The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts

New Journals

Editorial Board
Journal News

Monograph Series

September 2012 - Volume 80 Issue 5 Page 2333 - 2348


Aggregating the Single Crossing Property

John K.-H. Quah
Bruno Strulovici


The single crossing property plays a crucial role in economic theory, yet there are important instances where the property cannot be directly assumed or easily derived. Difficulties often arise because the property cannot be aggregated: the sum or convex combination of two functions with the single crossing property need not have that property. We introduce a new condition characterizing when the single crossing property is stable under aggregation, and also identify sufficient conditions for the preservation of the single crossing property under multidimensional aggregation. We use our results to establish properties of objective functions (convexity, logsupermodularity), the monotonicity of optimal decisions under uncertainty, and the existence of monotone equilibria in Bayesian games.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top

Email me my password
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Future Meetings
Past Meetings
Meeting Announcements
web this site
Site created and maintained by Wiley-Blackwell.
Comments? Contact
To view our Privacy Policy, please click here.