero for k = 1�3 (both y1
j and

y3
j win one and lose one of the tied voters, so each gets 2/4 votes against xi)

and it is equal to +1 for k = 4, as y4
j wins both tied voters 1 and 3 and retains

voter 4, so j gets 3/4 votes against xi.
2. To illustrate the second part of condition (2)(a), modify Example 3.6-

BGW by adding two voters and two dimensions, K = 6, N = 5, continu-
ing with Euclidean preferences having ideal points a1 = (1�0�0�0�0), a2 =
(0�1�0�0�0), a3 = (0�0�0�0�0), a4 = (0�0�1�0�0), a5 = (0�0�0�1�0), and
a6 = (0�0�1�0�1). Again the strategy sets are the Pareto set, the convex
hull of the ideal policies. For simple-majority rule, the weights are wk = 1/6
for every k. Consider xi = (1/4�1/4�0�0�0) and xj = (1/4�0�1/4�0�0). Now
L0(x) = {1�3�5}, Li(x) = {2}, and Lj(x) = {4�6}. We have πi(y

k
i � xj) = 0 for

k ∈ {1�3} =L∗
i (x), as y1

i (resp. y3
i ) wins voters 3 and 5 (resp. 1 and 5) and loses

voter 1 (resp. 3), totaling 3/6 votes from voters 2, 3, and 5 (resp. 1, 2, and 5).
We must show that πj(y

k
j � xi) = +1 for k = 1�3�4, and this follows because yk

j

for k = 1�3�4, wins at least two of the tied voters, and retains voters 4 and 6
(relative to xi), so j gets at least 4/6 votes.

3. To illustrate condition (2)(b) of Assumption S.1.1, again modify Ex-
ample 3.6-BGW, but now add only one voter and one dimension (K = 5,
N = 4), with ideal policies a1 = (1�0�0�0), a2 = (0�1�0�0), a3 = (0�0�0�0),
a4 = (0�0�1�0), and a5 = (0�0�1�1), and wk = 1/5 for all k. For the pair xi =
(1/4�1/4�0�0) and xj = (1/4�0�1/4�0), we have L0(x) = {1�3}, Li(x) = {2},
and Lj(x) = {4�5}. Now πi(y

k
i � xj) = −1 for k = 1�2, for the same reason as

above, as xj retains voters 4 and 5 and wins one more voter (voter 1 for k = 1
and voter 3 for k = 3), so it gets 3/5 votes relative to yk

i . So we have to verify
that πj(y

k
j � xi) = +1 for k = 1�3�4. This follows, as yk

j for k = 1�3�4 wins at
least one voter, plus voters 4 and 5 that are already won (relative to xi).

Again, the tie-breaking rule is specified in terms of the implied payoff func-
tion π̃ ∈ Π.

DEFINITION S.1.3—Modified Tie-Breaking Rule T S : Suppose x ∈ D.
(T1) For each i, let V (xi) be as in Assumption S.1.1. Suppose, for some i,

L∗
i (x) is nonempty and L0(x) has at least two voters. For this i:
(a) If π̃i(y

k
i � xj)= 0 for some k ∈L∗

i (x), then π̃i(xi� xj) is zero if |L0(x)| = 2
and −1 if |L0(x)| ≥ 3.

(b) If π̃i(y
k
i � xj) = −1 for some k ∈ L∗

i (x), then π̃i(xi� xj)= −1.
(T2) Suppose L∗

i (x) is empty for each i or L0(x) = {k} for some k. If∑
k′∈Lj(x) wk′ = 1/2, then π̃i(xi� xj)= −1/2.
(T3) In all other cases, π̃i(xi� xj)= 0 for each i.2

2Again, we could use fair coin tosses for each tied voter.
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The rule T S differs from the rule T used in Section 3.5-BGW only in that
provisions (T1)(a) and (T2) are added—and the condition that L∗

i (x) has at
least two voters if Li(x) is empty, when invoking (T1), is relaxed—to accom-
modate the fact that with an even number of voters, the game could end in a
draw. Without these changes, T S is the same as T .

From Example S.1.2(3), we see that provision (T1)(b) is analogous to pro-
vision (T1) of tie-breaking rule T : candidate j is in a very advantageous situa-
tion when π̃i(y

k
i � xj)= −1 for all k ∈L∗

i (x), as winning a single one of the tied
voters guarantees a victory, whereas candidate i has to win all of the tied vot-
ers. In such a situation, T S awards the election to j. Provision (T1)(a) handles
draws: from Example S.1.2(1), we see that πi(y

k
i � xj) = 0 and |L0(x)| = 2 for

all k ∈ L∗
i (x) is a symmetric situation, so the rule T S declares it a draw; from

Example S.1.2(2), we see that candidate j is in an advantageous situation when
πi(y

k
i � xj) = 0 and |L0(x)| ≥ 3 for all k ∈ L∗

i (x), as j has the upper hand in the
non-tied battles, so T S awards the election to j.

EXAMPLE S.1.4: Return to the setting of Example S.1.2(1). Consider the pair
(xi� xj) with xi = (0�0�0) and xj in the intersection of 1’s indifference surface
and the face spanned by voters 1, 2, and 4, in such a way that voter 4 prefers xj

to xi (for instance, xj = ( 3−√
5

4 � 1
2 �

√
5−1
4 )). Then L0(x) = {1} and Lj(x) = {2�4},

so the premise of condition (T2) of the rule T S applies, and the rule then says
that π̃i(xi� xj)= −1/2. We see that candidate j is in a stronger position because
he has already secured 2/4 votes. But y1

j loses voter 1, so it fails to beat xi. The
relatively stronger position of candidate j is then captured by awarding the
election to him with probability 3/4 rather than 1/2.

The payoff function π̃ induced by the tie-breaking rule T S satisfies payoff
approachability. As in the proof of Theorem 3.12-BGW, one shows that the
payoff function satisfies condition 1 of Proposition 2.12-BGW, and then it is
sufficient to show that payoff approachability is satisfied at each (xi�σj) where
σj has finite support in D(xi). This property is verified by Lemma S.2.1 in Sec-
tion S.2 below, which then proves the existence theorem for simple-majority
games.

THEOREM S.1.5—Existence and Invariance of the Value in Simple Majority
Games: The game G(π̃) has an equilibrium and its value is the value of every
variant G(π ′) with π ′ ∈ Π.

S.2. PROOF OF THEOREM 5.4-BGW

We begin with a preliminary lemma about the payoff function π̃ that de-
scribes the tie-breaking rule T S , introduced in Definition S.1.3 for simple-
majority games. In this game, fix (xi�σj) such that the support of σj is finite and
contained in D(xi). Choose ε̄ as in the proof of Theorem 3.12-BGW and fix a
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neighborhood V (xi) also as there. The following lemma then proves payoff
approachability for (xi�σj) and, additionally, yields properties used to prove
Theorem 5.4-BGW for simple-majority Colonel Blotto games.

LEMMA S.2.1: There exists k ∈K∗(xi) such that π̃i(xi�σj)≤ π̃i(y
k
i �σj). More-

over, the inequality is strict if one of the following conditions holds:
(1) K(xi) is nonempty and there is a positive probability of (T2) or (T3) being

used.
(2) K∗(xi) has at least three coordinates and there is a positive probability of

(T2) or (T3) being used.
(3) K∗(xi) has two coordinates and (T2) or (T3) is used in resolving a tie

(xi� xj) for which L0(xi� xj) �= {k} for both k’s in K∗(xi).
(4) K(xi) is empty and (T1) is invoked for some (xi� xj) because i satisfies

the conditions for the rule and either: |L0(x)| ≥ 3 and π̃i(y
k′
i � xj) = 0 for some

k′ ∈ K∗(xi); or uk′′(xi) �= uk′′(xj) for some k′′ ∈ K∗(xi).

PROOF: The proof becomes transparent once we compare the payoffs to xi

and yk
i against xj for each k and xj , which we now do.

If (T1) is invoked and π̃i(y
k
i � xj) is 0 (resp. −1) for some k ∈ L∗(x), then

π̃i(y
k′
i � xj) is 0 (resp. −1) for all k′ in L∗

i (x), because of simple-majority scoring,
and π̃i(y

k′
i � xj) is 1 (resp. nonnegative) for k′ ∈ K∗(xi) \ L∗

i (x). Thus, in this
case, π̃i(xi� xj) ≤ π̃i(y

k
i � xj) for all k ∈ K∗(xi), with strict inequality if K(xi) is

empty and either: (i) |L0(x)| ≥ 3 and π̃i(y
k′
i � xj) = 0 for some k′ ∈ K∗(xi); or

(ii) uk(xi) �= uk(xj).
If (T1) is invoked because π̃j(y

k
j � xi) is 0, then π̃i(xi� xj) is zero if |L0(x)| = 2

and +1 if |L0(x)| ≥ 3. By Assumption S.1.1, π̃i(y
k
i � xj) is nonnegative in

the former case and is +1 in the latter. Likewise, if (T1) is invoked be-
cause π̃j(y

k
j � xi) is −1, then π̃i(y

k
i � xj) = +1 by Assumption S.1.1. In short,

π̃i(y
k
i � xj)≥ π̃i(xi� xj) for all k. Thus, yk

i does at least as well as xi against every
xj for which (T1) is applied.

There remains to consider xj ’s for which (T2) or (T3) is invoked.
Suppose L∗

i (x) is empty for each i. If |Lj(x)| = K/2, then π̃i(xi� xj) = −1/2
from (T2). For any k ∈ K∗(xi), because k /∈L0(x), uk′(yk

i ) > uk′(xj) for all k′ ∈
L0(x), so |Li(yk

i � xj)| = K/2 as well, and π̃i(y
k
i � xj) = 0. Likewise, if |Li(x)| =

K/2, then π̃i(xi� xj) = 1/2 from (T2), and because k /∈ L0(x), π̃i(y
k
i � xj) = 1.

Summing up, π̃i(y
k
i � xj) − π̃i(xi� xj) = 1/2 if either |Li(x)| or |Lj(x)| equals

K/2. This difference is equal to +1 otherwise (i.e., if neither of the candidates
has half the votes outside of L0(x)). Thus, all yk

i ’s do strictly better against all
these xj ’s.

Suppose L0(x) contains just one voter, say k. If k /∈ K∗(xi), then the payoff
difference is as in the previous paragraph. If k ∈ K∗(xi), then K(xi) is empty
(by point (1) of Assumption S.1.1) and π̃i(y

k
i � xj) − π̃i(xi� xj) = −1 + 1/2 =
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−1/2 (resp. 0 − 1/2 = −1/2) if |Lj(x)| = K/2 (resp. |Li(x)| = K/2). This dif-
ference is equal to −1 if neither of the candidates has half of the voters outside
of L0(x). But observe that, for every k′ �= k in K∗(xi), π̃i(y

k′
i � xj)− π̃i(xi� xj)=

π̃i(xi� xj)− π̃i(y
k
i � xj), as uk(y

k′
i ) > uk(xj) > uk(y

k
i ). Thus, each yk′

i does strictly
better against all these xj ’s.

Finally, suppose L0(x) contains at least two voters, either L∗
i (x) or L∗

j (x) is
nonempty, but each player for whom it is nonempty that he can achieve +1
rather than 0 or −1 specified there. Then, if L∗

i (x) is nonempty, π̃i(y
k
i � xj) = 1

for some k ∈ L∗
i (x) (otherwise (T1) would apply) and it holds for all k while

π̃i(xi� xj) = 0; on the other hand, if L∗
i (x) is empty, then trivially each yk

i

achieves +1.
We now complete the proof of the lemma as follows. Obviously, if K(xi) is

nonempty, then yk
i does at least as well as xi against each xj in the support of

σj and strictly better against all xj ’s for which (T1) is not invoked, proving the
first statement and points (1)–(3) of the second, with point (4) being vacuously
true. Assume from now on that K(xi) is empty.

Each yk
i does as well against all xj to which (T1) applies and strictly better

against those xj ’s for which the condition of point (4) of the lemma holds. If
(T2) or (T3) is not used with positive probability, then the first statement of
the lemma holds as does point (4), while points (1)–(3) are vacuous.

Suppose (T2) or (T3) is invoked with positive probability. If there is one k
for which no tie is just on this voter’s utility, then yk

i does strictly better than
xi, as the calculations above show. Thus, the inequality holds, regardless of the
conditions of points (2)–(4), if there is such a k. Suppose then that, for each
k ∈ K∗(xi), there is an xj that ties with xi just on k. It is clear that at least
one of the yk

i ’s would do as well as xi against σj . Moreover, if there are at
least three coordinates in K∗(xi), one of them would do strictly better, proving
point (2). Also, if there are only two such k’s, then one of them would do
strictly better than xi against σj unless each tie involves exactly one of these
k’s, which proves point (3). Observe that when there are two such k’s, and xi

is not inferior to some yk
i against σj , then xi and each yk

i give the same payoff
against the conditional distribution over the xj ’s for which (T2) or (T3) is used.

Coming to ties involving (T1), it is clear now that if there is a tie with an xj

where the rule is invoked because of i, then for xi to do at least as well as all
yk
i , we must have K∗(xi) ⊂ L0(x) and π̃i(y

k
i � xj) = −1 for each k ∈ K∗(xi) if

|L0(x)| > 2. If this is violated for some xi and if xi is already not dominated by
some yk

i against the conditional over xj ’s where (T1) is not used, then K∗(x)
has two coordinates and, as we argued at the end of the last paragraph, each
k would do equally well against those not involving (T1), with the result that it
would do strictly better against σj , proving point (4). Q.E.D.

We now recall and prove Theorem 5.4-BGW for simple-majority Colonel
Blotto games.
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THEOREM 5.4-BGW: Let σ∗ be an equilibrium that is invariant under all the
symmetries of the game. If R1/R2 < r∗, then (σ∗

1 ⊗ σ∗
2 )(D) = 0—that is, at the

equilibrium σ∗, the tie-breaking rule T S has zero probability of being invoked.

We set up some notation and prove a number of preliminary claims before
proving the theorem. Suppose xi is a strategy in Xi such that σ∗

j (D(xi)) > 0.
We can decompose σ∗

j into σ
c�xi
j and σ

d�xi
j , where the former puts zero

probability on Xj \ D(xi) and the latter puts probability 1 on it. Let L(xi)
be the set of quadruples L = (L0�Li�Lj�Tn) such that there is a pos-
itive probability under σ∗

j of the set DL(xi) consisting of xj ’s such that
(L0�Li�Lj) = (L0(xi� xj)�L

i(xi� xj)�L
j(xi� xj)) and provision (Tn) of rule

T S is used, where n ∈ {1�2�3}. For simplicity, from here on we suppress
Tn in the notation. For each L, choose a point xj(L) ∈ DL(xi) and con-
sider the conditional distribution σ̃

xi
j over the xj(L)’s given by σ̃

xi
j (xj(L)) =

(
∑

L′ σ∗
j (D

L′
(xi)))

−1σ∗
j (D

L(xi)). Choose a neighborhood V (xi) such that, for
each yi ∈ V (xi) and L, yi�k > xj�k(L) if k ∈ Li, and yi�k < xj�k(L) if k ∈ Lj .

CLAIM S.2.2: π̃i(xi�σ
∗
j ) = σ∗

j (Xj \ D(xi))π̃i(xi�σ
c�xi
j ) + σ∗

j (D(xi))π̃i(xi�

σ̃
xi
j ).

PROOF: As the payoff π̃i(xi� ·) is constant on each DL(xi), π̃i(xi�σ
d�xi
j ) =

π̃i(xi� σ̃
xi
j ) and the result follows. Q.E.D.

CLAIM S.2.3: If xi is a best reply to σ∗
j , then π̃i(xi� σ̃

xi
j ) ≥ π̃i(y

k
i � σ̃

xi
j ) for all

k ∈ K∗(xi).

PROOF: Assume to the contrary that π̃i(xi� σ̃
xi
j ) < π̃i(y

k
i � σ̃

xi
j ) for some k ∈

K(xi). For each ε > 0, let W ε(xi) be the set of yi such that |yi�k − xi�k|< ε. For
each L, let Dε�L(xi) be the set of xj in DL(xj) such that |xi�k − xj�k| > ε for
k /∈ L0, and let Dε(xi) be the union of the Dε�L(xi)’s. Choose ε small enough
such that each xj(L) belongs to Dε(xi). Define σ̃

ε�xi
j to be the distribution over

xj(L) that assigns probability σd�xi
j (Dε�L(xi))/

∑
L′ σ

d�xi
j (Dε�L′

(xi)) to xj(L). By
construction, π̃i(yi(W

ε(xi)�k)� ·) is constant on the set Dε�L(xi) for each L and
π̃i(yi(W

ε(xi)�k)�xj) ∈ [−1�1] for all xj . Hence,

π̃i

(
yi

(
W ε(xi)�σ

d�xi
j

)) ∈ (
σ

d�xi
j

(
Dε(xi)

))
π̃i

(
yi

(
W ε(xi)�k

)
� σ̃

ε�xi
j

)

± σ
d�xi
j

(
D(xi) \Dε(xi)

)
�

Obviously, π̃i(yi(W
ε(xi)�k)�xj(L)) = π̃i(y

k
i � xj(L)) for all xj(L). Moreover,

σ̃
ε�xi
j converges to σ̃

xi
j and Dε(xi) converges to D(xi). Therefore,

lim
ε↓0

π̃i

(
yi

(
W ε(xi)�k

)
�σ

d�xi
j

) = π̃i

(
yk
i � σ̃

xi
j

)
> π̃i

(
xi�σ

d�xi
j

)
�



COMPETITION FOR A MAJORITY 7

Since limε↓0 π̃i(yi(W
ε(xi)�k)�σ

c�xi
j ) = π̃i(xi�σ

c�xi
j ), we then have that π̃i(xi�

σ∗
j ) < limε↓0 π̃i(yi(W

ε(xi)�k)�σ
∗
j ) and σ∗

j is not a best reply to σ∗
j , a contra-

diction. Q.E.D.

The next three claims argue directly about points (xi� xj) ∈ D.

CLAIM S.2.4: If xi is a vertex, then there exists x′
j obtained by permuting the

coordinates of xj such that (T1) does not apply to (xi� x
′
j).

PROOF: Let xi be a strategy that assigns Ri to a battle, say k = 1. Observe
first that for (T1) to be used in deciding a tie between xi and xj ’s, this battle
must belong to L0(x). If R1 = R2, this means that xi = xj and (T3) is opera-
tive. If R1 > R2, then i = 2 and π̃i(y

1
i � xj) = −1. Since R1 < r∗R2, there exists

some k′ �= 1 such that 0 < xj�k′ <R2. There exists some x′
j that swaps these two

coordinates and now (T3) applies to (xi� x
′
j). Q.E.D.

CLAIM S.2.5: Suppose xi is not a vertex, and (T1) applies to (xi� xj) ∈ D. If
π̃i(y

k
i � xj) is either 0 or −1 for some k ∈ L∗(x), then either: (i) there exists k′ ∈

K∗(xi) such that xi�k′ �= x′
j�k′ for some x′

j obtained from permuting the coordinates
of xj ; or (ii) |L0(x)| ≥ 3 and π̃i(y

k
i � xj)≥ 0 for some k ∈ L∗

i (x).

PROOF: If R1 = R2, conclusion (i) is valid, since otherwise xi = xj and (T3)
would apply. If R1 >R2 and i = 1, then conclusion (i) is obvious.

Assume now that i = 2, R1 >R2, and conclusion (i) of the claim is violated.
Then xi�k = xj�k for each positive coordinate of xi. If π̃i(xi� xj)= 0 for some k,
then K is even, |L0(x)| = 2, and |Lj(x)| = K/2 − 1, while if π̃i(xi� xj) = −1,
then either |Lj(x)| = �K/2
 (K can be odd or even) or |L0(x)| ≥ 3, K is even
and |Lj(x)| = K/2 − 1. If |L0(x)| = 2, then |Lj(x)| = K − |L0(x)| = K − 2 >
�K/2
 − 1. Thus, when |Lj(x)| =K/2 − 1, |L0(x)| ≥ 3.

If |Lj(x)| = �K/2
, then |L0(x)| = �K/2�. Therefore, there exists k′ such
that xi�k′ ≥ R2/�K/2�. Moreover, since |Lj(x)| = �K/2
, and R1 < r∗R2, there
exists a coordinate k′′ such that xi�k′′ = 0 < xj�k′′ <R1 −R2 <R2/�K/2�. There
exists x′

j that swaps these two coordinates and (xi� x
′
j) ∈ D. Now there is a

coordinate, namely k′, for which xi�k′ > x′
j�k′ , a contradiction. So (i) must hold.

If |Lj(x)| = K/2 − 1, then, as we saw above, |L0(x)| ≥ 3. Therefore,
π̃i(y

k
i � xj)= 0 for each k ∈ L∗

i (x), which proves (ii). Q.E.D.

CLAIM S.2.6: Suppose (xi� xj) ∈ D, both xi and xj have two positive coordi-
nates, L∗(xi) is nonempty, and (T2) or (T3) applies. There exists another x′

j ob-
tained by a permutation of coordinates from xj where (T2) or (T3) applies as well
but where (xi� x

′
j) are either tied in two or more coordinates or in a zero coordi-

nate.
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PROOF: Suppose xi and xj are tied in just one coordinate, say k = 1, and
that this coordinate is positive for both players. Then K = 3 and i wins, say,
k = 2 and j wins k = 3. Derive x′

j from xj by permuting coordinates 2 and 3.
x′
j ties with xi in coordinates 1 and 3. Q.E.D.

PROOF OF THEOREM 5.4-BGW: Fix x1 ∈ D such that σ∗
j (D(xi)) > 0. We

show that xi is not a best reply to σ∗
j , which proves the result.

Fix xj in D(xi). Let L = (L0(x)�Li(x)�Lj(x)). Observe that if x′
j is ob-

tained by permuting coordinates of xj , then there exists x′
j(L

′) in the support
of σ̃xi

j , where L′ = (L0(xi� x
′
j)�L

i(xi� x
′
j)�L

j(xi� x
′
j)). Using this fact, the proof

of the theorem follows quite easily. If xi is a vertex, by Claim A.4, point (1) of
Lemma S.2.1 holds for σ̃xi

j , and by Claim S.2.3, xi is not a best reply to σ∗
j .

The other cases work similarly. If xi is not a vertex, but (T1) applies to
(xi� xj), then combining Claim A.5, point (4) of Lemma S.2.1, and Claim S.2.3
proves the result.

If (T2) or (T3) applies to (xi� xj), then by point (2) of Lemma S.2.1, xi

has only two nonzero coordinates. Claim A.6, point (3) of Lemma S.2.1, and
Claim S.2.3 finish the proof. Q.E.D.
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